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Abstract—Among various sparse array techniques, co-prime
array is found to be more attractive because of its higher DoF
with a smaller number of sensing elements. Generally, a co-prime
array with O(N) sensors can offer O(N2) number of DoFs by
exploiting the difference co-array that can be obtained from the
second-order statistics of received signals. However, the number
of achievable DoFs of co-prime arrays is significantly smaller
than expected due to the existence of “holes” in the difference
co-array. In this paper, we make three major contributions to
co-prime arrays. We first introduce a k-times extended co-prime
configuration which can achieve lager number of DoFs and higher
flexibility in array configurations, and the later helps better
meet different application needs. Second, based on our k-times
extended geometry, we uncover the mysterious veil of the holes
in the difference co-arrays. We find several general rules of the
locations of holes and derive the close-form expressions of the
exact locations of all holes in the difference co-arrays of different
co-prime array structures. Finally, we propose a specific array
structure called complementary sub-array that can fill all of holes
existing in the difference co-array. Compared with the traditional
hole-existing co-prime arrays, our k-times complementary co-
prime array has either similar number of sensors and DoFs with
much smaller array aperture required, or much higher DoFs
with the same aperture.

Index Terms—Sparse arrays, co-prime arrays, difference co-
arrays, DOA estimation.

I. INTRODUCTION

In array signal processing, temporal and spatial data col-
lected by an array of sensors are exploited to estimate unknown
parameters of signal sources [2]. Particularly, finding the
direction-of-arrival (DOA) of sources is of critical importance
and is widely applied in the areas of radar, sonar, astronomy,
and wireless communications [3]–[7]. A conventional uniform
linear array (ULA) with N+1 elements can identify N sources
at most, and has a degree of freedom (DoF) of N . Thus, it
would need a large number of sensors to detect a large number
of sources using ULA.

To reduce the cost, sparse arrays such as minimum re-
dundancy arrays (MRAs) [8], co-prime arrays [9] and nested
arrays [10] are proposed. With fewer physical elements,
these sparse-array techniques exploit difference co-arrays [11]
calculated from the correlation of the received signals to
generate more elements in the virtual array. Generally, a sparse
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array with O(N) sensors can offer O(N2) elements in the
virtual array. However, MRA systems do not have closed-
form expressions of the array geometries and the number of
achievable DoFs, so they are complicated to design [12], [13].
With long dense ULA segment in the physical configurations,
nested arrays suffer from higher mutual coupling [14]–[16].
As an important effort, super nested arrays [17], [18] alleviate
the coupling problem, but at the cost of robustness and un-
certainties of DoF. Allowing for the tradeoffs among different
performance needs, co-prime arrays have attracted a lot of
attentions in recent years. Various DOA estimation methods
were applied to co-prime arrays based on subspace, frequency
offsets and compressive sensing techniques [19]–[24].

Although a co-prime structure is promising, the major
problem is that its difference co-array does not have com-
pletely consecutive elements but contains holes [9], which
significantly reduces its number of achievable DoFs. Some
recent efforts have been made to alleviate the hole problem.
An extended co-prime array structure is introduced in Pal et.
al [25] to lengthen the consecutive segment of the virtual array
by expanding the physical array structure. With more sensors
and larger aperture, the spatial efficiency is not improved but
reduced to about half. The work in [26] uses proportional
frequencies to fill some of the holes in the virtual array.
Besides the need of additional frequencies, these frequencies
may not be available at the sources. Authors in [27] propose
to apply temporal signal coherence (TCP) in moving co-prime
arrays to fill in part of holes, while the precise temporal
coherence is difficult to achieve in the practical environment.
In addition to the schemes that aim at filling holes, two
modified co-prime structures, the co-prime array with reduced
sensors (CARS) [28] and the thinned co-prime array (TCA)
[29] propose to reduce the number of physical sensors while
achieving the same or even larger number of DoFs.

