
1

Greening Data Center Networks with Throughput-guaranteed
Power-aware Routing

Mingwei Xua,b, Yunfei Shanga,b, Dan Lia,b,*, Xin Wangd
aDepartment of Computer Science and Technology, Tsinghua University, Beijing, P.R. China

bTsinghua National Laboratory for Information Science and Technology, Tsinghua University, Beijing, P.R. China

dDepartment of Electrical and Computer Engineering, State Univ. of New York at Stony Brook, NY, United States

Abstract

Cloud based applications and services require high performance and strong reliability provided by data center networks. To
overcome the problem of traditional tree based data center network, recently many new network architectures are proposed,
such as Fat-Tree and BCube. They use aggressively over-provisioned network devices and links to achieve 1:1
oversubscription ratio. However, most of the time data center traffic is far below the peak value and a large number of idle
network devices and links in data centers consume a significant amount of power, which is now becoming a big problem for
many cloud providers.

In this paper, we aim to reduce the power consumption of high-density data center networks from the routing perspective
while meeting the network performance requirement. We call this kind of routing throughput-guaranteed power-aware
routing. The essence of our idea is to use as little network power as possible to provide the routing service, without
significantly compromise on the network performance. The idle network devices and links can be shut down or put into the
sleep mode for power saving. Extensive simulations conducted in typical data center networks show that our power-aware
routing can effectively reduce the power consumption of network devices, especially under low network loads.

Keywords: Throughput-guaranteed power-aware routing; data center network; network power consumption model.

1. Introduction

Today’s data centers integrate a great number of switches and servers to provide various cloud-based services,
such as online search, web mail, e-business, as well as basic computational and storage functions, such as
MapReduce [1], GFS [2], and CloudStore [3]. The goal of the data center network (DCN) is to interconnect the
massive number of data center servers, and provide efficient and fault-tolerant routing to support upper-layer
applications. It has attracted great attention to design a reliable and efficient DCN architecture recently. The
traditional tree architecture applied in current data centers [34] is known to face many challenges in supporting
bandwidth-hungry communications in data centers. More specifically, the tree structure suffers from low

*Corresponding author. Tel/fax: 86-010-62603064/86-010-62603062.
Email address: xmw@csnet1.cs.tsinghua.edu.cn (Mingwei Xu), shangyunfei@csnet1.cs.tsinghua.edu.cn (Yunfei Shang),
lidan@csnet1.cs.tsinghua.edu.cn (Dan Li), xwang@ece.sunysb.edu (Xin Wang)
This work was supported by HI-Tech Research and Development Program of China (863) under Grants No. 2007AA01Z2A2, NSFC under
Grants No. 61073166 and 973 Program under Grants No. 2009CB320502.
Some preliminary results of this work appeared in ACM SIGCOMM Workshop on Green Networking 2010.

2

scalability, high cost as well as single point of failure. Hence, recently many advanced network architectures are
proposed to mitigate these issues, represented by Fat-Tree [4], BCube [5], etc. These new data center
architectures use more network devices and links to effectively overcome the shortcomings of the tree
architecture and to enjoy 1:1 oversubscription ratio.

In order to better support data-intensive applications in data centers, these “richly-connected” network
architectures are designed with the major purpose of ensuring high communication performance and robustness.
These architectures have two characteristics in common: over-provisioned network resources and inefficient
power usage. An excessive number of network devices and redundant links are provided aggressively for the
busy-hour load. However, most of the time, the traffic in a data center is far below the peak value and varies
greatly between daytime and night, which leaves a large number of network devices to stay idle. The goal of
network power conservation is to make the power consumption on networking devices proportional to the traffic
load [35]. In existing data centers, however, the network at the low load still consumes more than 90% of power
used at the busy-hour load [7]. So a large number of idle network devices in high-density networks consume a
significant amount of power, which results in an extremely inefficient power usage in data center networks.

The power cost brought by hardware devices such as network devices and servers in data centers accounts for a
dominant part of the operational costs of data centers, and it may skyrocket as the scale of data centers expands.
The power cost is becoming a big burden for many cloud providers. According to the statistics, the total power
consumption of global data centers accounts for 1.1-1.5% of the worldwide electricity use in 2011 [8], and the
figure will continually increase to 8% by 2020 under the current trend [42]. It has been shown that network
devices consume about 20% power in the whole data center [7], and the ratio will grow with the rapid
development of power-efficient hardware and power-aware scheduling algorithms on the server side. Therefore,
it is of high importance to investigate advanced power conservation technologies for data center networks, which
will in turn bring a great benefit in reducing the operational cost of data centers and contribute to the reduction of
the carbon footprint.

The objective of this paper is to propose a novel throughput-guaranteed power-aware routing algorithm to
reduce the total power consumption of network devices, and to make power usage more efficient in “richly-
connected” data center networks. The key idea is to use as little network power as possible to provide the routing
service, while maintaining the target network throughput. The idle network devices and links can be shut down or
put into sleep for power saving. We also consider the tradeoff between power conservation and network fault-
tolerance. Our algorithm can flexibly adapt the power-aware routing to meet different reliability requirements. In
contrast to previous power-aware routing work, our approach uses a different traffic rate model, in which the
transfer rate of each flow is bandwidth-constrained and depends on the network resource competition with other
flows, instead of given by the fixed traffic demand in advance. This is because network is becoming the
bottleneck for data-intensive distributed computation in data centers.

We make the following contributions in the paper. First, we formally establish the model of throughput-
guaranteed power-aware routing problem, which will guide us to effectively analyze and solve the problem. We
analyze the time complexity of the power-aware routing problem, and prove that it is NP-hard (Section 2.2 and
Appendix).

Second, we propose a throughput-guaranteed power-aware routing algorithm to achieve our design goal
(Section 3). The algorithm works in the following four steps: Step 1, we compute the routing paths and
corresponding network throughput with all switches and links in the initial topology of the data center network,
which are called basic routing and basic throughput respectively. Step 2, we introduce an iteration process to
gradually remove switches from the basic routing and update the initial topology, while satisfying the predefined
performance requirement. Step 3, we remove as many links connected to active switches as possible from the
updated topology above while meeting the throughput requirement. Step 4, we further adapt the updated topology
to meet the reliability requirement. We can power off the switches and links not involved in the finally updated
topology, or put them into the sleep mode to conserve power.

3

Third, we conduct extensive simulations in typical data center networks to validate the effectiveness of our
power-aware routing algorithm under different power-saving granularities, traffic patterns and reliability
requirement (Section 4). The results show that our power-aware routing algorithm can effectively reduce the
power consumption of network devices in data center networks, especially under low network loads.

The rest of the paper is organized as follows. Section 2 introduces background knowledge and related work,
and formally establishes the throughput-guaranteed power-aware routing problem model. Section 3 presents our
algorithm design. Section 4 evaluates the algorithm through simulations in typical data center networks. Section 5
discusses practical implementation issues of our algorithm and Section 6 concludes the paper.

2. Background and Model

In this section, we first introduce the power consumption models as well as the power conservation strategies
of network devices in data centers, and then establish the model of throughput-guaranteed power-aware routing
problem. Finally, we present the related work on green Internet and data center networks.

2.1. Network Power Consumption Model

We discuss two types of power consumption models applied to current modular network devices in data
centers. The first one, called General Model, can accurately calculate the power consumption of network devices,
but its dependence on unpredictable network traffic conditions increases the complexity of the computation and
thus the model is hardly used in practice. To acquire a practical model, we discuss the Simplified Model which is
a more feasible model. It can easily compute the power consumption of switches only based on their
configurations, regardless of the factor of the network traffic. Note that we are not claiming any novelty in the
power consumption model of network devices, but discuss here to make the paper more complete. We will use
the network power consumption model to guide the design and evaluate the effectiveness of the throughput-
guaranteed power-aware routing algorithm in Sections 3 and 4 respectively.

General Model

The power consumption of modular network devices depends on their configurations and the characteristics of
traffic passing through them, according to the power benchmarking results of various network devices in [28].
Thus, we take these two types of parameters as the general model’s inputs. The configuration parameters of
network devices contain: the type of chassis and linecards, the number of linecards and ports, the port capacity,
etc. In terms of traffic characteristics, the authors in [28] have found that the power consumption of network
devices may be affected by the rate of traffic across them, instead of packet size and other traffic characteristics.

The power consumption of a general modular switch or router can be divided into three main parts [20], [29] in
the equation (1). P(C,T) denotes the total power consumption of a network device. C and T are the input
parameters, representing the configuration of the network device and the characteristics of the traffic passing
through it respectively. F(C) is the fixed power consumption of the network device, including processor, memory,
cooling system, and so on. The power consumption of switching fabric used to manage the switching tables is
also contained in F(C) [23]. Q(C) is the total power consumption of all enabled linecards plugged in the network
device. The value is computed when all the ports on the linecards are disabled. H(C,T) denotes the total power of
all enabled ports in the network devices. The value of H(C,T) depends on both port capacity configuration and
traffic rate across them, and can be computed in the equation (2), where  denotes the space of all the possible
port capacity configurations, such as 10/100/1000 Mbps. Ni denotes the number of enabled ports with capacity i,
and Bi denotes the power consumed by each of the ports with a 100% utilization ratio. The power benchmarking
results in [28] show that the power consumed by a port decreases as the traffic rate of the port decreases, and vice
versa. As a result, the power consumed by the port with the capacity i and any utilization ratio is no more than Bi.

4

We take Ui in the equation (2) as an average difference value of power consumption so as to more accurately
capture the real power consumption of the port with capacity i.

(,) () () (,)P C T F C Q C H C T   (1)

(,) *()i i ii
H C T N B U


  

 (2)

It is not easy to compute the power consumption of a network device with the equations (1) and (2) in practice,

because the network traffic changes frequently. Consequently, we simplify the model and discuss a more
practical model as follows.

Simplified Model

As the power consumption of most network devices today is not proportional to their loads and the power
consumption of an idle network device is close to that of the full load, the varying traffic rate does not affect
significantly the power consumption of ports in current network devices. In fact, Ui in the equation (2) can be
ignored when the port’s capacity is large [28]. In addition, as current data center networks usually use plenty of
commodity switches equipped with a single line-card to interconnect servers, we focus on this type of switches
and simplify the power consumption model to the equation (3). P(C) denotes the total power consumption of a
switch, which only relies on the configuration of the switch.  denotes the set of ports enabled on the switch and
Aj(C) is the power consumption of a switch port j. In the equation (3), the power consumption of line-cards is
incorporated into the fixed power consumption F(C). We observe that the total power consumption of a switch is
independent of its traffic characteristics and thus we can easily compute the power consumption of a switch with
the simplified model. Furthermore, the simplified model will introduce some errors and the power consumption
of a switch computed with the equation (3) will be larger than the real power consumption of the switch. This is
because the utilization ratio of a port will affect its power consumption [20] [28] and the port with a lower
utilization ratio will consume less power. We take Aj(C) as the approximate power consumption value of a switch
port j, as the power consumption difference of a port under the varying traffic can be ignored when compared
with the total power consumption of the switch. If all ports on a switch have the same power consumption A, we
can further simplify the power consumption model into the equation (4), where X denotes the number of ports
enabled on the switch.

