
Graph based Tensor Recovery For Accurate Internet
Anomaly Detection

Kun Xie1,2, Xiaocan Li1, Xin Wang3, Gaogang Xie4, Jigang Wen4, Dafang Zhang1
1 College of Computer Science and Electronics Engineering, Hunan University, China

2 CAS Key Lab of Network Data Science and Technology, Institute of Computing Technology,
Chinese Academy of Sciences, China

3 Department of Electrical and Computer Engineering, State University of New York at Stony Brook, USA
4 Institute of Computing Technology, Chinese Academy of Sciences, China

Abstract—Detecting anomalous traffic is a crucial task of
managing networks. Many anomaly detection algorithms have
been proposed recently. However, constrained by their matrix-
based traffic data model, existing algorithms often suffer from
low detection accuracy. To fully utilize the multi-dimensional
information hidden in the traffic data, this paper takes an
initiative to investigate the potential and methodologies of per-
forming tensor factorization for more accurate Internet anomaly
detection. Only considering the low-rank linearity features hidden
in the data, current tensor factorization techniques would result
in low anomaly detection accuracy. We propose a novel Graph-
based Tensor Recovery model (Graph-TR) to well explore both
low rank linearity features as well as the non-linear proximity in-
formation hidden in the traffic data for better anomaly detection.
We encode the non-linear proximity information of the traffic
data by constructing nearest neighbor graphs and incorporate
this information into the tensor factorization using the graph
Laplacian. Moreover, to facilitate the quick building of neighbor
graph, we propose a nearest neighbor searching algorithm with
the simple locality-sensitive hashing (LSH). We have conducted
extensive experiments using Internet traffic trace data Abilene
and GÈANT. Compared with the state of art algorithms on
matrix-based anomaly detection and tensor recovery approach,
our Graph-TR can achieve significantly lower False Positive Rate
and higher True Positive Rate.

Index Terms—Traffic anomaly detection, Tensor Recovery,
Graph

I. INTRODUCTION

An anomaly in a data set is defined by Barnett and Lewis
as ”an observation (or subset of observations) which appears
to be inconsistent with the remainder of that set of data” [1].
Anomaly detection aims to identify data that do not conform to
the patterns exhibited by the data set . Traffic anomalies, such
as flash crowds, denial-of-service attacks, port scans, and the
spreading of worms, can have detrimental effects on network
services. Detecting and diagnosing these anomalies are critical
to both network operators and end users.

Recently, many efforts [2]–[6] have been made to develop
various traffic anomaly detection algorithms. They usual-
ly model the traffic data as a traffic matrix. As the two-
dimensional information is not enough to capture the com-
prehensive correlations hidden in the traffic data, the accuracy
of the anomaly detection is often low.

Instead, we propose to model the traffic monitoring data
with a multiway tensor, a higher-order generalization of vec-
tors and matrices. Tensor models have been demonstrated to
be able to take full advantage of the multilinear structures to
provide better data understanding and information precision. In
this work, we will investigate the possibility and methodology
of exploiting the correlations in a higher dimensional tensor
to more robustly detect the network anomaly.

Our recent experimental study [7], [8] on real traffic traces
reveals that normal traffic data can reside in a low-dimensional
linear subspace and form a low-rank tensor. The anomalies
(outliers) should stay outside this subspace. Therefore, we
propose a novel approach to separate the low-rank normal data
and outlier data from the noisy traffic data captured, and then
detect the anomaly by using the outlier data separated. We
exploit tensor factorization to recover the normal data from
the traffic data.

Initial efforts on tensor recovery [9]–[11] mainly directly
extend either RPCA (Robust Principal Component Analysis)
[12] or PCA (Principal Component Analysis) [13] of matrix
to the tensor field by unfolding a tensor into matrices, and
then utilize the information of different modes in a tensor
individually. These approaches are fundamentally still matrix-
based and would suffer from the low anomaly detection
performance without fully exploiting the tensor pattern and the
multilinear information inherent in the data. Only RTD [14]
and our TensorDet [15] propose a tensor recovery model to de-
compose a noisy tensor into low rank and sparse components.
Utilizing the multilinear structures hidden in the traffic data,
this method is promising to achieve a better anomaly detection
performance than current matrix-based detection algorithms.

However, the performance under RTD and TensorDet still
suffer for following reason. Normal data recovery directly
impacts the outlier data separation thus the anomaly detec-
tion performance. In RTD and TensorDet, normal data are
recovered from the observed data by only considering the
linearity feature (low rank) of the data space while ignoring
its possible non-linearity. Low rank implies there exists the
linear dependence among data. For the traffic data, besides
their linear dependence among the origin, destination, and
time domains, there also exist some non-linear proximity

IEEE INFOCOM 2018 - IEEE Conference on Computer Communications

978-1-5386-4128-6/18/$31.00 ©2018 IEEE 1502



information in these three domains. For example, the same
network topology should have similar traffic data at some
specific time (i.e., the office hours, the break time), thus the
traffic data should contain time proximity information.

