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Growing Grapes in Your Computer to Defend
Against Malware

Zhiyong Shan and Xin Wang

Abstract— Behavior-based detection is promising to resolve
the pressing security problem of malware. However, the great
challenge lies in how to detect malware in a both accurate
and light-weight manner. In this paper, we propose a novel
behavior-based detection method, named growing grapes, aiming
to enable accurate online detection. It consists of a clustering
engine and detection engine. The clustering engine groups the
objects, e.g., processes and files, of a suspicious program together
into a cluster, just like growing grapes. The detection engine
recognizes the cluster as malicious if the behaviors of the cluster
match a predefined behavior template formed by a set of discrete
behaviors. The approach is accurate since it identifies a malware
based on multiple behaviors and the source of the processes
requesting the behaviors. The approach is also light-weight as
it uses OS-level information flows instead of data flows that
generally impose significant performance impact on the system.
To further improve the performance, a novel method of orga-
nizing the behavior template and template database is proposed,
which not only makes the template matching process very quick,
but also makes the storage space small and fixed. Furthermore,
the detection accuracy and performance are optimized to the
best degree using a combinatorial optimization algorithm, which
properly selects and combines multiple behaviors to form a
template for malware detection. Finally, the approach novelly
identifies malicious OS objects in a cluster fashion rather than
one by one as done in traditional methods, which help users to
thoroughly eliminate the changes of a malware without malware
family knowledge. Compared with commercial antimalware tools,
extensive experiments show that our approach can detect new
malware samples with higher detection rate and lower false
positive rate while imposing low overhead on the system.

Index  Terms— Malware OS-level
information flow.

detection, behavior,

I. INTRODUCTION

HOUSANDS of new malware samples emerge on the

Internet everyday. Analyzing a malware instance to create
a detection signature requires substantially greater effort than
that required by generating a new malware. This is especially
the case when easy-to-use malware toolkits automatically cre-
ate hundreds of unique variants to run on the Internet [1][25].
As a consequence, using a traditional signature-based detector
to combat malware is becoming more difficult.
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Behavior-based detection techniques can provide promising
alternative solutions to the growing malware problem. Unlike
signature-based techniques that examine the syntactic pattern
of a program’s binary, behavior-based techniques focus on
the actual actions that the program performs in the system
to access system services or resources. Hence, behavior-
based detectors are difficult to be bypassed by obfuscations
or polymorphisms that are used to evade signature-based
detectors [2]. Moreover, as featured malware behaviors are
often shared by a family of malware instances instead of per-
taining to only an individual instance, behavior-based detectors
are able to detect previously unseen malware instances and
avoid the need of a large database of signatures to identify
each known piece of malware instance [32].

However, the grand challenge in behavior-based malware
detection is how to perform detection accurately (i.e., low false
positive rate) with a low performance overhead. Commercial
anti-virus tools often have a module for monitoring malicious
behaviors, which is light-weight but not accurate [4][28]. The
module only leverages a single system call and the parameters
to determine a malicious program. For example, intercepting
NtSetValueKey() and analyzing the arguments to determine
whether a program is trying to modify a security sensitive
registry key, and then popping up an alarm window when
this is true. As a consequence, such a module imposes small
performance overhead on the system but at the same time
produces frequent false alarms that annoy users. Many users
even simply disable the behavior monitoring module.

On the other hand, state-of-the-art behavior-based malware
detectors [1][22][25][30][29] significantly improve the detec-
tion accuracy at the cost of heavy overhead on the system.
They extract dependencies among system calls to construct
dependency graphs, and match the activities of a program with
predefined dependency graphs to determine if it is a malware.
Extracting dependencies requires tracing data flow which
significantly slows down the system and needs virtual machine
technology to support. Moreover, matching dependency graph
requires a complex algorithm that further slows down the
system especially when the number of predefined dependency
graphs is large in a real application scenario.

Therefore, existing detection technologies can not work
effectively online, since they are cumbersome or inaccurate.
By carefully analyzing existing technologies, we find that they
commonly determine whether a program belongs to a specific
malware family based on implementation-specific artifacts
such as byte sequences and dependencies among system calls.
When the artifacts are simple, the detectors are light-weight
but not accurate. On the other hand, creating more accurate
detectors with more complex artifacts would incur a heavy
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overhead. Moreover, existing technologies often target to iden-
tify the exact family of a malware rather than simply discrim-
inate a malware from benign software. Identifying a malware
family is useful when cleaning up the impacts of a malware,
but the need of a more complex specification to recognize the
malware family affects the performance of the system.

In this paper, we devise a novel malware detector, named
Growing Grapes, which can achieve accurate malware detec-
tion without incurring high overhead. Our proposed detector
consists of a clustering engine and a detection engine. The
clustering engine correlates suspicious objects into a number
of clusters by tracking OS-level information flows and attach-
ing a cluster label to each object. Each of the obtained clusters
contains either all benign objects or all malicious objects. The
detection engine determines a malicious cluster by matching a
predefined behavior template. A behavior template consists
of a group of independent atomic behaviors, each of which
serves for different malware intent, for example, hiding itself
from users or disabling anti-virus tools. Each atomic behavior
consists of a system call and their arguments (i.e., host
system details). All templates are stored in a behavior template
database.

In order to have an accurate online detector, we propose
two techniques. First, to achieve accurate detection, we use
a simulated annealing algorithm to optimally select a set of
behaviors to form a behavior template to identify a single
malware. With the optimal combination of behaviors in a
behavior template and the combination of templates in the
template database, our malware detector can identify the max-
imum possible number of malware samples while incurring
the minimum false positive rate. To further reduce the false
positive rate, we implicitly take into account the source of
the processes launching the behaviors when determining a
malicious cluster.

Second, we take two means to achieve online detection:
1) We devise a novel method to correlate system calls of a mal-
ware’s all processes using light-weight OS-level information
flows rather than traditional data flows; 2) We design a novel
structure for the template database. The database occupies
a small and fixed-size of memory (about 21K) even when
the number of templates contained increases up to millions.
With the support of the database, a template searching and
matching algorithm becomes very simple, and it only needs
to simultaneously test 45 bits within one operation.

As the detection process is based on the clustered objects,
Growing Grapes novelly identifies malicious OS objects in a
cluster fashion, rather than one by one as done in traditional
malware detection and analysis methods. With this feature,
even an ordinary author can know how to effectively remove
the malware without the knowledge of malware family. This is
especially important for cleaning up sophisticated malware that
consists of multiple processes or executables which monitor
and restore each other, because only removing one or a part
of them can not really disable the malware.