() () ()jj

P C F C A C


  
 (3)

() () ()*P C F C A C X  (4)

From the power consumption models above, we can get some inspiration on the potential strategies to save

power consumption of network devices. First, the best way for power conservation is to put individual switches
into the sleep mode or shut them down, because it can avoid the overall power consumption from a device,
including the fixed power consumption (i.e. F(C) in Equations (1), (3) and (4)). However, the demands of high-
performance and high-reliability of communications restrict the use of “device-level sleeping” method throughout
the data center network. Another power conservation method is to put switch ports to “component-level sleeping”
[7]. Obviously, the power-saving effect of the second method is below that of the first one, but it can be used as
an effective supplementary means of “device-level sleeping” method to further reduce the power consumption.
For example, for a typical commodity switch Cisco Catalyst 2960G-48TC-L which contains 1 line-card and 48
Gigabit Ethernet ports, the upper bound of power saving percentage can achieve 39% by disabling all ports of the
switch if each port consumes 1W [32]. We combine both of the two methods in our algorithm, and call it multi-
granularity power saving strategy, which can better exploit the power saving flexibility and more effectively

5

reduce the power consumption of network devices while meeting the network performance requirement.

2.2. Throughput-guaranteed Power-aware Routing Model

The objective of throughput-guaranteed power-aware routing is to compute the transmission paths based on a
given traffic matrix, so that the total power consumption of switches involved in the routing paths is as little as
possible while meeting predefined network performance thresholds. Throughout this paper we use network
throughput as a key performance metric, since it is the most important metric for data-intensive computations.
For the convenience of presentation, we call our throughput-guaranteed Power-aware Routing Problem PRP.

PRP: Assume there is a quadruplet of input parameters, (G, T, K, RP). G denotes the topology of a data center
network, which consists of servers and switches along with their connections and link capacity. T is the network
traffic matrix, which denotes the communication relationship between each pair of servers in the topology G. K
and RP denote the predefined thresholds of total network throughput and network reliability respectively. The
objective of PRP is to find a routing R* for T, under the constraints of equations (5), (6) and (7). R denotes one of
routing selections from a candidate set  which includes all possible routing paths for T, L(R) and X(R) denote
the number of switches and ports involved in R respectively, M(R) denotes the total network throughput of all
flows in T under R, and Z(R) denotes the minimum number of available paths for each flow in T under R. We
assume the fixed power consumption F of each switch is the same and all switch ports in data center networks
have the same capacity and power consumption A, as current advanced data center topologies, such as Fat-Tree
and BCube, usually use homogeneous commodity switches to interconnect servers. We summarize the main
notations used for our power-aware routing model and algorithm in the TABLE I.

* arg min(* () * ())

R
R F L R A X R  (5)

() ,M R K R   (6)

() ,Z R RP R   (7)

The purpose of our model design is to find the optimal power-saving routing, in which the total power

consumption of switches involved is minimal while satisfying the network throughput and reliability thresholds.
In this paper we focus on bandwidth-hungry batch-processing tasks in data centers, such as MapReduce [1] and
GFS [2]. For this kind of application, total network throughput is a better metric to reflect the computation
progress, instead of the constraints of single flows. Therefore, we use the threshold K to restrict the lower bound
of the total throughput of all flows in the equation (6).

Also, it is necessary to ensure any network flow identified in the traffic matrix will not be interrupted when
using the power-aware routing. As PRP is an NP-hard problem, it is difficult to find the optimal solution of the
problem in polynomial time, especially when the scale of the data center network is large. We have proved NP-
hardness of the problem by reducing the 0-1 Knapsack problem [10] to it. The details of NP-hardness proof can
be found in the appendix.

It is worth noting that the model we use is different from some previous similar work. In [7] and [41], each
network flow has a fixed traffic rate, which is taken as the input of the power minimization problem. In our PRP
model, the transfer rate of each flow in the traffic matrix is impacted by the bandwidth competition among
different flows, as the network is currently the bottleneck for distributed computation in data centers. Moreover,
TCP traffic is dominant in current data center networks. TCP uses the sliding window scheme and AIMD
(Additive Increase Multiplicative Decrease) algorithm to control the transfer rate of flows. The work in [11]
reveals that the rate of competing TCP flows mainly relies on their RTT (Round-Trip Time). In high-bandwidth
and low-latency data center networks, TCP flows have a similar RTT value and share fairly the available

6

bandwidth of the bottleneck link. Therefore, TCP follows the Max-Min fairness model [12] to assign the transfer
rate for each flow in DCNs.

The throughput-guaranteed power-aware routing model is applied in data center networks, which have their
own characteristics compared with the Internet. First, current advanced DCN architectures use an excessive
number of network resources to provide routing services and enjoy abundant routing paths between each pair of
servers. Also, existing DCN architecture designs usually employ symmetric topology structures [52] and
homogeneous network devices. Second, data center networks have more flexible traffic control and management
schemes, such as OpenFlow [7], which make the design and implementation of power-aware routing more
tractable. Third, there are some typical traffic patterns in data centers, such as One-to-One, One-to-Many and All-
to-All traffic patterns.

TABLE I

Summary of main notations
Notation Description

G topology of a data center network
T network traffic matrix
K network throughput threshold
 set of all possible routing paths

R a possible routing selection from R+
R* optimal power-aware routing
F Fixed power consumption of switches
A power consumption of each switch port

L(R), X(R) number of switches and ports involved in R
M(R) total network throughput of all flows under R
PR network performance threshold percentage
RP reliability requirement parameter
Yi rate of flow i
C capacity of a link

2.3. Related Work

In the research area of green networking, some survey papers [22], [36] have summarized many novel network
power saving technologies appearing in recent years. In this subsection, we only discuss typical data center
network architectures and representative power conservation schemes used in Internet and data centers.

Data Center Network

Due to the well-known problem of the current practice of tree topology, recently there are a bunch of proposals
on new topologies for data centers. These topologies can be divided into two categories. One is switch-centric
topology, i.e., putting interconnection and routing intelligence on switches, such as Fat-Tree [4], Portland [13],
and VL2 [14]. Contrarily, the other category is server-centric, namely, servers with multiple NIC ports also
participate in interconnection and routing. BCube [5], DCell [6] and FiConn [15], all fall into the latter category.

Green Internet

The problem of saving overall power consumption in the Internet was firstly proposed by Gupta et al. [16].
Later, they applied low-power modes and novel detection methods of inactive period into local area network for
power saving [17]. In the follow-on work, lots of efforts focused on device power management [18], [19],
realizing two modes, i.e. sleeping and rate-adaptation, on network devices to reduce the power consumption
during network idle or low-load time. Chabarek et al. [20] designed and configured network and protocol from
the power saving perspective, and optimized the power consumption of network devices with mixed integer
optimization techniques.

7

There are also some recent studies on power-aware traffic engineering and routing in the Internet. Zhang et al.
[37] proposed an intra-domain green traffic engineering scheme, which minimized the power consumption of
network links while satisfying the network performance restriction. Similarly, Vasic et al. [38] added the power
conservation objective into the traditional traffic engineering and dynamically adjusted load distribution on
multiple available paths to save network power consumption in the Internet. Moreover, Kim et al. [44] re-
formulated the network energy consumption minimization problem and presented an ant colony-based routing
scheme to improve energy efficiency of the Internet. Avallone et al. [46] proposed an energy-efficient online
routing scheme, which used the fewest number of network resources to transmit flows while meeting several
additive network performance constraints. Cianfrani et al. [39] [40] proposed power-aware OSPF routing
protocols, which used as few links as possible to provide routing services by modifying Dijkstra’s algorithm and
sharing the shortest path trees of elected routers under light loads. Cuomo et al. [45] studied the algebraic
connectivity and link betweenness of topology graphs and proposed a traffic-unaware energy-saving topology
control scheme. In [31], Fisher et al. presented a novel method to reduce the power consumption in Internet
backbone networks by shutting off individual physical cables belonging to bundled links. In [43], Vasic et al.
leveraged both energy-critical path pre-computation and on-line traffic engineering to achieve more effective
power conservation as well as lower routing calculation complexity. Furthermore, many recent works were
devoted to improving energy efficiency of optical networks, such as [47-50].

As all the above designs target for the Internet, they need to be compatible with current Internet protocols, such
as routing protocols and traffic control and management protocols. In contrast, we consider saving power in data
center networks and can thus fully leverage the characteristic of “richly-connected” topologies and flexible traffic
management schemes to better achieve the power-aware routing in current DCNs.

Green Data Center

There were also more and more concerns with power saving in data centers. Plenty of researches and
technologies have been proposed recently, which can be divided into four categories as follows.
(1) Power-efficient hardware

Magklis et al. proposed a profile-driven approach to adjust processors’ voltage and frequency dynamically to
save significant power with little performance loss [21]. In [23], three schemes were proposed to reduce the
power consumed by switches, including the prediction of sleep time, set-up of power saving mode and
deployment of low-power backup devices. The “hardware-level” technologies above aim to reduce the power
consumption of individual network devices from the hardware design and implementation perspective. In contrast,
our work focuses on the “network-level” power conservation scheme, and its objective is to reduce the total
power consumption of the whole data center network from the routing perspective. These “hardware-level”
technologies above are effective supplements to our “network-level” scheme, and the two types of power
conservation techniques can work cooperatively.
 (2) Power-aware routing in DCNs

The use of power-aware routing in DCNs is still in its infancy, but some of researches have been on the way.
Heller et al. proposed a novel scheme named ElasticTree [7], which could save network power effectively by
computing a group of active network elements according to network loads. They built a prototype system based
on the OpenFlow switches to evaluate the power conservation effect, network performance and fault-tolerance
when applying the ElasticTree to DCNs. In contrast, our scheme is based on a different traffic rate model as
presented earlier. The transfer rate of each flow depends on network competition with other flows, instead of
given by the network traffic demand in advance.

In a recent work, we proposed a power-aware routing scheme in data center networks [30]. In this paper, we
make a significant technical extension of the work in [30], and include more detailed designs of models and
algorithms. We also conduct a large number of new power conservation and performance studies to evaluate our
routing algorithm.

8

(3) Scheduling and virtualization

Nedevschi et al. presented a proxy model to handle all kinds of idle-time behaviors in networks and evaluated
the relationship among power saving benefit, proxy complexity and available functions [25]. Srikantaiah et al.
optimized power consumption by reasonably scheduling applications and studied the tradeoff between the power
consumption and service performance of devices [26]. Nguyen et al. [51] studied how to reduce greenhouse gas
emissions from ICT and leveraged virtualization technologies to process user service applications in greener data
centers. Moreover, optimal virtual machine migration and placement scheme was studied and used to build data
center architectures for power saving [33].
(4) Improving PUE

Power Usage Effectiveness (PUE) is a key metric to measure the power efficiency of data centers. Many
advanced and smart cooling technologies were proposed to improve PUE, such as [24]. Recent experiments in
[27] show that deploying data centers in Frigid Zone is also a feasible method to reduce cooling costs.

