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Abstract—With the proliferation of globally-distributed ser-
vices and the quick growth of user requests for inter-datacenter
bandwidth, cloud providers have to lease a good deal of
bandwidth from Internet service providers to satisfy the
user demands. Neither maximizing the service revenue nor
minimizing the service cost can bring the maximal service
profit to cloud providers. The diversity of user requests and
the large unit of inter-datacenter bandwidth further increase
the difficulty of scheduling user requests. In this paper, we
propose a cloud operational model to help cloud providers
to make more service profit by properly selecting requests
to serve rather than serving all user requests. We formulate
the problem of service profit maximization and prove its NP-
hardness. Considering the complicated coupling between maxi-
mizing revenue and minimizing cost, we propose a framework,
Metis, for the efficient scheduling of user requests over inter-
datacenter networks to maximize the service profit for cloud
providers. Metis is formed with the alternate operations of two
algorithms derived from randomized rounding techniques and
Chernoff-Hoeffding bound. We prove that they can provide the
guarantees on approximation ratios. Our extensive evaluations
demonstrate that Metis can achieve more than 1.3x the service
profits of existing solutions.
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I. INTRODUCTION

In the past decade, cloud computing has made great

success and transformed a large part of the IT industry [1].

As many companies move their services to clouds, cloud

providers, such as Amazon, Microsoft and Alibaba, have

made large profits from the cloud computing market. With

the proliferation of globally-distributed services and quick

growth of user requests across data centers, cloud providers

turn to geo-distributed clouds [2], [3].

Cloud providers build data centers in different geographical

areas and use inter-datacenter wide area networks (Inter-

DC WANs) to connect them [3]–[6]. Inter-DC WAN is a

dedicated network managed by a cloud provider [2]. Except

some giant companies that build dedicated lines between

their data centers, most cloud providers lease bandwidth

from Internet service providers (ISPs) to connect their data

centers, with the cost up to hundreds of millions of dollars

∗ Yong Cui is the corresponding author.

per year. Typically ISPs sell bandwidth at a fixed price per

unit, e.g., 10Gbps or 80Gbps [2], [7], [8]. The price varies
with links and regions [9]. The bandwidth usage is calculated

over a fixed billing cycle, such as a month or a year [8].
As the growth of WAN bandwidth has been decelerating

for many years and the volume of Inter-DC data increases

quickly [10], [11], WAN bandwidth becomes more and more

expensive and it is critical for cloud providers to use the

bandwidth more economically in order to make higher profit.

On the cloud computing market, customers expect cloud

providers to reserve a certain amount of exclusive bandwidth

between given data centers in specific periods for them to

use and are willing to pay a certain amount of fee to cloud

providers as return. To satisfy the customer requests, cloud

providers may have to purchase bandwidth from ISPs at high

cost. It is important and challenging for a cloud provider to

maximize its service profit, the net benefit that is equal to

the service revenue minus the bandwidth cost.

Current service mode on the cloud computing market

prevents cloud providers from making the maximum service

profit due to the high cost of Inter-DC WANs, as providers ac-

cept all customer requests without considering the bandwidth
cost. Inspired by the successful experience of the first-price
sealed-bid auction in auction market, where bidders bid

simultaneously and the one with the highest bid will receive

the item [12], we consider a cloud operational model where

customers submit their transfer requirements and bid to the

cloud provider independently and simultaneously, and the

cloud provider evaluates these requests and accepts the ones

that can maximize its service profit.

Maximizing service profit requires cloud providers to

address two major challenges: (1) Request acceptance.
Although we have shown that accepting all the requests

of customers may not contribute to the maximal service

profit, it is still hard for cloud providers to find the right set

of requests to turn down. If there are N (N ≥ 0) requests,
there will be 2N combinations of requests for cloud providers

to choose from. As there is no function to describe the

service profit changes over different combinations, it would

be very time-consuming to evaluate these combinations one

by one. (2) Request scheduling. In Inter-DC WANs, there

are several routing paths between two data centers. For a
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set of accepted requests, adopting different routing solutions

will lead to different bandwidth costs and greatly affect the

service profit. Properly scheduling these requests is essential

but it is difficult for cloud providers to find the right schedule

and path for the maximum service profit.

Intensive efforts have been made to schedule requests

between data centers economically [8], [13]–[17]. Many

solutions make full use of the purchased bandwidth with store-

and-forward approaches or multipath transmission, which

introduces costs for extra storage or packet-level reordering.

Some other efforts are made to schedule Inter-DC transfers

with different pricing methods (e.g., dynamic pricing) to

maximize the service revenue, which requires the cloud

providers to modify the current pricing mechanism. Overall,

these solutions are not good options to apply in practical

geo-distributed clouds.

As the above challenges are intertwined with each other,

a possible way to maximize the service profit is the alternate

optimization of the service revenue under given bandwidth

and the minimization of bandwidth cost under given requests,

based on which cloud providers could dynamically adjust

the bandwidth to purchase and the requests to accept. In this

paper, we propose an easy-to-control alternate mechanism

and take one step further to deal with the problem of service

profit maximization (SPM). We design a framework, Metis,

to enable cloud providers to maximize their service profits by

alternately solving two variants of SPM, request-limited SPM

(RL-SPM) and bandwidth-limited SPM (BL-SPM), both of

which are solved with guaranteed approximation ratios. The

key contributions are summarized as follows:

• To the best of our knowledge, this is the first work
that formulates the problem of SPM in geo-distributed

clouds, in which we take into account the variation

of bandwidth prices in Inter-DC WANs. We show the

problem is NP-hard by reducing the subset sum problem

to our problem.

