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Abstract—In long-haul sensor networks, remote sensors are
deployed to cover a large geographical area, such as a continent
or the entire globe. Related applications can be found in military
surveillance, air traffic control, greenhouse gas emission moni-
toring, and global cyber attack detection, among others. In this
work, we consider target monitoring and tracking using a long-
haul sensor network, wherein the state and covariance estimates
are sent from the sensors to a fusion center that generates a
fused state estimate. Long-haul communications over submarine
fibers and satellite links are subject to long latencies and/or
high loss rates, which lead to lost or out-of-order messages.
These in turn may significantly degrade the fusion performance:
fusing fewer state estimates may compromise the accuracy of
the fused state, whereas waiting for all estimates to arrive may
compromise its timeliness. We propose an online selective linear
fusion method to fuse the state estimates based on projected
information contribution from the pending data. Using both
prediction and retrodiction techniques, our scheme enables the
fusion center to opportunistically make decisions on when to
fuse the estimates, thereby achieving a balance between accuracy
and timeliness of the fused state. Simulation results of a target
tracking application show that our scheme yields accurate and
timely fused estimates under variable communications delay and
loss conditions.

Index Terms—State estimation, long-haul sensor networks,
delay and loss, online selective fusion, projected information gain,
prediction and retrodiction.

I. INTRODUCTION

Many networked sensor systems are deployed for detecting
and/or monitoring the states of dynamic targets. In particular,
long-haul sensor networks, where sensors span a large geo-
graphical area, can be found in many real-world applications,
such as monitoring of greenhouse gas emissions using airborne
and ground sensors [8], processing of global cyber events
using cyber sensors distributed over the Internet [15], space
exploration using a network of telescopes [20], and target
detection and tracking for air and missile defense [4]. The
response time requirements of such long-haul sensor networks
can vary from a few seconds in detecting cyber attacks
on critical infrastructures to years in detecting global trends
in greenhouse gas emissions. In this work, we focus on a
particular class of long-haul sensor networks that are deployed
to detect and track events and/or targets within a timescale of
seconds.
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We consider a long-haul sensor network wherein the sensors
generate, in their field of view, state estimates (such as position
and velocity) of certain targets, and send them to a remote
fusion center that generates global state estimates. With perfect
communications, i.e., without any communication loss and
delay, the fused estimate would normally achieve an accuracy
level far superior to those of the individual sensor estimates.
However, this is hardly the case for state estimation over
a long-haul sensor network, where the connection distances
to the fusion center are in the range of several to tens of
thousands miles. In these networks, the state estimates are
sent via satellite links or a combination of submarine and
terrestrial connections to a fusion center with round trip time
(RTT) of hundreds of milliseconds or more. Fig. 1 illustrates
the infrastructure of a satellite-based long-haul sensor network.
The combination of long latency and high loss over such links
[16] often leads to an insufficient number of state estimates
reaching the fusion center, thereby affecting the quality of the
fused estimate produced by the fusion center.

As with most sensing applications, there are two competing
requirements for the fused estimates generated over long-haul
sensor networks. First, the accuracy of the fused estimate
must exceed that of any single sensor and the estimation
error should also be below a predefined maximum tolerable
threshold. This generally requires the incorporation of most, if
not all, sensor data into the fused estimate. On the other hand,
the fused estimate must be generated within a certain, often
tight, deadline. For instance, in some military applications,
the position of an aircraft or missile is required to be reported
within a few seconds. Unfortunately, over long-haul links with
severe loss and delay, data from sensors may even fail to arrive
at the fusion center by the reporting deadline.

Faced with these challenges, the fusion center can take two
types of “extreme” actions. If it simply combines only the
data that have arrived, the quality of the fused state is often
suboptimal. On the other hand, waiting for all the data to arrive
could compromise the timeliness requirement. Accounting
for the trade-offs between estimation accuracy and reporting
timeliness, in this work, we design an online selective fusion
scheme that enables the fusion center to opportunistically
make decisions on when to fuse the estimates to achieve a
balance between the two.

Our study has a few salient features compared to the related
works (See Section II):

(1) This work is among the very first to address state
estimation with severe data loss/delay and strict enforcement
on estimation accuracy and timeliness. The delay performance
has often been overlooked in previous studies. The fusion
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Fig. 1. Sensor estimate fusion over satellite links: the sensors generate their state estimates of the dynamic target(s), which are sent over long-haul satellite
links to a remote fusion center for fusion.

center must balance the pros and cons of early versus late
reporting to meet the dual requirements on timeliness and
accuracy.

(2) A fusion center in long-haul state estimation applications
often possesses sufficient storage and computation capabilities
to handle large amounts of data sent from the sensors that
can be queried and retrieved easily. However, from our per-
formance study results, the storage/computation requirements
on the fusion center are fairly minimal because the waiting
period is often short following our information-gain-based
fusion algorithm.

(3) In our study, prior statistical knowledge about delay and
loss is not required. Although such information can be learned
over a long period of time by the fusion center, and, once
obtained, will prove to be useful, it is not a prerequisite of
our selective fusion scheme. Therefore, our scheme can be
applied more universally.

(4) We highlight the “online” nature of our scheme as the
fusion center determines the best strategy on the go, based
on its current accuracy and delay performance of the fused
estimates. Combining this and the “selective” criteria whereby
the fusion center determines the potential contribution from
each missing estimate, our scheme works well even under a
high degree of system uncertainty.

For the convenience of presentation, in this work we mainly
consider tracking of a target with its dynamics being character-
ized by a linear system with zero-mean Gaussian measurement
and process noise processes. Nevertheless, the ideas introduced
here, especially the information-based online selective fusion,
can be extended to somewhat more complex target models
as well, with higher implementation costs. In addition, the
results can be easily extended to the scenario when multiple
distributed fusion centers are deployed in a long-haul sensor
network.

The major contributions of this work are listed as follows:
• We study the impact of communication delay and loss

on the accuracy of the fused estimate and provide the

motivation for selective fusion;
• We propose a novel information metric that the fusion

center can utilize for online selective fusion decisions
based on the projected differential information contribu-
tion, which effectively reduces the reporting delay while
meeting the accuracy requirement;

• We apply retrodiction to the selective fusion process
so that the recovery of the missing information can
be proactively expedited and the estimation accuracy
improved within the same amount of time under variable
degrees of data loss and delay;

• Although the loss and noise profiles are not essential to
the online decision making process, we carry out some
analysis of the estimation performance from known or
learned link loss and delay statistics;

• We perform extensive simulations of a tracking example
to demonstrate the effectiveness of our online scheme.