3. Throughput-guaranteed Power-aware Routing Algorithm

In this section, we propose a throughput-guaranteed power-aware routing algorithm, which can be applied in
an arbitrary DCN topology. The objective of our routing algorithm is to compute the transmission paths for all
the flows identified in the traffic matrix, so that the total power consumption of switches involved in the routing
paths is as little as possible. We use a multi-granularity power saving strategy to reduce power consumption from
both the device-level and the component-level perspectives. As computing the optimal solution of PRP is NP-
hard, which has been shown in Section 2.2, our routing algorithm tries to find an effective and more practical
power-aware routing.

The basic idea of our throughput-guaranteed power-aware routing algorithm is as follows: First, taking all the
switches and links in a given topology into consideration, we compute the routes for the traffic flows and the
corresponding network throughput which are called basic routing and basic throughput respectively. Second, we
gradually remove the switches from those involved in the basic routing, based on the specific elimination order in
accordance with the workload of switches, until the network throughput decreases to the throughput threshold the
system can tolerate. We get an updated topology after the iteration process of switch elimination. Third, we
remove as many links connected to the active switches as possible from the updated topology above based on a
link elimination strategy while ensuring the network throughput to meet the throughput threshold. Finally, we
obtain the power-aware routing paths for the traffic flows and adapt the topology derived from the previous steps
to meet a predefined reliability requirement. After these steps, we can power off the switches and links not
involved in the final topology or put them into the sleep mode for power conservation. In the routing algorithm,
we use connection-unsplittable routing [11] to avoid packet disorder, i.e., the packets from one flow takes only
one path.

Note our proposed algorithm is pruning-based, and it iteratively eliminates switches and links from the
original topology. An alternative routing algorithm could be computing and assigning the power-aware routing
paths for flows one by one, that is, adding in flows incrementally. For example, among multiple available paths
for a flow, the path containing the fewest number of idle network nodes and links can be chosen preferentially, so
as to reduce the number of switches and links used. The greedy “incremental” routing algorithm may severely
hurt the network performance while pursuing the goal of power conservation. We take an example to illustrate
this problem. In Fig. 1, there are four switches and four links, and the capacity of each link is 1Gbps. There are
three flows: A->B, B->C, A->C in the network. The “incremental” routing algorithm will sequentially assign the
power-aware routing paths for them. The former two flows take the paths A->B and B->C respectively, each of
which only contains one idle link. The two flows exclusively enjoy the 1Gbps bandwidth of link A-B and B-C
respectively and thus the total network throughput is 2Gbps. Then, the path A->B->C will be used to transfer the

9

third flow A->C by the “incremental” algorithm, as all the switches and links on the path have been used by the
former flows, and transferring the new flow does not need any additional idle switch or link. However, at the
same time the flow A->C will compete with the former two flows for the bandwidth of link A-B and B-C, and the
total network throughput will unexpectedly decrease from 2Gbps to 1.5Gbps according to the Max-Min fairness
model [11] [12]. Therefore, the “incremental” routing algorithm should contain the network performance
constraint when choosing routing path for each flow. In our pruning algorithm, we compute the basic routing and
basic throughput at the beginning, and use the performance thresholds to restrict the extent of network
performance degradation during the switch elimination and link elimination processes. Our pruning algorithm is
an important alternative to the existing “incremental” routing algorithm, and both of them can save network
power under the restriction of network performance. We will show the comparison results of power conservation
effectiveness of the two types of algorithms in Section 4.6.

Fig. 1. An example of path assignment with the “incremental” routing algorithm.

Our routing algorithm consists of five modules: Route Generation (RG), Throughput Computation (TC),

Switch Elimination (SE), Link Elimination (LE) and Reliability Adaptation (RA). The relationship among the
five modules is shown in Fig. 2. We execute the SE module and the LE module sequentially to implement a
multi-granularity power saving strategy. The SE module is executed repeatedly prior to the LE module, until
eliminating one more switch from the topology will violate the network performance restriction. Then the LE
module is executed repeatedly following it. When the network throughput decreases to the throughput threshold
given by the input of the algorithm, we finish the link elimination phase. Finally, the RA module updates the
topology by adding some of the removed switches and links back to the topology to meet the reliability
requirement, and outputs the updated topology with transmission paths that are power-aware and reliable. The
module execution order is marked with numbers in Fig. 2.

Fig. 2. Relationship among five modules of our algorithm.

10

Throughput-guaranteed Power-aware Routing
Algorithm: PRA(G0, T, PR, RP)
Inputs:
G0: DCN topology
T: traffic matrix
PR: performance threshold percentage
RP: reliability requirement parameter
Outputs:
R1: power-aware routing paths
G1: updated topology
Begin
1 set G := G0;
2 //Route Generation
3 set R := RG(G, T);
4 //Throughput Computation
5 set Tht1:= TC(G, T, R);
6 // Switch Elimination
7 do
8 begin
9 set G1 := G;
10 set R1 := R;
11 set G := SE(G, T, R);
12 set R := RG(G, T);
13 set Tht2:= TC(G, T, R);
14 set P := Tht2 / Tht1;
15 end while(P>=PR)
16 // Link Elimination
17 G := G1;
18 R := R1;
19 do
20 begin
21 set G1 := G;
22 set R1 := R;
23 set G := LE(G, T, R);
24 set R := RG(G, T);
25 set Tht2:= TC(G, T, R);
26 set P := Tht2 / Tht1;
27 end while(P>=PR)
28 G1 := RA(G1, T, R1, RP)
29 return (R1, G1);
End.

Fig. 3. Throughput-guaranteed power-aware routing algorithm.

Fig. 3 shows the pseudocode of our throughput-guaranteed Power-aware Routing Algorithm (PRA). The input

of the algorithm is the quadruplet (G0, T, PR, RP). G0 denotes the data center network topology, T denotes the
traffic matrix. PR is the performance threshold percentage, which is defined as the ratio of the network
throughput the data center operator can tolerate after the switch and link elimination phases, to the basic
throughput using all switches. In the algorithm, we translate the parameter K in the throughput-guaranteed power-
aware routing model into PR for explicitly measuring the performance degradation resulting from the power-
aware routing. The parameter K is equal to PR multiplied by the basic throughput. RP is used to set the reliability
requirement for the power-aware routing. The outputs of the algorithm are the power-aware routing paths R1 for
T and the updated topology G1. In Fig. 3, we compute the basic routing paths R and the basic throughput in
topology G0 shown on lines 3 and 5 respectively. From line 6 to line 15, we perform switch eliminating operation.

11

We iteratively execute three modules: SE, RG and TC, until P is less than PR, where P is the ratio of the
throughput Tht2 in G to the basic throughput Tht1 in G0. Afterwards, from line 19 to line 27, we remove as many
links as possible from the updated topology for saving further power under the performance constraint. Finally,
we execute the RA module to meet the reliability requirement based on the RP value setting in line 28.

In the following five subsections, we will present the five modules in detail, including each module’s function,
design and implementation mechanism, and an example taken for easily understanding the ideas proposed.

3.1. Route Generation

The role of the route generation module is to select the route path for each flow in the traffic matrix so that the
network throughput is as high as possible. Each selected path can be computed with the inputs: network topology
and traffic matrix, and the output of RG module is the routing paths for all flows belonging to the traffic matrix in
the topology.

We describe the detailed path selection method for each flow below. Assume there are a certain number of
available paths for a flow and the set of available paths, denoted by PathSet, is taken as the input of the path
selection method. For a certain flow, the ideal solution is to enumerate all possible paths. However, it may not be
practical for large-scale networks. Hence, there is a tradeoff between the computational complexity and the
efficiency of the results. It is straightforward to find multiple available paths for a flow in DCNs by leveraging
the topological characteristic. For example, a k-ary Fat-Tree topology contains (k/2)2 available paths traversing
different core switches respectively between any two inter-pod servers, and the maximum number of available
paths between any two intra-pod servers is k/2 [4]. In a k-level BCube topology, each server uses k+1 NIC ports
to connect to different level switches and there are k+1 parallel paths between any pair of servers [5]. The path
selection method uses four rules in turn to select the best one path from PathSet for the flow. In Rule1, we first
select the paths with the fewest overlapping flows over the bottleneck link in the paths. The basic reasoning
behind Rule1 is to exploit multiple paths sufficiently and achieve as high network throughput as possible. If there
are multiple such paths, we use Rule2 to further filter them. Rule2 selects the paths with the fewest hops from
NewPathSet, in order to have a lower propagation delay of network flows and use as few network resources as
possible to achieve the same network throughput. If there is still more than one path, Rule3 works and chooses
the path with the maximum number of flows, which is calculated by summing up the number of flows on every
link of the path. The intuition behind Rule3 is trying to aggregate network flows, so that as few network
resources as possible are used to transmit these flows. Finally, Rule4 chooses the first path from multiple
available paths output by Rule3. We finish the path selection process when the selected path output by any of the
four rules is unique, and obtain the best path for the flow. The computational complexity of RG module is
O(FN*p), where FN denotes the number of network flows and p denotes the number of available paths between
each pair of servers in the topology.

We take a partial 4-ary Fat-Tree topology [4] as an example to explain the details of the path selection method
in Fig. 4 and TABLE II. We select the path for each flow in TABLE II in turn. The first flow, of which the source
and destination servers are H1 and H4 respectively, has two available paths, one across switch S5, and the other
across switch S6. Obviously both paths conform to Rule1, Rule2 and Rule3, so the first path is chosen according
to Rule 4. The path is marked with small red squares in Fig. 4 and shown in TABLE II. The second flow “H2-
>H7” has four available paths, traversing S1, S2, S3 and S4 respectively. The latter two paths are chosen by
Rule1, as the first flow has already used link S5-S9. The two paths also conform to Rule2 and Rule3, so the path
across the switch S3 is chosen by Rule4, marked with yellow triangle in Fig. 4. All four available paths of the
third flow conform to Rule1 and Rule2. We find that the total number of flows on all links contained in the path
across switch S3 is five, which is maximal among the four available paths for the third flow, and thus we choose
the path according to Rule3, marked with blue circles in Fig. 4.

12

Fig. 4. A path selection example in a partial 4-ary Fat-Tree topology.