For more accurate anomaly detection, the normal data
should be a low rank tensor that preserves the non-linear prox-
imity information in the original data space. Recent studies on
machine learning shows that the manifold learning [16]–[18]
is effective in preserving the local geometric (relationships) for
the face recognition. With this inspiration, we propose to track
the non-linear proximity information of the traffic data with
the nearest neighbor graphs, and recover a low-rank tensor
that captures the proximities in the origin, destination, and
time domains for more accurate anomaly detection. In order to
implicitly force these proximities, we propose a novel Graph-
based Tensor Recovery model (Graph TR) which formulates
the problem by constraining the low rank tensor recovered to
be smooth on these neighbor graphs. Moreover, the sparsity of
the outlier locations is directly represented by using the L0-
norm constraint instead of the L1-norm constraint in RTD.
Some major designs in Graph TR are:

• Despite the difficulty of handling the rank constraint and
the L0-norm constraint for the tensor rank and set cardi-
nality, we propose a block coordinate descent scheme to
solve the tensor recovery problem directly in its original
form by iteratively solving two sub problems, a tensor
factorization sub-problem and an anomaly detection sub-
problem.

• Traffic data contain three types of non-linear proximi-
ty information: the time proximity, the origin proxim-
ity, and the destination proximity. For more accurate
anomaly detection, we construct three nearest neighbor
graphs to fully extract these information. Using graph
Laplacian, we incorporate the information into low rank
tensor factorization. By preserving the graph structure,
our algorithm can have more discriminating power on
detecting traffic anomaly than current pure low rank
tensor factorization solution.

• To facilitate building nearest neighbor graph and alleviate
the problem of missing geometric information with cur-
rent k-nearest neighbors algorithm (KNN) methods, we
propose a novel locality sensitive hashing (LSH) based
nearest neighbor searching algorithm with a LSH table
to reorder and buffer traffic data in a fast and effective
way. Thus our searching algorithm can quickly find the
nearest neighbors of a traffic data point by placing the
data points with closer correlations to close-by positions.

• Using traffic trace data Abilene [19] and GÈANT [20],
we compare our Graph TR with the state of art tensor
recovery algorithms and matrix-based outlier detection
algorithms. Our results demonstrate that Graph TR can
achieve significantly higher anomaly detection accuracy
with low False Positive Rate and high True Positive Rate.

To the best of our knowledge, this is the first work that
demonstrates the capability of applying the tensor factorization

and manifold leaning to enable robust tensor data recovery for
accurate Internet anomaly detection.

The rest of the paper is organized as follows. We introduce
the related work in Section II, and the preliminaries of tensor
in Section III. We present the traffic tensor model and the basic
tensor recovery problem in Section IV, and describe our graph-
based tensor recovery model and the nearest neighbor finding
algorithm in Section V and Section VI, respectively. Finally,
we evaluate our algorithm performance through extensive
experiments in Section VII and conclude the work in Section
VIII.

II. RELATED WORK

We are not aware of any other work that accurately detects
the anomaly based on tensor factorization with the manifold
learning to capture both the linear and non-linear features in
the traffic data. Following we review some literature work.

The aim of tensor recovery is to recover the low-rank tensor
from noisy tensor data with some entries corrupted by outliers.
Current literature studies on tensor mainly focus on tensor
completion to fill in missing data without considering the data
corruption. Recently, some initial efforts are made [9]–[11],
[14], [15] to investigate the tensor recovery problem. Among
which, RTD [14] and TensorDet [15] exploit the multilinear
structure of tensor to decompose a noisy tensor into low
rank and sparse components. However, they only consider
the linear information while ignoring the non-linear proximity
information hidden in the traffic data, which will further reduce
the accuracy of traffic anomaly detection.

Recent studies [16]–[18] on manifold learning for face
recognition show that when high dimensional data points are
random but highly correlated with their close neighbors, data
points may lie on (or near) a submanifold and are highly non-
linear, and linear methods fail to handle such data. Here, a d-
dimensional submanifold of a Euclidean space RM is a subset
Md ⊂ RM which locally looks link a flat d-dimensional
Euclidean space. Fig. 1 shows a two-dimensional manifold,
embedded in three dimensions in three different ways: a linear
embedding (plane) (a), an S-shape (b), and a ”Swiss roll” (c).

Fig. 1. Two-dimensional manifolds embedded in three dimensions. (a) Linear
embedding, (b) S-shape, (c) Swiss roll

The purpose of (non-linear) manifold learning is to pre-
serve the underling geometric structure and relationship when
handling the data. Many manifold learning algorithms have
been proposed, such as Locally Linear Embedding (LLE)
[21], ISOMAP [16], and Laplacian Eigenmap [22]. All these
algorithms use the so-called locally invariant concept [23],
i.e., the nearby points remain nearby. It has been shown that
learning performance can be significantly enhanced if the

2

IEEE INFOCOM 2018 - IEEE Conference on Computer Communications

1503



geometrical structure is exploited and the local invariance is
considered.

