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Abstract

Restricted Boltzmann Machine (RBM) is an
essential component in many machine learn-
ing applications. As a probabilistic graphical
model, RBM posits a shallow structure, which
makes it less capable of modeling real-world
applications. In this paper, to bridge the
gap between RBM and artificial neural net-
work, we propose an energy-based probabilis-
tic model that is more flexible on modeling
continuous data. By introducing the pair-
wise inverse autoregressive flow into RBM,
we propose two generalized continuous RBMs
which contain deep neural network structure
to more flexibly track the practical data dis-
tribution while still keeping the inference
tractable. In addition, we extend the gen-
eralized RBM structures into sequential set-
ting to better model the stochastic process
of time series. Performance improvements
on probabilistic modeling and representation
learning are demonstrated by the experiments
on diverse datasets.

1 Introduction

As a special instance of undirected graphical model,
Restricted Boltzmann Machine (RBM) [Hinton, 2012,
Carlson et al., 2015, Ping and Ihler, 2017] is an
essential component for many machine learn-
ing applications, such as representation learning
[Bengio et al., 2013] and probabilistic modeling
[Salakhutdinov and Murray, 2008a]. RBM has many
appealing advantages to be a building block of deep
learning schemes, including well-defined inference
distribution, universal approximation property
[Le Roux and Bengio, 2008] and concise structure.
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Many RBM-inspired models [Dahl et al., 2010,
Courville et al., 2014, Guo et al., 2018] are proposed
to track the probability distributions of various kinds
of data. In this paper, we focus on RBMs for data
with continuous values.

As one major limitation of RBM, it needs a shallow
structure to make the unambiguous inference. It con-
tains a visible layer and a hidden layer whose units are
random variables. Specific energy function on Boltz-
mann distribution is given to define the dependency
between visible and hidden layers. The parameters for
the conditional distributions of the visible layer are
linear or quadratic functions of the conditional random
variables. The restriction to the use of a specific energy
function prevents the application of RBM to modeling
practical data with more sophisticated distribution.

In this paper, we propose two generalized variants of
continuous RBMs which have significantly improved
modeling capability, and we call them pairwise inverse
autoregressive flow RBM (pIAF-RBM). Compared with
traditional RBM-based models, pIAF-RBM consists of
an undirected subgraph and a series of transformations.
The transformation consists of two unidirectional struc-
tures, each is an independent neural network. This
allows the mapping of a specific distribution to a more
general one, which relaxes the distribution assumption
often made by traditional RBM. Therefore, the distri-
bution of pIAF-RBM is more general and can better
model real-world data. The contributions of this paper
are three-fold:

* We introduce deep neural structures to relax the
distribution assumption of RBM based on Inverse
Autoregressive Flow (IAF). The most challenging
problem is that a neural network is difficult to be
inverted and the lack of the tractable inverse func-
tion of IAF would damage the undirected structure
of RBM. To solve this problem, we define another
neural network to estimate the inverse function. The
resulted IAF is bidirectional and we call this dual
structure as pair-wise IAF (pIAF).

* Based on pIAF, we propose two generalized variants
of continuous RBMs, each consisting of hierarchical
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neural network structures to modulate the proba-
bilistic models given by the energy functions. We
call them pIAF-GRBM and pIAF-ssRBM.

* We further extend pIAF-GRBM and pIAF-ssRBM to
work in the sequential setting by incorporating a re-
current neural network (RNN) to model the stochas-
tic process of time series. The resulted pIAF-RNN-
RBMs are then employed in stochastic modeling
and unsupervised feature learning, which are still
challenging problems in artificial intelligence field.

The rest of this paper is organized as follows. We revisit
the mathematical background of RBMs in Section 2
and then propose our pIAF-RBMs in Section 3. In
section 4, we propose pIAF-RNN-RBMs for time series.
We present our experimental results in Section 5 and
conclude the work in Section 6.