Experiments show that our approach can effectively detect
71.1% of unknown malware samples without false posi-
tives, while only imposing a small overhead on the system.
Compared with commercial antivirus software, it achieves
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higher malware detection rate and lower false positive rate.
The contributions of this paper are four-fold:

1) We propose a novel behavior-based malware detection
approach for online application. It leverages OS-level
information flow, optimized behavior templates and a
condensed template database to achieve accurate online
detection.

2) To make the detection process efficient, we design a
novel concise template database that can store a large
number of templates without increasing the memory
occupation and time of querying a template in the
database.

3) We propose a novel clustering approach to collect the
objects of a suspicious program together. Thus we can
conveniently monitor a malware’s complete behaviors
across different processes and help users to eliminate
all changes of a malware without malware family
knowledge.

4) We have implemented the approach in Windows kernel
and the testing results have verified its effectiveness.

In the rest of the paper, we first describe the Growing
Grapes approach for detecting malware in Section II, and then
introduce its implementation in Windows kernel in Section III.
The prototype is evaluated in Section IV. Last, we present
the related work and conclude our work in Section V and VI
respectively.

II. GROWING GRAPES APPROACH
A. Overview

Our Growing Grapes approach consists of clustering engine
and detection engine. The clustering engine groups the objects
of a program together into a cluster. The detection engine
decides whether the cluster is malicious by monitoring all
behaviors of the cluster. If a cluster’s behaviors match a
predefined behavior template in the template database, then
it is identified as malicious. The behavior template database
has a novel structure to minimize the memory and runtime
overheads. Moreover, the templates in the database are opti-
mized to reduce false positives and negatives.

To illustrate how a specific piece of malware is
detected in the system, we use a malware example
“Worm.Win32.Lovesan.a”. Growing Grapes correlates the
processes and executable files of the malware into a clus-
ter by tracing OS-level information flow, which is shown
in Figure 1(a). Meanwhile, Growing Grapes monitors and
records all atomic behaviors of the processes, which are shown
in Figure 1(b). When a behavior appears, Growing Grapes
searches the behavior template database using the current
behavior and the history behaviors of the cluster, which is
shown in Figure 1(c). Once matching a template, Growing
Grapes alarms a malware.

B. Clustering Engine

The clustering engine clusters together the suspicious
objects of a program. Suspicious objects are the ones that
derive from the Internet or removable drives, and are thus
suspected to be malicious. Suspicious objects only include
processes and executable files because a process is possibly
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the agent of an intruder and an executable file determines
the execution flow of a process which represents an intruder.
Based on the cluster, we can completely monitor all atomic
behaviors of a program and perform accurate detection by
using multiple atomic behaviors to identify a single malware.
Moreover, the cluster can help users to clean up the malware
without knowing the exact family of the malware.

The challenge is how to correlate suspicious objects together
into clusters in a light manner. Since objects of a malware
often have various types and are scattered all over the system,
it is difficult to associate them together. We observe that
objects of a malware can be correlated together by tracing
OS-level information flows, and at the same time the malicious
objects can be clearly separated from the other objects through
a proper way of attaching cluster labels to them. Accordingly,
we devise a novel approach to correlate suspicious objects
into clusters, which includes root rules, spreading rules and
clustering rules. These rules are explained in details in the
following subsections.

1) Root Rules: As all malwares come from either the
network or removable drives, we design root rules to mark the
objects from the network or removable drives as suspicious.
These objects are start-points to trace suspicious objects.

o Root Rule A: Marking processes which conduct remote

communications as Suspicious;

« Root Rule B: Marking executables (i.e., executable file)

located at removable drives as suspicious.

An executable in this paper represents an executable file
with a specific extension, such as .EXE, .COM, .DLL, .SYS,
.VBS, JS, BAT, etc, or a special type of data file that can
contain macro codes, say a semi-executable, such as .DOC,
.PPT, XLS, .DOT, etc. Growing Grapes does not allow a
suspicious process to change the extension of a file in order
to prevent its potential evasion of tracing. With these two
rules, all malwares that attempt to enter the system can be
tracked as there are only two ways for them to break into
system, either through network communications or through a
removable drive.

2) Spreading Rules: To track OS-level information flow,
BackTracker [10] is a successful approach. However, the
major challenge is how to make sure that it won’t get the
entire system marked as suspicious while at the same time
preventing malwares to escape from tracing. This needs to
trade off between reducing the number of marked objects

and reducing the risk of malware evasion. Our approach is
to trace preferentially the information flows with a high risk
of propagating malwares while pruning the information flows
with a low risk. Based on this principle, we have following
rules to mark related objects as suspicious.

« Spreading Rule A: Marking executable files created or
modified by a suspicious process as suspicious;

o Spreading Rule B: Marking processes spawned by a
suspicious process as Suspicious;

o Spreading Rule C: Marking processes loading a sus-
picious executable file or reading a suspicious semi-
executable or script file as suspicious;

o Spreading Rule D: Marking processes receiving data
from a suspicious process through a dangerous IPC as
suspicious.

As an executable represents an inactive malware while a
process represents an active malware, the information flows
presented in these four rules have a high possibility of propa-
gating malwares. Thus, to track the information flows with a
high risk of propagating malwares, the spreading rules focus
on tracing executables and processes. In the Spreading Rule C,
Semi-executable and script file possibly contain malwares
(e.g., macro virus in MS Word), and thus the processes reading
them need to be marked. Although the macro virus protection
in Office software can reduce the chances of macro virus
infection, relying on it is very dangerous as crafted macro
codes are able to subvert it and cause destructive damages.
This has been observed in virus Melissa and W97M.Dranus.

To prune the information flows which have a low risk of
propagating malwares, the spreading rules do not trace most
reading and writing operations on ordinary files, directories
and registry entries, which are frequently invoked but difficult
to propagate malwares. However, subtle malwares might evade
tracing by changing registry entries or configuration files
which subsequently affect the processes reading them, so as to
run malicious executables, escalate privileges, impose damages
on system, etc. No matter what evasion schemes the malwares
utilize, they need to run their own executables to perform the
tasks, which are downloaded from the network, copied from
removable drives, or obtained from changing local executables.
Since all executable related operations are thoroughly traced
by the Spreading Rule A and C, the malwares will be captured
whenever trying to load their executables. The two rules
are applicable to all existing malwares because they rely on
their own executables to perform malicious tasks on a host,
according to our analysis on Symantec Threat Explorer [7]. In
case that a malware relies only on benign programs to perform
attacks, the Root Rule A still can capture it when it requires
a remote communication to accept commands to exploit the
benign program to perform the malicious tasks. In addition, for
a few special registry entries and configuration files that can
be used by a malware to fool a benign program to execute
arbitrary commands, Growing Grapes forbids a suspicious
process to modify them. Therefore, although the operations on
registry entries or configuration files are not traced, malwares
still can not evade being detected by Growing Grapes.