Enlightened by manifold learning, to accurately recover
the normal data for more accurate anomaly detection, the
recovered normal data should be a low-rank tensor with the
non-linear proximities preserved. As graph has been proven to
be successful in characterizing pairwise data relationship and
manifold exploration, we propose a tensor recovery algorithm
with the nearest neighbor graph constructed to encode the non-
linear structure hidden in the traffic data. We also propose
a novel LSH-based algorithm to quickly find the nearest
neighbors to maintain the geometric structure of the traffic
data.

III. PRELIMINARIES

The notation used in this paper is described as follows.
Scalars are denoted by lowercase letters (a, b, · · ·), vectors
are written in boldface lowercase (a,b, · · ·), and matrices
are represented with boldface capitals (A,B, · · ·). Higher-
order tensors are written as calligraphic letters (X ,Y, · · ·). The
elements of a tensor are denoted by the symbolic name of the
tensor with indexes in subscript. For example, the ith entry of
a vector a is denoted by ai, element (i, j) of a matrix A is
denoted by aij , and element (i, j, k) of a third-order tensor X
is denoted by xijk.

Definition 1. A tensor is a multidimensional array, and is
a higher-order generalization of a vector (first-order tensor)
and a matrix (second-order tensor). An N -way or N th-order
tensor (denoted as A ∈ RI1×I2×···×IN ) is an element of the
tensor product of N vector spaces, where N is the order of
A, also called way or mode.

The element of A is denoted by ai1,i2,··· ,iN , in ∈
{1, 2, · · · , In} with 1 ≤ n ≤ N .

Definition 2. Slices are two-dimensional sub-arrays, defined
by fixing all indexes but two. Fig.2 shows tensor slices of a
3-way tensor.

Fig. 2. Tensor slices

Definition 3. The outer product of two vectors a ◦ b is the
matrix defined by: (a ◦ b)ij = aibj .

Since vectors are first-order tensors, the outer product of
three vectors a ◦ b ◦ c is a tensor given by:

(a ◦ b ◦ c)ijk = aibjck (1)

for all values of the indexes.
Definition 4. A 3-way tensor X is a rank one tensor if

it can be written as the outer product of three vectors, i.e.
X = a ◦ b ◦ c.

Definition 5. The rank of a tensor is the minimal number
of rank one tensors, that generate the tensor as their sum, i.e.
the smallest R, such that X =

∑R
r=1 ar ◦ br ◦ cr.

Definition 6. The idea of CANDECOMP/PARAFAC (CP)
decomposition is to express a tensor as the sum of a finite
number of rank one tensors. A 3-way tensor X ∈ RI×J×K

can be expressed as

X =
∑R

r=1
ar ◦ br ◦ cr, (2)

with an entry calculated as

xijk =
∑R

r=1
airbjrckr (3)

where R > 0, air, bjr, ckr are the i-th, j-th, and k-th entry
of vectors ar ∈ RI , br ∈ RJ , and cr ∈ RK , respectively.

Fig.3 illustrates the CP decomposition. By collecting the
vectors in the rank one components, we have tensor X ’s factor
matrices A = [a1, · · · ,aR] ∈ RI×R, B = [b1, · · · ,bR] ∈
RJ×R, and C = [c1, · · · , cR] ∈ RK×R. Using the factor
matrices, we can rewrite the CP decomposition as follows.

X =
∑R

r=1
ar ◦ br ◦ cr = [[A,B,C]] , (4)
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Fig. 3. CP decomposition of 3-way tensor as sum of R outer products (rank
one tensors). CP decomposition can be written as a triplet of factor matrices
A, B, C, i.e, the r-th column of which contains ar , br , and cr , respectively.
The entry xijk can be calculated as the sum of the product of the entries of
the i-th row of the matrix A, the j-th row of the matrix B, and the k-th row
of the matrix C.

IV. BASIC TENSOR RECOVERY PROBLEM

For a network consisting of N nodes, the traffic tensor can
be formed with a 3-way tensor X ∈ RN×N×T , corresponding
respectively to the origin, destination and the total number
of time intervals to consider. The data captured by a traffic
tensor tend to be noisy and are subject to outliers and arbitrary
corruptions.

Fig. 4. Traffic tensor

For accurate detection of the outliers
and corruptions, we propose a tensor
recovery model to separate the low-rank
normal data and sparse outlier data from
the noisy traffic data captured. Our mod-
el can be expressed as follows:

min
A,B,C,E

∥(X − E)− [[A,B,C]]∥F
s.t.X ′ = [[A,B,C]]
rank(X ′) ≤ R
∥E∥0 ≤ ε,

(5)
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In (5), we decompose a given observation tensor X into a
low-rank tensor X ′ (i.e., the normal data) and a sparse tensor
E , with a rank constraint (rank(X ′) ≤ R) and a L0-norm
constraint (∥E∥0 ≤ ε) in their direct form without using some
relaxation techniques for more accurate detection of traffic
anomaly. With (X − E), we exclude the outliers E from the
observation tensor. For L0-norm constraint, we do not need the
actual number of outliers, but only use ε to provide an upper
limit to prevent too many data items from being classified as
outliers. In the experiment part, we will investigate how R
impacts the anomaly detection performance.