The rest of the paper is organized as follows. We briefly
discuss a list of related works in Section II. The optimal
fusion rule with fully received state estimates from the sensors
is first reviewed in Section III, before we discuss design
considerations for a selective fusion algorithm in Section IV.
We then propose our selective fusion scheme based on the
projected differential information gain metric and backward
retrodiction in Section V and provide a complete algorithmic
description. In Section VI, as an extension to our scheme,
the notion of expected information contribution is discussed
and its impact on fusion performance is explored. Simulation
results are presented and analyzed in Section VII before we
conclude the work in Section VIII.

II. RELATED WORK

There has been growing research interest in state estimation
and fusion under uncertainty. Fixed or relatively stable arrival
delay can be easily handled by the technique of state augmen-
tation [17], where adjacent states in time are grouped together
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to form a “super-state” with a higher dimension. Nevertheless,
this can inflate the computation overhead significantly with
longer delay. More importantly, with highly random arrival
delay, it is difficult to effectively apply this approach as
the dimension of the augmented state would keep changing.
On the other hand, some literature studies have considered
independent packet losses (i.e., a packet either arrives on time
or is permanently lost) for one sensor-estimator. For example,
in [6], an upper bound of the packet loss rate is derived above
which the estimation error will go unbounded.

In multi-sensor state estimation problems, fusion schemes
have been proposed under the condition that all packets arrive
on time; see [7] and the references therein. The authors in [14]
have attempted to address fusion by combining various sources
of degradation (delay, loss, and packet drop) in a probabilistic
manner. Their scheme calls for highly intensive computation
to run on multiple sensors because of the high dimensionality
of the augmented states on top of the already complicated
one-sensor case. Besides, the underlying solution requires that
the probabilities of different types of degradation are known
a priori, which apparently is a very unrealistic assumption.
In [11], a message-level retransmission mechanism is imple-
mented, where under certain conditions, a sensor retransmits
a message deemed as lost. At the cost of increased reporting
delay, the chance that a message containing the state estimate
is eventually delivered to the fusion center is improved over
time. More recently, a staggered estimation scheduling scheme
is proposed in [12] that aims to explore the temporal domain
relationships of adjacent data within an estimation interval to
improve the estimation and fusion performance.

There have been a series of studies addressing the out-
of-sequence-measurement (OOSM) issues. In these problems,
due to random latency, sensor data – often in the form of raw
measurements – arrive out of order. One of their main focuses
is on how to re-incorporate late arrivals. The initial one-step
lag problem [1] has been extended to the multi-lag case [2],
and the single-OOSM problem in [1], [2] has been extended to
the multi-OOSM case [22] as well. Whereas a similar concept
of “selective” information processing based on thresholding is
proposed in [19], the focus is mainly on the re-incorporation
of OOSMs (without loss) over the time domain, rather than
information fusion from multiple sensors. Still, there are few
multi-sensor studies under adverse link conditions, and the
time-domain constraints – in the form of a reporting deadline
– have not been accounted for in any of the above works.

Compared to the related studies, our design is not confined
to a particular type of packet delay/loss. It is neither possible
nor necessary that the fusion center can ascertain why a packet
is missing. Instead, we focus on the impact of missing1 packets
on current estimation accuracy and timeliness, regardless of
the delay/loss patterns. In this light, our approach is more of
an online decision-making process under tight constraints on
accuracy and delay.

This paper is an expansion of and an improvement upon
the early version [10] in the following aspects: We now have

1We use “missing” here since an unavailable message could either be lost
or delayed.

more thorough discussions on the design considerations of
selective fusion and the rules that we proposed, the latter of
which are collectively shown here in an algorithmic format.
Analytical studies are also carried out on the information gain
probabilistically, where probabilities of delivering the state
estimates by a certain reporting time are used to calculate
the expected information contribution. In addition, we also
compare the performance of our selective fusion scheme
with two OOSM schemes in the literature. Simulation results
demonstrate the advantages of our design in terms of improved
reporting accuracy and latency performances over the other
schemes.

III. OPTIMAL FUSION WITH FULLY RECEIVED STATE
ESTIMATES FROM THE SENSORS

A. System Model and Kalman Filtering (KF) Basics

We consider the following multi-sensor discrete linear sys-
tem (the subscript k and superscript i are time and sensor
indices respectively):

xk = Fxk−1 + wk, E[wkw
T
l ] = Qδk−l, (1)

yi
k = Hixk + vi

k, E[vi
k(vi

l)
T ] = Riδk−l, (2)

where F is the state transition matrix and H is the mea-
surement matrix. These matrices are often known from the
underlying system and time-invariant in tracking applications.
The vector x denotes the state of the target and y the
sensor measurement. The process noise w and measurement
noise v are white and independent (δ is the Kronecker delta
function), whose covariances are Q and R respectively. While
Q measures the internal system uncertainty, R measures the
imperfect performance of the sensors as exhibited by errors in
their measurements. Note that here these noise statistics are
considered as time-invariant2.

The well-known Kalman filter (KF) operates recursively on
streams of noisy input data to produce a statistically optimal
estimate of the underlying dynamic system state. At sensor i,
the filter evolves recursively according to the following set of
equations:

x̂i
k|k−1 = Fx̂i

k−1|k−1 (3)

Pi
k|k−1 = FPi

k−1|k−1F
T + Q (4)

Ki
k = Pi

k|k−1(Hi)T (HiPi
k|k−1(Hi)T + Ri)−1 (5)

= Pi
k|k(Hi)T (Ri)−1 (6)

x̂i
k|k = x̂i

k|k−1 + Ki
k(yi

k −Hix̂i
k|k−1) (7)

Pi
k|k = (I−Ki

kH
i)Pi

k|k−1 (8)

= ((Pi
k|k−1)−1 + (Hi)T (Ri)−1Hi)−1 (9)

In these equations, x̂k|k−1 and x̂k|k denote respectively the
a priori and a posteriori estimate at time k. These notations
also apply to P, the error covariance matrix of the estimate,
defined as Pi

k = E[(x̂i
k − xk)(x̂i

k − xk)T ]. Each of the
diagonal element in P measures the mean-square-error (MSE)
of the corresponding element state estimate. Eqs. (3)–(4) form

2An analysis on bounds of errors under varying noise statistics can be
similarly derived as in [18].
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the prediction step and Eqs. (5)–(9) the correction step. The
Kalman filter gain matrix K determines the relative weights
of the historical data and a new measurement. In Eq. (9),
P−1 is often called the information matrix. Kalman filters
are minimum-mean-square-error (MMSE)-optimal as the trace
of P – characterizing the estimation error – at each step is
minimized. A more thorough discussion of the Kalman filter
basics can be found in [17].