2 Background of Restricted
Boltzmann Machine

RBM is a group of undirected graphical models contain-
ing bipartite graph structure to indicate dependencies
between data observations and unobserved factors. It
posits a joint distribution of the visible layer V and un-
observed states X as Pϕ(V,X) = exp(−Eϕ(V,X))/Zϕ,
where ϕ denotes parameters and Zϕ is called partition
function. The marginal distribution of observation is
further defined as Pϕ(V ) = exp(−Fϕ(V ))/Zϕ, where
Fϕ(V ) is the free-energy function. The visible vari-
able V can be defined as either discrete or continuous
random vectors. In our work, we concentrate on the
continuous case. In this section, we revisit two types
of RBMs for continuous data. One is Gaussian RBM
(GRBM), the other is Spike-and-Slab RBM (ssRBM).

2.1 Gaussian RBM

Gaussian RBM (GRBM) is a specific kind of RBM for
modeling the data with continuous values. It consists of
a continuous visible layer V and a binary hidden layer
X = [H]. The energy function of GRBM is defined as:

Eϕ(V,H) =
(V − bv)T (V − bv)

2β2
− bThH −HTW

V

β2
,

where ϕ = {W, bv, bh, β} are parameters. The di-
vision between the vector V − bv and the variance
parameter β is element-wise. By applying Bayesian
rules, the conditional distributions between V and
H are given as Pϕ(V |H) = N (WTH + bv, β

2I) and
Pϕ(H|V ) = S(WV + bh), where N (µ, β2I) denotes
Gaussian distribution and S(·) denotes the sigmoid
function. It has been shown that GRBM is less effi-
cient in learning the variance parameter β for the data

vector. Hence, β is set as a constant and noise-free
reconstruction is encouraged [Hinton, 2012].

2.2 Spike-and-Slab RBM

To better utilize the correlation information among each
element of data vector, Spike-and-Slab RBM (ssRBM)
is proposed in [Courville et al., 2014]. The hidden layer
is composed of a continuous random vector S and
a binary random vector H. The energy function of
{V, S,H} is given by:

Eϕ(V,H, S) =
1

2
V T
( ∑
Hi∈H

ΦiHi + Λ
)
V − bThHn

+
1

2
STdiag(α)S − V TW (S �H)

+ αTdiag(µ2)H − STdiag(α� µ)H,

and the corresponding conditional distributions are
derived as:

Pϕ(V |H,S) = N
(
C1W (S �Hn), C1

)
,

Pϕ(S|V,H) = N
( (WTV )2

2α
�H + µ�H, diag(α)−1

)
,

Pϕ(V |H) = N
(
C0W (µ�H), C0

)
,

Pϕ(H|V ) = S
( (WTV )2

2α
+WTV � µ− V T {Φi}V

2
+ bh

)
,

where � denotes element-wise multiplication,
V T {Φi}V = {V TΦ1V, V

TΦ2V, . . . } and {C0, C1} are
corresponding covariances.

As shown above, the energy functions of GRBM
and ssRBM are designed to obtain closed-form con-
ditional distributions. The parameters in the con-
ditional distributions of V are linear or quadratic
functions of the conditional random variables. These
closed-form distributions allow efficient sampling from
RBM while they also limit its model capability. In
this paper, we incorporate the expression power of
neural networks into RBM through a special kind
of normalizing flows [Rezende and Mohamed, 2015,
Kingma et al., 2016]. The conditional distributions of
our model are more flexible than classic RBM while
the efficient sampling process is still retained.

3 Pairwise Inverse Autoregressive
Flow RBMs

Our pairwise Inverse Autoregressive Flow RBMs (pIAF-
RBMs) exploit the nonlinear expression capability of
autoregressive neural networks to increase the flexibility
of model distributions. The structures of pIAF-GRBM
and pIAF-ssRBM are depicted in figure 1 (a). The

undirected links among {H, Ṽ } and {H,S, Ṽ } repre-
sent their probabilistic dependencies and define the
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RBM subgraphs of our models. Between the input V
and the undirected subgraphs, a series of density trans-
formations with neural network structures are applied
to adjust the probability density of V .