Despite the importance of the initial efforts, only a small
number of holes in the difference co-arrays are filled, with the
need of additional sensors [25], frequencies [26] or the precise
temporal coherence [27] respectively. A lot of deserved free-
doms outside the consecutive segment are sacrificed because
of the holes. The major challenge in fulfilling the DoFs is
that no close-form expressions have been found for all the
hole positions in the virtual array of an arbitrary co-prime
array. With the focus on achieving the maximum number of
consecutive lags and the minimum inter-element spacing, the
work in [24] provides an expression of the hole positions
in the negative range of one cross-difference co-array. The



2

expression, however, cannot capture the final hole positions in
the entire virtual array. In addition, the paper did not give the
proof on the sufficiency of hole positions by showing that there
exist no holes besides the locations given. The co-prime array
with multi-period sub-arrays (CAMpS) is proposed recently
in [30], where authors also make the attempt to analyse the
hole positions in the new array infrastructure. The structure
itself is not efficient by extending both of the sub-arrays and
there is also a lack of detailed analyses on the characteristics
of holes. The incomplete hole analysis in the above two papers
further prevents the design of methods that can assuredly and
efficiently fill all of the holes without resort to a heuristic
search of holes.

In order to enhance the performance of the co-prime array,
we consider the problem from two perspectives: 1) Lengthen-
ing the consecutive segment in the difference co-array, and 2)
Identifying and eradicating the holes outside the consecutive
segment. We first propose an advanced co-prime geometry that
has an increased ratio of the consecutive segment in the virtual
array. Then we derive a concise and explicit expression of all
the hole positions in the difference co-array of our proposed
co-prime geometry. Finally, based on our full knowledge of
the hole positions, we further design a hole-free co-prime
structure that can fully exploit all DoFs gained from the co-
array method. Our main contributions in this paper are:

• We propose a new co-prime configuration, k-times ex-
tended co-prime array, which has an increased ratio of
the consecutive segment in the virtual array. Our proposed
k-times extended geometry can generalize most of the co-
prime geometries and offer more flexibilities.

• We provide the exact expressions of all hole positions
in the difference co-array of the k-times extended co-
prime geometry, which can also represent hole positions
of most existing co-prime arrays. We rigorously prove
that there exist no holes besides the expressions we
give, summarize some interesting hole characteristics, and
introduce a new 2D representation of holes that offers
a better understanding of the virtual array of co-prime
arrays. Our quantitative hole analyses provide a base for
the design of more efficient co-prime infrastructures.

• Based on our analyses on the difference co-array, we
propose a sparse array geometry, complementary co-
prime array, whose difference co-array is hole-free and
has much higher DoF. We study the effect of the co-
prime parameters selection and mathematically formulate
the problem as an optimization problem. We provide the
optimal solution to this problem.

• Taking into account the mutual coupling effect and the
robustness, we provide numerical comparisons among ex-
isting co-prime structures, our proposed complementary
co-prime arrays, nested arrays and super-nested arrays.

• We perform extensive simulations to investigate the im-
pact of various factors on the performance of DOA esti-
mation, and to evaluate the effectiveness of our proposed
array design.

To our best knowledge, this is the first work that system-
atically studies various design options and tradeoffs of co-

prime arrays, including the design of a general and flexible
new array geometry to meet different user needs, the detailed
analyses of hole positions and characteristics of co-array, and
the providing of a complementary sub-array to fill the holes to
significantly increase the degree of freedom without expanding
the aperture. To help better understand the tradeoffs among
different array structures, we compare the co-prime arrays
with other sparse arrays, including nested arrays, super-nested
arrays and arrays based on Wichmann Ruler. Furthermore, we
provide detailed discussions and performance comparisons of
different array structures from the perspectives of DoFs, array
aperture, the effect of mutual coupling and the robustness. We
reveal some interesting and vital indicators of different array
geometries. We expect that this work can play a fundamental
role in supporting further study and design on sparse arrays.
Existing approaches on hole-filling such as using co-prime
frequencies in [26] and moving co-prime arrays in [27] can be
further enhanced by acquiring the exact expressions of all hole
positions. We can leverage the TCA scheme [29] to reduce
more physical sensors in our proposed k-times extended co-
prime array and complementary co-prime array while keeping
the same number of DoFs, and our complementary subarray
can also help TCA to fill holes and increase DoFs.