B. Optimal Fusion of Fully Received Local State Estimates

Let us focus on the information form of the KF correction
step Eq. (9). From the equation, we have

Ji
k , (Pi

k|k)−1 − (Pi
k|k−1)−1 = (Hi)T (Ri)−1Hi, (10)

where Ji
k is defined as the information gain matrix from the

sensor i at time k. This J matrix measures the increase of the
information matrix P−1, and indirectly measures the reduction
of error P. Similarly, we can define

jik , (Pi
k|k)−1x̂i

k|k − (Pi
k|k−1)−1x̂i

k|k−1 = (Hi)T (Ri)−1yi
k

(11)

as the information gain vector – the difference between the
prior and posterior weighted estimates. It can be shown that
Ji
k of a real system is semi-positive definite; besides, it is also

stable since both H and R are time-invariant3.
In multi-sensor fusion, the updates from the KFs run by

the individual sensors are sent to the fusion center so that
the global fusion can be performed. If we define the above
parameters for the fusion center in a similar manner (“G”
denotes “global”), the optimal fusion rule is simply to add
up the information gain terms from the n sensors during the
correction step:

JG
k , (PG

k|k)−1 − (PG
k|k−1)−1

=

n∑
i=1

(
(Pi

k|k)−1 − (Pi
k|k−1)−1

)
, (12)

jGk , (PG
k|k)−1x̂G

k|k − (PG
k|k−1)−1x̂G

k|k−1

=

n∑
i=1

(
(Pi

k|k)−1x̂i
k|k − (Pi

k|k−1)−1x̂i
k|k−1

)
. (13)

Such results have been shown in works such as [5] and [21];
and in [3], this is named the centralized measurement fusion
(CMF), as the estimate fusion here is in effect equivalent to
the centralized scheme in which the fusion center has received
all the raw measurements.

In our setting, the state estimates and their corresponding
error covariances, both prior and posterior, are sent to the
fusion center. Since the raw measurement data usually come
in much larger volumes, sending them directly to the fusion
center not only consumes more bandwidth but may also
renders transmission more prone to the link delay and loss.

3This time-invariance serves as the basis for our selective fusion algorithms
in Section V, as the fusion center initially needs to use this steady information
gain to determine the potential contribution of a missing packet.

Combining the above global correction step with the global
prediction step, which has the very same form as in the one-
sensor case (Eqs. (3) and (4)), we have the evolution of PG

and x̂G at the fusion center as follows:

x̂G
k|k−1 = Fx̂G

k−1|k−1 (14)

PG
k|k−1 = FPG

k−1|k−1F
T + Q (15)

(PG
k|k)−1 = (PG

k|k−1)−1 +

n∑
i=1

(
(Pi

k|k)−1 − (Pi
k|k−1)−1

)
(16)

(PG
k|k)−1x̂G

k|k = (PG
k|k−1)−1x̂G

k|k−1

+

n∑
i=1

(
(Pi

k|k)−1x̂i
k|k − (Pi

k|k−1)−1x̂i
k|k−1

)
(17)

These equations constitute the optimal global fusion rule,
again, when all the estimates generated by the sensors are
successfully received by the fusion center.

IV. SELECTIVE FUSION: DESIGN CONSIDERATIONS

With the remote sensors’ state estimates being fully received
by the fusion center, the estimation error of the fused estimate
is often much lower than that of the state estimates provided
by individual sensors. However, severe delay and loss inherent
over the long-haul links may significantly limit the fusion
gain. In this section, we propose selective fusion as a capable
solution to balance the dual requirements of reporting accuracy
and timeliness.

With incomplete data, Eqs. (16) and (17) can be rewritten
as

(PG
k|k)−1 = (PG

k|k−1)−1 +

n∑
i=1

IikJi
k, (18)

(PG
k|k)−1x̂G

k|k = (PG
k|k−1)−1x̂G

k|k−1 +

n∑
i=1

Iikjik, (19)

where Iik = {0, 1} is the indicator function that describes
whether the actual packet sent by Sensor i for time k – which
is denoted by Pi

k – is delivered to the fusion center on time
and hereby contributes to the final fusion. One option is that
the fusion center simply ignores those missing packets. As a
result, with incomplete observation, fewer than n terms are
incorporated in Eqs. (18)-(19) during the correction step and
the resulting a posteriori P is higher – in terms of the elevated
diagonal elements in P – than that in the full-observation case.
Alternatively, the fusion center can substitute one- or multi-
step predicted values – that is, the a priori estimates – for the
missing data. However, the effect is exactly the same as that
of simply ignoring the missing packets: Pi

k|k = Pi
k|k−1 and

x̂i
k|k = x̂i

k|k−1 leading to Ji
k = 0 and jik = 0, respectively (the

same can be said for multi-step predictions). Consequently,
prediction alone is equivalent to having zero information gain,
and may cause the error variance of (some elements of) the
state estimates to shoot up within a short amount of time if
there are multiple missing packets. Also the unavailability of
certain components in (18)-(19) results in sub-optimality of
the fuser [3].
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Fortunately, the fusion center is often allowed to delay its
reporting, up till the reporting deadline, by waiting for the
delayed data to arrive. The reporting deadline Dmax is often
set in such a way to reflect the worst-case delay performance
the system could tolerate. The fusion center can certainly hold
off the finalization of the global estimate for an earlier time
till all the packets from that time have arrived; however, the
average waiting time could well approach Dmax whenever
there is a single packet loss. For many applications, in which
near real-time performance is called for, it is desirable for the
fusion center to report its fused estimate as early as possible
before the deadline. Not only does waiting passively for any
lost and/or delayed packets significantly increase the reporting
delay, but there is also a good chance that some of the packets
being awaited carry little information to improve the existing
level of estimation accuracy.

On the other hand, if the fusion center prematurely termi-
nates the process of waiting for some of the packets with
a higher potential to reduce the estimation error, the fused
estimate obtained may deviate too much from the true state
to be acceptable. Therefore, to maintain a decent accuracy
level while not incurring a long reporting delay, it would be
more viable for the fusion center to selectively wait for some
missing packets before it decides to finalize the estimate of an
earlier time instant. This can be stated in an alternate way: at
any time step, the fusion center should decide whether each
delayed packet is still “worth” waiting for. By making such
online decisions for the pending data, the fusion center can
dynamically balance the need for both reporting accuracy and
timeliness to finalize the state estimate.

We note that such “wait-versus-disregard” decisions should
be made online because they are largely determined by the
current accuracy level at the fusion center. Generally speaking,
if the current error covariance is higher, it is preferable that the
fusion center waits longer for the recovery of those missing
packets to achieve a higher confidence before sending out
the final estimate. Suppose that the elevated error covariance
due to an earlier missing packet Pi

k leads the fusion center
to initially make a “waiting” decision, as other packets are
subsequently received (including the packets from Sensor i
itself but generated at different time instants other than k and
those sent by other sensors), the information loss from Pi

k may
be offset by the gain from these other packets. At a certain
point, even when the said packet is still missing, the fusion
center may decide to discontinue the wait.