The design of the neural network structure relies on
the principle of Inverse Autoregressive Flow (IAF)
[Kingma et al., 2016]. As the original IAF is not de-
fined to have the closed-form inverse function which
is needed in our models, we first propose the novel
pair-wise IAF (pIAF) that contains the other redeem-
ing autoregressive neural network to approximate the
inverse of IAF. After that, we propose GRBM and
ssRBM with the pIAF enhancement.

3.1 Pairwise Inverse Autoregressive Flow
(pIAF)

Given a random vector Ṽ and an invertible map-
ping V = Fv(Ṽ ), the relation between the prob-

ability densities P (Ṽ ) and P (V ) are defined as

P (V ) = P (Ṽ ) · |det ∂F−1v /∂V |. A normalizing flow
[Rezende and Mohamed, 2015] describes the transfor-
mation of a probability density by defining a sequence
of invertible mappings. Many kinds of normalizing
flows have been studied, including Hamiltonian flow,
planar flow, radial flow and inverse autoregressive flow
[Kingma et al., 2016]. In our work, we employ the in-
verse autoregressive flow, as it embeds the power of
hierarchical autoregressive neural network and it scales
well to high-dimensional spaces.

In [Kingma et al., 2016], the inverse autoregressive flow
is defined as a chain of invertible mapping steps which
are designed by

[mt, σt] = autoregressiveNN(Vt−1; θt)

Vt = σt � Vt−1 + (1− σt)�mt, t = 1, 2, . . . , T .
[Forward Flow]

where [mt, σt] is the output of an autoregressive neural
network with multiple computational hidden layers and
T is the total number of steps. θt denotes the model
parameters. The probability density of the ending of
transformation chain is given by:

logP (VT ) = logP (V0)−
T∑
t=1

D∑
d=1

log σt,d,

where D is the dimension of the random vector V0.
Although inverse autoregressive flow is shown to be
invertible with a simple expression of the determinant
of differentials ∂F−1v /∂V , the form of inverse function
is not tractable. In the design of our models, the in-
verse function is essential to allow information transits
through the undirected graphical model. Therefore, we
propose a pair-wise inverse autoregressive flow (pIAF)

that uses an auxiliary autoregressive neural network
to approximate the inverse function of IAF, which are
defined as:

[m̂t, σ̂t] = autoregressiveNN2(Vt;φt),

Vt−1 =
Vt − (1− σ̂t)� m̂t

σ̂t
, t = T , T − 1, . . . , 1.

[Backward Flow]

where φt denotes model parameters of the backward
flow.

In this paper, the autoregressive NNs are implemented
by MADE [Germain et al., 2015]. In the training pro-
cess, one of these two autoregressive neural networks
is optimized by maximum likelihood together with the
undirected subgraph. The other is trained to recover
the input of the first neural network by optimizing the
cost function given by

Laux(θ or φ) = || log σt − log σ̂t||1 + ||mt − m̂t||1,
(1)

where ||·||1 is the L-1 loss. One step of pIAF is depicted
in Figure 1 (b).

3.2 GRBM with pIAF (pIAF-GRBM)

With the definition of pIAF, we propose pIAF-GRBM
to fully release the power of GRBM with a hierarchical
neural network structure and a flexible distribution fol-
lowing the practical data. Consider the energy function
of GRBM whose input is the output of normalizing
flow of observation V :

Eϕ(V,H) =
1

2
(Fφ(V )− bv)T (Fφ(V )− bv)− bThH

−HTWFφ(V ),

where we set the variance parameter β to 1. Ṽ =
Fφ(V ) denotes any kind of normalizing flow of V
and φ = {W, bv, bh} denotes parameters of the undi-

rected subgraph in pIAF-GRBM. Substituting Ṽ into
the energy function, Eϕ(Ṽ ,H) is identical with the
energy function of GRBM and we have the condi-
tional distributions P (Ṽ |H) = N (WTH + bv, I) and