The rest of the paper is organized as follows. In section
II, we provide the background knowledge and our motivation
for this work. Section III and section IV illustrate the k-
times extended co-prime array structure and its hole positions
in the difference co-array respectively. In section V, we
present our proposed complementary co-prime array structure,
which takes advantage of the knowledge of hole positions to
achieve completely consecutive difference co-array for high
performance DOA estimation. We provide performance studies
with simulation results in Section VI and conclude the work
in Section VII.

II. PRELIMINARIES AND PROBLEMS

We first introduce some backgrounds on sparse array signal
processing, including the signal model and the difference co-
array technique. We then make a quick review of the con-
ventional co-prime arrays and the extended co-prime arrays.
Finally, we present the limitations of existing co-prime array
systems and the issues we will address in this work.

A. Signal Model

Assuming D narrowband sources with powers [σ2
1 · · · σ2

D]
impinge on the array from directions [θ1 θ2 · · · θD], the
signals received at the array elements in the kth snapshot time
can be expressed as

x[k] = As[k] + n[k] (1)

where A is the array manifold matrix of the form

A = [a(θ1) a(θ2) · · · a(θD)] (2)

and

a(θi) = [ej
2π
λ l1sinθi , ej

2π
λ l2sinθi , · · · , ej 2π

λ lN0
sinθi ]T (3)
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where [l1, l2, · · · , lN0
] represents the locations of all N0 phys-

ical antennas. s[k] = [s1(k) · · · sD(k)]T denotes the kth
snapshot of the source signal vector, and the noise vector
n[k] is assumed to be temporally and spatially white and
uncorrelated from the source.

B. Difference Co-array

In sparse array signal processing, to achieve a given number
of DoFs with fewer physical sensors, a virtual array generated
from the difference co-array is usually applied to substitute for
the original physical array. For a sparse array with antennas
located at the set L, the difference co-array is defined as

D = {lp − lq | lp, lq ∈ L} (4)

which includes location differences or known as lags of all
pairs of antennas in the sparse array.

To obtain the information captured by a difference co-array,
we get the covariance matrix Rxx of the received data x[k]

Rxx = E[x(k)x(k)H ] = ARssAH + σ2I (5)

where Rss is the source covariance matrix, with

Rss = diag([σ2
1 σ

2
2 · · · σ2

D]), (6)

σ2
i and σ2 denote the power of the ith source and the power

of noise respectively. Taking (2) and (6) into (5), we have

Rxx =

D∑
i=1

σ2
i a(θi)aH(θi) + σ2I (7)

The (p, q)th entry of a(θi)aH(θi) has the form of
ej

2π
λ (lp−lq)sinθi , which can represent the manifold matrix of

the difference co-array.

C. Co-prime Arrays

0 Md 2Md

......

(N-1)Md

0 Nd 2Nd (M-1)Nd

......

Fig. 1. Structure of the conventional co-prime array.

A conventional co-prime array [9] shown in Fig. 1 consists
of two uniform linear sub-arrays with the separation Md and
Nd respectively. There are N sensors in the first sub-array
and M sensors in the second sub-array. M and N are co-
prime integers, i.e., gcd(M,N) = 1, and d is the unit of inter-
element spacing. To avoid spatial aliasing, d is typically set
to λ/2, where λ is the wavelength of impinging narrowband
signals. The locations of sensors in the conventional co-prime
array can be described by the set

LC = {pMd} ∪ {qNd}, (8)

where 0 ≤ p ≤ N − 1 and 0 ≤ q ≤ M − 1. Since the first
sensors of the two uniform linear sub-arrays are co-located, the

total number of sensors in the conventional co-prime array is
M +N − 1.

The basic objective of forming the conventional co-prime
array is to enlarge the number of distinct elements in the
difference co-array by utilizing the co-primality of M and N .
The work in [9] shows that although an (M,N) conventional
co-prime array has at least MN distinct elements in the
difference co-array, these elements are not consecutive and
there exist holes. This reduces the length of the ULA segment
in the virtual array and thus the ultimate effective number
of DOFs after applying the spatial smoothing [31], [32]. For
example, the difference co-array of a (3, 4) conventional co-
prime array shown in Fig. 2 can be represented by the set
[−9d,+9d] except ±7d. It has 17 distinct elements but only
consecutive in the range [−6d, 6d]. Therefore, after the spatial
smoothing, merely 6 DoFs can be obtained.