• Benefitting from the alternate optimization of RL-SPM

and BL-SPM, Metis solves the SPM problem in polyno-

mial time without incurring too high loss. It also enables

cloud providers to balance the profit performance and

time complexity by tuning the parameters of Metis.

• Based on randomized rounding techniques, we design

an algorithm MAA to solve RL-SPM and propose a

technique to prove its approximation ratio by combining

two other approximation ratios. We also develop a

deterministic method TAA to solve BL-SPM with a

guaranteed approximation ratio based on the Chernoff-

Hoeffding bounds. Extensive evaluations demonstrate

that Metis can achieve more than 130% the service

profit of the existing solutions.

The remainder of this paper is organized as follows: we

introduce SPM and Metis in Section II. We present two

algorithms, MAA and TAA in Section III and Section IV.

We show the evaluation results in Section V, the related work

in Section VI and the conclusion in Section VII.

II. SERVICE PROFIT MAXIMIZATION

In this section, we first introduce the basic system model

and notations, then we formulate the problem of service profit

maximization and prove its NP-hardness. We also define two

variants of it to facilitate the design of our framework, Metis.

A. Model
A cloud provider controls an Inter-DC network G(V,E).

Each edge e in G represents a directed link from a data center

to another. We use V and E to denote the set of data centers

and edges in the network G. ISPs charge for bandwidth
in a fixed billing cycle [8]. A billing cycle consists of T
independent time slots, and we use t to index a time slot.
With ue denoting the cost of per unit of bandwidth on edge
e and ce the bandwidth to be charged, the bandwidth cost
of e is the product of the two [14], [18]. Typically, ce is an
integer in practice [8]. In a billing cycle, intra-cloud services

send a set of K transfer requests. A request i (1 ≤ i ≤ K)
is denoted by a six-tuple {si, di, tsi, tdi, ri, vi}, where the
transmission is carried from the source data center si to the
destination data center di between the time tsi and tdi. The
bandwidth required is ri, and the value is vi. For each pair
of data centers (si, di), there are multiple available paths in
G. We use Pi = {Pi,j : 1 ≤ j ≤ Li} to denote the set of
paths for request i, where Li denotes the number of paths.

With the above definitions, we define service revenue and

service cost as follows.
Service Revenue. For a request i, we use a binary variable
xi,j to indicate whether it flows through path Pi,j , where

xi,j equals 1 if yes, and 0 otherwise. If its requirement is

satisfied, i.e.,
∑Li

j=1 xi,j = 1, the cloud provider receives a
service revenue of vi, and the revenue is 0 otherwise. The
service revenue I can be represented as:

I =

K∑
i=1

vi(

Li∑
j=1

xi,j)

Service Cost. In this work, we focus on the cost of Inter-DC
WANs and take the bandwidth cost of Inter-DC links as

service cost, and

C =
∑
e∈E

uece.

For clarity, we summarize the notations we use in Table I.

B. Formulation
For any pair of data centers in the network G, there is

at least one routing path. For request i, the cloud provider
should select at most one path to reserve bandwidth. Thus

the following inequality should be satisfied:

∀i :

Li∑
j=1

xi,j ≤ 1 (1)
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Table I. Summary of notations

Notation Definition
G (V,E): the topology of Inter-DC WAN

K the number of requests in a billing cycle

T the number of time slots of a billing cycle

i
{si, di, tsi, tdi, ri, vi}: the i-th request;
si: source; di: destination; tsi: start time;
tdi: end time; ri: required rate; vi: value;

Li the number of directed path from si to ti

Pi,j
{i, j | 1 ≤ i ≤ K, 1 ≤ j ≤ Li}: the j-th
directed path from si to ti

Pi
{Pi,j : 1 ≤ j ≤ Li}: the set of directed paths
from si to ti

ue
bandwidth price of e, i.e., the cost of per
unit of bandwidth on e

ce the charging bandwidth of e
xi,j {0, 1}: whether request i flows through Pi,j

Ii,j,e {0, 1}: whether edge e is in the path Pi,j

I service revenue

C service cost

Our goal is to find the match of requests and transmission

paths, which we denote as “schedule”. A schedule is said to

satisfy the request i if
∑Li

j=1 xi,j = 1 holds.

A schedule is said to satisfy the link capacities if the link

capacity constraint is satisfied for every edge e at any time
slot t. First, we describe the required bandwidth ri of request
i as:

∀i, ∀t : ri,t =

{
ri , t ∈ [tsi, tdi]

0 , otherwise

Based on this, we present the link capacity constraint as:

∀t, ∀e :

K∑
i=1

Li∑
j=1

ri,txi,jIi,j,e ≤ ce (2)

where Ii,j,e is a predefined binary number and it indicates
whether edge e is on path Pi,j .

To maximize service profit for a cloud provider, our

objective is to maximize the value of service revenue minus

service cost in Inter-DC WANs. We call it service profit

maximization (SPM), and formulate it as follows:

max (I − C)
s.t.

∀e : ce ∈ N (3)

∀i, ∀j : xi,j ∈ {0, 1} (4)

Constraint (1)(2)

By reducing the subset sum problem [19] (denoted as

SUBSET-SUM) to SPM, we have the following theorem:

Theorem 1. SPM is NP-hard.

Proof: SPM is NP-hard, as it contains SUBSET-SUM

as a special case, which is NP-complete. SUBSET-SUM

is defined as follows: Given a set of integers S, is there a
non-empty subset whose sum is a given integer N ?

We first construct an instance A of SUBSET-SUM. We

consider setting the integer set S = {a1, a2, ..., an} and∑n
i=1 ai =M. The goal of SUBSET-SUM is to find a subset

of sumN in S . Without loss of generality, letN <M < 2N .