To reduce the number of marked processes, the
spreading rules only trace dangerous IPCs (Inter-Process
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Communication). According to our investigation on Microsoft
Security Bulletins [6], a primary source for analyzing attack
vectors of Windows OS [5], the overwhelming majority
of vulnerable IPCs can only be used to launch denial-of-
service attack, disclose sensitive information, or escalate the
privileges of the processes that send IPC data, rather than
take control of the receiver process. Accordingly, they can
not be used to propagate malwares. Moreover, IPCs that
can propagate malwares often rely on network (e.g., Remote
Procedure Call) and thus are traced by the Root Rule A.
Consequently, we employ a Dangerous-IPC-List to trace
dangerous IPCs since there are very few dangerous IPCs in a
Windows OS.

3) Clustering Rules: Based on the spreading rules, the
suspicious objects are actually connected to each other by
information flows and form an existent but invisible depen-
dency graph, which had been disclosed by the literature [10].
The graph is a directed graph and has a root node. Its nodes
represent OS objects, e.g., a file, a process. Its edges represent
information flow related operations, e.g., creating a process,
modifying a file. Figure 2 (a) and (b) show two dependency
graphs which are derived from a networking process and an
executable file respectively.

The clustering rules are responsible for dividing the depen-
dency graph into sub graphs, i.e., clusters. Note that, we
do not intend to really generate dependency graphs to help
cluster objects since this would not be applicable to an
online approach. Instead, the clustering rules are implemented
together with the spreading rules as follows: when an object
is determined as suspicious by clustering or spreading rules, a
proper cluster label, i.e., a number and a time stamp, will be
attached to it at the same time in order to denote that it is a
suspicious object and belongs to the cluster identified by the
label. In other words, the clustering rules are enforced along
with the spreading rules in real-time, rather than generating a
dependency graph and then analyzing it.

When a root object is a network facing process, its
dependency graph is too coarse-grained to be used to
recognize malicious objects in a cluster fashion since it might
contain both benign and malicious objects. In other words,
we can not determine that all objects in a graph are malicious
even if most of the objects in the graph are malicious. Thus,
we must partition the graph into a number of sub graphs, say
clusters, so that each cluster contains either only benign or
only malicious objects.
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According to the recent research [31][27] and our analysis
on a huge number of malware descriptions in the Symantec
Threat Explorer [7], malwares break into a host through three
basic attack channels. The first is that, malwares exploit bugs
in network-facing daemon programs or client programs and
compromise them, then immediately spawn a shell or back-
door process [31]. After this, the attacker tries to download and
install attacking tools, as well as performs any other adversary
actions. Accordingly, we have the following rule:

o Clustering Rule A: Attaching a cluster label to a process
and its descendants if the process is directly spawned by
a network-facing process.

We call this type of cluster a branch cluster, e.g., the
Branch-cluster B in Figure 2 (a). A branch cluster corresponds
to a sub graph of a dependency graph which roots from a
network-facing process.

The other attack channel is that, malwares increasingly
use social engineering to lure users into downloading and
launching them [27]. After started, malwares copy themselves
and make themselves resident in a host. Consequently, we have
the following rule:

o Clustering Rule B: Atrtaching a cluster label to a

downloaded executable and its descendants.

We also call this type of cluster a branch cluster, e.g., the
Branch-cluster A in Figure 2 (a). The last channel is removable
drives. Accordingly, we have the following rule:

o Clustering Rule C: Affaching a cluster label to an
executable file located on a removable drive and all its
descendent objects.

We call this kind of cluster a drive cluster, e.g., the Drive-
cluster A in Figure 2(b).

Another issue for labeling objects is about a joint child who
has multiple parent nodes in a dependency graph, e.g., the joint
children A and B in Figure 2 (a). That is, when the parent
nodes belong to distinct clusters, we have to determine the
cluster label of the joint child. Basically, we make decision
according to the priority sequence like “process’ executable
— parent process — other objects”. Obviously, the joint child
should inherit the cluster label from its parent process or exe-
cutable file (i.e., a process’ image file) if either of them exists
instead of other objects. Moreover, as loading an executable
is posterior to creating a process and necessarily overwrites
the newly created process’ code segment, the new process’
activity is based on the loaded executable. Hence, the joint
child should inherit the label from the loaded executable rather
than the parent process if both exist. If more than one parent
node has the same priority in the sequence above, the child
inherits their labels in the reverse time order. Consequently,
the joint children A and B are classified into Branch-cluster
A and B respectively, as shown in Figure 2(a).

On the other hand, when splitting a dependency graph into
different branch clusters, a sophisticated malware might inten-
tionally separate an ASEP (Auto-Start Extensibility Point [8])
pair into two different clusters. Then, the two clusters work
together to perform malicious actions and potentially evade
Growing Grapes’ detection. An ASEP is used to enable auto-
starting of programs without an explicit user invocation, and
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thus becomes a common target of infection by malwares.
An ASEP pair represents an ASEP and the corresponding
executable file. To mitigate this issue, we periodically scan
the clusters to see whether there are split ASEP pairs, and
combine the related clusters together if found.

4) Verification: With the above methods, an obtained cluster
will consist of either all benign or all malicious objects. It is
not possible that a cluster contains both benign and malicious
objects, because if a cluster contains a malicious object, all
objects in the cluster should also be malicious, which can be
proved as follows:

Given a cluster ¢ = (V, E), where V is a set of vertices
and E is a set of directed edges connecting the vertices. The
vertices represent OS objects. We use v, to represent the
root node of the cluster ¢, which is the ancestor vertex of
all vertices in the cluster. An edge (v,—1,v,) represents an
OS-level information flow related operation that propagates
malwares from the parent (source) object v,_; to the child
(destination) object v, - v f = benign|malicious represents
that the corresponding object is benign or malicious.