For any missing packet, only by further observing the subse-
quent arriving packets can the fusion center opportunistically
decide the cost vs. benefit of deferring its final reporting for
one more time step4. In the next section, we propose a selective
fusion scheme that enables the fusion center to make its fusion
decisions based on the current level of estimation accuracy.

A final note is in place before we end this section: Although
we loosely use “information gain” and “error reduction”
interchangeably as the same concept, quantitative calculations
should always follow the latter because in the KF evolution

4This can be regarded as one instance of the principle of diminishing
information return.

the trace of the error variance matrix is minimized, not that
the trace of the information matrix is maximized.

V. SELECTIVE FUSION WITH PROJECTED DIFFERENTIAL
INFORMATION CONTRIBUTION (PRODIC) AND

RETRODICTION

The fusion center apparently cannot predict whether a
missing packet will eventually be received; it can, however,
project the packet’s past information gain to the current time
and decide whether the potential information contribution to
the current time still warrants further waiting for the missing
packet. In other words, the information gain past due is
measured from the perspective of the current time so that the
decrease of information gain as time progresses, due to the
arrival of other packets, is accounted for.

In this section, we propose using an information metric
to guide the fusion center through the selective waiting and
fusion process. In particular, we combine forward projected
information gain and backward retrodiction so that the fusion
center can obtain an accurate estimate much faster.

A. PRODIC: the Information Metric

For notational simplicity, we define a function h that links
two successive a posteriori P together:

h(X,Y) , (FX−1FT + Q)−1 + Y. (20)

Then from Eqs. (15) and (16), we have

P−1
k|k = h(P−1

k−1|k−1,Jk). (21)

We name the information metric Projected differential
information contribution (PRODIC). It measures the potential
information contribution of a delayed packet should it return
now. The following steps calculate ∆Pi

k,k−d at time k, which
is the PRODIC of the missing packet from Sensor i with the
time-stamp k − d, that is, Pi

k−d:
Step 1: Add the information gain5 Ji

k−d of the missing packet
to the information matrix PG

k−d:

(PG
k−d,temp)−1 = (PG

k−d)−1 + Ji
k−d; (22)

The “temp” in this and the following equations denotes that
the associated PG is only updated temporarily to obtain the
PRODIC of the missing packet which has not actually arrived.
Step 2: Recursively propagate the change of PG

k−d in Step
1, through the intermediate steps, to the current time k. From
time Tn = k − d+ 1, k − d+ 2, ..., up to k, calculate

(PG
Tn,temp)−1 = h

(
(PG

Tn−1,temp)−1,JG
Tn

)
; (23)

In this step, all the existing JG values of these intermediate
time steps remain the same.
Step 3: Calculate the differential information gain.

∆Pi
k,k−d = PG

k −PG
k,temp. (24)

After the recursion in Step 2 proceeds to the current time
k, Eq. (24) measures the difference between PG

k,temp – the

5From now on, the conditions in the subscripts are dropped for simplicity
since all the variables are considered a posteriori: e.g., k|k is shortened to k.
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updated PG
k with the supposed arrival of the missing packet

– and the current PG
k . Note that PG

k has been calculated
according to the existing arrivals; no matter how small the
original information gain from the missing estimate is, the
aggregate error in PG

k,temp will be better than that in PG
k . In

other words, ∆Pi
k,k−d � 0.

The lag d is in general a random variable that depends
on the actual arrival history of the recent data; however, in
the following analysis, we consider it as the existing lag of
the next global estimate to be obtained. The PRODIC for
each delayed packet of time k− d is calculated separately. At
any time instant, it is computationally expensive to consider
all the possible packet arrival patterns across multiple time
steps for all the currently missing messages; there are as
many as 2dn different patterns in a d-lag enumeration. By
singling out each sensor’s contribution, we have reduced the
complexity from a brute-force search to a linear order dn.
After considering the PRODIC of one missing packet, the
fusion center has found the least information to be gained
among all the possible arrival patterns that include at least this
particular pending packet. Therefore, the PRODIC is actually
a conservative measure of the potential information gain from
awaiting a particular pending packet.

Following the above calculation, the fusion center should
compare the PRODIC value with a cutoff threshold th. If the
PRODIC value is larger than the threshold, the fusion center
still considers the information carried by the packet important
for reducing the estimation error and will continue to wait for
it. As long as the reporting deadline has not been reached,
the pending global estimate for a time instant will be finalized
only when the fusion center decides not to wait for any of
the pending packet which contains the corresponding sensor
estimate.

Determining the value of the threshold th is again a
process of balancing the dual requirements of high reporting
accuracy and low latency. In general, the higher the existing
error variance is, the more potential information gain can be
expected from the same missing packet. The threshold thus
in principle should adapt according to varying levels of PG.
For the convenience of implementation, however, it is better
to normalize the threshold to a fixed value. We choose the
desired proportion of error reduction by the fusion center as
the threshold at any time step, so that

tr(∆Pi
k,k−d)

tr(PG
k )

= 1−
tr(PG

k,temp)

tr(PG
k )

> th (25)

implies the packet Pi
k−d can potentially improve the current

PG
k more than the threshold level and thus will be awaited.
The online decisions are largely affected by the availability

of the packets from the sensors with better accuracy guaran-
tees. When the fusion center has received all or most packets
from these sensors, further improvement from the missing ones
becomes increasingly small and thus unnecessary beyond a
certain point. On the other hand, with the data from these better
sensors missing, PG can quickly inflate, thereby elevating
the normalized PRODIC of these packets to a higher level;
what often ensues is the decision to continue waiting for
these missing packets. Hence, with heterogeneous sensors, a

decision for a sensor with higher accuracy (e.g., “to wait”)
often overrules that from another one with lower accuracy
(e.g., “to disregard”) when the two decisions are contradictory.

B. Information Gain from Retrodiction

From the last subsection, sensors that yield more accurate
estimates usually predominate the fusion center’s selective
waiting decisions. Because of their larger potential information
gain, the fusion center generally has to wait longer in case an
estimate sent from any of these sensors is delayed. In order to
guarantee timely reporting, it is critical for the fusion center
to reduce such passive waiting.