TABLE II

Network flows in a path selection example
No. Flows Marks Path Selection
1 H1–>H4 H1–>S9–>S5–>S10–>H4
2 H2–>H7 H2–>S9–>S6–>S3–>S8–>S12–>H7
3 H4–>H7 H4–>S10–>S6–>S3–>S8–>S12–>H7

3.2. Throughput Computation

The module of throughput computation is used to calculate the total network throughput in a given DCN
topology. We use a well-known model, named Max-Min Fairness model [11], [12], to allocate network resources
to all flows in a DCN. When given the network topology, traffic matrix and routing path for each flow, we can
compute the rate of each flow in the traffic matrix with the model, and sum them up to acquire the total network
throughput. The throughput computation algorithm is shown in Fig. 5, and the computational complexity of TC(.)
is O(LN2), where LN denotes the number of links in the topology.

Throughput Computation: TC(G, T, R)
Input: G: DCN topology, T: traffic matrix, R: routing paths
Output: Tht: the total throughput of all flows in T
Notations:
ABj: available bandwidth of link j
FNj: the number of flows unallocated rate on link j
FSj: the set of flows unallocated rate on link j
Yi: the rate of the flow i
FS: the set of flows unallocated rate in T
FS0: the set of all flows in T
LS0: the set of all links in G
Begin

set : 0FS FS , set : 0LS LS ;
 while(FS is non-empty)
 begin

(1) Find the bottleneck link L LS , such that

/ / , , , , , 0L L j j j L j LAB FN AB FN j LS AB AB FN FN    ;

(2) set : { }LS LS L  , set : LFS FS FS  ;

(3) set : / ,i L L LY AB FN i FS  ;

13

(4) set 0, 0,L L LAB FN FS    ;

(5) Update , , ,j j jAB FN FS j LS ;

end

0 ii FS
Tht Y


 ;

return Tht ;
End.

Fig. 5. Throughput computation algorithm.

We also take the example in Fig. 4 and assume that the capacity of all links is 1Gbps. We find that five links:

S10-H4, S3-S6, S3-S8, S8-S12, S12-H7 can be seen as the bottleneck links, so we select one of them arbitrarily,
supposing link S12-H7. As such, the rate of two flows: H2->H7 and H4->H7 calculated by the throughput
computation algorithm are both 0.5Gbps in Fig. 5. After updating the variables ABj, FNj and FSj of all links, the
next bottleneck link is S10-H4, so the rate of flow H1->H4 is 0.5Gbps. Therefore, the total network throughput
calculated by the TC module is 1.5Gbps.

3.3. Switch Elimination

The switch elimination module is responsible for selecting the switches which can be eliminated from the
routing paths generated for the traffic matrix. First, we compute the traffic STj carried by each active switch j in
the topology G, which denotes the total throughput of flows traversing the switch j. Then, we use a greedy
algorithm to select the switch sw and eliminate it from the topology according to the equation (8), where ()j is

the set of flows traversing the switch j, Yi is the rate of flow i, and  is the set of all active switches. In other
words, the algorithm indicates that the active switch carrying the lightest traffic should be eliminated first. If
there are multiple switches meeting the elimination condition above, we prefer to remove the switch with the
maximal number of active links connected to it. The strategy intends to have more opportunities to disable the
ports of its neighboring switches. Moreover, to accelerate the computation process, we usually eliminate more
than one switch from the topology G per round in practice. Also, the switches eliminated from G cannot be the
critical ones that may lead to network disconnection. The computational complexity of SE module is O(SN),
where SN denotes the number of switches in the topology.

()
arg min() arg min()j ii j

j j

sw ST Y


 
   

 

 (8)

3.4. Link Elimination

We use the link elimination module to remove unused or low-utilized links from the topology G updated by
the SE module, after finishing the switch elimination process. The link elimination module is used as an effective
supplementary means to further reduce the power consumption by network components after the switch module
completes its jobs.

We use a greedy removing algorithm to select the links to be eliminated from the topology G. First, we
compute the utilization ratios for all active links connected to the active switches in the topology G. The
utilization ratio of a link j can be calculated based on the total throughput of flows traversing the link and the
capacity of the link in the equation (9), where LUj is the utilization ratio of link j, '()j is the set of flows on the
link j, Ri is the rate of flow i, and C is the capacity of the link j.

14

'()
() /j ii j

LU R C


  
 (9)

Then, we select the link with the lowest utilization ratio, and eliminate it from the topology G. Finally, we can
disable the ports incident to the link for saving power. Like the SE module, the LE module cannot remove the
link in critical paths either in order to not interrupt the flows identified in the traffic matrix. The computational
complexity of LE module is O(LN), where LN denotes the number of links in the topology.

3.5. Reliability Adaptation

In order to minimize the power usage, SE and LE modules may aggressively reduce the redundancy of the
“richly-connected” data center network topologies, which compromises the transmission robustness. To address
this issue, we introduce an additional reliability adaptation module into our routing framework to maximally
reduce the power consumption while meeting the transmission reliability requirement. Generally, there is a
tradeoff between the reduction of the number of switches/links and the need of maintaining enough redundancy
level of the topology for transmission robustness. In the RA module, we set the reliability parameter RP to denote
the minimum number of available routing paths needed for each flow in the traffic matrix. The value RP can be
configured based on the reliability requirement of the DCN, and the switches and links on the backup paths
cannot be eliminated from the topology.

After finding at least one available path for each flow through the SE and LE modules, if there is a need to
introduce additional redundancy to meet the reliability requirement, the RA module is invoked to find and
preserve additional RP-1 paths for each flow based on the RP value configured for the DCN. Assume there are n
available paths in the initial topology G0, for a flow i. The RA module needs to select additional RP-1 backup
paths from n-1 available paths for each flow in turn, besides the power-aware routing path set by the SE and LE
modules already. If the newly added paths need to go through some switches and links already removed by SE
and LE from the original network topologies, the RA module will add the switches and links back to the updated
topology. When selecting each additional backup path for a flow i, the RA module gives the preference to the
path Pi based on the following equation (10), where i denotes the set of the available paths which have not

been selected as the backup or power-aware routing paths yet for the flow i in the initial topology G0. N(j)
denotes the number of switches which have been eliminated by the SE module from the path j. The intuition
behind the backup path selection strategy is that we want to use as few additional switches as possible to meet the
reliability requirement. The computational complexity of RA module is O(FN*p), where FN denotes the number
of network flows and p denotes the number of available paths between each pair of servers in the topology.

arg min ()
i

i
j

P N j





 (10)

The quality of backup paths depends on the number of nodes shared among paths selected. Ideally, the number

of nodes shared between the primary path and back paths as well as shared among several backup paths should be
as low as possible. In data center networks, however, the quality of backup paths selected by the RA module also
depends on the network topologies. In a k-level BCube topology, there are k+1 node-disjoint paths between a
source-destination server pair [5], and thus the RA module can ensure all selected backup paths are node-disjoint.
While in the Fat-Tree topology, as all of available backup paths between any source-destination server pair will
pass through the same edge switches [4] and thus no node-disjoint path exists. In fact, after finishing the switch
elimination and link elimination processes, the RA module can always find the backup routing paths of which the
quality is not worse than that of available paths in the original topology to effectively improve the network
reliability.

15

It is worth pointing out that the reliability adaptation in our throughput-guaranteed power-aware routing
algorithm is an optional function. Data center operators can decide whether to use it according to the quality of
network devices and network reliability requirements in current data centers. Therefore, we use an independent
module to implement the reliability adaptation function so as to more flexibly enable and disable it by
configuring related parameters. Actually, when executing the RA module in practice, we can combine it with the
SE and LE modules and take the reliability constraints into account in the switch and link elimination phases. In
the paper, we logically separate the RA module from the SE and LE modules for more explicitly presenting its
objective and function.

4. Evaluation

In this section, we evaluate our throughput-guaranteed power-aware routing algorithm through simulations
using BCube and Fat-Tree topologies respectively. Both types of topologies are commonly used for data center
networks. We evaluate the effectiveness of our algorithm based on two kinds of power-saving granularities: the
“device-level” granularity which only configures the individual switches to the low-power mode, and the
“component-level” granularity which puts both the switches and links into the low-power mode. The evaluation
results for the two granularity levels are shown in Sections 4.2 and 4.3 respectively. We then evaluate the
algorithm using several typical traffic patterns, including One-to-One, One-to-Many and All-to-All in data
centers, and the results are shown in the Section 4.4. Afterward, we study the tradeoff between conserving more
power and meeting the reliability requirement in Section 4.5. Finally, we evaluate the power saving effectiveness
of our algorithm by comparing with the ElasticTree scheme [7] as well as the optimal solution of throughput-
guaranteed power-aware routing problem in Section 4.6.

4.1. Simulation Setup

The BCube and Fat-Tree topologies used in the simulations are set to different sizes. For a recursive structural
topology BCube(BN, BL), BN denotes the number of ports in a switch, and BL denotes the number of levels
counted from the level_0. A level_i BCube(BN, i) contains BN level_i-1 BCube(BN, i-1) and additional BNi
switches[5]. We set different values for BN and BL to vary the topology sizes. Similarly, we can vary the number
of ports in each switch of the Fat-Tree(FP) topology, denoted as FP. Furthermore, we analyze the real traffic data
inside data centers in [14], which provides the time duration of different loads on an average server during a day.
We observe that each server has at most one concurrent flow during the 1/3 time of a day and thus we consider
network power conservation and evaluate our algorithm during this period. In our simulations, we take the
maximum of the total number of flows on all servers as 100% network load and vary the percentage of the
number of flows in the topology to simulate different network loads. The traffic matrix is randomly generated
between servers in Sections 4.2, 4.3, 4.5 and 4.6, and three typical traffic patterns usually found in real data
centers are used to evaluate the algorithm in Section 4.4. The One-to-One traffic pattern is often used to copy
large files from one server to the other; The One-to-Many traffic pattern is frequently used for data chunk
replication from one server to several servers to ensure higher reliability [5] and often seen in Google File System
[2], CloudStore [3] and other scenarios; MapReduce [1] jobs running in data centers will produce the All-to-All
traffic pattern. Moreover, we set the reliability parameter RP as 1 in Sections 4.2, 4.3, 4.4 and 4.6, and vary the
parameter value to evaluate the effect on power conservation under different reliability requirements in Section
4.5.

To evaluate the effectiveness of power conservation, we use the power saving percentage as a metric, which is
defined as the network power saved by our algorithm over the total power consumption of the network without
using any power conservation strategy. We take the power consumption data of a general access-level switch,
Cisco Catalyst 2960G series as an example to evaluate the power conservation effect of our algorithm. For DCN

16

topologies with different sizes, we choose the switches equipped with different numbers of ports. We use the
simplified network power consumption model presented in Section 2.1 and the real power consumption data of
the switches in TABLE III [32], which are measured under full loads, to compute the total power consumption of
DCNs before and after using our algorithm. Generally, the switches which are put into the low-power mode or
shut down consume very little power, and disabling one port of the switch saves about 1W power [32]. We set the
performance threshold percentage as 95% in the following simulations, except when studying the relationship
between the power consumption and the performance threshold percentage.