Next, we construct a special case A′ of SPM. Suppose there
is one edge e in the network G and one time slot in a

scheduling period, and there are n requests. The value of

i is linearly related to the bandwidth it requires. For each
request i, it requires ri (= ai/N ) units of bandwidth and
we set the value vi of it as ri. Then we have that the sum
of vi is greater than 1 but less than 2. We consider setting
the bandwidth price of edge e as 1− σ where σ is less than

1 but it is infinitely close to 1. By far we have transformed

A to A′ in polynomial time.
For the instance A′, the cloud provider would obtain the

maximal service profit 1− σ by satisfying a subset of sum 1

in the set of {vi}. If we could solve SPM with a polynomial-

time algorithm, we would obtain the optimal solution of

SUBSET-SUM, which means that SUBSET-SUM could be

solved in polynomial time. Therefore, SPM is at least as

hard as SUBSET-SUM. As SUBSET-SUM is NP-hard, SPM

is NP-hard, too. This completes the proof.

Despite that directly solving SPM is complex and diffcult

because of the tight coupling of the service revenue and the

service cost, solving its variants can be relatively easy, thus

we define two variants of SPM as follows:

• Variant #1: Given a set of accepted requests, maxi-

mizing the service profit is equivalent to minimizing

the service cost, which is called request-limited SPM

(RL-SPM).

• Variant #2: Suppose the bandwidth in the network is
fixed, service profit maximization can be transformed to

achieving the maximal service revenue, which is called

bandwidth-limited SPM (BL-SPM).

By alternately solving the two variants of SPM, we will

efficiently solve it in the following.

C. Metis

Despite that the two variants of SPM are relatively easier

to solve, solving either of the two is not sufficient for solving

SPM. Considering the conflicts between RL-SPM and BL-

SPM, where the given condition of one problem (i.e., the

requests accepted in RL-SPM and the bandwidth limitation

in BL-SPM) is the objective of the other (i.e., minimizing

the bandwidth cost and maximizing the service revenue). By

dynamically setting the accepted requests and the bandwidth

limitation as required by the two variants, alternately solving

them can potentially generate a good solution of SPM.

Following this strategy, we propose a framework, Metis,
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RL-SPM
Solver

BW Limiter
(τ)

BL-SPM
Solver

SP UpdaterInput Output

Loop for θ times

Figure 1. Framework of Metis

for cloud providers to specify the alternate mode, as shown

in Fig. 1.

There are six modules in Metis: Input collects the necessary

information for solving SPM, such as the requests, the

network topology, the bandwidth prices and so on. Output

will output the final decisions, i.e., acceptance decision and

scheduling decision, based on the calculation of SP Updater.

SP Updater works with other three modules: RL-SPM Solver,

BW Limiter and BL-SPM Solver. Before running them, SP

Updater initializes the service profit as zero, where the cloud

provider accepts no request and uses no bandwidth. Both

service revenue and service cost are zero. We introduce the

functions and operations of these modules in the following.

• RL-SPM Solver. Given a set of accepted requests, it
aims to present a routing solution that needs as little

bandwidth as possible. We run it to output the bandwidth

to be charged and the scheduling of requests, then

we calculate the service profit. If it is greater than

the recorded service profit by SP Updater, SP Updater

updates the service profit as the current one and record

the current schedule. In the initialization phase, we set

all the user requests as “accepted”.

• BW Limiter. Before running the BL-SPM Solver, it is

used to limit the bandwidth with a rule predetermined

by the cloud provider and denoted as τ . In this paper,
we set τ as the rule that BW Limiter uses to reduce

the bandwidth of link whose average utilization is the

minimum. Based on the schedule obtained from RL-

SPM Solver, BW Limiter sets the link bandwidth and

calls BL-SPM Solver to maximize the service revenue.

• BL-SPM Solver. Under the limit of bandwidth obtained
from BW Limiter, BL-SPM Solver accepts part of user

requests and schedules them with the transmission paths

to achieve the maximal service revenue. In the case that

the given bandwidth can not satisfy all requests, the

BL-SPM Solver will decline some requests and update

the set of user requests.

• SP Updater. It is in charge of the update and the record
of service profit when RL-SPM Solver or BL-SPM

Solver outputs a better schedule. It also records the

acceptance decision and bandwidth allocation.

In a scheduling period, the above modules will run for

θ (θ ≥ 1) times before Metis outputs the final decisions.
Through Metis, we alternately reduce the cost and improve

the revenue to optimize the service profit. Cloud providers

can set τ and θ based on their actual needs (e.g., low

computing time) and historical data [6], [20]. Metis has

several advantages: (1) Easy-to-control. Cloud providers can

tune it freely by setting parameters. (2) Convergence. As BL-

SPM Solver sometimes declines user requests, the number of

user requests to be scheduled decreases with the increasing

number of completed loops. Metis loops at most K (the

number of requests in a scheduling period) times before

finishing scheduling all requests.

In Metis, the efficiency of RL-SPM Solver and BL-SPM

Solver greatly affects the final service profit. In the following

sections, we design algorithms to solve RL-SPM and BL-

SPM with guaranteed approximation ratios.

III. MULTISTAGE APPROXIMATION ALGORITHM

RL-SPM Solver is applied to select routing paths for the

requests and minimize the total bandwidth cost. However,

there are two challenges: a request is unsplittable and the

bandwidth of links in Inter-DC WANs is integer, which make

it hard to solve the problem directly.