Estimation of a target state at a particular time based on
measurements collected beyond that time is generally called
retrodiction (or smoothing). Traditionally, an earlier existing
estimate is retrodicted using subsequent measurements so that
its accuracy is improved [17]. In this work, we propose a novel
use of retrodiction to proactively interpolate intermediate
missing data. Once one or more subsequent packets of an
unavailable one have been received, the fusion center uses
them to retrodict the preceding missing one. While waiting
for missing packets, the fusion center applies retrodiction
backward, from the current time k to time k − d whose
globe estimate is to be reported next, for all the packets
– including the available ones – in between. This idea is
illustrated in Fig. 2, where the current lag is d = 2. There
are a total of three sensors. Since applying prediction-only
estimates results in a higher error variance, to reduce the
performance degradation, the fusion center may decide to wait
for the delayed packet while applying retrodiction scheme if
subsequent packets arrive. Note both available and unavailable
estimates are retrodicted during waiting. The retrodiction pro-
cess is always run backward to the time instant for the next
pending global estimate.

We apply the fixed-interval Rauch-Tung-Streibel (RTS)
retrodiction algorithm [17], which is known to be computation-
ally efficient. Besides, since measurements do not appear in the
equations, the algorithm is especially suited for our scenario in
which state estimates rather than raw data are sent directly to
the fusion center. The following iterative steps propagate the
newly gained information due to the on-time arrival of packet
Pi
k backward to time k − d.

Step 0: Initialize the backward smoother.

Pi
k,retr = Pi

k|k; (26)

x̂i
k,retr = x̂i

k|k; (27)

From time Tn = k, k−1, ..., up to k−d, recursively calculate
the values through the following three steps:
Step 1: calculate the backward smoothing gain

Gi
Tn−1 = Pi

Tn−1|Tn−1F
T (Pi

Tn|Tn−1)−1; (28)

Step 2: calculate the error Pi of the smoothed estimate

Pi
Tn−1,retr

=Pi
Tn−1|Tn−1 −Gi

Tn−1(Pi
Tn|Tn−1 −Pi

Tn,retr)(Gi
Tn−1)T ;

(29)
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Fig. 2. Selective fusion example with three sensors and forward prediction and backward retrodiction

Step 3: find the smoothed estimate

x̂i
Tn−1,retr = x̂i

Tn−1|Tn−1 + Gi
Tn−1(x̂i

Tn,retr − x̂i
Tn|Tn−1).

(30)

In these equations, Pi
retr denotes the a posteriori Pi after

retrodiction. The algorithm is applied to each sensor sepa-
rately, so that the process is also in line with the packet-level
PRODIC calculation. As mentioned earlier, retrodiction in our
scheme has the dual benefits of improving the accuracy of ex-
isting estimates and interpolating missing ones; consequently,
the process has its distinct features, some of which are absent
from those conventional retrodiction studies.

(1) Interpolation of the missing estimates and the chain
effect. Retrodiction is only meaningful when a later estimate
has an accuracy level at least as good as that of an earlier
estimate. According to the equations, an unavailable packet
itself has no impact on its preceding estimate during RTS
retrodiction (that is, retrodiction is only effective with the
presence of an actual estimate); however, if this unavailable
estimate has been retrodicted from a subsequently available
one, it can in turn improve its preceding one as well. This can
be regarded as the “chain effect” of retrodiction. As a result,
a string of missing estimates can be improved by just one
single estimate subsequent to them all. For example, in Fig.
2, at time k, having been retrodicted by packet P2

k, P2
k−1 can

further retrodict P2
k−2.

(2) Handling the a priori mismatch as a result of loss. Both
the a priori estimates and their error covariances appear in
the RTS algorithm. In the full-observation case, sending a
posteriori values is often enough, since the fusion center can
always derive one-step predicted values for a priori values of
the next step that are congruent with the predictions at the
sensors. However, with missing data, the a priori values at
the sensors and those at the fusion center may not match.
The predicted values at the fusion center can be much more

error-prone after multi-step losses. This has an effect on RTS
retrodiction. For instance, when an actual estimate is received
following at least a missing one, there exists a mismatch
between the a priori values calculated from prediction and
those (if any) sent directly by the sensors. We let the fusion
center take the prior values from earlier prediction for the
following two reasons: first, the a priori values may not
actually be sent by the sensors in a real system or can be
lost separately from the a posteriori data; second, the predicted
values at the fusion center is a true reflection of accuracy level
evolution associated with the global estimate.

(3) Handling the delayed estimates. What if the original
estimate sent from a sensor arrives when the estimate has
been interpolated from subsequent packet(s) but before the
global estimate for the time of interest has been finalized?
For simplicity, in our design, we have the original estimate
replace the corresponding “partially retrodicted estimate(s)”.
Still better yet, the fusion center may reprocess the estimates
so that both the original and its subsequent estimates are
combined to yield a “fully retrodicted estimate”, possessing
an even better accuracy level than the original itself.

C. Selective Fusion Algorithm – PRODIC-RTS

Now we are ready to present the complete selective fusion
algorithm, in which we have incorporated the RTS retrodiction
into our recursive PRODIC calculation.

In a dynamic decision-making process like ours, there is
more than one way to implement the selective fusion scheme.
While we hope to improve both reporting accuracy and
delay performances at the same time, the algorithm should
be implemented as easily as possible. In our design, only
arrivals from within the waiting window are considered; that
is, delayed arrivals are disregarded if the corresponding global
estimate has already been finalized and reported. Although it
is possible that the fusion center still considers incorporating
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Algorithm 1 Selective Fusion Algorithm with PRODIC and
RTS Retrodiction

1: Initialize: At time k, the next estimate to be reported is
x̂G
k−d

2: for Tn := d to 0 with decrement 1 do
3: Collect arriving packets Nk =

⋃d
T=0Nk,k−T .

4: Update Wk,k−Tn and Fk,k−Tn:
5: Wk,k−Tn ←Wk−1,k−Tn −Nk,k−Tn;
6: Fk,k−Tn ← Fk−1,k−Tn

⋃
Nk,k−Tn;

7: end for
8: for ∀i ∈ S do
9: Calculate Pi

k−d,retr and x̂i
k−d,retr using Eqs. (26)-(30);

10: for Tn := d to 0 with decrement 1 do
11: Calculate Ji

k−Tn
using Eq. (10) (with retrodicted

values);
12: JG

k−Tn
=
∑

packet Pi
k−Tn

∈Fk,k−Tn
Ji
k−Tn

;
13: (PG

k−Tn|k−Tn
)−1 =

h((PG
k−Tn−1|k−Tn−1)−1,JG

k−Tn
);

14: end for
15: end for
16: if Wk,k−d = ∅ or d = Dmax then
17: Finalize x̂G

k−d using Eqs. (17) with all the elements in
Fk,k−d and PG

k−d;
18: d← d− 1;
19: if d > 0 then
20: Go to Line 8;
21: end if
22: else
23: for ∀j ∈ S such that Pj

k−d ∈ Wk,k−d do
24: Calculate ∆Pi

k,k−d using Eqs. (22)-(24);
25: Calculate the difference between the normalized

PRODIC and the threshold th
Diff jk−d =

tr(∆Pj
k,k−d)

tr(PG
k )

−th = 1−
tr(PG,j

k|k,temp
)

tr(PG
k )

−th;
26: end for
27: if ∀i ∈ S, Diff ik−d ≤ 0 then
28: Wk,k−d ← ∅;
29: Go to Line 16;
30: else
31: d = d+ 1;
32: end if
33: end if

delayed arrivals (e.g., up to Dmax) in this scenario, doing
so may increase the computational cost as the size of the
historical data grows. In addition, the benefit of incorporating
the estimates with such a long delay is often negligible: the
PRODIC criterion has already dictated that the previously
disregarded packets carried little information, and even more
so after the global estimate has been finalized, due again to
the diminishing information over time.