(1) If the root object of the cluster ¢ is malicious, then all
objects in the cluster should be malicious. As the root object
is the ancestor of all vertices in the cluster, for an arbitrary
vertex v, in the cluster, there at least exists a propagation
path {(v;,v1), (v1, v2), (v2,v3),...... (vn—1,vy)} that propa-
gates malware from the root to the vertex v,. According to
the spreading rules presented previously, a malicious object
can make an object to be malicious by executing a propagation
operation: (Vy—1, Vi )€ EAvy—1.f = malicious So, if the root
object is malicious, then v,.f = malicious A (v;,v1)eE —
vi.f =malicious,v.f = malicious A(v{,2)eE — v.f =
malicious, ...... , Vn—1.f = malicious A (vp—1,vy)EE —
vu.f = malicious. So, any vertex in the cluster should be
malicious.

(2) If any object v, # v, in the cluster is malicious, the
root vertex v, should be malicious and there should be a
propagation path to propagate malware from the root to the
vertex v,, because the root is the only source to introduce
malware into the cluster. Then, according to the result of (1),
all objects in the cluster are thus malicious since the root object
is malicious.

Therefore, if any of the objects in the cluster is malicious,
all the objects should be malicious. In other words, a cluster
contains either only benign or only malicious objects. Our
experiments in Section IV further demonstrate the effective-
ness of the labeling approach.

C. Detection Engine

The detection engine performs detection tasks by moni-
toring the activities of each cluster. To obtain an accurate
detection, the engine decides a malicious cluster using multiple
atomic behaviors rather than a single atomic behavior. The
multiple atomic behaviors used to determine a malware serve
as a predefined behavior template in a behavior template
database that belongs to the detection engine.

At a high level, using multiple atomic behaviors to identify
a malware is in accordance with the recent work [1] that
uses multiple significant behaviors. An atomic behavior is

often the core of a significant behavior, because a significant
behavior is represented by a dependency graph that includes
a mission-critical system call as the core step. Moreover, the
result from another recent work [24] also supports our idea
of using multiple behaviors. The result shows that a set of
discriminative operations, e.g., delete_file, create_mutex, etc,
can be used to recognize a malware family. This actually
proves that multiple operations can be used to effectively
detect a malware.

The challenge to building the detection engine is three folds.
The first is how to extract proper atomic behaviors that reflect
the intent of the malware authors from system-specific details.
The second is how to construct behavior templates that can
effectively detect known and unknown malware with a small
number of false positives. The last is how to design an online
mechanism to efficiently match the behavior templates. We
present our strategies for addressing these three challenges in
the following three subsections.

1) Defining Atomic Behaviors: We define atomic behaviors
based on the analysis of the OS resources that are most likely
being attacked. Monitoring the operations that manipulate such
resources can efficiently capture the real intent of the attackers.
Consequently, the obtained atomic behaviors depend only on
the system details instead of malware details. Such behaviors
are most possibly taken by malware authors across different
malware families and thus can be applied to detect unknown
malwares.

An atomic behavior consists of an operation, the manipu-
lated object and the necessary arguments, which is critical to
fulfill a malicious intent, e.g., modifying registry key value
for surviving reboot. When the behavior is too specific, e.g.,
presenting the exact name of the registry key and value, the
behavior may fail to recognize the minor variants of previously
observed malware. Hence, a generalization is necessary.

We have two basic steps to generalize atomic behaviors:
(1) extracting security-sensitive OS object types and operation
types based on careful analysis on system details; (2) making
meaningful combinations of the OS object types and operation
types to form candidate atomic behaviors, which are shown in
the bottom of the next page.

Bfile’ Bregistry, Bprocess’ Bipc and Bsystem represent five
sets of atomic behaviors. The operation types of various
objects are a generalization of one or several system calls
and necessary arguments. The FileType is recognized from
the extension names of the files. The ParentDirectoryType
is recognized by the environment variables or paths, which
represents the parent directory of the file. RegistryType is
identified by the paths of the registry keys. ProcessType is
detected by the names and paths of the image files. As a
result of the generalization, we obtained 63 candidate atomic
behaviors. Some examples include “create executable files
under system directory”, “modify registry to disable firewall”
and “kill antivirus processes”.

Note that a candidate atomic behavior might not have
the detection capability as that based on behaviors extracted
from dependency graphs [1][30], and some of them might
even produce high false positive rate. However, when using
these atomic behaviors to construct behavior templates, our
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algorithm based on combinatorial optimization will automati-
cally exclude the atomic behaviors with a high false positive
rate from the final set of templates.

Actually, our experiments in Section IV demonstrate that
after the optimization process the template database only con-
tains 57 of the 63 atomic behavior candidates while excluding
the behaviors that have high false positive rates. We observe
that an atomic behavior eventually incorporated into the tem-
plate database generates false positive rate of 56% at most,
and the average number of behaviors in each template is about
7.2. Thus, when using a template with 7.2 independent atomic
behaviors to determine a malware, the expected false positive
rate should be lower than 1.5%, though each of the atomic
behavior has significant false positive rate. Furthermore,
implicitly considering the source of the processes that require
the atomic behaviors can further reduce the false positive rate.
This is because the source of a process in a cluster is either
the network or a removable drive and thus the process has
higher possibility to be malicious than that of not in a cluster.

2) Constructing Atomic Behavior Template Database: The
template database is critical to the effectiveness and efficiency
of the detection engine. We use a set of malware and a
set of benign software to train the template database. The
issue is how to build a template database that can recognize
the maximum possible number of malicious programs while
minimizing the number of benign programs being falsely
identified as malware. Meanwhile, considering the system
overhead, a template and a template database should include
the minimum number of atomic behaviors respectively. We
address this problem using combinational optimization algo-
rithm to select an optimal template database that best satisfies
the requirements above. As our algorithm is similar to [1], we
do not elaborate it here.

3) Detection Algorithm: As an online detector, the detection
algorithm should be quick and light-weight, which is critical
to the applicability of the detector. For Growing Grapes, the
detection algorithm searches in the behavior template database
to determine whether there is a template that matches the set
of behaviors exhibited by the given cluster. A natural imple-
mentation of the algorithm might use a number to represent
a behavior and a set of numbers to constitute a template, and
store a set of templates into a template database. In a real
application scenario, the template database might be huge and
thus cost a significant amount of time to search within the
whole database. As the detection algorithm will be called very
frequently by related system calls and API functions, such
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implementation of the algorithm will significantly affect the
system performance.

To accelerate the template searching and matching proce-
dure, we design a novel detection algorithm that uses a number
to represent a behavior template rather than a behavior. Each
bit of the number represents an atomic behavior belonging
to the template. Thus an integer with 64 bits can express
a template that consists of 64 atomic behaviors at most.
Accordingly, the template matching procedure only needs a
single comparison between two integers instead of a serial of
such comparisons.