TABLE III

Cisco 2960G switch power consumption data
Switch Type Power (W) Applied to Topologies

WS-C2960G-48TC-L 123 Fat-Tree(48)
WS-C2960G-24TC-L 72 Fat-Tree(12), Fat-Tree(24)
WS-C2960G-8TC-L 36 Fat-Tree(4), BCube(4,2), BCube(8,2) BCube(8,3)

4.2. Switch Sleeping

In this subsection, we evaluate the power saving percentage of our algorithm by putting a subset of switches
into the low-power mode or shutting them down in data center networks with BCube or Fat-Tree topologies.
We evaluate the effect on power saving due to turning off switches with the increase of network loads for
different topology sizes of BCube in Fig. 6. The curves marked with “Switch Sleeping” denote the power saving
effect based on the “device-level” granularity, i.e. only using the switch sleeping strategy (the same below). We
can see that our power-aware routing algorithm significantly reduces the power consumed by switches at low
network loads. For example, in BCube(4,2), when the percentage of network loads is less than 80%, more than 30%
power can be saved, and the power saving percentage increases to 60% if the network load is less than 30%. As
expected, the power-saving percentage reduces as the network load increases. Fig. 7 shows the simulation results
with the Fat-Tree topology. Our algorithm can also significantly reduce the power consumption of switches under
the low load. The network power consumption in Fat-Tree(FP=48) can be reduced by more than 26% when the
network load is less than 95%, and the saving increases to 50% when the network load is smaller than 10% in Fig.
7(c).

In our simulations, we generate network flows by randomly selecting their source and destination servers, and
incrementally add them into the network to compute their routing paths in a random order. We also study the
impact on the network throughput and power saving percentage by conducting simulations when adding flows
into the network with different orders. For example, we can add flows based on the sequence number of their
source or destination servers. The results reveal that different orders of adding flows have little effect on the both
network throughput and effectiveness of power conservation in the BCube and Fat-Tree topologies. Moreover, in
our evaluations, we execute the SE module to eliminate only one switch from the topology in each round. The SE
module usually removes more than one switch per round in practice to accelerate the computation process. We
conduct simulations to investigate how to decide the number of switches removed per round so as to more
effectively accelerate the switch elimination process. The simulation results indicate that the value should be set
according to the number of switches and network flows in the DCN. Under the low network load, the SE module
has better execution efficiency when eliminating about 5-10% of the total number of switches per round. The
percentage should be adjusted to a lower value as the network load grows. The simulation results above are not
shown in the paper due to the page limit of the paper.

Fig. 8 shows the relationship between the power conservation and the performance threshold percentage in the
BCube and Fat-Tree topologies. The “Switch” in the legends of Fig. 8 denotes the “device-level” granularity
presented earlier. In Fig. 8(a), we vary the percentage of the performance threshold for a given BCube topology,

17

(a) BCube(4,2) (b) BCube(8,2) (c) BCube(8,3)
Fig. 6. Network power conservation percentage based on “device-level” and “component-level” granularities

under different loads in BCube topologies.

(a) FP=12 (b) FP=24 (c) FP=48
Fig. 7. Network power conservation percentage based on “device-level” and “component-level” granularities

under different loads in Fat-Tree topologies.

i.e., BCube(8,3). Not surprisingly, as the performance threshold percentage increases, the power-conservation
level decreases, because a higher performance requirement reduces the opportunities of removing switches from
the topology. Hence, there is a tradeoff to consider according to the data center need and operational states.
Actually a significant amount of power consumption can be reduced even without any performance sacrifice.
This can be observed from the values corresponding to the performance threshold percentage 100% while the
network has a low load. In Fig. 8(b), we conduct the simulation with the FP of the Fat-Tree topology set to 24.
Similar to BCube, the effect of power saving decreases as the performance threshold percentage increases.

4.3. Port Disabling

In our power-aware routing algorithm, disabling ports (eliminating links) of active switches can be taken as a
supplementary means to further save power after putting off parts of the network switches. Therefore, we want to
calculate how much power can be saved by our algorithm after finishing the switch sleeping process.

The curves marked with “Switch Sleeping + Port Disabled” in Fig. 6 and Fig. 7 show the power conservation
percentage based on the “component-level” granularity. One important observation is that we can further reduce a
significant amount of power by disabling ports of active switches after putting a selected set of switches into
sleep. For example, we can increase the power-saving percentage from 16% to 27% by disabling ports after

0 20 40 60 80 100
0

20

40

60

80

100

Percentage of network loads (%)

P
er

ce
n

ta
g

e
o

f
n

et
w

ro
k

p
o

w
er

 s
av

in
g

 (
%

)

Switch Sleeping + Port Disabled
Switch Sleeping

0 20 40 60 80 100
0

20

40

60

80

100

Percentage of network loads (%)

P
er

ce
n

ta
g

e
o

f
n

et
w

ro
k

p
o

w
er

 s
av

in
g

 (
%

)

Switch Sleeping + Port Disabled
Switch Sleeping

0 20 40 60 80 100
0

20

40

60

80

100

Percentage of network loads (%)

P
er

ce
n

ta
g

e
o

f
n

et
w

ro
k

p
o

w
er

 s
av

in
g

 (
%

)

Switch Sleeping + Port Disabled
Switch Sleeping

0 20 40 60 80 100
0

20

40

60

80

100

Percentage of network loads (%)

P
er

ce
n

ta
g

e
o

f
n

et
w

ro
k

p
o

w
er

 s
av

in
g

 (
%

)

Switch Sleeping + Port Disabled
Switch Sleeping

0 20 40 60 80 100
0

20

40

60

80

100

Percentage of network loads (%)

P
er

ce
n

ta
g

e
o

f
n

et
w

ro
k

p
o

w
er

 s
av

in
g

 (
%

)

Switch Sleeping + Port Disabled
Switch Sleeping

0 20 40 60 80 100
0

20

40

60

80

100

Percentage of network loads (%)

P
er

ce
n

ta
g

e
o

f
n

et
w

ro
k

p
o

w
er

 s
av

in
g

 (
%

)

Switch Sleeping + Port Disabled
Switch Sleeping

18

(a) BCube(8,3) (b) Fat-Tree(24)
Fig. 8. Network power conservation percentage based on “device-level” and “component-level” granularities

under different performance threshold percentages in BCube(8,3) and Fat-Tree(24) topologies.

sleeping switches under 50% of network loads shown in Fig. 6(c). Similar results can be found in the Fat-Tree
topology in Fig. 7. The network power of Fat-Tree(FP=24) can be saved about 30% and 41% when using two
power-saving granularity strategies respectively under 60% of network loads in Fig. 7(b). The results from the
simulations above show a positive effectiveness when using the port disabling method, and thus it can be taken
an important supplement to the switch sleeping method to save more power.

In Fig. 8, the curves marked with “Switch+Port” denote the “component-level” granularity method presented
before. As expected, it can save more power when under the looser performance constraints or low network loads.
For example, in terms of power-saving effect, it can save about 30% and 46% of total network power
consumption in BCube(8,3) and Fat-Tree(24) respectively under the 50% of network loads and 90% of
performance threshold in Fig. 8. And the two power-saving ratios can reach 45% and 55% respectively when the
performance threshold percentage decreases to 60% under the same network loads. Moreover, Fig. 8 also shows
the port disabling method can save substantial power after switch sleeping under different performance threshold
restrictions.

4.4. Typical Traffic Patterns

We have shown that our power-aware routing algorithm can achieve a considerable power saving effect under
the random traffic pattern from the studies above. In this subsection, we evaluate our algorithm under three
typical traffic patterns in data centers.

Fig. 9 and 10 show the power consumption of network devices reduced by our algorithm under One-to-One
and One-to-Many traffic patterns in BCube and Fat-Tree topologies respectively. We observe that our routing
algorithm can save abundant power consumed by network devices under One-to-One and One-to-Many traffic
patterns under the light network loads. Furthermore, we find that the power saving effect under One-to-Many is
better than that under One-to-One, when their network loads are the same. This is because our algorithm has
more opportunities to aggregate network flows under the One-to-Many traffic pattern. We take BCube(8,3) and
Fat-Tree(48) as examples. When the percentage of network loads is 50%, we can save about 25% of total
network power under One-to-One and save 76% under the One-to-Many traffic pattern based on the “component-
level” granularity in Fig. 9(c). And the power-saving percentage values can reach 33% and 72% respectively
under the same load percentage in Fig. 10(c).

Fig. 11 shows the power-saving effect by our algorithm under the All-to-All traffic pattern in BCube and Fat-
Tree topologies. Our algorithm only saves little power when a high performance threshold percentage is set. That
is because heavy network loads reduce the opportunities of conserving power consumed by network devices. The

60 65 70 75 80 85 90 95 100
0

20

40

60

80

100

Performance threshold percentage (%)

P
er

ce
n

ta
g

e
o

f
n

et
w

ro
k

p
o

w
er

 s
av

in
g

 (
%

)

10% loads (Switch+Port)
10% loads (Switch)
30% loads (Switch+Port)
30% loads (Switch)
50% loads (Switch+Port)
50% loads (Switch)
100% loads (Switch+Port)
100% loads (Switch)

60 65 70 75 80 85 90 95 100
0

20

40

60

80

100

Performance threshold percentage (%)

P
er

ce
n

ta
g

e
o

f
n

et
w

ro
k

p
o

w
er

 s
av

in
g

 (
%

)

10% loads (Switch+Port)
10% loads (Switch)
30% loads (Switch+Port)
30% loads (Switch)
50% loads (Switch+Port)
50% loads (Switch)
100% loads (Switch+Port)
100% loads (Switch)

19

(a) BCube(4,2) (b) BCube(8,2) (c) BCube(8,3)
Fig. 9. Network power conservation percentage based on “device-level” and “component-level” granularities

under One-to-One and One-to-Many traffic patterns in BCube topologies.

(a) FP=12 (b) FP=24 (c) FP=48
Fig. 10. Network power conservation percentage based on “device-level” and “component-level” granularities

under One-to-One and One-to-Many traffic patterns in Fat-Tree topologies.

simulation results are similar in the topologies of BCube(8,3) and Fat-Tree(48), which are not drawn in Fig. 11(a)
and 11(b).

From the results above, we can summarize the power saving effectiveness of our algorithm under four traffic
patterns as the following inequality:

One-to-Many > Random > One-to-One > All-to-All.
Consequently, our algorithm can save the maximum amount of power under the One-to-Many traffic pattern.

With the same network load, the power saving effect under random traffic is in a range between that under One-
to-One and One-to-Many traffic patterns. Moreover, our algorithm can save little power under the All-to-All
traffic pattern due to heavy network loads.

4.5. Tradeoff between Power Conservation and Reliability Requirements

We evaluate the power conservation level of our algorithm under different reliability requirements using the
BCube and Fat-Tree topologies. We set the reliability parameter RP to different values according to the
characteristics of these two topologies.