To address the challenges, we propose to decompose

RL-SPM into two subproblems: a subproblem P1 with the
relaxing of the integer requirement of bandwidth, and a

subproblem P2 with the relaxing of the integral routing

constraint of request. P1 becomes the well-known multicom-
modity unsplittable flow problem [19]. Then we design a

multistage approximation algorithm (MAA) to independently
solve P1 and P2 based on the relax-and-round method, as
follows:

• Relaxation: We first solve the relaxed linear program
of P1 by allowing xi,j to be a fractional number, with
xi,j ∈ [0, 1]. An advanced LP solver can yield the

optimal fractional results, denoted as {x̂i,j} and {ĉe}.
• Randomized rounding: With the randomized rounding
scheme, a request i is selected to transmit over the

path Pi,j with a probability x̂i,j . For each request i,
the overall path selection factors over all links should

meet
∑Li

j=1 x̂i,j = 1. We select exactly one path for
each request i with a probability x̂i,j . Let |E| denote
the number of edges in the network G, it achieves a
O( log |E|

log log |E| )-approximation solution for P1 with a high
probability [21], [22].

• Ceiling: As the start times and end times of requests are
different, for cloud providers, the required bandwidth

varies with time slots and edges. Considering that

bandwidth is charged in integer units in practice, for each

edge e, we round up ĉe as the bandwidth for charging
and denote it as �ĉe�, and calculate the total bandwidth
cost. We denote the set of edges whose fractional

charging bandwidth ĉe is positive as E
′ (E′ ⊆ E).
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Algorithm 1: MAA: Multistage Approximation Algorithm
Input: Requests: {1, 2, ...,K}; Paths: {P1, P2, ..., PK};

Bandwidth prices: {ue};
Output: Transmission paths for requests: {xi,j};

Charging bandwidth: {ce};
1 Relax RL-SPM and solve its relaxed linear program

2 for 1 ≤ i ≤ K do
3 Select exactly one path Pi,j with probability xi,j
4 end
5 Initialize each ce as 0
6 for e ∈ E do
7 ce = �maxt{

∑K
i=1 ri,tx̂i,jIi,j,e}�

8 end
9 return {xi,j} and {ce}

In the case that any fractional bandwidth ĉe is greater

than a positive number α, i.e., α = min
e∈E′

{ĉe}, we have a
theorem about the approximation algorithm for P2. Before
presenting it, we denote the ρ-approximation algorithm of a

minimization problem as the one that can achieve a solution

within ρ (ρ ≥ 1) times the optimal solution. Similar to

the definition of ρ-approximation algorithm, the ρ-relaxed
algorithm for an integer programming minimization problem

is the one that can achieve a solution within ρ times the
optimal solution of the relaxed original problem. Based on

our definitions, we have the following theorem:

Theorem 2. There exists a (α+1α )-relaxed algorithm for P2,
where α = min

e∈E′
{ĉe}.

Proof: With the paths selected for requests in random-
ized rounding procedure, we denote the minimum service cost

of the relaxed P2 as C̈2 and the output objective of ceiling
procedure as Ĉ2. For each edge e ∈ E′, the bandwidth for
charging is denoted by ĉe and �ĉe� respectively. Then we
have:

C̈2 =
∑
e∈E′

ueĉe

Ĉ2 =
∑
e∈E′

ue�ĉe�

According to the operation in ceiling procedure, it is evident

that

∀e ∈ E′ : ĉe ≤ �ĉe� < ĉe + 1

As ĉe ≥ α holds for any edge e in E′, it is easy to prove
that

∀e ∈ E′ : �ĉe� <
1 + α

α
· ĉe

Then we have

Ĉ2 <
α+ 1

α
· C̈2

This completes the proof.

MAA is presented in Algorithm 1. On line 1, we solve
the relaxation of P1. From line 2 to line 4, we select a

path for each request according to the probability. On line

5, we initialize the bandwidth to be charged to zero. For

each link e ∈ E, at each time slot t, we find the total

bandwidth required by the requests that are scheduled to

transmit through e and we round up the maximal fractional
bandwidth to obtain the bandwidth for charging of e (from
line 6 to line 8). On line 9, our algorithm returns the schedule

and the charging bandwidth. We solve RL-SPM with MAA

in polynomial time, which has a proved approximation ratio.

The time complexity of MAA is O(K · T · |E|), where K
denotes the number of requests, T denotes the number of

time slots in a billing cycle and |E| denotes the number of
edges in G. For MAA, we have the following theorem:

Theorem 3. Suppose there exist a ρ1-approximation algo-
rithm (ρ1 ≥ 1) for P1 and a ρ2-relaxed algorithm (ρ2 ≥ 1)
for P2. Then there exists a (ρ1ρ2)-approximation algorithm
for RL-SPM.

Proof: We denote RL-SPM as P0 and the optimal

objective of P0 as C∗0 . First, we use ρ1-approximation
algorithm to solve P1. Denoting the output objective as Ĉ1
and C∗1 the optimal objective value of P1. With the selected
paths x̂i,j for each request i, we have

Ĉ1 ≤ ρ1C∗1 ≤ ρ1C∗0
Let C̈2 be the optimal solution of relaxed P2, then we have

C̈2 ≤ Ĉ1
Second, we use ρ2-relaxed algorithm to solve P2, whose
objective is denoted by Ĉ2. Hence we have

Ĉ2 ≤ ρ2C̈2
Therefore, the following inequality

Ĉ2 ≤ ρ2C̈2 ≤ ρ2Ĉ1 ≤ ρ2ρ1C∗1 ≤ ρ2ρ1C∗0
holds. This completes the proof.

Combining Theorem 2 and Theorem 3, we prove the

approximation ratio of MAA in the following:

Theorem 4. MAA is a O(α+1α · log |E|
log log |E| )-approximation

algorithm for RL-SPM with a high probability.