V. GRAPH BASED TENSOR RECOVERY

It is important to preserve the non-linearity in the low-
rank tensor recovered. As recent studies on manifold learning
theory demonstrate that the local geometric structure can be
effectively modeled through the nearest neighbor graph on a
scatter of data points, in this section, we construct nearest
neighbor graphs to model the proximity hidden in the traffic
data with the local geometric structure. We introduce a novel
method called graph Laplacian to regularize the tensor recov-
ery problem by explicitly considering the non-linear proximity
structures in traffic data.

A. Nonlinear proximity information
The low rank of the traffic tensor X [7], [8] implies that

there exists linear dependence among the origin, destination,
and time. Besides, the network traffic also has some non-
linear relationship in these three dimensions. As an example,
traffic flows often follow a daily schedule. For a given network
topology, traffic data can be similar at some specific time
of a day (i.e., the office hours, the break time). Although
not having strict periodicity, traffic data do contain the time
proximity information. In addition, depending on the roles
of nodes, their traffic patterns could be different. Nodes in
the network can be classified into several groups, such as the
normal end users and powerful servers. Nodes from the same
class may have a similar Internet access pattern and generate
similar traffic load, thus causing the traffic data to have origin
proximity and destination proximity.

To recover the normal data, the problem in (5) only consid-
ers the linearity features (i.e., Low rank) hidden in the traffic
data while ignoring their possible non-linear relationship. This
could compromise the anomaly detection performance. For
more accurate detection, we would also like to consider the
non-linear proximity in the problem through regularization.
As the normal traffic data X ′ are determined through X ′ =
[[A,B,C]], where variables A,B,C are the factor matrices to
look for. To incorporate the non-linear proximity information,
the information should be also represented by A, B, and C
and embedded into the original problem (5).

B. Relationship between CP decomposition and matrix slice
decomposition

To extract the non-linear proximity features, we first inves-
tigate the relationship between the tensor CP decomposition
and the decomposition of a matrix slice of the tensor.

Fig. 5. The relationship between tensor CP decomposition and frontal slice
representation.

A frontal slice, a lateral slice, and a horizontal slice of the
traffic tensor X record respectively the data volume of the
whole network at a time interval, the data from all nodes to
a destination over all time intervals, the data from a origin to
all the nodes over all time intervals. Consequently, the time
proximity information, the origin proximity information, and
the destination proximity information can be extracted using
frontal slices, horizontal slices, and lateral slices, respectively.

In Fig.5(a), according to (4), the CP decomposition of a
3-way tensor X can be written as follows.

X =
∑R

r=1
ar ◦ br ◦ cr = [[A,B,C]] (6)

where matrices A ∈ RI×R, B ∈ RJ×R, C ∈ RK×R are the
factor matrices in the CP decomposition. In Fig.5(b), a frontal
slice X::k can be written as

X::k = ck1a1◦b1+· · ·+ckRaR◦bR =
∑R

i=1
ckiai ◦ bi. (7)

where ck1, ck2, · · · , ckR are the entries of the k-th row of the
factor matrix C. Similarly, a lateral slice X:j: and a horizontal
slice Xi:: can be written in (8) and (9).

X:j: = bj1a1◦c1+ · · ·+bkRaR◦cR =
∑R

i=1
bjiai ◦ ci. (8)

where bj1, bj2, · · · , bjR are the entries of the j-th row of the
factor matrix B.

Xi:: = ai1b1◦c1+· · ·+aiRbR◦cR =
∑R

j=1
aijbj ◦ cj . (9)

where ai1, ai2, · · · , aiR are the entries of the i-th row of the
factor matrix A.

Equation (7) shows that each frontal slice X::k can be
expressed as a superposition of R rank-1 matrices ai ◦ bi

(1 ≤ i ≤ R). That is, the traffic data X::k at a time slot k is
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approximated by the linear combination of R rank-1 matrices
ai ◦ bi, which can thus be called frontal basis matrices. The
parameters ck1, ck2, · · · , ckR are the coordinates of the frontal
slice X::k under this new basis. For abbreviated presentation,
given a matrix Y, we denote the i-th row of the matrix as yi:.

Given two frontal slices X::k1 and X::k2 , if their correspond-
ing traffic data at time slots k1 and k2 are close, their new
encodings on the frontal basis, ck11, ck12, · · · , ck1R (i.e., ck1:,
the k1-th row of the factor matrix C) and ck21, ck22, · · · , ck2R

(i.e., ck2:, the k2-th row of the factor matrix C) should also
be close to each other. Instead of directly using a traffic slice
itself, in following sections, we will use this new encoding to
facilitate calculating the proximity information hidden in the
traffic slices.