P (H|Ṽ ) = S(WṼ +bh). According to the properties of
normalizing flows, we can further obtain the tractable
conditional distributions between the visible layer V
and binary latent state H as

Pϕ(V |H) = N (WTH + bv, I) ·
∣∣ det

∂Fφ
∂V

∣∣,
Pϕ(H|V ) = S(WFφ(V ) + bh),
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Figure 1: (a) Model Topologies of pIAF-GRBM and pIAF-ssRBM; (b) One step of pIAF; (c) Model topology of
pIAF-RNN-RBM.

and the log-likelihood function as

logPϕ(V ) =− (Fφ(V )− bv)T (Fφ(V )− bv)
2

+
∑

softplus
(
WFφ(V ) + bh

)
− logZϕ

+ log
∣∣det

∂Fφ
∂V

∣∣, (2)

where
∑

softplus(·) means the summation of elements
of the vector output from the softplus function. Fφ
modulates the density of V by the determinant of
differentials, when keeping the conditional distribu-
tions tractable as traditional GRBM. This modulation
relaxes the distribution assumption of V and hence
increases the model flexibility. Recall that normal-
izing flow is a computational mapping instead of a
sequential sampling, Fφ(V ) is computationally feasible
in current hardware architecture. In our implementa-
tion, we consider defining Fφ by the backward flow of
pIAF proposed in subsection 3.1, and the corresponding
model is called pIAF-GRBM. Therefore, the logarithm
of determinant in the log-likelihood of pIAF-GRBM
has a simple expression as

log
∣∣det

∂Fφ
∂V

∣∣ = −
T∑
t=1

D∑
d=1

log σ̂t,d,

where T is the number of steps in the flow and D is
the dimension of input vector.

3.3 ssRBM with pIAF (pIAF-ssRBM)

Similar to pIAF-GRBM, pIAF can be applied to en-
hance the model flexibility of ssRBM. As ssRBM is
efficient in capturing the correlation among elements
of the observation vector, it is supposed that pIAF-
ssRBM will be a more powerful model to disentangle
the explanatory factors of complicated data.

The energy function of pIAF-ssRBM is defined as

Eϕ(V,H, S) =
1

2
Fφ(V )T

( ∑
Hi∈H

ΦiHi + Λ
)
Fφ(V )

− bThHn +
1

2
STdiag(α)S − Fφ(V )TW (S �H)

+ αTdiag(µ2)H − STdiag(α� µ)H,

where Fφ(V ) is the backward flow of pIAF. We can fur-
ther obtain the log-likelihood function of pIAF-ssRBM
as

logPϕ(V ) = −1

2
Fφ(V )TΛFφ(V ) +

1

2

∑
αi∈α

log 2πα−1i

− logZϕ −
T∑
t=1

D∑
d=1

log σ̂t,d +
∑

softplus
( (WTFφ(V ))2

2α

+WTFφ(V )� µ− Fφ(V )T {Φi}Fφ(V )

2
+ bh

)
, (3)

where (·)2 is element-wise. We further have the
tractable conditional distributions of pIAF-ssRBM
given as

Pϕ(V |H,S) =N
(
C1W (Fs(S)�Hn), C1

)
·
T∏
t=1

D∏
d=1

σ
(v)
t,d ,

Pϕ(V |H) =N
(
C0W (µ�H), C0

)
·
T∏
t=1

D∏
d=1

σ
(v)
t,d ,

Pϕ(H|V ) =S
( (WTFv(V ))2

2α
+WTFv(V )� µ

− Fv(V )T {Φi}Fv(V )

2
+ bh

)
,

Pϕ(S|V,H) =

T∏
t=1

Ds∏
d=1

σ
(s)
t,d · N

( (WTFv(V ))2

2α
�H

+ µ�H,diag(α)−1
)
,
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With all the tractable distributions, the sampling pro-
cess of our model is simple. Gibbs sampling of the
undirected subgraph can be applied directly to obtain
Ṽ and V is further generated by F−1φ (Ṽ ) ≈ Fθ(Ṽ ).