If the template database is very large, it is time consuming
to search through it. Hence, we do not store all of the templates
one by one as traditional methods do. Instead, we propose a
novel structure for the template database, which uses a fixed
size of 21K memory to contain up to 2% templates and tests
a few bits within the 21K space to fulfill a query for a given
template.

Our template database is organized based on a femplate
graph, which is shown in Figure 3(a). The graph consists
of 256 nodes and necessary edges between nodes. The
256 nodes are organized into 16 rows and 16 columns.
For a given template with 64 bits, each row stores the hex
value of four consecutive bits of the template, and each
node in a row represents a candidate hex value. We use
V(R) to represent a node, where V is the hex value of the
node and R is the row number. An edge can only connect
two nodes that locate at two neighboring rows respectively.
Thus, a template is represented by 16 nodes from 16 rows
respectively and 15 edges that connect them. For example, the
template database in Figure 3(a) contains two templates, i.e.,
hx0102400000000021 and hx2121000000000001. The former
template corresponds to the path 0(0)— 1(1)—0(2)—2(3)—
4(4) — 0(5) — 0(6) — 0(7)—0(8)—0(9)—0(A)—0(B)—0(C)
—0(D)—2(E)—1(F). The node 0(0) indicates the hex
value of the first four consecutive bits is 0, the node 1(1)
indicates the hex value of the second four consecutive
bits is 1, and so on. However, as the two templates cross
with each other at some nodes, e.g., the node 1(1), from
the figure, one may also find some wrong templates that
actually do not exist, e.g., hx(0121000000000001 and
hx2102400000000001.

To address this issue, we build a crossing list, for every node
to record the templates crossing the node. Each element of the
crossing list corresponds to a template that crosses the node.
An element is a pair that consists of the values of the preceding

Byije = FileOperationType x FileType x ParentDirectoryType = {Create, Delete, Modify, Read, Write, Load}

X {Executable, Configuration} x {System, Windir, ProgramFiles, Temp, User Profile, I E, DriveRoot,

Startup, RemovableDrive}

Byegistry = RegistryOperationType x RegistryType = {Create, Delete, Modify}

x {Startup, Explorer, | E, Driver, Service, Firewall, AntiVirus, Update, Restore}

Bprocess = Process OperationType x ProcessType = {Start, Kill, Inject, Hide} x {System, Explorer,Cmd, I E, Log,
Antivirus}Brpc = IPCOperationType x IPCType = {Create} x {Mutex, Event}

Byystem = SystemOperationType = {Hook, Restart, LogKeyStrokes, ChangeDate}
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Fig. 3. Template graph for a behavior template database. (a) Template Graph. (b) Template Graph with Crossing Lists.

and succeeding nodes of the corresponding template. For
example, in Figure 3(a) the node 1(1) should have a list with
two elements: <0, 0> and <2, 2>. The element <0, 0>
belongs to the template hx0102400000000021, where the two
0 indicate the values of the preceding node 0(0) and the suc-
ceeding node 0(2) respectively. The element <2, 2> belongs to
the template hx2121000000000001, where the two 2 indicate
the values of the preceding node 2(0) and succeeding node 2(2)
respectively. As the crossing list of node 1(1) does not have
two elements <0, 2> and <2, 0>, the wrong templates
(hx0121000000000001 and hx2102400000000001) are thus
excluded.

For a node at row 0, each element of its crossing list is
only the value of a succeeding node since it does not have a
preceding node. For a node at the last row F, it does not need
a crossing list since it does not have the templates crossing
problem. Thus the template graph can be transformed as in
Figure 3(b). Since the last row F does not have crossing lists, to
find a template, we only need to check the existence of 15 pairs
in the crossing lists of corresponding 15 nodes from row 0 to E
one by one. For example, Figure 3(b) shows the 15 pairs of the
template hx0102400000000021 which are circled by dashed
lines. The first pair is <1> of node 0(0), the second pair is
<0, 0> of node 1(1), and so on.

To reduce the space for storing the graph and the time for
matching a template in the graph, we store a node and its
crossing list as a bit map which is 256 consecutive bits. The
256 bits represents all possible combination of the preceding
and succeeding nodes since each row has 16 nodes. Each bit
indicates whether the corresponding pair exists in the list. For
example, the first bit indicates that if the pair <0, 0> exists
and the last bit indicates if the pair <F, F> exists. A node
at row O only needs 16 bits since an element in its crossing
list only contains the succeeding node. A node at row F does
not need any bits since it has not a crossing list. Accordingly,

the template graph (i.e., the template database) only occupies
7200 bytes in total.

When a process in a cluster requests an atomic behavior,
we combine the current behavior and the former atomic
behaviors of the cluster together to form a behavior vector
that has the same format as a behavior template. Then we
use the behavior vector to query the template database. The
query only needs one operation to simultaneously test 15 bits,
which indicate the existence of 15 pairs in the corresponding
crossing lists of 15 nodes from row O to E one by one. When
all of the 15 bits are set, we can determine the existence
of a corresponding template. Hence, the detection algorithm
can be formally presented as shown at the bottom of the
page.

Bitmap(i,j) represents the bitmap of node j(i). The operation
[ ] after a bitmap tests whether the corresponding bit in the
bitmap is set. The address of the bit in the bitmap can be
computed by the expressions within the [ ]. Val(j) in the
behavior vector indicates the value of the corresponding four
consecutive bits. The operation to query whether there is
a behavior vector hx0102400000000021 is as shown at the
bottom of the next page.

The template database could lead to some wrong tem-
plates when two templates cross with each other at
more than one consecutive nodes. Consider two templates
hx0120000000000000 and hxF12FFFFFFFFFFFFE. In the
template graph, the wrong template hxF120000000000000
would also seem valid, because F12 and 120 appear in the
crossing lists of nodes 1(1) and 2(2) respectively. The reason
for this issue is that, at least 8 consecutive behaviors that
constitute two consecutive nodes in at least two templates have
the same value. To address this issue, when constructing the
database, the order of the 64 behaviors should be carefully
arranged so that the 8 consecutive behaviors are scattered into
different non-neighbored nodes.