Algorithm 1 describes the selective fusion rule performed
by the fusion center at time k for a global estimate at time
stamp k− d (i.e., the current lag is d). The following sets are
defined:

• S is the set of all sensors;
• Pk is the set of all the packets with time stamp k;

• Nk,k−d is the set of new arrivals at time k with time-
stamp k − d;

• Wk,k−d consists of all the packets with time-stamp k−d
that the fusion center is still expecting at time k;

• Fk,k−d is the set of packets with time-stamp k − d that
are ready at time k for fusion.

In addition, we let Wk,k−d = Pk−d and Fk,k−d = ∅ if
d < 0. Apparently, if at time k,Wk,k−d = ∅, the fusion center
is ready to finalize x̂G

k−d using all the elements in Fk,k−d.
Besides, a packet appearing in Nk,k−d (d > 0) must have
appeared in Wk−1,k−d too. Therefore, the selective fusion
decision-making process evolves as follows. After updating
newly received packets, the fusion center first retrodicts the
past estimates using newly received data; afterward, it cal-
culates the PRODIC of each packet in Wk,k−d and decide
whether further waiting is necessary. Only when all the packets
in the set have been received, or when the pending packets are
deemed no longer worthy of further waiting can the fusion
center finalize x̂G

k−d.
In the algorithm, the instantaneous PG can be calculated

immediately, as shown in Lines 8-12, after the fusion center
has incorporated the packets that have just arrived and has
retrodicted the estimates. Afterward, the PRODIC of all the
pending packets is computed and normalized for comparison
with a cutoff threshold th (Lines 23-26). There are two
possible scenarios when the next pending estimate can be
finalized: all the packets have been received (Line 16) or all
the remaining pending packets are no longer deemed necessary
and will be disregarded (Lines 27-28). Besides, when one
global estimate is finalized, the above procedure is repeated
immediately for the next pending estimate (Line 21) – for a
lag of d− 1 in this case – as more than one pending estimate
may be finalized at the same time step.

Thanks to the information gain from retrodiction, the
PRODIC of a missing packet becomes smaller and the fusion
center can often terminate its waiting for the pending packets
much earlier compared to the case without retrodiction. The
level of improvement will be demonstrated via simulation
studies in Section VII.

VI. EXPECTED INFORMATION GAIN WITH LINK LOSS AND
DELAY PROFILES

Our earlier discussions highlighted the proposed selective
waiting and fusion algorithm as an online scheme since
the fusion center makes its decisions based solely on the
actual message arrival instances. In this section, we consider
the scenario where the fusion center has some knowledge
about the packet loss and delay statistics. The deterministic
information gain from a pending estimate can then be extended
to the expected information gain for different time periods.
Substituting the expected information gain for the original will
also result in different fusion performance as to be discussed
below.

A. Loss and Delay Profiles

The packet loss and delay characteristics are largely deter-
mined by the long-term condition of the long-haul link. In a
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real system, even when the fusion center is initially oblivious
to these characteristics, the empirical packet arrival patterns
can be measured and recorded over time and thus approximate
profiles of link loss and delay can be constructed. For ease
of exposition, here we assume that each packet sent by a
sensor is lost during transmission with probability p indepen-
dently of other packets. A pdf f(t) and the corresponding
cdf F (t) =

∫ t

0
f(u) du can model the overall delay t – a

continuous random variable – that a packet experiences to be
successfully delivered to the fusion center. Additionally, the
loss and delay are regarded as two independent processes.

B. Expected Information Gain

If we let time zero denote the time of interest, that is, the
time when the packet containing the state estimate is generated
and sent out by a sensor, then the probability that this packet
is delivered by time t is (1 − p)F (t). Consider a pending
packet with a current lag of d steps – in other words, a delay
of at least dT , where T is the estimation interval – and the
probability that the packet will be delivered within the next
interval [dT, dT + T ] can be calculated as

pdel,dT→(d+1)T

, Pr{t ≤ dT + T |t > dT}

=
Pr{dT < t ≤ dT + T}

Pr{t > dT}

=
(1− p)[F (dT + T )− F (dT )]

1− (1− p)F (dT )
. (31)

Eq. (31) describes the probability that the information con-
tribution from a pending estimate will be realized in the next
estimation interval. Then the expected information contribution
would be

Jk−d,E = pdel,dT→(d+1)TJk−d. (32)

C. Effect of the Expected Gain on Selective Fusion

Eq. (32) is a statistical measure of the potential information
gain in the first step of our selective fusion algorithm. We
consider its effect for both heterogeneous and homogeneous
link conditions.

1) Heterogeneous Link Loss and Delay Profiles: Since both
the packet-level loss rate p and the delay distribution F (t)
appear in Eq. (32), any variations in either of them would
cause a shift in the expected information gain even for the
same value of J. It is easy to show that for the same delay
distribution, an increase in the packet loss rate would result in
the decrease of the expected information gain at any step (that
is, Eq. (31) monotonically decreases with p.); on the other
hand, with the same loss rate, the expected information gain
depends on the specific shape of the pdf f(t). In our context,
then, the fusion center would find it difficult to realize the
potential information gain promptly for a link with a high
loss rate and/or a long average arrival delay.

2) Homogeneous Link Loss and Delay Profiles: Even when
the loss and delay statistics are homogenous across different
communication links, differences in fusion performance still
exist if the fusion center opts to use Eq. (32) as the potential
information gain. In particular, since Eq. (31) effectively serves
as a discount factor, the perceived information gain at each
step becomes smaller than the original J. Recall from the last
section that the fusion center uses a cutoff threshold th to
decide whether to continue waiting for a pending packet. As
the information gain term to be plugged in the initial step
becomes smaller, so does the one propagated to the current
time. As such, for the same th, the fusion center may alter
some of the would-be “wait” decision so that the packet is
then disregarded. This would help reduce the reporting delay
significantly at the cost of slightly higher estimation errors.