3.4 Training of pIAF-RBMs

The training of our pIAF-RBM models consists of two
steps. In the first step, we update the parameters of
RBM and the forward path of pIAF by optimizing the
log-likelihood functions given in Eq. (2) or Eq. (3).
In the second step, we update the parameters of the
backward path of pIAF by optimizing the auxiliary
loss Laux(φ). As finding the gradient of logZφ can
be intractable and requires approximation, we exploit
Contrastive Divergence (CD) [Hinton, 2012] and Per-
sistent Contrastive Divergence (PCD) [Tieleman, 2008]
to estimate ∇ logZφ with Gibbs Sampling. The whole
training process is given in Algorithm 1.

Algorithm 1 Training Process of pIAF-RBMs

Input: dataset {v}, steps K of Gibbs Sampling
if use PCD then

Initialize a random sample v0
end if
while training do

Select a data v from {v}.
if use PCD then

Sample v0 by Gibbs Sampling starting at v
else if use CD then

Sample v0 by Gibbs Sampling from previous v0
end if
Approximate ∇ logPϕ(V ) by v and v0
Update ϕ← Optimizer(∇ logPϕ(V ))
Update {φt} ← Optimizer(∇ logPϕ(V ))
Compute ∇Laux(θt) for {θt}
Update {θt} ← Optimizer(∇Laux(θt))

end while

4 Temporal RBMs with pIAF for
Time Series

RBM is originally an important tool in learning repre-
sentative feature for data without temporal dependency.
As pIAF-GRBM and pIAF-ssRBM are more general-
ized energy-based models than traditional RBMs, we
intend to extend pIAF-GRBM and pIAF-ssRBM into
sequential setting for stochastic modeling as well as
representation learning on time series.

The topology of our proposed sequential model called
pIAF-RNN-RBM is depicted in Figure 1 (c). Consider
a sequence of N data vectors denoted as V1:N , we
first introduce a recurrent neural network (RNN) to
compute the temporal transition. For n-th data vector,

the transition is computed as

[dn, staten] = RNN(Vn, staten−1),

where dn denotes the output of the recurrent layer at
the nth time slot and staten denotes the correspond-
ing state of RNN. Therefore, the log-likelihood of the
observed sequence can be decomposed as

logP (V1:N ) =

N∑
n=1

logP (Vn|V1:n−1)

=

N∑
n=1

logP (Vn|dn−1),

where d0 is set as zero. After that, we incorporate
pIAF-GRBM and pIAF-ssRBM into the framework
to estimate P (Vn|dn−1). Specific interface should be
defined for pIAF-GRBM and pIAF-ssRBM so that
the temporal transition dn−1 is able to modulate pa-
rameters to capture the evolution of data distribution
P (Vn|dn−1). In our design, the interface is defined
in the bias terms of GRBM/ssRBM subgraph. The

revision is given in Table 1. {b(n)h , b
(n)
v } denote the

time-variant bias parameters of GRBM and ssRBM.

Table 1: Time-variant bias for each part of pIAF-RNN-
RBM.

GRBM ssRBM

b
(n)
h = U1dn−1 + bh b

(n)
h = U1dn−1 + bh

b
(n)
v = U2dn−1 + bv −

Beyond the probabilistic modeling, we are also inter-
ested in unsupervised representation learning for time
series. While RBM-inspired methods have been widely
used in images to extract appealing features, repre-
sentation learning on time series is a problem that is
important but challenging. when pIAF-RNN-GRBM
and pIAF-RNN-ssRBM is supposed to have better
probabilistic modeling than its counterpart RNN-RBM
[Boulanger-Lewandowski et al., 2012], the hidden acti-
vations {H1:N} and {H1:N , S1:N} can be regarded as
a feature that embeds the information among data
sequence. Therefore, our models can be applied for
finding a low-dimensional embedding that preserves
the properties of original data, when the dimension
of latent states is set smaller than the dimension of
input.