TemplateDatabase = {Bitmap(i, j)},
BehaviorVector = {Val(j)}, j=0,1,.... F

Query(BehaviorVector) = Bitmap(0, BehaviorVector.Val(0))[BehaviorVector.Val(1)]

E
ﬁ( ﬂ Bitmap(i, BehaviorVector.Val(i))[16 x BehaviorVector.Val(i — 1) + BehaviorVector.Val(i + l)])

i=1
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Specifically, we use triple template databases T, T” and T”.
T is the original database while T’ and T” are derived from
T. Based on T, we exchange the positions of even behaviors
to obtain T° and positions of odd behaviors to obtain T”.
A pair of exchanging rules can be as follows:

ExchangeEvenBehaviors : i < (i + k)%64,
i=0,2,4,.... 62,k > 8

ExchangeOddBehaviors . j < (j + k)%64,
j=13,5,..... 63,k > 8

A valid template should appear in all databases, because all
the behavior values in the three databases remain unchanged
while the behavior orders are changed. If appearing in only one
or two databases, we can determine that the template is wrong
in the databases. Hence, the detection algorithm is improved
as follows:

Query(BehaviorVector) = Query(BehaviorVector, T) N
Query(Exchange EvenBehaviors(BehaviorVector), T')N
Query(ExchangeOddBehaviors(BehaviorVector), T")

Query(BehaviorVector,T) tests the behavior vector in
database T. ExchangeEvenBehaviors(BehaviorVector) and
ExchangeOddBehaviors(BehaviorVector) reorder the behav-
iors in the vector according to the exchanging rules.

Based on the analysis previously, the three databases occupy
only 21K bytes and the detection algorithm merely checks
45 bits in the three databases. Moreover, the speed and space
taken by the algorithm are fixed even when the number of
templates dramatically increases up to millions.

III. IMPLEMENTATION

To evaluate the effectiveness of the Growing Grapes mal-
ware detection approach, we have developed a prototype
implementation for Windows XP, and carried out a series of
experiments. Although XP is not as new as Vista, it is enough
for verifying the Growing Grapes model since both versions
of OS have very similar system calls and Win32 API functions
based on which Growing Grapes works. Moreover, XP is still
a popular OS platform on the Internet. As a result, it is not
surprising that recent similar research projects [30][2][25][22]
also perform on XP.

For the clustering engine that correlates suspicious objects
into clusters, we intercept Windows system calls at the kernel
level and Win32 API functions at the user level to attach
a proper cluster label to each suspected object according to
the root, spreading and clustering rules. To prevent intended
bypassing, we always intercept a function at the kernel level

203

rather than the application level if possible. For the permanent
objects, the labels of files are stored in a specially created
stream of each file. The labels of registry keys are recorded in
a file under a specially protected directory. However, for the
volatile objects, e.g., processes, their labels are temporarily
stored in memory. Each cluster has a data structure to record
all of its exhibited atomic behaviors, created or modified
registry entries or files that can be used to launch the pro-
gram after system booting, as well as whether the cluster is
malicious.

For the detection engine, we monitor atomic behaviors
and query the template database. All atomic behaviors are
extracted by intercepting a single mission-critical system
call/API function and analyzing the parameters. For exam-
ple, monitoring NtSetValueKey() for “Change security set-
tings”. Some malware behaviors consist of more than one
system call or Win32 function, for instance, the behavior
“Inject into other processes” consists of NtOpenProcess(),
NtAllocate VirtualMemory(), NtWrite VirtualMemory(), NtCre-
ateThread(), etc. We only intercept the mission-critical func-
tion, i.e., NtCreateThread(). Every time an atomic behavior
is intercepted, the detection engine generates a number that
indicates what behaviors the cluster has exhibited by now and
queries the template database in memory. If there is a match,
the engine sends an alarm.

IV. EVALUATIONS
A. Malware Detection

To demonstrate that our Growing Grapes system is effective
in detecting malwares, we first collected 436 real-world mal-
ware samples mainly from a publicly available website [19].
The samples cover 127 malware families which are much
more than used in the previous research [30][1], because
we emphasize on detecting unknown malware from different
families rather than merely different variants of the same
family. This is closer to the real usage scenario that an
end host works in the Internet for years and experiences
various families of malware. Moreover, we also prepared
164 benign samples mostly from two trustworthy websites,
i.e., technet.microsoft.com and www.download.com.

We set up a local network consisting of two servers and
two hosts as a testing environment. Server A mainly stores
malware samples, and runs IIS web server, ftp server and
EZ-IRC server. Server B mainly stores benign samples, and
runs IIS web server as a website. The host machines installed
with Windows XP run the client programs that are often the
attacking vectors for malwares, including mIRC, MSN Mes-
senger, MS Outlook, eMule, IE, ftp client, etc. On one host,

Query(hx0102400000000021 ) = Bitmap(0,0)[0 + 11N Bitmap(1, 1)[16 x 0 + 0]
NBitmap(2,0)[16 x 1 + 2] N Bitmap(3,2)[16 x 0 + 4] N Bitmap(4,4)[16 x 2 + 0]
NBitmap(5,0)[16 x 4 + 0] N Bitmap(6,0)[16 x 0+ 0] N Bitmap(7,0)[16 x 0 + 0]
NBitmap(8,0)[16 x 0+ 0] N Bitmap(9, 0)[16 x 0+ 0] N Bitmap(A, 0)[16 x 0 + 0]
NBitmap(B,0)[16 x 0+ 0] N Bitmap(C,0)[16 x 04+ 0] N Bitmap(D, 0)[16 x 0 + 2]
NBitmap(E,2)[16 x 0 + 1]
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Firefox is installed to download samples from the server B. To
emulate the real-world usage scenarios, we login into the hosts
and perform tasks including browsing the malicious website
and ftp server in the local network and downloading samples,
sending and receiving adverse instant messages and emails,
accessing P2P shared folders or removable drives that contain
samples, etc. Thus, the samples are introduced into a host
through various channels. With this testing environment, we
intend to more thoroughly evaluate the capability of Growing
Grapes to identify malware on an end host.

Before the evaluation, we validated the necessity of the
clustering technique since it is critical to Growing Grapes. We
modify the prototype so that multiple processes of a malware
are not correlated together into a cluster while behavior
templates are still applied to identify malware. The testing
result shows that the modified prototype only identifies 105 of
the 436 malware samples. Hence clustering is necessary for
effective detection.

To evaluate the detection effectiveness on multiple datasets,
we divide the samples into five disjoint sets, training the
behavior template database on every set independently, and
evaluating on the rest sets not used in each cycle of training.
Moreover, we execute each cycle for nine different threshold
values to explore the tradeoff between true positive rate, false
positive rate, average number of behaviors in each template
and number of templates in a template database. A threshold
value is used by the behavior template database optimization
algorithm to construct templates.