Proof: Let Ĉ0 denote the total bandwidth cost of RL-
SPM obtained with MAA and C∗0 denotes the minimal

bandwidth cost. Our goal is to prove that

Ĉ0 ≤ O(
α+ 1

α
· log |E|
log log |E| ) · C

∗
0 (5)

Since randomized rounding procedure achieves a

O( log |E|
log log |E| )-approximation ratio for P1 with high

probability and ceiling procedure achieves a (α+1α )-
approximation ratio for the relaxed P2, with Theorem 3,
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we can prove that the above inequality (5) holds. This

completes the proof.

IV. TREE-BASED APPROXIMATION ALGORITHM

Given the fixed bandwidth, the objective of BL-SPM

Solver is to maximize the service revenue. Since BL-SPM

contains unsplittable flow problem (USF) as a special case,

which is known to be NP-hard [22], BL-SPM is also NP-

hard. The proof is easy and omitted for brevity. The main

challenge comes from that improper rounding will lead to the

violation of link capacity constraint, which makes it hard to

directly solve our problem. To address the issue, we propose

a tree-based approximation algorithm (TAA) that exploits
the decision tree to construct a feasible schedule without

violating any link capacity constraint.
First, we relax the problem BL-SPM that xi,j ∈ [0, 1] can

be a fractional number to select the requests, and we denote

the optimal scheduling solution of the relaxed problem as

{x̂i,j}. The corresponding revenue is denoted by Î . Similarly,
we denote the optimal objective of BL-SPM as I∗.
Since requests are independent from each other, we select

a path Pi,j for request i independently with a probability xi,j
and denote by Ii the service revenue generated by request i.
The expectation of Ii is:

E[Ii] = vi
Li∑
j=1

xi,j = mi

where vi denotes the value of request i. Then we have

E[I] =
K∑
i=1

E[Ii] = m

where K denotes the number of requests. Based on the

following Chernoff-Hoeffding bounds [21], [23],

Theorem 5. (Chernoff-Hoeffding bounds) Suppose I1, I2,
..., IK are K independent random variables in [0, 1] and
I =

∑K
i=1 Ii. For δ > 0, and m = E[I] ≥ 0,

Pr[I > (1 + δ)m] <

[
eδ

(1 + δ)(1+δ)

]m
For 0 < γ ≤ 1,

Pr[I < (1− γ)m] <

[
eγ

(1 + γ)(1+γ)

]m
we normalize the expectation of Ii to [0, 1] to adapt to the
above theorem, then we define B(m, δ) as:

B(m, δ) = [
eδ

(1 + δ)(1+δ)
]m

to be the probability that I is within a given δ ratio around
m with the random selection of paths for requests. We also

define D(m,x) to replace δ and make the following equality
hold:

B(m,D(m,x)) = x

Next, we use both B(·) and D(·) to guide the finding of
feasible solutions of BL-SPM.

Since link capacity constraints may be violated if a path

Pi,j is selected for request i with the probability x̂i,j , we
introduce a scaling factor μ (0 < μ < 1), and take μx̂i,j
as the probability that we select the path Pi,j . To ensure

that the probability of violating the link capacity constraint

of BL-SPM is less than 1
T ·(N+1) , we set μ to satisfy the

following inequality:

B(μc,
1− μ
μ

) <
1

T · (N + 1)
(6)

where c denotes the minimum bandwidth of edges in the

WAN (except the edges whose bandwidth is zero); T and N
denote the number of time slots in a billing cycle and the

number of edges in G, respectively.

By our choice of μ, the probability that a constraint is
violated will be less than 1

T ·(N+1) . Since there are T ·N link

capacity constraint in BL-SPM, the probability that there

exists at least one violated constraint is less than N ·T
T ·(N+1) .

The expectation of the service revenue, IS , will be scaled
down, i.e., IS = μÎ. Based on it, we have the following
theorem:

Theorem 6. Suppose IB = IS · [1 − D(IS , 1
N+1 )], there

exist solutions that make the service revenue of BL-SPM, Ĩ,
satisfy:

Ĩ ≥ IB (7)

Proof: If a solution makes the theorem hold, we say the

corresponding schedule is “good”, otherwise it is “bad”. To

prove the theorem, we will show that there exists non-zero

probability that inequality (7) holds while no constraint in

BL-SPM is violated (denoted as Y ) in the following, i.e.,

Pr[Ĩ ≥ IB ∩ Y ] > 0 (8)

By inequality (7), we have

Pr[Ĩ < IB ] <
1

N + 1
(9)

Since there are N · T link capacity constraints in BL-SPM,

and the probability that any of them is violated is less than
1

T ·(N+1) , the probability that there exists at least one violated
link capacity constraint (denoted by Ȳ ) is less than N ·T

T ·(N+1) .
Then we have

Pr[Ĩ < IB ∪ Ȳ ]

≤ Pr[Ĩ < IB ] + Pr[Ȳ ]

<
1

N + 1
+ T ·N · 1

T · (N + 1)
= 1 (10)

Since the sum of Pr[Ĩ < IB ∪ Ȳ ] and Pr[Ĩ ≥ IB ∩ Y ]
equals 1 and Pr[Ĩ < IB ∪ Ȳ ] < 1, we have that Pr[Ĩ ≥
IB∩Y ] > 0, thus inequality (8) holds, implying the solutions
achieve objectives higher than IB .

447



As proven in Theorem 6, there exist good solutions for BL-

SPM, we propose an algorithm to construct a good solution

for BL-SPM based on conditional probabilities. We look for

a good solution by means of a decision tree.