C. Incorporating the non-linearity features into the tensor
recovery problem

Fig. 6. Neighbor graph to capture the proximity information.

As mentioned in Section V-A, the proximity information
on time, origin and destination is hidden in the traffic data,
to fully exploit these non-linear proximity features for more
accurate tensor data recovery, we build three neighbor graphs
corresponding to time, origin and destination respectively, as
shown in Fig.6.

Obviously, the frontal slices, horizontal slices, and lateral
slices are vertices in the time neighbor graph, the origin neigh-
bor graph, and the destination neighbor graph, respectively.
In each graph, an edge is connected between two vertices
only if they are nearest neighbors that share some proximity
information, thus nearest neighbor finding is an important step
to build the neighbor graph. In the next section VI, we will
introduce our nearest neighbor finding algorithm based on
locality sensitive hashing(LSH).

After finding the nearest neighbors in a graph, edges are
connected among vertices, and the weight matrix F of the
graph G can be defined over the edges as

fij =

{
1 if vi ∈ N (vj) and vj ∈ N (vi),
0 otherwise (10)

where vi, vj denote the two vertexes in the graph, N(vi)
denotes the set of vertex vi’s nearest neighbors. Only if
vi ∈ N (vj) and vj ∈ N (vi) are satisfied, there exists an
edge connecting vi and vj .

The nearest neighbor graph G and its weight matrix F
characterize the local geometry of proximity information in
the traffic data. To retain these information in the tensor fac-
torization, it is reasonable to minimize the following function
in the tensor recovery problem∑

i,j

∥vi − vj∥2fij = tr
(
VTLV

)
(11)

where L = D − F is the graph Laplacian matrix and D is a
diagonal matrix whose entries are column sums of the weight
matrix F, i.e., dii =

∑
j fji and dij = 0 for i ̸= j. The

minimization ensures that the vectors vi and vj residing on
two well connected nodes (i.e., they are nearest neighbors) to
have a small distance ∥vi − vj∥2 so that tr

(
VTLV

)
is small.

Our goal in this paper is to present a low-rank tensor
factorization model that takes into account both linear features
and the non-linear proximity features of the traffic data for
accurate anomaly detection. To achieve this, we update the
tensor recovery problem in (5) as follows:

min
A,B,C,E

Υn
2
∥(X − E)− [[A,B,C]]∥2F + Υx

2
OT +

Υy

2
OO + Υz

2
OD

s.t.X ′ = [[A,B,C]]
rank(X ′) ≤ R
∥E∥0 ≤ ε,

(12)
where OT , OO, and OD represent the constraints correspond-
ing to the time proximity, origin proximity, and destination
proximity. They can be expressed as

OT =
∑
i,j

∥ci: − cj:∥2fij = tr
(
CTLcC

)
(13)

OO =
∑
i,j

∥ai: − aj:∥2fij = tr
(
ATLaA

)
(14)

OD =
∑
i,j

∥bi: − bj:∥2fij = tr
(
BTLbB

)
(15)

where A,B,C are the factor matrices and Lc, La, and Lb

are the graph Laplacian matrices of the time graph, the origin
graph and the destination graph, respectively.

In (13), ci: and cj: denote the encodings of the frontal
slices X::i and X::j under the frontal basis, and ∥ci: − cj:∥2fij
denotes their distance. Similarly, in (14) and (15), ai: and
aj: denote the encodings of the horizontal slices Xi:: and
Xj:: under the horizontal basis, and bi: and bj: denote the
encodings of the lateral slices X:i: and X:j: under the lateral
basis, respectively. The incorporation of OT , OO, and OD into
the objective function ensures that, if data points of two traffic
slices are close, their recovered data are also close.

D. Solution to the graph based tensor recovery problem

The problem (12) involves the tensor rank and the L0-norm
(i.e., the cardinality of the outlier set), and is very difficult
to solve. As the constraints of X ′ and E are independent, the
problem is decomposable. Taking advantage of this property,
we propose to adopt the block coordinate descent strategy, and
divide the original problem into two sub-problems: a tensor
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factorization sub-problem (16) and an anomaly detection sub-
problem (17), which can be alternately solved until the solution
converges as shown in Algorithm 1.

Algorithm 1 Tensor recovery algorithm
1: while not converged do
2: solve the tensor factorization sub-problem

min
A,B,C,E

Υn
2
∥(C)− [[A,B,C]]∥2F + Υx

2
OT +

Υy

2
OO + Υz

2
OD

s.t.X ′ = [[A,B,C]]
C = X − E
rank(X ′) ≤ R

(16)
3: solve the anomaly detection sub-problem

E = argmin
E

∥S − E∥F
s.t.S =X − X ′

∥E∥0 ≤ ε

(17)

4: end while

In the tensor factorization subproblem (Eq.(16)), we first fix
the current estimate of outliers E and exclude them from X to
obtain the ”clean” data C, and then approximate C using X ′.
In the anomaly detection sub-problem (Eq.(17)), we update
the outliers E based on the error S = X − X ′.