The evaluation results are shown in Figure 4. Considering
true positive rate, our detector can successfully recognize
71.1% of unknown malware without false positives. Previous
research [30] based on dependency graph reported the rate of
64% and commercial antivirus software reported the rate of
55% [16]. Hence, this is a significant improvement considering
that we use much more malware families to perform evaluation
than that of previous studies. Project HOLMES [1] obtained
a better detection rate, but the result was not generated by a
detector.

For the false positive rate, our detector produces at most
22.5% which is much less than that of HOLMES, i.e., 57.14%.
The reason is that, when determining a malware, we utilize not
only behaviors but also the sources of the processes launching
the behaviors, which significantly improves the detection capa-
bility of each of the behaviors. Moreover, when optimizing the
behavior template database, our objective function still tends
to choose a low false positive rate when the threshold value
exceeds the actual true positive rate, rather than simply return
a large value as HOLMES does.

However, paper [30] reports no false positives as a result of
detection based on dependency graph, while our detector raises
false positives. The main reason is that our datasets for testing
include a wide range of malware families, especially the
families that exhibit a very few number of atomic behaviors.
To detect such malwares, the template database needs to
incorporate the templates that consist of only one to two
atomic behaviors. Although these templates can detect the
malwares with rare behaviors but at the same time tend to
wrongly classify benign software as malicious.
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Fig. 4. True and false positive rates of Growing Grapes under different
threshold number of true positives.
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Fig. 5. Growing Grapes produces higher true positive rate and lower false
positive rate than that of commercial anti-virus software.

B. Comparison With Commercial Tools

To further evaluate Growing Grapes, we performed another
experiment using three popular commercial behavior-based
anti-malware tools: Kaspersky-B, VIPRE-B and ThreatFire,
where “B” indicates the behavior blocking module of the
related anti-malware software. We test all of the malicious
and benign samples in our evaluation set. Figure 5 shows the
true positive rates and false positive rates of every tool. From
the figure, our Growing Grapes is shown to outperform other
schemes, with the highest true false positives and the lowest
false positives.

As the internal technologies of the commercial tools are
proprietary, we speculate that the better performance of our
approach is due to our optimization on the behavior template
database, which chooses a set of templates that cover the most
malicious samples and the least benign samples. Moreover,
the false positive rate is further reduced by implicitly taking
into account the source of the process requiring the current
behavior.

C. Overhead

In the following experiments, we evaluate the additional
overhead imposed by Growing Grapes from three perspectives.
The test-bed used in this evaluation consists of two machines.
Machine A contains a Pentium-4 2.8GHz CPU with 1GB
memory and runs applications including WinZip32, xCopy,
BCC32 and WebBench, etc. Machine B contains an Intel Core
2 Duo 2GHz CPU with 2GB memory, and runs IIS web server
and Telnet server. We installed Windows XP on both machines.

(1) Overhead of intercepted system calls and Win32 API
functions. We first disable Growing Grapes, run a group of
benign programs and malwares, and count the average CPU
cycles spent in each system call and API function through
rtdsc instruction. Then we enable Growing Grapes, run the
malwares, the benign programs with cluster labels and without
cluster labels to perform the test again. In all tests, the average
CPU cycles of every system call or API function is calculated
from 100 invokes.
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TABLE I
OVERHEAD OF GROWING GRAPES (CPU CYCLES). THE COLUMNS GG-m, GG-bl AND GG-b SHOW THE CPU CYCLES TAKEN BY THE MALWARE
PROGRAMS, THE BENIGN PROGRAMS WITH AND WITHOUT CLUSTER LABELS RUNNING ON GROWING GRAPES, RESPECTIVELY

Functions Native GG-m GG-bl GG-b Functions Native GG-m GG-bl GG-b

NitCreateFile 334492 351886(5.2%) 351277(5.0%) 338515(1.2%) [CreateService 6568120 6695944(1.9%) 6692937(1.9%) 6568412(<0.1%)
NtOpenFile 167620 174667(4.2%) 174482(4.1%) 169728(1.3%) [OpenService 5490443 5624175(2.4%) 5621223(2.4%) 5490669(<0.1%)
NtWriteFile 245179 256332(4.5%) 255722(4.3%) 249820(1.9%) [NtSetValueKey 210491  227593(8.1%)  227219(7.9%)  210553(<0.1%)
NiCreateNamedPipeFile 204711 216817(5.9%) 216674(5.8%) 204790(<0.1%)|NtCreateKey 281722 299397(6.3%) 298917(6.1%)  281894(<0.1%)
NtCreatePort 37241 40645(9.1%) 40545(8.9%) 37278(<0.1%) [NtCreateProcessE 206458 217432(5.3%) 217184(5.2%)  208850(1.2%)

The testing results are shown in Table 1. With Growing
Grapes enabled, the malware programs have 1.9%~9.1% more
performance penalty than native, while the benign programs
have only 0~8.9% overhead. In particular, the overhead
incurred on the benign programs without a cluster label is
lower than 1.9%. If a process does not have a cluster label,
Growing Grapes will not perform any operations on its system
calls. Since only the processes derived from the network or
removable drives have a cluster label, most of the processes
are almost not affected by Growing Grapes. The real malicious
programs have the highest performance penalty as they always
exhibit atomic behaviors that require analyzing the behaviors
and matching behavior template. Therefore, Growing Grapes
has an interesting performance penalty model which imposes
the most penalties on real malicious programs, the next most
penalties on the suspected programs and the least penalties on
the benign programs. Generally, the performance impact from
the system call and Win32 API function interception is small.

(2) Overhead of independent applications. We measured
the execution time of a set of benign programs. These
programs with certain parameters have different operational
characteristics including file-bound, registry-bound, network-
bound, process-bound and memory bound. The execution time
of a program is the average duration from the start of a
program to its termination. The results are shown in Figure 6.
Growing Grapes imposes 1.28% overhead on average over the
benign programs without cluster labels and 7.88% overhead on
average over the benign programs with cluster labels compared
to that of native. Some programs with certain parameters and
cluster labels impose up to 10.37% overhead, which include
“Reg import”, “Rar e”, “winmsd”, “xcopy” and “rmdir”.
According to our analysis, these programs frequently perform
behaviors similar to malicious behaviors, for example, modify-
ing registry, creating executable files, deleting executable files
and reading system information. In order to differentiate these
behaviors from real malicious behaviors, Growing Grapes
needs to spend longer time in monitoring and analyzing.