0 20 40 60 80 100
0

20

40

60

80

100

Percentage of network loads (%)

P
er

ce
n

ta
g

e
o

f
n

et
w

ro
k

p
o

w
er

 s
av

in
g

 (
%

)

One-to-Many(Switch+Port)
One-to-Many(Switch)
One-to-One(Switch+Port)
One-to-One(Switch)

0 20 40 60 80 100
0

20

40

60

80

100

Percentage of network loads (%)

P
er

ce
n

ta
g

e
o

f
n

et
w

ro
k

p
o

w
er

 s
av

in
g

 (
%

)

One-to-Many(Switch+Port)
One-to-Many(Switch)
One-to-One(Switch+Port)
One-to-One(Switch)

0 20 40 60 80 100
0

20

40

60

80

100

Percentage of network loads (%)

P
er

ce
n

ta
g

e
o

f
n

et
w

ro
k

p
o

w
er

 s
av

in
g

 (
%

)

One-to-Many(Switch+Port)
One-to-Many(Switch)
One-to-One(Switch+Port)
One-to-One(Switch)

10 20 30 40 50 60 70 80 90 100
0

20

40

60

80

100

Percentage of network loads (%)

P
er

ce
n

ta
g

e
o

f
n

et
w

ro
k

p
o

w
er

 s
av

in
g

 (
%

)

One-to-Many(Switch+Port)
One-to-Many(Switch)
One-to-One(Switch+Port)
One-to-One(Switch)

0 20 40 60 80 100
0

20

40

60

80

100

Percentage of network loads (%)

P
er

ce
n

ta
g

e
o

f
n

et
w

ro
k

p
o

w
er

 s
av

in
g

 (
%

)

One-to-Many(Switch+Port)
One-to-Many(Switch)
One-to-One(Switch+Port)
One-to-One(Switch)

0 20 40 60 80 100
0

20

40

60

80

100

Percentage of network loads (%)

P
er

ce
n

ta
g

e
o

f
n

et
w

ro
k

p
o

w
er

 s
av

in
g

 (
%

)

One-to-Many(Switch+Port)
One-to-Many(Switch)
One-to-One(Switch+Port)
One-to-One(Switch)

20

(a) BCube(4,2) and BCube(8,2) (b) Fat-Tree(12 and 24)
Fig. 11. Network power conservation percentage based on “device-level” and “component-level” granularities

under the All-to-All traffic pattern in BCube and Fat-Tree topologies.

Fig. 12(a) shows the network power consumption percentage saved by our algorithm under four different
reliability requirements in a given BCube topology, i.e., BCube(8,3). As the BCube(8,3) topology has 4 available
paths between any two servers, we vary the values of RP from 1 to 4. The curve marked with “RP=1” shows the
power saving percentage with the “component-level” power-aware routing strategy but not considering any
reliability requirement, which is consistent with that in Fig. 6(C) and shown here as the baseline value compared
with others. The curve marked with “RP=4” denotes the power consumption reduced by the power-aware routing
under the highest reliability restriction. As expected, the power conservation effect decreases as the values of RP
increases under the same network load. For example, when the percentage of network loads is 20%, the power
conservation percentages are about 39% and 23% when RP is 2 and 3 respectively, and approaches 10% when
RP increases to 4. The difference in power conservation among the four reliability levels reduces when the
network has very low load and most devices are kept idle.

Similar results can be found in the Fat-Tree topology in Fig. 12(b). The Fat-Tree(24) topology has 12 available
paths between any two intra-pod servers and 144 available paths between any two inter-pod servers. We set RP
as 1, 6, 12 to denote the different reliability requirements in it. One important observation is that our algorithm
can meet a higher reliability requirement by increasing only a few additional switches and network ports in the
Fat-Tree topology. For example, we can achieve the reliability requirement “RP=6” from “RP=1”, when we add
about 15 switches to the topology from the 276 switches eliminated by the SE module, which only decreases
power conservation percentage from 51% to 49% under 30% of network loads. It is because we can easily obtain
more available paths between servers by putting back only a few additional aggregation and core switches in the
Fat-Tree topology.

Similar simulation results can be also obtained in the other sizes of the BCube and Fat-Tree topologies. From
the simulation results above, we can see that there is a tradeoff between the power conservation and the network
reliability requirement. Our algorithm can adapt to the different reliability requirements by setting RP to different
values.

4.6. Comparing PRA with other power conservation schemes

In this subsection, we first compare the power conservation effectiveness of our algorithm with the ElasticTree
scheme in [7] as well as the optimal solution of the throughput-guaranteed power-aware routing problem. Then,
we analyze the computation time of our algorithm and the optimal solution.

As presented before, the problem model in the paper is different from the ElasticTree scheme. In [7], each flow
has a fixed transfer rate which is taken as the input of the power minimization problem. In contrast, the transfer

60 65 70 75 80 85 90 95 100
0

20

40

60

80

100

Performance threshold percentage (%)

P
er

ce
n

ta
g

e
o

f
n

et
w

ro
k

p
o

w
er

 s
av

in
g

 (
%

)

FP=12 (Switch+Port)
FP=12 (Switch)
FP=24 (Swtich+Port)
FP=24 (Switch)

60 65 70 75 80 85 90 95 100
0

20

40

60

80

100

Performance Threshold Percentage (%)

P
er

ce
n

ta
g

e
o

f
E

n
er

g
y

S
av

ed
 o

n
 N

et
w

o
rk

 (
%

)

BCube(4,2) (Switch+Port)
BCube(4,2) (Switch)
BCube(8,2) (Switch+Port)
BCube(8,2) (Switch)

21

(a) BCube(8,3) (b) Fat-Tree(24)
Fig. 12. Network power conservation percentage based on the “component-level” granularity

under different reliability requirements in BCube(8,3) and Fat-Tree(24) topologies.

rate of each flow in our model depends on the number of competing flows in the network. In order to make an
effective and fair comparison, we first use our algorithm PRA to compute the power-aware routing as well as the
corresponding transfer rate of flows, and then run the ElasticTree algorithm based on the same traffic matrix and
transfer rate of flows with PRA. The purpose of this simulation setup is to compare the power conservation
effectiveness of the two schemes when they can achieve the same network throughput. Moreover, as the
topology-aware heuristic algorithm in [7] is used only for the Fat-Tree topology, we choose the greedy bin-
packing algorithm in [7] and compare it with our PRA in BCube and Fat-Tree topologies respectively. In our
following comparisons, we randomly generate the traffic matrix between servers and set the performance
threshold percentage PR and reliability parameter RP as 95% and 1 respectively.

Fig. 13 and 14 show the power saving effectiveness of PRA and ElasticTree with the increase of network
loads in BCube and Fat-Tree topologies respectively. From Fig. 13, we observe that our PRA can achieve better
power conservation than ElasticTree in the BCube topology. For example, the power saving percentage in
BCube(4,2) can be improved from 55% in the case of using ElasticTree to 63% when using PRA under the 30%
network load, and the percentage figure rises from 20% with ElasticTree to 30% with PRA when the network
load percentage is 80%. Similar results are also found in BCube(8,2). The curves of ElasticTree and PRA in Fig.
14 are close with each other under the same topology size, which indicates ElasticTree and PRA have similar
power conservation effectiveness in the Fat-Tree topology. Also, we observe that PRA has a slightly higher
power saving percentage than ElasticTree in Fat-Tree(FP=12) topology.

In Fig. 15, we compute the optimal solution of energy-aware routing by searching the space of all possible
routing paths for flows and the computational complexity is | |()Fk and 2| |()Fk for a k-level BCube topology
and a k-ary Fat-Tree topology respectively, where |F| is the number of network flows in DCNs. We select small-
sized topologies: BCube(4,2) and Fat-Tree(FP=4) to compute the optimal throughput-guaranteed power-aware
routing under different number of flows and compare its power conservation effectiveness with our PRA. The
results in Fig. 15 indicate that there is no significant power saving gap between PRA and the optimal solution,
especially when the number of flows is small. As the number of flows increases from 4 to 20, the difference of
power saving percentage is at most 9% between PRA and the optimal solution in both BCube and Fat-Tree
topologies. This demonstrates the efficiency of our proposed routing algorithm.

We analyze and compare the routing computation time of our PRA and the optimal solution by conducting
simulations using a 2.8GHZ Intel Core2 Duo E7400 CPU with 2GB RAM. The results indicate that computing
the optimal solution of power-aware routing might take about 10-20 hours in BCube(4,2) and Fat-Tree(FP=4)
topologies when the number of flows is 20. Obviously, computing the optimal solutions is not practical for a real
data center network due to the extremely high computational complexity. In contrast, our PRA only takes several

0 20 40 60 80 100
0

20

40

60

80

100

Percentage of network loads (%)

P
er

ce
n

ta
g

e
o

f
n

et
w

ro
k

p
o

w
er

 s
av

in
g

 (
%

)

RP=1
RP=2
RP=3
RP=4

0 20 40 60 80 100
0

20

40

60

80

100

Percentage of network loads (%)

P
er

ce
n

ta
g

e
o

f
n

et
w

ro
k

p
o

w
er

 s
av

in
g

 (
%

)

RP=1
RP=6
RP=12

22

Fig.13 Comparison of PRA with ElasticTree

in BCube(4,2) and Bcube(8,2) topologies

under the same traffic demand

Fig.14 Comparison of PRA with ElasticTree

in Fat-Tree(12 and 24) topologies under the

same traffic demand

Fig.15 Comparison of PRA with the optimal

solution in BCube(4,2) and Fat-Tree(4)

topologies under the same traffic demand

milliseconds to obtain the power-aware routing in this case. We show the detailed routing computation time of
our PRA under different network loads with BCube and Fat-Tree topologies in Fig. 16. The results indicate that
our PRA only takes less than one second to find the power-aware routing paths for hundreds of flows and several
seconds for thousands of flows under the medium-sized BCube and Fat-Tree topologies.

An alternative for solving the power-aware routing problem is to use the branch and bound framework or the
genetic algorithm to calculate a near optimal solution. However, the method cannot meet the real-time demand of
power-aware routing computation, either. Our simulation results indicate it might take several hours to obtain the
near optimal solution under the light network load even in the small-sized BCube and Fat-Tree topologies.

5. Practical Issues

In this section, we discuss some practical issues when implementing our throughput-guaranteed power-aware
routing scheme, including how to execute and deploy the modules of our algorithm in a real system, how to
mitigate flow disruption and packet loss during the power mode transition of switches and links, and the time
granularity of running the algorithm.

When implementing our algorithm in a real DCN, we first need to gather the information of network topology
and traffic, which can be obtained with some existing network protocols and technologies, such as SNMP or
OpenFlow [7]. The performance threshold and reliability restriction parameters can be set according to the
requirements of the data center operators. Then, five modules cooperatively run on a management server and
finally output the power-aware routing paths and update the forwarding tables of the network devices. The
dynamical forwarding table configuration can be enabled in modern network infrastructure for data centers, such
as OpenFlow framework.