We solve the tensor factorization sub-problem
in (16) based on the gradient decent scheme. For
O = Υn

2 ∥(C)− [[A,B,C]]∥2F + Υx

2 OT +
Υy

2 OO + Υz

2 OD,
the gradients corresponding to different factor matrices can
be denoted by ∂O

∂A , ∂O
∂B , ∂O

∂C . After obtaining the gradient, the
factor matrices are updated iteratively by the following rules
A← A− η ∂O

∂A , B← B− η ∂O
∂B , C← C− η ∂O

∂C , where η is
the learning rate.

The sub-problem described in (17) can easily be solved as:

ei,j,k =

{
si,j,k βi,j,k > β (ε)
0 otherwise

(18)

where βi,j,k = (si,j,k)
2 and β (ε) is the ε− th largest value in

βi,j,k. Generally, in each round, largest errors are considered
outliers and are put into E to be excluded from the low-rank
fitting in the next round.

VI. NEAREST NEIGHBOR SEARCHING BASED ON
LOCALITY-SENSITIVE HASHING

k-nearest neighbors algorithm (KNN) is usually adopted in
manifold learning theory to find the nearest k neighbors for
the local geometry preservation. However, this method faces
the problem of less geometrically intuitive, as it may return
the nearest k points regardless if they are the neighbors of
the point of interest. Moreover, for a graph consisting of n
vertexes, KNN requires a high time complexity of O(n2).
Instead, we propose a nearest neighbor finding algorithm based
on Locality-Sensitive Hashing (LSH). In this section, we first
introduce the LSH function, then present our solution to find
the nearest neighbors.

Although in our design, there are three nearest neighbor
graphs, we only take time proximity graph (i.e., frontal slices

are the vertexes in the graph) as an example to illustrate how
our algorithm finds the nearest neighbors.

A. Building LSH table to re-order the frontal slices

According to [24], the LSH function family is defined as
follows.

Definition 1. (LSH Function Family) [24]: H = {g : V →
U} is called (R, cR, P1, P2) - sensitive for any p, q ∈ V

• If ||p, q||s ≤ R then PrH[g(p) = g(q)] ≥ P1.
• If ||p, q||s ≥ cR then PrH[g(p) = g(q)] ≤ P2.

where ∥p, q∥s is the distance of elements p and q, V is the
domain of elements. In the LSH, c > 1 and P1 > P2. To
find the nearest neighbors of each frontal slice, frontal slices
are the elements that need to be reordered according to their
distances.

In Section V-B, we have shown that given two frontal
slices X::k1 and X::k2 , if their data points are close, their
new encodings on the frontal basis, ck1: and ck2: shall also
be close to each other. Therefore, to group similar frontal
slices and facilitate the nearest neighbor searching, we use
the row vector of the factor matric C as the indication vector
and apply the LSH to the vector to reorder the frontal slices.
Specially, given a frontal slice X::k with its indication vector
ck: ∈ RR (1 ≤ k ≤ K), we define the following LSH hash
function ha⃗,b : RR → R to map the frontal slice X::k into a
single bin with the bin index equal to:

ha⃗,b (ck:) =

⌊
a⃗T ck: + b

W

⌋
, (19)

and the offset in the bin expressed as

offa⃗,b (ck:) = (⃗aT ck: + b)mod(W ) (20)

where a⃗ is a R-dimensional random vector with each com-
ponent chosen independently from a Gaussian distribution
N (0, 1), W is the width of a bin, and b is a real number
randomly selected from the interval [0,W ).

When the hashed values of frontal slices are the same, i.e.,
there is a collision in hashing, the pairs are mapped to the same
bin. Given two frontal slice pairs X::k1 and X::k2 , we analyze
the properties of the hash function through calculating the
probability of a collision, i.e., Pra⃗,b [ha⃗,b(ck1:) = ha⃗,b(ck2:)].

According to [24], Gaussian distribution N (0, 1) is a 2-
stable distribution. Because the components in a⃗ are chosen
following the Gaussian distribution, a⃗T q⃗ − a⃗T p⃗ is distributed
as dZ where d = ∥p⃗− q⃗∥2 is the distance between pairs p⃗
and q⃗ and Z ∼ N (0, 1). Since b is a real number randomly
selected from the interval [0,W ), it is easy to obtain that

Pra⃗,b [ha⃗,b(p⃗) = ha⃗,b(q⃗)] =
∫W

t=0
1
df(

t
d )

(
1− t

W

)
dt (21)

where f (t) is the probability density function of 2-stable
distribution, that is, f (x) = 1√

2π
e−x2/2.

The collision probability (21) depends only on the distance
d and is monotonically decreasing in d. Therefore, our LSH
function in Eq(20) has a good property, that is, it can map
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similar frontal slice pairs with short distance into the same
bin.