Furthermore, we measured the throughput of IIS web
server on native Windows XP and the Growing Grapes
prototype, respectively. The performance is evaluated using
WebBench [35], a licensed PC Magazine benchmark program.
Each reported measurement is an average of results from ten
runs. In every testing session, each web server had one to
twenty clients concurrently sending requests to it. The results
are depicted in Figure 7. The performance loss of the web
server when running on Growing Grapes is 7.5% on average
compared with that of running on the native OS.
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Fig. 6. The execution time of independent applications running on native
Windows XP and Growing Grapes. GG and GG-I represent the applications
running on Growing Grapes without and with labels.
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Fig. 7. 1IS throughput on Growing Grapes and Native Windows XP. Growing
Grapes causes 7.5% performance loss on average.

(3) Overhead over time. For this test, we used two tools to
access IIS: WebBench and Uploader. Uploader is developed
by us to automatically upload executable files onto IIS web
server. We have continuously run WebBench, Uploader and IIS
for 24 hours in the environment as presented above. Figure 8
shows the memory footprint of Growing Grapes mechanism
when using WebBench or Uploader to access IIS, which are
recorded as GG-WebBench and GG-Uploader respectively.
The memory occupation of GG-WebBench and GG-Uploader
increase 0% and 2270% respectively during the 24 hours
testing. After careful analysis, we found that the memory
increase is caused by accumulated cluster data structures. Each
cluster in GG-WebBench is removed after its processes exit,
but most clusters in GG-Uploader can not be deleted even after
all its processes exit. These clusters contain executable files,
thus Growing Grapes keep them in memory to find potential
ASEP pairs according to Section 2.2.3.

Figure 9 shows the throughput of IIS when accessed
by WebBench or Uploader. The throughput of IIS on
GG-WebBench and GG-Uploader decrease 9.7% and 57%
respectively during the 24 hours testing. Growing Grapes
periodically scans existing clusters to find split ASEP pairs
and combine the related clusters together. When running on
GG-Uploader, many clusters are accumulated in memory and
thus need significant time to scan them. This experiment
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and GG-Uploader represent that the IIS web server is accessed by WebBench
and Uploader respectively.

indicates that, with Growing Grapes running, the performance
of certain applications will degrade significantly after a long
period of time, which is a limitation of Growing Grapes.
We will consider the improvement method in the future.

D. Scalability

To evaluate the scalability of Growing Grapes, we first
calculate the number of templates required by the template
database to detect a certain number of malware samples with
true positive rate at about 90%, using our algorithm for
building template database. The results are shown in Figure 10.
The number of templates does not scale linearly with the
number of samples in the training dataset. The increase speed
of templates significantly reduces as the number of samples
increases linearly. One major reason is that the average number
of behaviors being detected by each template increases when
the number of samples increases, which in turn counteracts
the increase speed of templates.

We then test the performance overhead when the number of
templates increases. The results are illustrated in Figure 11.
The performance overhead is represented by several system
calls and API calls that are invoked by malicious processes.
The performance overhead of Growing Grapes almost does
not change when the number of templates increases from O to
1,000,000. As presented in Section 2.3, with our intelligent
design of the template database, the time for searching a
template in the template database is fixed and not affected
by the number of templates in the database.

V. RELATED WORK

Growing Grapes is a type of behavior-based detector
which monitors system calls or API calls, but it differs
from all existing behavior-based studies. Previous work takes
into account the relations among system calls, for example,
“system call sequence” [3][14][34], “API sequence” [11],
“system call N-Gram” [12][13], “system call Finite-State-
Automata” [23][9], “system call stack” [26][21], “system
call frequency” [15] and “system call dependency graph”

es
Being Detected by Each Template

Fig. 10. The total number of behavior templates and the average number of
malware samples being detected by each template increase slowly while the
number of malware samples increases linearly.
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Fig. 11. The performance overhead of Growing Grapes on several important
system calls and API calls keeps unchanged while the number of templates
increases from 0 to 1,000,000.
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[11[22][29][30][25][33]. However, Growing Grapes ignores
relations among system calls and only utilizes individual
mission-critical system calls and their arguments, which can
succinctly capture the intent of the malware author.

HOLMES [1] also employs multiple behaviors to recognize
a malware and develops an optimization algorithm to com-
bine candidate behaviors into discriminative specifications.
However, HOLMES is not an online system. Moreover, it uses
dependency graphs to represent behaviors and thus has the
problems faced by other detectors using dependency graphs.
A recent effort [30] detects malware based on dependency
graphs but does not trace data flow, and thus addresses the low
performance issue. However, it can only detect previously seen
data dependencies. So, its capability to identify previously
unseen malware is limited. Furthermore, as it relies on a graph
matching algorithm to determine a malware, the performance
impact is not clear when deployed in a real application
scenario that requires enormous number of behavior graphs.
The authors in [20] propose a behavior-based approach to
detect malware. The basic difference lies in that it aims to
clean up malware impacts within a virtual machine when
committing the content of the virtual machine into the host
environment. We propose a much more comprehensive scheme
for detecting malware on an end host, and also a novel method
of generating and storing behavior templates, which not only
ensures a good detection performance but also makes the
detection very simple and scalable.

Research efforts in [10][17][ 18] demonstrate the approaches
of tracing OS-level information flow with the support of
virtual machines or backend hosts. Growing Grapes use these
approaches to correlate malware objects. In order to support
online detection on a host, Growing Grapes significantly
improves the tracing performance by pruning the information
flow that has a low risk of propagating malware.

VI. SUMMARY

In this paper, we propose Growing Grapes, a novel scheme
towards building a behavior-based accurate online detector that
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requires low false positive and high performance simultane-
ously. Growing Grapes has two engines. One is the clustering
engine responsible for collecting the objects of a suspicious
program into a cluster by tracing light-weight OS-level infor-
mation flow rather than traditional data flow. The other is
the detection engine that determines a malware using multiple
simple behaviors, i.e., a behavior template, rather than a single
complex behavior. The detector thus novelly identifies the
malicious changes of a malware in a cluster fashion rather than
one by one, which helps the ordinary users to thoroughly clean
up the malware. The template database is optimized to reduce
the false positive rate while preserving high true positive rate.
With a novel design of the template and database structure, it
can complete a query in one operation and occupies merely
21K memory space which allows storing up to 26* templates.
Extensive experiments show that Growing Grapes can detect
71.1% of unknown malware samples without false positives
while the performance overhead is less than 9.1% and 1.9%
on malware programs and most benign programs respectively.
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