It is important to avoid flow disruption and packet loss when updating the power-aware routing. In the design
of SE and LE modules of our algorithm, we have restricted the rule of elimination so that any critical switch or
link will not be eliminated to avoid interrupting flows in the traffic matrix. Also, we should ensure that the power
mode transition of network devices and links will not bring packet loss. In the current technology, we base our
design on the make-before-break technique. Active switches on the old path will not be turned off until the new
path has been established and existing packets have been transmitted, while inactive switches will be brought to
action before a new path is established and goes through it. We can also apply source routing schemes to avoid
routing loops and black holes caused by inconsistent routing tables of network devices in DCNs. Moreover, the
power conservation effect will also be affected by the power mode transition delay of network devices and links,
which cannot be neglected under the current hardware technologies. Recently study shows that the power

0 20 40 60 80 100
0

20

40

60

80

100

Percentage of network loads (%)

P
er

ce
n

ta
g

e
o

f
n

et
w

ro
k

p
o

w
er

 s
av

in
g

 (
%

)

PRA FP=12
ElasticTree FP=12
PRA FP=24
ElasticTree FP=24

0 20 40 60 80 100
0

20

40

60

80

100

Percentage of network loads (%)

P
er

ce
n

ta
g

e
o

f
n

et
w

ro
k

p
o

w
er

 s
av

in
g

 (
%

)

PRA BCube(4,2)
ElasticTree BCube(4,2)
PRA BCube(8,2)
ElasticTree BCube(8,2)

4 6 8 10 12 14 16 18 20
0

20

40

60

80

100

Number of network flows

P
er

ce
n

ta
g

e
o

f
n

et
w

ro
k

p
o

w
er

 s
av

in
g

 (
%

)

BCube(4,2) optimal
BCube(4,2) PRA
Fat-Tree(FP=4) optimal
Fat-Tree(FP=4) PRA

23

Fig. 16 Computation time of PRA for different numbers of network flows in the BCube and Fat-Tree topologies

transition speed in hardware can be as fast as milliseconds [18]. Although there are some software state processes
and the actual transition time can be longer, we expect that future power management technology can realize
power state transition on network devices in real time.

Our routing algorithm runs periodically so that the routing paths will be adapted when there are dramatic load
changes. When the dominant communication loads between servers in a data center do not vary rapidly or can be
predicted according to the historical traffic information, the updated period can be set relatively long, such as 10-
30 minutes. If traffic changes are more frequent in DCNs, we should reduce the re-computation period of power-
aware routing, such as 5 minutes. Moreover, we have to restrict the transition frequency between active and sleep
modes of switches to avoid the network oscillation when the traffic changes dramatically.

We also consider the subsequent configuration reachability of network devices while choosing power-aware
paths for flows. Our algorithm takes the network power conservation as a major objective and preferentially
chooses the minimal power consumption path for each flow. If there are multiple such paths, we will further
consider the power mode transition cost of switches and select the path traversing the minimal number of the
sleeping switches in the last configuration, so that the number of switches transiting from the sleep mode to the
active mode is as few as possible. There is a tradeoff between conserving more power and making the subsequent
configuration more easily reachable.

6. Conclusion

In this paper, we address the power-saving problem in data center networks from a routing perspective. We
first introduce network power consumption models, and then establish the model of throughput-guaranteed
power-aware routing problem and prove that it is NP-hard by reducing 0-1 Knapsack problem into it. Based on
these models, we propose a routing algorithm to solve the throughput-guaranteed power-aware routing problem.
The evaluation results demonstrate that our power-aware routing algorithm can effectively conserve the power
consumption of network devices in data centers, especially when the network load is low.

In the future, we would like to extend throughput-guaranteed power-aware routing to more general application
contexts, e.g., delay-sensitive applications. We plan to design a distributed power-aware routing algorithm in data
center networks as well. Furthermore, another interesting study direction is green virtualization technologies,
such as power-aware virtual machine placement and migration strategies.

0 500 1000 1500 2000
10

-3

10
-2

10
-1

10
0

10
1

Number of network flows

C
o

m
p

u
ta

ti
o

n
 t

im
e

(s
)

BCube(4,2)
BCube(8,2)
Fat-Tree(FP=12)
Fat-Tree(FP=24)

24

Appendix

NP Hardness Proof of PRP
To prove the NP-hardness of the throughput-guaranteed power-aware routing problem, we simplify the

problem by setting both the power consumption of switch ports A and the predefined threshold of network
reliability RP as zero (i.e., without considering the network reliability constraint). The objective of the simplified
PRP is to compute power-aware routing paths for network flows, so that as few switches as possible are involved
in the routing paths while satisfying a predefined network throughput threshold. We translate it into an equivalent
problem: PRP-T.
PRP-T: For a given set of input parameters of (G, T, K, N), G, T, K denote topology, traffic matrix and
predefined threshold of network throughput respectively, which are the same as PRP. N is the upper bound of
number of switches. The objective of PRP-T is to find a routing R2 for T, satisfying the two conditions as follows:

(2)L R N (11)

(2)M R K (12)

where the functions L(.) and M(.) are the same as those in PRP.
The translation process from PRP to PRP-T is shown in the pseudocode in Fig. 17. It shows the solution of

PRP can be obtained by solving PRP-T repeatedly for at most N steps, so the hardness of PRP is not higher than
PRP-T, i.e. PRP P PRP-T. On the other hand, obviously PRP-T P PRP. Therefore, the hardness of PRP and

PRP-T are equivalent. PRP is NP-hard if and only if PRP-T is NP-hard. Next, we present the proof of the NP-
hardness of PRP-T.

Simplified Power-aware Routing Problem: PRP(G, T, K)
Input: G: DCN topology, T: traffic matrix, K: network
performance threshold
begin

set N := the number of all switches in the network;
While (the solution of PRP-T(G, T, K, N) exists)
begin

set result := PRP-T (G, T, K, N);
set N := N-1;

end
return result;

end
Fig. 17. Translation from PRP to PRP-T

Our idea is to reduce the classical 0-1 Knapsack problem into the PRP-T problem. 0-1 Knapsack problem

belongs to the well known Karp's 21 NP-complete problems [9]. The definition of 0-1 Knapsack problem is as
follows [10].

There are n kinds of items denoted by 1 2, ,..., nW W W , and let 1 2{ , ,..., }nW W W W . Each item Wj has a

nonnegative weight Sj and a nonnegative value Vj. The maximum capacity of the bag is C, and E is defined as the
predefined lower bound of the total value of items, where C and E are both nonnegative. The value of Xj
restricted to 0 or 1 denotes the number of item Wj put into the bag. The object of 0-1 Knapsack problem is to find
a subset of items (equivalent to assigning value to each Xj), subject to the following two conditions:

1

n

j jj
S X C


 (13)

1
, {0,1}.

n

j j jj
V X E X


  (14)

25

Fig. 18. Topology and traffic construction in the instance of PRP-T.

The 0-1 Knapsack problem can be reduced to PRP-T problem in polynomial time, which consists of three

steps as follows.

Step 1: Instance Construction
We first construct a specific topology G in PRP-T. The set of all nodes in G is divided into n groups. Each

group j contains Sj nodes and Sj-1 links, as shown in Fig. 18. The network capacity of each link in group j is Vj.
Then we construct n flows: flow 1, flow 2, …, flow n. The source node of flow j is the first node in group j, and
the destination is the last node in group j. Let Tj be the set of nodes in the path of flow j, and 1 2{ , ,..., }nT T T T .

Therefore, the number of nodes in Tj is equal to Sj and the throughput of flow j is equal to Vj. Finally, we let the
predefined threshold N be equal to C, and let the predefined threshold K be equal to E.

Step 2: if the solution of 0-1 Knapsack problem exists, then the solution of the PRP-T instance also exists.

Proof:
If the solution of 0-1 Knapsack problem exists, i.e., 'W W  , such that

'j
jW W

S C


 (15)

'
, 1 .

j
jW W

V E j n


   (16)

Then 'T T  , such that

'j
jT T

S N


 (17)

'
, 1 .

j
jT T

V K j n


   (18)

Therefore, there exists the specific routing paths for n flows, so that the number of nodes involved in the routing
paths is not more than N, and the total throughput is not less than K. Consequently, the solution of the PRP-T
instance exists.

End.

Step 3: if the solution of the PRP-T instance exists, then the solution of 0-1 Knapsack problem also exists.
Proof:
If the solution of the PRP-T instance exists, i.e., there exists the specific routing paths for n flows, so that the

number of nodes involved in the routing paths is not more than N, and the total throughput is not less than K. Let
NS denote the set of nodes involved in the routing paths, let the function Tht(NS) denote the total throughput of
the flows only traversing the nodes in NS, and let |NS| denote the number of nodes in the set NS. Then

| |NS N (19)

Tht() .NS K (20)

26

We divide NS into two subsets: NS1 and NS2, subject to	

1 2NS NS NS  (21)

1 2 .NS NS   (22)

NS1 and NS2 are defined by
1 , , 1j jNS T T NS j n    (23)

2 1.NS NS NS  (24)

Therefore, we can see that

Tht(2) 0,NS  (25)

as the nodes in NS2 are not able to form a complete path for any flow, and

Tht() Tht(1) Tht(2) Tht(1) .NS NS NS NS K    (26)

On the other hand,

| 1 | | | ,NS NS N  (27)

as NS1 is the subset of NS. Therefore we can find the subset of items W’, such that

'
| 1 |

j
jW W

S NS C


  (28)

'
Tht(1) .

j
jW W

V NS E


  (29)

Consequently, the solution of 0-1 Knapsack problem exists.
End.

Based on the three-step proof above, we conclude that PRP-T is an NP-hard problem. Moreover, given a

routing for T, we can easily verify whether it can satisfy the two restrictions of PRP-T in polynomial time.
Therefore, PRP-T is an NP-complete problem and then PRP is NP-hard.