To buffer similar frontal slice pairs into the same bucket
while reducing the probability of hashing uncorrelated vertexes
(i.e., frontal slices) to the same bin to create the collision,
instead of using a single hash function, we compute the hash
table index of a frontal slice as the average of n LSH functions.
Given a frontal slice with its vector ck:, the hash table index
of this slice is denoted by H (ck:) and calculated as

H (ck:) =

⌊∑n
i=1 ha⃗i,bi (ck:)

n

⌋
(22)

where ha⃗i,bi (ck:) is the mapping address of the frontal slice
calculated from each individual LSH hash function. The offset
of this frontal slice in the bucket is

Off (ck:) =
((∑n

i
a⃗ick: + bi

)
/n

)
mod (W ) (23)

An index calculated from (22) corresponds a bucket in the
LSH hash table. In this paper, we set n = 10.

B. Finding the nearest neighbor based on LSH table

Only requiring the hash calculations, our LSH hash table
reorders and buffers frontal slices in a fast and effective way.
Moreover, it provides a new indexing method for nearest
neighbor query by placing frontal slices with closer correla-
tions in close-by positions.

Fig. 7. Illustration of finding the nearest neighbor based on LSH table.

Facilitated by our LSH hash table, a straightforward way to
achieve such goal is: given a frontal slice, apply (22) to its
indicate vector to locate the corresponding bucket that stores
this frontal slice, and return all the frontal slices in the bucket
as the required neighbor set.

However, such a straightforward way has an accuracy prob-
lem. In Fig.(7), W is the width of hash bucket and the black
circles denote the frontal slice data points that are mapped to
the table. In the table, p1 and p2 are mapped into the same hash
bucket while p3 is mapped into another hash bucket. Under
the straightforward way, to query p2’s nearest neighbor, p1 is
returned. However, p3 is closer to p2 than p1.

Instead of this brute force retrieving, to search for the
nearest neighbors, we first apply (22) to its indicate vector
to identify the target bucket in the table, then among its target
bucket and the adjacent buckets (including left adjacent bucket
and the right adjacent bucket), return the slices whose distance
to the query slice is less than W/2. The distance in the bucket
can be very easily calculated using the Offset of slices. In
Fig.7(b), among the adjacent buckets of p2, we can easily find
that p3 is the nearest neighbors of p2.

Compared with KNN, our LSH-based nearest neighbor
searching is more geometrically intuitive, with data points
selected as the neighbors if their distance is less than W/2

in the table. Obviously, the parameter W impacts the number
of neighbors for a given slice. As these neighbors are utilized
to represent the proximity information around the slice, W
further impacts on the accuracy of using neighbor graph to
represent local geometric information in the traffic data. In
the experiment part, we will vary W and select the appropriate
one as the parameter setting.

VII. PERFORMANCE EVALUATIONS

To evaluate the performance of our scheme, we synthetically
generate anomalies by adding data outliers into the public
traffic traces Abilene [19] and GÈANT [20] following [13],
[25], [26]. As these two traces record the volume of traffic
flows between all source and destination pairs, they allow us
to form a network-wide traffic tensor.

We denote the raw trace data as X ∈ RI×J×K . Given
xi,j,k, for more efficient data processing, we apply xi,j,k =

xi,j,k− min
u,v,w

{xu,v,w}

max
u,v,w

{xu,v,w}− min
u,v,w

{xu,v,w} to normalize the data value within

the range [0,1], where max
u,v,w

{xu,v,w} and min
u,v,w

{xu,v,w} are

the maximum value and minimum value of all the traffic data,
respectively.

To simulate anomalies that do not have fixed locations, we
randomly select |Ω| = γ × (I × J ×K) outlier locations. We
set the default value of the outlier ratio γ=0.1. Following [27],
we adopt Gaussian distribution to generate the outlier data
values following N

(
µ, σ2

)
, with the defaults values of the

mean µ and the variance σ2 set to 0 and 0.1, respectively.
For each experiment setting, we run the experiments ten times
with the random seeds and get the average of the results.

We use following two metrics to evaluate the performance
of the proposed Graph TR. False Positive Rate (FPR):
It measures the proportion of non-outliers that are wrongly
identified as outliers. True Positive Rate (TPR): It measures
the proportion of outliers that are correctly identified. Smaller
False Positive Rate and higher True Positive Rate mean better
detection performance.

We implement six schemes for performance comparison.
Based on our traffic tensor model, three tensor-based anomaly
detection schemes are implemented: our proposed Graph TR,
TensorRPCA proposed in [9], and RTD proposed in [14].
Current traffic data analysis is usually based on a traffic matrix
model with its row representing the origin and destination
(OD) pair and the column representing the time interval.
Accordingly, 3 other matrix-based anomaly detection schemes
are implemented: MatrixDR based on the direct robust matrix
factorization [28], MatrixPCA using a PCA-based algorithm
[13], and MatrixRPCA based on the robust PCA [12].