Consider a K-level tree T corresponding to K total

requests, the nodes at level i represent the possible choices
for request i. For any request i, there are Li + 1 choices,

either scheduling it on a path Pi,j (1 ≤ j ≤ Li) or declining
it. For the convenience of presentation of algorithm process,

we consider declining request i as scheduling it on the path
Pi,Li+1, thus a request i has Li + 1 available paths. For K

requests, there are totally
∏K

i=1(Li + 1) possible schedules,
each represented as a leaf of the decision tree. Theorem 6

shows there exist good schedules for BL-SPM, i.e., good

leaves in T . We aim to walk down T from the root node to

a good leaf in polynomial time so that the resulted service

revenue Ĩ is no less than IB .

At a typical stage of the computation, we are at some node

at level i (1 ≤ i ≤ K). It is evident that we have walked
down the first i− 1 levels. Now, we wish to select one of
the Li + 1 nodes to minimize the probability that we reach
a leaf with bad schedule. We denote by pi(q1, ..., qi−1) the
conditional probability that we will reach a bad leaf given

the paths of the first i − 1 requests, where qk denotes the

selected path of request k. Then

pi(q1, ..., qi−1) =

Li+1+1∑
j=1

{xi,j · pi+1(q1, ...., qi−1, Pi,j)}

where Li+1 + 1 denotes the number of available paths of

request i+ 1. It is easy to derive the following inequality:

pi(q1, ..., qi−1) ≥ minj{pi+1(q1, ..., qi−1, Pi,j)} (11)

We define p(leaf) as the probability that we reach a bad
leaf at level K, and p(leaf) = 0 when we reach a good leaf
and 1 otherwise.

As there exists at least one good solution for BL-SPM by

Theorem 6, there exists at least one leaf making the following

inequality hold:

1 > p1 > ... > pK(q1, ..., qK−1) > p(leaf) = 0

As computing all of the conditional probabilities is

time-consuming, we relax pi(q1, ..., qi−1) to ui(q1, ..., qi−1),
which is defined to be an upper bound on the former, i.e.,

ui(q1, ..., qi−1) ≥ minj{ui+1(q1, ..., qi−1, Pi,j)} (12)

Next we walk down T from the root node to a good leaf

by continuously decreasing ui(·). Inspired by the pessimistic

Algorithm 2: TAA: Tree-based Approximation Algorithm
Input: Requests: {1, 2, ...,K}; Paths: {P1, P2, ..., PK};

Bandwidth: {ce};
Output: Transmission paths for requests: {xi,j};

1 Normalize the rates and values of requests

2 Relax BL-SPM and solve its relaxed linear program

3 Select the scaling factor μ according to (6)
4 for 1 ≤ i ≤ K do
5 for 1 ≤ j ≤ Li + 1 do
6 if fixing xi,j to 1 minimizes uroot then
7 xi,j ← 1
8 else
9 xi,j ← 0
10 end
11 end
12 end
13 return {xi,j}

estimators in [23], we construct a function uroot as follows:

uroot = et0IS

K∏
i=1

⎧⎨⎩
Li∑
j=1

μx̂i,je
−t0vi + 1−

Li∑
j=1

μx̂i,j

⎫⎬⎭ +

T ·N∑
k=1

⎧⎨⎩e−tkc
K∏
i=1

[

Li∑
j=1

μx̂i,je
tkri,tIi,j,e + 1−

Li∑
j=1

μx̂i,j ]

⎫⎬⎭
In the case that t0 = ln [1+D(IS , 1

N+1 )], tk = ln [1+ 1−μ
μ ],

and ri, vi ∈ [0, 1] for request i, it is proved that uroot < 1
holds. With the parameters set as above, we select a path

for request i to minimize the value of ui(·) from level 1 to

level K. Suppose we are at level i and we have selected
Pi,j for request i, then we replace x̂i,j and x̂i,j∗(j

∗ �= j) in
the expression of uroot with 1 and 0, and calculate ui(·). At
each level, we compare values of ui(·) when using different
selected paths to determine the one that minimizes ui(·).
Based on the characteristics of uroot and the decision tree,

we propose an algorithm to reach a good leaf thus completing

the path selection for each request from the root node of the

decision tree. As mentioned above, for a request i, there are
Li +1 available paths to choose from. By selecting different
paths for request i, we calculate the values of ui(·) and
finally choose the path that minimizes it. By this method, we

continuously decrease the probability of reaching a bad leaf

thus we could reach a good leaf at the last level. Since there

are K requests, we repeat the above procedures for K times

to reach a good leaf. We present our algorithm, tree-based

approximation algorithm (TAA), in Algorithm 2. Despite
there are

∏K
i=1(Li + 1) leaves in the decision tree, from the

root node to a good leaf, our algorithm needs to do at most∑K
i=1(Li + 1) examination. Compared with the brute force

method, the computing time is greatly reduced. So far, we

have two algorithms, MAA and TAA, to solve RL-SPM and
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Figure 2. Network topology of B4 [3]

BL-SPM respectively. We deploy them in Metis to find a

good schedule for cloud providers to make more profit.

V. EVALUATION

In this section, we conduct extensive evaluations to

compare Metis and other solutions. We present the evaluation

methodology and results in the following.

A. Evaluation methodology

To comprehensively show the performance of our solution

and existing schemes, we conduct evaluations on two

networks:

• B4: Google’s Inter-DC WAN [3], which consists of 12

data centers and 19 bi-directional links (as shown in

Fig. 2). It is a typical Inter-DC WAN.