VII. PERFORMANCE EVALUATION

We evaluate the performance of our selective fusion algo-
rithm through extensive simulations. We first introduce the
target motion model, and then compare a few on-line fusion
algorithms; and finally, we compare our scheme with two
other OOSM fusion schemes that also exploit retrodiction.
Despite our discussions on expected information gain in the
last section, in our simulation studies, the fusion center does
not assume any statistical knowledge about the loss and delay
characteristics in its online decision making.

A. Simulation Setup
1) Target Motion Model: We consider tracking of a

target whose motion follows the near-constant-acceleration
model [9]; that is, the trajectory of the moving target follows
Newtonian laws with independently incremented acceleration.
In particular, we consider the white-noise jerk version of the
model, in which the acceleration derivative (i.e., the “jerk”) is
an independent white noise process.

The target in general moves within the three-dimensional
free space, but the trajectory can be mapped to orthogonal axes
(e.g., the commonly used “east – north – up”). And here we
single out the effect of one dimension (e.g., east) by mapping
the trajectory onto this axis only. The target state then consists
of the position r, velocity v, and acceleration a on this axis
and the discretized state evolution is given by

xk = Fxk−1 + wk,

where

xk =

rkvk
ak

 ,F =

1 T T 2/2
0 1 T
0 0 1

 ,
and

Q = cov(wkw
T
k ) = Sw

T 5/20 T 4/8 T 3/6
T 4/8 T 3/3 T 2/2
T 3/6 T 2/2 T

 ,
where Sw is the power spectral density of the continuous-time
white noise, and T is the sampling/estimation period. Besides,
the common measurement matrix at the individual sensors is

H =
[
1 0 0

]
.
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2) Parameters and Performance Metrics: The following
table contains the list of our default parameters.

TABLE I
SIMULATION PARAMETERS DEFAULT SETUP

Parameter Symbol Value

sampling period (s) T 0.5
process noise PSD (m2/s3) Sw 0.5

loss rate Ploss 0.1
normalized arrival delay Darv 3

reporting deadline Dmax 10
no. of sensors n 3

measurement noise s.t.d. (m)
√
R 50

PRODIC threshold th 5%

As our default setup, there are a total of three sensors,
whose measurement noise standard deviations are all 50 m.
The process noise PSD is 0.5 m2/s3; the sampling/estimation
period T = 0.5 s and the associated time measures are
subsequently “normalized” relative to this time (without units);
e.g., the normalized sampling time is 1, whereas the nor-
malized deadline is set as 10 (which is really 5 s). The
PRODIC threshold is set to 5%. Again, in our study, packet
loss and delay are generated as two independent processes.
While the packet loss is generated as an independent Bernoulli
process, delays follow (memoryless) exponential distribution.
The default loss rate and normalized arrival delay are set to
be 10% and 3, respectively.

The loss and delay statistics for a given long-haul network
should be fairly stable over a period of time (that’s the very
reason that they can be learned over time). Nevertheless, we
are interested in studying the impact on fusion performance
from variable loss and delay profiles, for instance, when differ-
ent types of networks are compared with one another. We study
the impact of each factor separately by varying its values while
keeping all other parameters at their default values. In addition,
although we expect a long-haul network is well designed
for scalability, we study the scenario when the number of
deployed sensors is small (no more than five) as long-haul
sensors are generally expensive to deploy; also, the system is
more vulnerable to failure and suboptimal performance with
an insufficient number of sensors and thereby warrants special
attention.

B. Comparison of Different Online Fusion Schemes

We compare the following schemes in our first group of
study:

• Maximum waiting (“wait”): the FC finalizes the estimate
after all missing estimates arrive or the reporting deadline
is reached, whichever comes first;

• Selective fusion based on PRODIC but without retrodic-
tion (“PRODIC”):

• Selective fusion based on PRODIC with modified RTS
retrodiction6 (“PRODIC-retr”);

6This has been denoted as “PRODIC-RTS” earlier, which will be used in
subsequent analysis as well.

• We also consider the full-observation case (“ideal”) as a
baseline scenario for comparison with other schemes, in
which the reporting delay is always zero and hence there
is no retrodiction being implemented. In other words,
this ideal scenario is not realistic since it always assumes
perfect communications and instant data processing and
reporting.

Overall the goal is to reduce both the estimation MSE and
reporting time, where the former is measured as the trace of
the error covariance matrix.

1) Loss Rate: The packet loss rate is varied from 0 to
0.25, and the results are shown in Fig. 3. With its average
reporting time approaching the deadline, the ”wait” scheme
takes advantage of the extra waiting time to collect delayed
estimates and thus reduces the estimation error7. The PRODIC
scheme is seen to effectively reduce the reporting delay;
however, the estimation error is still relatively high. Compared
to other schemes, PRODIC-RTS is less sensitive to changes
in the loss rate. At the highest loss rate 25% in our study,
the position error variance increases only by about 7% from
the zero-loss case. This demonstrates the effectiveness of our
design, which exploits retrodiction to reduce the estimation
error upon packet loss. One of the main reasons for this
improvement has been shown earlier: as long as one most
recent packet is received, all the preceding missing estimates
can be retrodicted. Besides, the change in reporting delays as
the loss rate increases is negligible (it stays slightly above 2).
From this perspective, our PRODIC-RTS is robust to packet
loss.

2) Arrival Delay: We vary the normalized packet arrival
delay from 0 to 6, and observe similar trends in Fig. 4 as in the
previous case, with some minor exceptions. When there is no
arrival delay, no retrodiction is performed so that the estimates
can be reported immediately; as the arrival delay goes up to 1,
the error variance decreases following PRODIC-RTS thanks
to retrodiction. And then, as the arrival delay continues to
increase, the error variance also increases, though not quite as
fast as in other schemes. As can be seen again, retrodiction
has effectively reduced the estimation error when there are
significantly long delays.

Although it may first seem surprising that the reporting
delay is well below the average arrival delay (e.g., when the
arrival delay equals 6, the reporting delay is about 2.5), the
result is attributed to both the randomness of the arrival delay
and the PRODIC-based selective fusion process. There exist
packets whose arrival delay is smaller than that of others and
hence can retrodict other missing ones comparatively faster.
With the improved estimates following retrodiction, the fusion
center may decide to terminate its waiting much earlier by
disregarding all the remaining pending packets. In contrast,
the reporting delay in the “waiting” case, even under moderate
loss and delay profiles, almost always approaches the reporting
deadline Dmax due to the nearly constant presence of missing
packets.