0 1 2 3 4 5 6 7 8-1-2-3-4-5-6-7-8-9 9

Fig. 2. The difference co-array of a (3, 4)conventional co-prime array. Holes
locate at ±7d.

To deal with the hole problem, the extended co-prime array
was proposed in [25]. As shown in Fig. 3, the number of
sensors in the second sub-array is doubled to enlarge the size
of the consecutive ULA segment in the difference co-array. It
has been proven in [25] that after the spatial smoothing, an
(M,N) extended co-prime array can still offer at least MN
DOFs.

0 Md 2Md

......

(N-1)Md

0 Nd 2Nd (M-1)Nd

......

MNd

......

(2M-1)Nd

Fig. 3. Structure of the extended co-prime array.

0 15 1819

Fig. 4. The difference co-array of a (3, 4) extended co-prime array. Holes
locate at ±15d, ±18d and ±19d.

Fig. 4 shows the difference co-array of a (3, 4) extended
co-prime array. It has consecutive ULA segment from −14d
to 14d. After the spatial smoothing, it can still offer 14 DoFs.

D. Problems and Motivations

With its capability of increasing the number of consecutive
virtual array elements, the extended co-prime array has been
popularly used in existing co-prime related techniques. From
the introduction and examples above, the existence of holes
in the difference co-array significantly reduces the number of
DoFs a virtual array can apply to effectively detect the signals.
The use of the extended co-prime array helps to increase the
number of DoFs, but at the cost of additional antenna elements
and doubling the aperture of the physical array. The example
of (3, 4) extended co-prime array can achieve 14 DoFs, but it
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has 6 elements lie outside the range [−14, 14] in the difference
co-array without contributing to the number of DoFs.

Generally speaking, the difference co-array of an (M,N)
extended co-prime array has the range [−(2M − 1)N, (2M −
1)N ], but is only consecutive without holes in the range
[−MN −M + 1,MN +M − 1] [24]. The elements outside
this range are wasted. From the spatial perspective, the array
efficiency is MN+M−1

2MN−N , which is just about 50%. Too many
elements in the difference co-array are wasted. If the spatial
efficiency of the virtual array can be increased, the co-prime
array technique will achieve significantly better performance
in signal detection and estimation.

In order for our analyses to be general and applicable
for all possible types of co-prime arrays, we first introduce
a generalized k-times extended co-prime structure, which
can achieve higher spatial efficiency by increasing k. Then
we make comprehensive analyses on the difference co-array
to provide precise expressions of all hole positions in the
difference co-array. We also propose a new array structure,
the complementary co-prime array, which introduces a com-
plementary sub-array to fill all holes in the difference co-array
based on our k-times extended structure. Our proposed com-
plementary co-prime array can obtain a hole-free difference
co-array, which means the spatial efficiency can reach 100%.
Our proposed k-times structure can not only summarize all
existing co-prime infrastructures but also provide users with
the flexibility of configuration to meet different application
needs. More specifically, with appropriate selection of (M,N)
and k, the complementary co-prime array can either achieve
larger number of DoFs or suffer less from mutual coupling as
compared to the nested array.

III. k-TIMES EXTENDED CO-PRIME ARRAYS

Although the conventional co-prime array is introduced to
increase the degree of freedom (DoF), the existence of holes
in the difference co-array limited the actual number of DoFs
it can achieve. The extended co-prime array is introduced to
extend the consecutive part of the difference co-array, which
allows its number of DoFs to reach MN + M − 1. In this
section, we would like to introduce a k-times extended co-
prime array to serve as the fundamental infrastructure that
allows customers to flexibly configure the array infrastructure
to meet different DoF requirements and array aperture con-
straints. Our k-times extended co-prime array is a generalized
co-prime structure that can summarize all existing co-prime
structures. Compared to existing designs, it allows for the
increase of k to achieve higher spatial efficiency.

A. k-times extended co-prime configuration

Fig. 5. Structure of the k-times extended co-prime array.

The basic configuration of an (M,N) k-times extended co-
prime array is shown in Fig. 5. Instead of only having twice

the number of sensors on the second sub-array in Fig. 3, the k-
times extended co-prime array is expanded to have k times the
number of sensors. The total number of sensors is kM+N−1
and the array aperture is (kM − 1)Nd.