• SUB-B4: a sub-network of B4, which consists of 6 data

centers (DC1 ∼ DC6) and 7 links between them. It is

a small-scale Inter-DC WAN.

We set the bandwidth prices of Inter-DC links based on the

relative bandwidth prices provided by Cloudflare [9]. Using

10Gbps as a unit of bandwidth, the bandwidth cost is the

product of bandwidth price and bandwidth usage. Following

the previous work [6] [20] and the price lists provided by

popular cloud providers to cloud tenants, we generate user

requests with a synthetic model for a billing cycle consisting

of 12 time slots, which represent 12 months. The arrivals of

user requests follow Poisson distribution and the bandwidth

requirements follow uniform distribution between 0.1Gbps

and 5Gbps. The start time and the end time of user requests

are randomly set within 12 time slots. For any request, its

source data center and destination data center are selected

randomly in a specific network (B4 or SUB-B4). We set the

value of user request based on the bandwidth requirements

and the bandwidth prices published by cloud providers [24]–

[26].

We select a set of representative solutions to compare with

our solutions: 1) MinCost. Using fixed rules in scheduling,
it always selects the path with the least bandwidth price

(i.e., min-cost path) to deliver traffic data between data

centers. In our evaluation, it reserves exclusive bandwidth

for users on the min-cost paths. 2) Amoeba [20]. It is an
Inter-DC flow scheduler to satisfy as many user requests as

possible under a fixed amount of bandwidth. 3) EcoFlow [17].
It is an economical and deadline-driven flow scheduler. It

adopts multipath method to transfer Inter-DC flows with less

bandwidth. In our evaluation, it handles user requests one

by one and accepts the user requests that generate higher

service profits. As the service values of requests are fixed

in our problem, it is difficult to compare Metis with the

dynamic-pricing based solutions such as Pretium [8]. Thus

we have not compared Metis with them. We implement a

simulator that integrates the above solutions with C++ and

call the Gurobi Optimizer 7.5.2 to solve the LP and ILP

problems.

B. Evaluation results

We compare our solution with other solutions under dif-

ferent settings, and show their performance in the following:

1) Solution performance: To evaluate the difference be-
tween Metis and the optimal solution of SPM on maximizing

service profit and verify the benefit of declining some user

requests for higher cloud service profit, we compare Metis

with the optimal solution of SPM, denoted as “OPT(SPM)”,

and the optimal solution with all user requests accepted,

denoted as “OPT(RL-SPM)”, on the SUB-B4 network. In

our evaluation, OPT(RL-SPM) takes the optimal solution to

schedule them with the minimum bandwidth cost. We show

the comparing results in Fig. 3.

In Fig. 3a, OPT(SPM) makes more service profit than

Metis and OPT(RL-SPM) by directly solving the ILP

problem to maximize the profit. When there are 400 user

requests, it takes more than 1000 seconds to get the optimal

request schedule while Metis uses only several hundreds of

milliseconds to calculate a feasible schedule. Although the

profit of Metis is 11% lower than that of the optimal one using

OPT(SPM), it is still 32.3% higher than that of OPT(RL-

SPM), which shows the advantage of Metis on making more

service profit and the shortage of current service mode on

the cloud computing market by accepting all user requests

without considering the bandwidth cost.

As shown in Fig. 3b, OPT(RL-SPM) accepts all the user

requests, while OPT(SPM) and Metis accept only parts of

the user requests. To satisfy all requests, OPT(RL-SPM)

has to purchase more bandwidth than others, while some of

the bandwidth is underused. Without accepting all requests,

OPT(SPM) and Metis have larger spaces to search for a

better schedule to fully use the purchased bandwidth and

make more service profit than OPT(RL-SPM).

In Fig. 3c, we present the link utilization of different

solutions with different requests, including the maximum,

minimum and average link utilization. OPT(SPM) has the

highest average link utilization, while OPT(RL-SPM) has the

lowest one by satisfying all user requests even with profit loss.

Taking into account the computing time and profit difference

between Metis and OPT(SPM), it is more proper to use Metis

in practice.
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Figure 3. Metis vs. Optimal solution on SUB-B4

100 200 300 400
0.0

5.0x103

1.0x104

1.5x104

2.0x104

2.5x104

S
er

vi
ce

 C
os

t (
U

ni
t)

Request Number

 MinCost
 MAA

(a) Service cost

100 200 300 400
1.00

1.05

1.10

1.15

1.20

R
at

io

Request Number

(b) Ratio

100 200 300 400
0.0

2.0x104

4.0x104

6.0x104

S
er

vi
ce

 R
ev

en
ue

 (U
ni

t)

Request Number

 Amoeba
 TAA

(c) Service revenue

100 200 300 400
0

100

200

300

400

Av
er

ag
e 

Ac
ce

pt
ed

 R
eq

ue
st

s

Request Number

 Amoeba
 TAA

(d) Accepted request number

Figure 4. Performance of MAA and TAA on B4

2) Performance of MAA and TAA: Before showing the
performance of Metis on maximizing the service profit in geo-

distributed clouds, we fist present the performance advantage

of MAA and TAA as compared to existing solutions, MinCost

and Amoeba [20].

In Fig. 4a, we compare the service cost of MAA and

MinCost with different requests on B4 network. To satisfy

the same set of requests, the service cost of MinCost is up to

21.1% higher than that of MAA. Scheduling requests based

on the fixed policy to reserve bandwidth on the min-cost

path without considering the relationship between requests,

MinCost suffers from higher bandwidth usage and higher

bandwidth cost. Different from MinCost, MAA is an LP-

based algorithm. Benefitting from the relax-and-round method

and selecting routing path based on the optimal solution of

the relaxed RL-SPM problem, it efficiently schedules user

requests to make full use of the purchased bandwidth. In

Fig. 4a, the difference of service cost between Metis and

MinCost increases with the request number. This is because

the shortages of the fixed scheduling policy used by MinCost

worsens its path selection and increases its bandwidth cost,

while MAA has more potential to fully use the purchased

bandwidth and generate less bandwidth cost.