3) Number of Sensors: We vary the number of sensors from
1 to 5 to test its impact on fusion performance. From Fig. 5,

7The unit for this and all subsequent position error variances is m2.
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Fig. 3. Loss rate vs. (a) position error variance and (b) normalized reporting delay
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Fig. 4. Normalized arrival delay vs. (a) position error variance and (b) normalized reporting delay

we observe that when the number of sensors is small, the
effect of retrodiction is more prominent. Because the error
variance is usually much higher with an insufficient number
of sensors – at the risk of violating the maximum tolerable
errors – the targeted potential information gain (as specified
by PRODIC threshold) from a missing packet can be realized
only by waiting longer so that the actual packet or subsequent
packets following this missing one can be received. If there
is only one sensor, all the gains from the retrodiction would
benefit the final estimate because no other sources – that is,
packets from other sensors – exist that can compensate for
the information loss due to an unavailable packet. On the
other hand, the relative information gain from retrodiction
with an increasing number of sensors being present becomes
smaller and the advantage of applying PRODIC-RTS in terms
of improved accuracy diminishes.

As for the reporting delay, opposite trends are observed.
The “waiting” scheme is subject to the increase of waiting
time when more sensors are present, as there is a higher
possibility that a packet is absent. In contrast, PRODIC-
based schemes experience reduced waiting time, thanks to the
selective waiting process, in which the information gain from

a missing packet diminishes as more sensors contribute to the
final fusion.

4) PRODIC Threshold: In the above simulations, we have
kept the PRODIC threshold at a conservative 5%; that is,
only when a pending packet can potentially reduce the current
estimate error by more than 5% would the fusion center
decide to wait for it. In reality, the fusion center can tune
the threshold according to the current accuracy level. In Fig.
6, the threshold is set to vary from 0% (i.e., to wait for all
pending packets) to 20%. The plots can be easily interpreted:
When the threshold goes up, the requirement on each packet
is relaxed, fewer packets need to be awaited, and reduced
accuracy and reporting delay would follow; and vice versa.
It is interesting to note that when the threshold is zero, the
PRODIC scheme is reduced to the “waiting” case; PRODIC-
RTS, on the other hand, does not have inflated waiting time
thanks to the proactive nature of retrodiction.

C. Performance Comparison with OOSM Algorithms

We also compared our scheme with Al1 [2] and Al1-
RTS [13] algorithms, both of which are designed to address
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Fig. 5. Number of sensors vs. (a) position error variance and (b) normalized reporting delay
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Fig. 6. PRODIC threshold vs. (a) position error variance and (b) normalized reporting delay
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Fig. 7. Loss rate vs. position error variance (with normalized reporting delay
= 2)

OOSM issues. The main feature of these algorithms is that
retrodiction is performed only after an OOSM actually arrives
and the goal is to correct only the current estimate. The

difference within the two cited algorithms exists during the
retrodiction process: while Al1 uses an “equivalent measure-
ment” to perform one-step retrodiction, Al1-RTS applies the
standard RTS retrodiction algorithm.

The original schemes are proposed under relatively simple
circumstances: single sensor, single l-step delay, no data loss,
and no reporting deadline, among others. However, it is easy
to extend the schemes to multi-OOSM [22] and multi-sensor
case with data loss and reporting deadline. Besides, we also
allow non-zero reporting delay so that the correction after
retrodiction applies to an intermediate step as well, thereby
improving the accuracy performance of not just the current es-
timate. This can somewhat guarantee fair comparisons among
the algorithms.

Because all the schemes share retrodiction as a common
means to reduce the error variance of an earlier estimate,
we also compare with an “RTS-only” scheme in which no
OOSM is processed; that is, data are either received on time
or smoothed with subsequent ones whenever available. We
test how the position error variance varies with different
parameters (loss rate, arrival delay, and number of sensors)
with a given normalized reporting delay of two (since the
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Fig. 8. Normalized average arrival delay vs. position error variance (with
normalized reporting delay = 2)

reporting delay in other schemes needs to be pre-assigned
to run the algorithms). Note that the thresholds have been
adjusted in our PRODIC-RTS scheme to guarantee the same
reporting delay.

1) Loss Rate: From Fig. 7, as the loss rate increases, the
increase in the position estimation error of PRODIC-RTS is
less significant compared to others. When the loss rate is 20%,
the error variances of both Al1 and Al1-RTS are 50% more
than that of PRODIC-RTS. On the other hand, while the two
OOSM algorithms reduce the error variance by about 10%
compared to the case where OOSMs are simply ignored (“RTS
only”), our scheme reduces the error by about 40%. The reason
is fairly simple: In other schemes, retrodiction is performed
only when the missing packets actually arrive later, which may
not be effective when the loss rate is high, resulting in larger
estimation errors.

2) Arrival Delay: As can be seen in Fig. 8, with the
increasing mean arrival delay, the position error variance in
PRODIC-RTS does not shoot up as much as those in other
schemes. When the arrival delay is 4, for example, Al1 already
has its error variance nearly 50% higher than that of PRODIC-
RTS; as it further reaches 6, the error variances of the two
OOSM schemes are more than 75% higher. Similar to the
case with varying loss rates, as the arrival delay increases,
the fusion center has to wait longer to perform retrodiction.
Meanwhile, the reporting deadline is fixed, allowing fewer
estimates to be effectively retrodicted in time for the final
reporting, thus leading to a higher error variance.

3) Number of Sensors: Again, we can see from Fig. 9
that the benefit of retrodiction is more significant when the
number of sensors is small for all cases. With fewer sensors,
all the other schemes suffer from much higher error variances
than PRODIC-RTS. Our scheme benefits from the proactive
retrodiction where the correction doesn’t have to occur only
after an OOSM actually arrives. The other schemes must wait
significantly longer to perform retrodiction, which may not
be possible within the deadline if the missing packets do not
arrive in time, and this becomes even more challenging when
fewer sensors exist. The difference is especially significant
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Fig. 9. Number of sensors vs. position error variance (with normalized
reporting delay = 2)

when there is only one sensor.
To sum up the above results, our PRODIC-RTS scheme,

combining features such as information gain projection, selec-
tive waiting, and proactive retrodiction, often yields accuracy
performance comparable to that under the full-observation case
while incurring very little reporting latency, demonstrating its
robustness against degradation in transmission links such as
severe loss and arrival delay.

VIII. CONCLUSION

State estimation and fusion is required in many real-world
applications. In this work, we have considered state estimation
and fusion over a long-haul sensor network. To meet the
stringent requirements on fused state accuracy and timeliness,
while accounting for long latency and high loss inherent over
long-haul links that exert a negative impact on fusion perfor-
mance, we have proposed an information metric (PRODIC)
and a modied application of the RTS retrodiction algorithm,
so that the fusion center can make its online decisions on
when to fuse the information contributed by the remote
sensors. Simulation results of a target tracking application have
validated the advantages of our design under variable link loss
and delay profiles.
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