5 Experiments

In this section, we evaluate our methods on diverse
datasets to demonstrate their performance and empir-
ically analyze the characteristics of our models. Two
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major applications of RBMs are considered. One is
probabilistic modeling; the other is representation learn-
ing. In the experiments, we concentrate on the model
structure comparison between RBMs and pIAF-RBMs.
The code will be available on Github.

5.1 Probabilistic Modeling

We first evaluate the model capability to estimate
the probability density of high-dimensional data.
Four image datasets are considered in this experi-
ments, including MNIST [Lecun et al., 1998], SVHN
[Netzer et al., 2011],CIFAR-10 [Krizhevsky, 2009] and
CIFAR-100 [Krizhevsky, 2009]. To better understand
the proposed models with full-connected neural struc-
ture, the color images are transfered into grayscale
and MADE [Germain et al., 2015] is used to imple-
ment pIAF. For color images, one can easily define an
convolutional structure in pIAF by replacing MADE
with PixelCNN [van den Oord et al., 2016].

Table 2: Test log-likelihood (bits/dim) on image
datasets

MNIST SVHN

CD-1

GRBM −1.4585± 0.0345 −1.4825± 0.0175
pIAF-GRBM 0.4131± 0.2738 −0.4265± 0.0228
ssRBM 0.6661± 0.0226 0.9449± 0.0912
pIAF-ssRBM 1.7740± 0.0215 1.4990± 0.0627

PCD-1

GRBM −2.0140± 0.0610 −1.6288± 0.0248
pIAF-GRBM 1.8517± 0.0259 0.2586± 0.0318
ssRBM 0.0833± 0.0482 −0.9512± 0.6582
pIAF-ssRBM 2.0542± 0.1065 1.0873± 0.0036

CIFAR-10 CIFAR-100

CD-1

GRBM −1.7911± 0.0062 −1.6790± 0.0047
pIAF-GRBM −0.3927± 0.0200 −0.4891± 0.0319
ssRBM 0.6793± 0.0852 0.5934± 0.0817
pIAF-ssRBM 1.8750± 0.0133 1.8658± 0.0503

PCD-1

GRBM −1.8164± 0.0149 −1.6704± 0.0113
pIAF-GRBM −0.0563± 0.3493 −0.3030± 0.0439
ssRBM −0.4441± 0.0498 −1.9285± 1.9108
pIAF-ssRBM 0.9887± 0.0600 1.1162± 0.0419

The experiment settings are given as follows: the size
of stochastic hidden layer is 100 for MNIST and 200 for
the rest. For pIAF-GRBM and pIAF-ssRBM, one step
of pIAF is constructed by two MADEs with three Relu
layers. The size of Relu layer is 512 for MNIST and
1024 for the others. The batch size is set as 125. Two
training methods are considered to approximate the
intractable gradient. One is Contrastive Divergence

(CD); the other is Persistent Contrastive Divergence
(PCD). The step of Gibbs sampling required by CD
and PCD is set as 1. All the models are trained until
convergence. Each case is run 5 times and we report the
mean and standard deviation of the test log-likelihood
(LL) in Table 2. Anneal Importance Sampling (AIS)
[Salakhutdinov and Murray, 2008b] is applied to esti-
mate the partition function when computing LL.

Log-likelihood: According to Table 2, under the same
training method, RBMs with pIAF structures always
significantly outperform RBMs without pIAF, which
demonstrates the effectiveness of applying pIAF to
more accurately track the practical data distribution.
The standard deviation of LL is smaller in most mod-
els trained by CD-1. This is because the Gibbs sam-
pling chain of CD-1 starts at the observed data and
therefore leads to a less-variant gradient estimation.
pIAF-GRBM and pIAF-ssRBM trained by PCD-1 have
better average performance than these trained by CD-1.
However, the variances are very large in some cases.
This is due to the slow mixture rate of the persistent
sampling chain used in PCD-1 that is unable to chase
the updates of RBMs.