It is clear that the conventional co-prime array in Fig. 1 and
the extended co-prime array in Fig. 3 are the special cases
of the k-times extended co-prime array where k = 1 and
k = 2 respectively. Furthermore, the compressed inter-element
spacing (CACIS) configuration in [24] can be also considered
as a special case and it forms a subset of our proposed k-
times extended configuration. Each CACIS configuration with
parameters p, M̆ and N can be considered as a (M ′, N ′)
k-times extended configuration with parameters M ′ = M̆ ,
N ′ = N and k = p. However, as CACIS configuration com-
presses one of the sub-arrays, it is limited by the assumption
that M can be expressed as a product of two positive integers
p and M̆ , and M = pM̆ and N are co-prime. It requires
p and N to be co-prime, while our extending factor k does
not have any additional limitations. k can be any positive
integer regardless of the value of N . Therefore, compared
to CACIS, our proposed k-times extended co-prime array is
a more generalized configuration and can express a much
broader range of co-prime structures. The flexibility of the co-
prime configuration allows our infrastructure to better support
different applications.

B. DoF analysis of k-times extended co-prime arrays

As introduced in Section III, the extended co-prime array
has a consecutive ULA segment without holes in the range of
[−(MN+M−1),MN+M−1] and therefore has MN+M−
1 number of DoFs. Following, we will analyze the number of
DoFs of our proposed k-times extended co-prime arrays.

Proposition 1. The difference co-array of an (M,N) k-times
extended co-prime array (k ≥ 2) has a consecutive ULA
segment without holes in the range of [−(k − 1)MN −M +
1, (k − 1)MN +M − 1].

Proposition 2. The difference co-array of an (M,N) 1-time
extended co-prime array, which is the conventional co-prime
array, has a consecutive ULA segment without holes in the
range of [0,M +N − 1].

The proofs are similar to that in [9] and are omitted here.

Definition 1. (Spatial Efficiency). The spatial efficiency of
a sparse array is the ratio of the number of DoFs to the
physical array aperture which represents the ratio of the length
of consecutive segment to the length of the virtual array in the
positive part.

The spatial efficiency of an (M,N) k-times extended co-
prime array then can be expressed as

rse =
(k − 1)MN +M − 1

kMN −N
(9)

For a fixed k, we have

lim
M,N→+∞

rse =
k − 1

k
(10)
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With the increase of k, the ratio increases and a higher spatial
efficiency can be achieved.

IV. HOLES IN THE DIFFERENCE CO-ARRAY OF k-TIMES
EXTENDED CO-PRIME ARRAYS

The existence of holes in virtual array formed by co-
prime arrays significantly reduces the number of DoFs it
may achieve. Although the benefit of hole filling is obvious
and well acknowledged by the researchers in the field, it
remains a big challenge to find the exact hole positions. In
most past studies, for an (M,N) extended co-prime array
(M < N ), it has only been proven that its difference
co-array has a consecutive ULA segment in the range of
[−(MN +M −1),MN +M −1]. Although holes are known
to appear outside this range, there are no close form equations
to represent the hole locations. Various efforts have been made
to search for holes for a specific (M,N) pair through some
heuristics methods.

In this section, we first introduce our observed general
rules related to the positions of elements in the difference co-
array of an (M,N) k-times extended co-prime array. We then
provide and prove the precise expressions of the locations of
all holes in the difference co-array. Finally, we will discuss
some special cases on the hole positions. Because of the
symmetry of the difference co-array, we only present our
analyses for the holes located on the non-negative part. We
take the inter-element spacing d as the unit.

A. General Rules

Fig. 6 shows the general structure of the difference co-array
of an (M,N) k-times extended co-prime array when k ≥ 2.
The difference co-array contains two segments, a consecutive
ULA segment and an inconsecutive segment. Fig. 7 shows
the difference co-array of a (4, 5) 2-times extended co-prime
array as an example. Based on the tests from a large number of
(M,N, k) combinations, we have observed and summarized 4
general rules related to the element positions in the difference
co-arrays:

When k ≥ 2:
1) The difference co-array has a consecutive ULA segment

without holes in the range of [0, (k− 1)MN +M − 1].
2) The first hole locates at (k − 1)MN +M .
3) In the range [(k−1)MN+M,kMN−N ], the position

P is a hole if and only if P is in the form of (k −
1)MN + aM + bN where a ≥ 1 and b ≥ 0.