To fairly compare these algorithms, we adopt the same
anomaly detection principle: among all the candidate outlier
data, return α data points with the largest absolute values,
where α is the number of outliers injected.
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(a) Abilene (b) Geant

(a) Impact of W

(a) Abilene (b) Geant

(b) Impact of R

Fig. 8. Parameter Settings.

A. Impact of the parameters

1) Impact of W
As discussed in Section VI-B, the parameter W impacts

the number of neighbors utilized to preserve the proximity
information when recovering the normal data. From Fig.8(a),
when W increases and more neighbor nodes are utilized to
preserve the proximity information, the anomaly detection
accuracy increases initially with smaller false positive rate
and larger True Positive Rate as more neighbor points can
more accurately represent the intrinsic geometry. The detection
accuracy reduces after W = 2.5 (Abilene) and W = 3
(GÈANT ) as too large number of neighbor points (with their
average distance to the data point of interest increased) reduces
the accuracy of representing the local geometry hidden in the
data space. According to the results, we set W = 2.5 (Abilene)
and W = 3 (GÈANT ) in our rest experiments.

2) Impact of R
In the problem formulation in (12), the rank constraint

R can be set to preserve certain amount of the tensor data
variability to capture the main features of the normal data. To
investigate how the R setting impacts the outlier detection
performance, we vary R and draw the anomaly detection
performance in Fig.8(b). We can see the initial raising of R
increases the anomaly detection accuracy, as CP decomposi-
tion cannot capture the full structure of the traffic tensor with
an under-estimation of the rank. After R reaches 15(Abilene)
and 23(GÈANT), a further increase of R makes the anomaly
detection accuracy worse as it causes an overflow problem.
Therefore, we set rank R = 15 (Abilene) and R = 23
(GÈANT) in our rest experiments.

B. Accuracy comparison

To compare the performance of different anomaly detection
algorithms, with other parameters fixed, we vary the variance
σ2 and the mean value µ.

From Fig.9, Fig.10, among all the algorithms compared,
our Graph TR achieves the best performance. It achieves the
lowest False Positive Rate and Highest True Positive Rate,
under all the experiment scenarios using different traffic traces
(Abilene and GÈANT). These results also demonstrate that
Graph TR is a robust anomaly detection technique that can
fully utilize the traffic tensor’s low-rank linear features as well

(a) Abilene (b) Geant

Fig. 9. Variance σ2

(a) Abilene (b) Geant

Fig. 10. Mean value µ

as non-linear proximity features to more accurately detect the
anomaly.

Compared with the tensor-based anomaly detection algo-
rithms TensorRPCA and RTD, our Graph TR achieves much
better overall performance. Designed based on unfolding ma-
trices and using the trace norm to relax the low-rank feature
of the unfolding matrices, TensorRPCA is fundamentally a
matrix-based approach and cannot fully exploit the tensor
pattern with the multilinear information to better detect the
anomaly. As a result, compared with MatrixDR, the detection
performance under TensorRPCA is even worse, as MatrixDR
can model and solve the anomaly detection problem directly
using low rank feature instead of using trace norm to relax the
low rank feature like TensorRPCA.

Besides the low rank linear information adopted in RTD,
our Graph TR also utilizes non-linear proximity information
to detect the anomaly. Moreover, our Graph TR models the
sparsity outlier in its direct form with the L0 norm instead of
its relaxation L1 norm in RTD. As a result of above techniques,
although both RTD and our Graph TR are designed based
on CP decomposition, our Graph TR achieves much better
performance.

As shown in Fig.9 and Fig.10, with the increase of variance
σ2 and mean µ of the outliers, the True Positive Rate increases
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while the False Positive Rate decreases for all algorithms
implemented. Obviously, when the variance and mean of
outliers are smaller, synthesized outlier data have closer and
smaller values, and are more difficult to be differentiated from
the normal data.

VIII. CONCLUSION

Besides the low rank linear feature, the traffic data also
have non-linear proximity information. To fully exploit these
data features for more accurate anomaly detection, we propose
a novel graph-based tensor recovery model. Particularly, to
incorporate non-linear proximity information into the tensor
factorization, we propose several techniques. Firstly, we pro-
pose a method to encode the non-linear proximity information
of the traffic data by constructing nearest neighbor graphs and
using the graph Laplacian to embed this information into the
tensor factorization. Second, to facilitate quick graph neighbor
building, we propose a novel locality sensitive hashing (LSH)
based algorithm for efficient nearest neighbor searching. We
have done extensive experiments using the Internet traffic trace
data Abilene and GÈANT. Compared with the state of art algo-
rithms on matrix-based anomaly detection and tensor recovery
approach, our Graph TR achieves significantly lower False
Positive Rate and higher True Positive Rate in all experiment
scenarios. Our scheme is flexible to apply in various systems
to detect the false and anomaly data. Not limited to the traffic
data, more data sets from different application scenarios [29]–
[32] will been used for evaluation in our future work.
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