Figure 2: Reconstruction error given by RMSE on four
image datasets

Reconstruction Error: In our design of pIAF, we
construct a forward flow by incorporating an auxil-
iary neural network to inverse the complicated equa-
tion used to represent the backward flow. The neural
networks in backward flow are trained with RBM pa-
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rameters by maximizing the likelihood, and the neural
networks in forward flow are trained by minimizing
the auxiliary cost Laux. Although this could lead to
an additional deviation when reconstructing the input
from the hidden layer, the auxiliary neural networks
are easy to train thanks to the efficient dual structure
of pIAF. Therefore, the reconstruction errors of pIAF-
RBMs are smaller than RBMs without pIAF, which is
demonstrated in Figure 2.

5.2 Representation Learning

After showing the performance improvement on proba-
bilistic modeling, we further evaluate our models on rep-
resentation learning. We use Anuran Calls dataset from
UCI Repository [Dheeru and Karra Taniskidou, 2017],
where the input data is 22-dimensional vector and
the task is to compress the information of input into
5-dimensional feature vector. For GRBM and pIAF-
GRBM, the feature is given by P (H|V ). For ssRBM
and pIAF-ssRBM, the feature is given by the mean of
(H � S). The feature vector is further sent to a linear
SVM for classification. When the dimension of the fea-
ture vector is smaller than raw data, the representations
generated by GRBM, ssRBM and pIAF-GRBM suffer
from the loss of information and the classification per-
formance gets worse. RBMs with pIAF structure have
better performance than those without pIAF. Classi-
fication based on pIAF-ssRBM is even more accurate
than using raw data.

Table 3: Classfication accuracy on Anuran Dataset

Families Genus

Raw Data 92.36±NA 91.10±NA

GRBM 57.96± 0.00 54.83± 0.00
ssRBM 90.55± 4.28 88.13± 3.92
pIAF-GRBM 75.05± 3.03 72.15± 2.43
pIAF-ssRBM 96.48± 0.10 93.66± 0.08

Species

Raw Data 91.66±NA

GRBM 45.75± 0.06
ssRBM 87.02± 4.13
pIAF-GRBM 71.26± 3.03
pIAF-ssRBM 93.30± 0.44

5.3 Sequential Models for Time series

After evaluating the performance of pIAF-RBMs, we
examine the performance on stochastic modeling and
representation learning for time series in two datasets:
CMU motion capture dataset∗ and GTZAN music gen-

∗http://mocap.cs.cmu.edu

res dataset †. Each dataset is randomly separated into
training set and testing set. The ratio between training
and testing sets is 0.8/0.2. The data preprocessing
of CMU Motion Capture dataset and GTZAN music
genres datasets is given as follows:

* CMU Motion: The CMU motion caption dataset
consists of over 2500 long records of human motions
with at least 1500 frames. In each frame, human
activity is represented as a 62-dimensional vector.
The long records are segmented by 250 frames and
then each dimension of the frames are normalized by
global mean and standard deviation.

* GTZAN: The GTZAN music genres dataset con-
sists of 1000 songs that evenly belong to 10 different
genres. Each audio is transformed into MFCC matrix
and scaled between 0 to 1.

The baseline model is RNN-RBM proposed in
[Boulanger-Lewandowski et al., 2012]. For Motion
Capture, all models contain a 200-dimensional latent
state and the RNN component is implemented by a
GRU layer with 500 units. pIAF is constructed by
3-layer MADEs. Each layer in MADEs has 250 Relu
units. For GTZAN, we are interested in learning low-
dimensional embedding of MFCC matrix. The latent
state is 5-dimensional. As the account of data is rela-
tively small, RNN component is applied by 100 GRU
units and the number of Relu units in MADEs is set
to 50.