References

[1] J. Dean and S. Ghemawat. MapReduce: Simplified Data Processing on Large Clusters. In OSDI, 2004.
[2] S. Ghemawat, H. Gobioff, and S. Leung. The Google File System. In SOSP, 2003.
[3] CloudStore. Higher Performance Scalable Storage. http://kosmosfs.sourceforge.net/.
[4] M. Al-Fares, A. Loukissas, and A. Vahdat. A Scalable, Commodity Data Center Network Architecture. In SIGCOMM, 2008.
[5] C. Guo, G. Lu, D. Li, H. Wu, X. Zhang, Y. Shi, C. Tian, Y. Zhang, and S. Lu. BCube: A High Performance, Server-centric Network

Architecture for Modular Data Centers. In ACM SIGCOMM, August 2009.
[6] C. Guo, H. Wu, K. Tan, L. Shi, Y. Zhang, and S. Lu. DCell: A Scalable and Fault-Tolerant Network Structure for Data Centers. In

ACM SIGCOMM, pages 75–86, 2008.
[7] B. Heller, S. Seetharaman, P. Mahadevan, Y. Yiakoumis, P. Sharma, S. Banerjee, N. McKeown. ElasticTree: Saving Energy in Data

Center Networks. In NSDI’10, Apr 2010.
[8] J. G. Koomey. Growth in data center electricity use 2005 to 2010. Analytics Press, Aug. 2011.
[9] R. M. Karp. Reducibility Among Combinatorial Problems. In R. E. Miller and J.W. Thatcher (Eds.), Complexity of Computer

Computations. Plenum Press, New York, 1972.
[10] A. Levitin. Introduction to the design & analysis of algorithms. Addison-Wesley, 2003.
[11] D. Nace, N. L. Doan, E. Gourdin, B. Liau. Computing Optimal Max-Min Fair Resource Allocation for Elastic Flows. In IEEE/ACM

Transactions on Networking 16(6): 1272-1281, 2006.
[12] D. Bertsekas, R. Gallager. Data networks. Englewood Cliffs, NJ: Prentice-Hall, 1992.
[13] R. N. Mysore, et al. PortLand: A Scalable Fault-Tolerant Layer 2 Data Center Network Fabric. In ACM SIGCOMM, August 2009.
[14] A. Greenberg, N. Jain, S. Kandula, C. Kim, P. Lahiri, D. Maltz, P. Patel, and S. Sengupta. VL2: A Scalable and Flexible Data Center

Network. In ACM SIGCOMM, August 2009.
[15] D. Li, C. X. Guo, H. T. Wu, K Tan, Y. G. Zhang, S. W. Lu. FiConn: Using Backup Port for Server Interconnection in Data Centers. In

INFOCOM, 2009.
[16] M. Gupta, S. Singh. Greening of the Internet. In ACM SIGCOMM, Karlsruhe, Germany. August 2003.

27

[17] M. Gupta and S. Singh. Using Low-Power Modes for Energy Conservation in Ethernet LANs. In INFOCOM’07, May 2007.
[18] S. Nedevschi, L. Popa, G. Iannaccone, etc. Reducing Network Energy Consumption via Sleeping and Rate-Adaptation. In Proceedings

of the 5th USENIX NSDI, pages 323–336, 2008.
[19] K. Christensen, B. Nordman, R. Brown. Power Management in Networked Devices. In IEEE COMPUTER SOCIETY, August 2004.
[20] J. Chabarek, J. Sommers, P. Barford, et al. Power Awareness in Network Design and Routing. In INFOCOM’08, Apr 2008.
[21] G. Magklis, M. Scott, G. Semeraro, and etc. Profile-based Dynamic Voltage and Frequency Scaling for a Multiple Clock Domain

Microprocessor. In ISCA’03, Jun 2003.
[22] R. Bolla, R. Bruschi, F. Davoli, and F. Cucchietti. Energy Efficiency in the Future Internet: A Survey of Existing Approaches and

Trends in Energy-Aware Fixed Network Infrastructures. Communications Surveys Tutorials, IEEE, 2011.
[23] G. Ananthanarayanan and R. H. Katz. Greening the Switch. In HotPower’08, Dec 2008.
[24] C. Patel, C. Bash, R. Sharma, M. Beitelmam, and R. Friedrich. Smart Cooling of data Centers. In Proceedings of InterPack, July 2003.
[25] S. Nedevschi, J. Chandrashekar, J. Liu, B. Nordman, S. Ratnasamy and N. Taft. Skilled in the Art of Being Idle: Reducing Energy

Waste in Networked Systems. In NSDI’09, Apr 2009.
[26] S. Srikantaiah, A. Kansal and F. Zhao. Energy Aware Consolidation for Cloud Computing. In HotPower’08, Dec 2008.
[27] M. Pervila, J. Kangasharju. Running Servers around Zero Degrees. In ACM SIGCOMM Workshop on Green Networking 2010.
[28] P. Mahadevan, P. Sharma, S. Banerjee, P. Ranganathan. A Power Benchmarking Framework for Network Devices. In Proceedings of

IFIP Networking, May 2009.
[29] P. Mahadevan, S. Banerjee, P. Sharma. Energy Proportionality of an Enterprise Network. In ACM SIGCOMM Workshop on Green

Networking 2010.
[30] Y. F. Shang, D. Li, M. W. Xu. Energy-aware routing in data center network. In ACM SIGCOMM Workshop on Green Networking

2010.
[31] W.Fisher, M.Suchara, J. Rexford. Greening Backbone Networks: Reducing Energy Consumption by Shutting Off Cables in Bundled

Links. In ACM SIGCOMM Workshop on Green Networking 2010.
[32] Cisco Catalyst 2960 series switches data sheet. http://www.cisco.com/en/US/prod/collateral/switches/ps5718/ps6406/product_data_

sheet0900aecd80322c0c.html
[33] L. Liu, H. Wang, X. Liu, X. Jin, W. He, Q. Wang, Y. Chen. GreenCloud: A New Architecture for Green Data Center. In 6th

international conference industry session on Autonomic computing and communications, 2009.
[34] Cisco Data Center Infrastructure 2.5 Design Guide.

http://www.cisco.com/application/pdf/en/us/guest/netsol/ns107/c649/ccmigration_09186a008073377d.pdf, December 2007
[35] L. A. Barroso and U. Hlzle. The case for energy-proportional computing. In Computer, 40(12):33–37, 2007.
[36] A. P. Bianzino, C. Chaudet, D. Rossi, and J.-L. Rougier. A Survey of Green Networking Research. In IEEE Communications Surveys &

Tutorials, 14(1): 3-20, 2012.
[37] M. Zhang, C. Yi, B. Liu, B. Zhang. GreenTE: Power-Aware Traffic Engineering. In Proceedings of the 18th IEEE International

Conference on Network Protocols (ICNP’ 10), page 21-30, 2010.
[38] N. Vasic, D. Kostic. Energy-Aware Traffic Engineering. In Proceedings of the 1st International Conference on Energy-Efficient

Computing and Networking (e-Energy'10), page 169-178, 2010.
[39] A. Cianfrani, V. Eramo, M. Listanti, M. Marazza, E. Vittorini. An Energy Saving Routing Algorithm for a Green OSPF Protocol. In

Proceedings of the IEEE INFOCOM 2010 Workshop on Computer Communications, page 1-5, 2010.
[40] A. Cianfrani, V. Eramo, M. Listanti, M. Polverini. An OSPF Enhancement for energy saving in IP Networks. In Proceedings of the

IEEE INFOCOM 2011 Workshop on Computer Communications, page 325-330, 2011.
[41] R. McGeer, P. Mahadevan, S. Banerjee. On the Complexity of Power Minimization Schemes in Data Center Networks. In

GLOBECOM’10, Dec, 2010.
[42] P. X. Gao, A. R. Curtis, B. Wong, S. Keshav. It's Not Easy Being Green. In SIGCOMM, 2012.
[43] N. Vasic, P. Bhurat, D. Novakovic, M. Canini, S. Shekhar, and D. Kostic, Identifying and using energy-critical paths. In Proceedings of

the CoNEXT, 2011.
[44] Y. M. Kim, E. J. Lee, H. S. Park, J. K. Choi, H. S. Park. Ant colony based self-adaptive energy saving routing for energy efficient

Internet. In Computer Networks, 56(10): 2343-2354, 2012.
[45] F. Cuomo, A. Cianfrani, M. Polverini, D. Mangione. Network pruning for energy saving in the Internet. In Computer Networks, 56(10):

2355-2367, 2012.
[46] S. Avallone, G. Ventre. Energy efficient online routing of flows with additive constraints. In Computer Networks, 56(10): 2368-2382,

2012.
[47] W. Hou, L. Guo, X. Wei, X. Gong. Multi-granularity and robust grooming in power- and port-cost-efficient IP over WDM networks. In

Computer Networks, 56(10): 2383-2399, 2012.
[48] J. L. Vizcaino, Y. Ye, I. T. Monroy. Energy efficiency analysis for flexible-grid OFDM-based optical networks. In Computer Networks,

56(10): 2400-2419, 2012.
[49] S. Ricciardi, F. Palmieri, U. Fiore, D. Careglio, G. Santos-Boada, J. Sole-Pareta. An energy-aware dynamic RWA framework for next-

generation wavelength-routed networks, In Computer Networks, 56(10): 2420-2442, 2012.
[50] G. Rizzelli, A. Morea, M. Tornatore, O. Rival. Energy efficient Traffic-Aware design of on-off Multi-Layer translucent optical networks.

In Computer Networks, 56(10): 2443-2455, 2012.
[51] K. K. Nguyen, et al. Environmental-aware virtual data center network. In Computer Networks, 56(10): 2538-2550, 2012.
[52] L. Gyarmati, T. A. Trinh. How can architecture help to reduce energy consumption in data center networking? In Proceedings of the 1st

International Conference on Energy-Efficient Computing and Networking (e-Energy'10), pages 183-186, 2010.

28

Mingwei Xu received the B.S. degree in 1994 and Ph.D. degree in 1998 both from the Department of Computer
Science and Technology, Tsinghua University, Beijing, China. He is currently a professor in Tsinghua University.
His research interests include computer network architecture, Internet protocol and routing, high-speed router
architecture and green networking.

Yunfei Shang received the B.S. and M.S. degrees from the Department of Computer Science and Technology,
National University of Defense Technology in 2003 and 2006 respectively. Now, he is a Ph.D. candidate in the
Department of Computer Science and Technology, Tsinghua University, Beijing, China. His current research
interests include Internet architecture, green networking, data center network, network routing.

Dan Li received the M.E. degree and Ph.D from Tsinghua University in 2005 and 2007 respectively, both in
computer science. Before that, he spent four undergraduate years in Beijing Normal University and got a B.S.
degree in 2003, also in computer science. He joined Microsoft Research Asia in Jan 2008, where he worked as an
associate researcher in Wireless and Networking Group until Feb 2010. He joined the faculty of Tsinghua
University in Mar 2010, where he is now an Assistant Professor in Computer Science Department. His research
interests include Internet architecture and protocol design, P2P networks, cloud computing networks and green
networking.

Xin Wang received the B.S. and M.S. degrees in telecommunications engineering and wireless communications
engineering from Beijing University of Posts and Telecommunications, Beijing, China, and the PhD degree in
electrical and computer engineering from Columbia University, New York, NY. She is currently an assistant
professor in the department of Electrical and Computer Engineering of the State University of New York at Stony
Brook, Stony Brook, New York. Before joining Stony Brook University, she was a Member of Technical Staff in
the area of mobile and wireless networking at Bell Labs Research, Lucent Technologies, New Jersey and an
Assistant Professor in the Department of Computer Science and Engineering of the State University of New York
at Buffalo, Buffalo, New York. Her research interests include analysis and architecture design in wireless networks
and communications, mobile and distributed computing, infrastructure design and performance enhancement across
network layers, applications and heterogeneous networks, network and mobility management, QoS, signaling and
control, as well as support for advanced network services and applications. Dr. Wang has been a member of the

Association for Computing Machinery (ACM) since 2004.