In MAA, we adopt randomized rounding method to decide

routing paths for user requests based on the optimal solution

of relaxed RL-SPM problem. In Fig. 4b, we present the

ratio of bandwidth cost with randomized rounding to that

of the optimal scheduling in different network settings. For

each set of user requests, we repeat the randomized rounding

procedure for 1000 times and calculate the bandwidth cost.

It shows that, the ratio is always less than 1.2, which demon-

strates that our algorithm can achieve a good performance

that is comparable to the optimal solution.

As TAA and Ameoba [20] work with fixed bandwidth

to satisfy more requests for the maximum service revenue,

following the setup in [20], where each link has a uniform

capacity, we set the bandwidth of links in the B4 network to

100Gbps, i.e., 10 units of bandwidth. We evaluate the service

revenue and the number of satisfied requests under different

situations. In Fig. 4c, with the increase of request number,

the growth of service revenue of TAA is faster than that of

Amoeba. TAA can get up to 50.4% more service revenue than

Amoeba. Benefitting from the optimal solution of relaxed

BL-SPM and the efficient search method in the decision

tree, TAA accepts more user requests than Amoeba with

fixed bandwidth. In Fig. 4d, the average number of accepted

requests of TAA is up to 33% higher than that of Amoeba.

As Amoeba handles requests one by one to accept the ones

that can be accommodated by the residual bandwidth without

considering future requests, the performance is compromised.

Taking into account all user requests, TAA makes more

service revenue with a relatively good scheduling solution.

3) Performance of Metis: In Fig. 5, we compare Metis
with EcoFlow [17] on the B4 network. In Fig. 5a, the service

profit of Metis is up to 32.6% higher than that of EcoFlow.

Ecoflow adopts a greedy method to make acceptance decision

and it declines too many user requests, while Metis alternately

runs MAA and TAA to look for better acceptance and

scheduling solutions to maximize the service profit. In Fig. 5b,

we compare the numbers of accepted requests in different

solutions. The accepted request number of EcoFlow is up to

43.1% less than that of Metis, which leads to less service
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Figure 5. Performance of Metis on B4

revenue and service profit. As shown in Fig. 5c, the average

link utilization of Metis is up to 38% higher than that of

EcoFlow. This is because Metis accepts more requests to

fully uses the purchased bandwidth and make more service

profit. From the result, we find that, it is necessary to make

the good acceptance and scheduling decisions simultaneously

for maximizing the service profit.

VI. RELATED WORK

Traffic engineering for Inter-DC WANs is an attractive

topic recently. Benefitting from the emerging software-

defined networking, SWAN [2] and B4 [3] are proposed

to boost the utilization of Inter-DC WANs by scheduling

traffic with centralized controllers. Tempus [27] is proposed

to maximize the fraction of transfers delivered before their

deadlines, which achieves fairness among all transfers. All

of them are cost-unaware and deadline-agnostic solutions.

Despite Amoeba [20] has addressed the deadline-agnostic

problem and provides deadline guarantees for the accepted

transfers, it does not consider the bandwidth cost. In this

paper, to maximize the service profit for cloud providers, we

alternately minimize the bandwidth cost and maximize the

service revenue for many rounds.

Economically scheduling transfers in Inter-DC WANs has

also attracted much research attention to reduce the bandwidth

cost. NetStitcher [13] and Postcard [14] adopt store-and-

forward strategy to deliver data between data centers, where

large data transfers are delayed and sent at non-peak hours

to fully utilize the already-paid bandwidth and reduce the

charge. However, they do not consider deadlines of large

transfers, and require large storage in data centers to store data

temporarily. EcoFlow [17] splits inter-datacenter flows into

multiple paths to avoid the increases of charging volumes and

bandwidth cost, which may introduce packet-level reordering

problems and degrade the service performance. In contrast,

our solution does not need any extra storage in data centers

or packet-reordering. We alternately maximize the service

revenue by accepting a subset of requests with high service

values and minimize the service cost by delivering them over

selective paths with low bandwidth prices.

Dynamic pricing is a common method to improve the

cost efficiency of Inter-DC WANs. For example, Pretium [8]

combines it with traffic engineering to maximize the social

welfare, i.e., the total value generated to society (over all

served requests) minus the operational cost. It requires

cloud providers to modify the current pricing mechanism.

Besides, in peak hours, it requires customers to make a

concession to either lower their service performance or

raise their delivery bids. Requiring neither modification

to current pricing mechanism nor complicated negotiation

process with customers, our solution can be implemented

in current systems to greatly increase the service profits for

cloud providers.

VII. CONCLUSION

The popularity of cloud computing and the emergence of

new clouds increase the competition between cloud providers.

Maximizing service profit is critical for them to win the

business, while it is challenging because of its NP-hardness.

In this paper, we first formulate the problem of service

profit maximization and prove its NP-hardness. We then

propose a framework, Metis, to alternately maximize the

service revenue and minimize the service cost to maximize

the service profit for cloud providers. We design two

approximation algorithms based on randomized rounding

techniques and Chernoff-Hoeffding bound and prove their

approximation ratios. Our solution outputs the schedule for

user requests in polynomial time without incurring too high

loss. Extensive evaluations demonstrate that, compared with

the existing solutions, Metis increases the service profit for

more than 30%.
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