Table 4: Reconsruction errors of on sequence datasets

CMU Motion GTZAN

RNN-GRBM 1.4558 0.1971
RNN-ssRBM 1.8951 0.3990
pIAF-RNN-GRBM 1.4229 0.1822
pIAF-RNN-ssRBM 1.5815 0.3403

Reconstruction Error: The metric of reconstruction
error is given as average RMSE per frame. As shown
in Table 4, pIAF-RNN-GRBM and pIAF-RNN-ssRBM
outperform RNN-GRBM and RNN-ssRBM in both two
datasets. For ssRBM-based models, the improvement
is significant. It is also observed that the modeling
performance of ssRBM-based models is not as good as
GRBM-based models. This is because that ssRBM has
only one bias parameter in the spike hidden variable
H. When we introduce historical transition into the
time-variant bias, only one parameter of ssRBM evolves
according to the feedback. Therefore, ssRBM-based
sequential models cannot well track the time-variant

†http://opihi.cs.uvic.ca/sound/genres.tar.gz
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Figure 3: Visualization of the features learnt by various models for GTZAN dataset (Nodes with same color
belong to a specific genre.)

distribution of data. The introduction of pIAF provides
a larger error reduction.

Feature Learning: RBM is an important tool on
representation learning. For GRBM-based models, we
consider the conditional mean P (Hn|Vn, dn−1) as fea-
ture. For ssRBM-based models, we extract feature
by the conditional mean of Hn � Sn. We flatten the
feature matrix through time axis and then run a PCA
with 2 components. The results of GTZAN dataset are
visualized in Figure 3. It is shown that the visualization
of features extracted by RNN-ssRBM and pIAF-RNN-
ssRBM are similar. But the improvement of reconstruc-
tion quality is large due to the incorporation of pIAF.
The features learnt by pIAF-RNN-GRBM commend-
ably preserves the properties of the input MFCC, while
the dimension has been compressed to a quarter. Some
nodes with green, blue and orange colors are merged
into masses, and locate further away from the black
nodes.

Table 5: Music Genre Classification on GTZAN dataset

SVM k-NN

RNN-GRBM 29.08 29.08
RNN-ssRBM 25.51 20.41
pIAF-RNN-GRBM 37.24 37.24
pIAF-RNN-ssRBM 30.10 20.41

GPC RF

RNN-GRBM 40.31 35.71
RNN-ssRBM 20.41 24.49
pIAF-RNN-GRBM 48.47 39.80
pIAF-RNN-ssRBM 20.41 22.45

The quality of extracted features can be further eval-

uated by applying them in classification. The flatten
features extracted from GTZAN dataset are applied as
the input for multiple classifiers to predict the music
genres. To demonstrate that pIAF-RNN-RBMs are ca-
pable of learning more expressive descriptors for time
series, we consider only a group of classic and simple
classifiers, including Support Vector Machine (SVM),
k-Nearest Neighbor (k-NN), Gaussian Process Classi-
fier (GPC) and Random Forest (RF). The classification
accuracies are given in Table 5. As the first and second
principle components of their extracted features are
almost identical in Figure 3, the classification results of
RNN-ssRBM and pIAF-RNN-ssRBM are also similar.
Regardless of the choices of classifiers, the genre predic-
tion accuracies of pIAF-RNN-GRBM are consistently
the best in these four models, which demonstrates that
the features extracted by our method is more expres-
sive.

6 Conclusion
In this paper, we propose a generalized family of Re-
stricted Boltzmann Machines with deep neural network
structure by defining a pair-wise inverse autoregressive
flow. The pIAF-RBM framework we proposed in this
paper shows appealing improvement in diverse tasks,
including probabilistic modeling and representation
learning for both non-sequential and sequential data.
In our future work, we intend to expand our models
into convolutional structures.
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