When k = 1:
1) The difference co-array has a consecutive ULA segment

without holes in the range of [0,M +N − 1].
2) The first hole locates at M +N .
3) In the range [M + N,MN − N ], the position P is a

hole if and only if P is in the form of aM + bN where
a ≥ 1 and b ≥ 1.

Following, we will give detailed descriptions and proofs for
the case where k ≥ 2. The other case where k = 1 has similar
and simpler proof and is omitted here.

The consecutive ULA segment has already been discussed
in the previous section when analysing the number of DoFs.
We will start from the hole positions.

Proposition 3. In the difference co-array of an (M,N) k-
times extended co-prime array (k ≥ 2), the position P ∈
[(k−1)MN +M,kMN −N ] is a hole if and only if P is in
the form of (k− 1)MN +aM + bN where a ≥ 1 and b ≥ 0.

Proof. Since this is a sufficient and necessary condition, we
divide it into two parts. We first prove the necessity:

If P = (k−1)MN+aM+bN ∈ [(k−1)MN+M,kMN−
N ] where a ≥ 1 and b ≥ 0, then P is a hole.

We give the proof by contradiction:
Suppose the position P = (k − 1)MN + aM + bN is not

a hole, that is,
∃p ∈ [0, N − 1] and q ∈ [0, kM − 1] such that

qN − pM = (k − 1)MN + aM + bN (11)

From P ∈ [(k − 1)MN +M,kMN −N ], a ≥ 1 and b ≥ 0,
we have

(k − 1)MN + aM + bN ≤ kMN −N. (12)

and we can get

1 ≤ a ≤ N − N

M
− bN

M
≤ N − N

M
(13)

We can rewrite (11) as

(p+ a)M = [q − b− (k − 1)M ]N (14)

Since p+ a 6= 0, we have

M

N
=
q − b− (k − 1)M

p+ a
(15)

From (13) and p ∈ [0, N − 1], we can get

1 ≤ p+ a ≤ 2N − N

M
− 1 < 2N (16)

Since the co-primality of M and N , p+a and q−b−(k−1)M
need to be exactly N and M respectively. We can get

q = kM + b ≥ kM, (17)

which contradicts to the fact that q ∈ [0, kM − 1] and the
necessity has been proved.

Secondly, we will prove the sufficiency by proving its
converse-negative proposition:

If P ∈ [(k−1)MN +M,kMN −N ] can not be expressed
as P = (k−1)MN +aM + bN where a ≥ 1 and b ≥ 0, then
P is not a hole.

We represent all positions P ∈ [(k−1)MN+M,kMN−N ]
as (k − 1)MN + I where I can be any integer in the range
[M,MN −N ].
From the Euclidean theorem, we can always find two integers
a0 and b0 such that

I = a0M + b0N (18)

Let a′ ≡ a0 (mod N) (19)

That is a0 = xN + a′ (20)
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Fig. 6. The difference co-array of an (M,N) k-times extended co-prime array.

Fig. 7. The difference co-array of a (4, 5) 2-times extended co-prime array.

where x is the quotient and a′ ∈ [0, N) is the remainder.
Then we can rewrite (18) as

I = (a0 − xN)M + b0N + xNM

= a′M + (b0 + xM)N

= a′M + b′N

(21)

Since a′M + b′N = I ∈ [M,MN − N ] and a′ ∈ [0, N),
we can get

−a′M <b′N ≤MN −N − a′M

−a′M
N

<b′ ≤M − 1− a′M
N

−M <b′ < M

(22)

We want to figure out if there exist appropriate p and q where
p ∈ [0, N − 1], q ∈ [0, kM − 1] such that

qN−pM = (k−1)MN+I = (k−1)MN+a′M+b′N (23)

holds. Following we will split the problem into three cases
according to the value of a′ and b′.

(i) a′ = 0, −M < b′ < M
Equation (23) becomes

qN − pM = (k − 1)MN + b′N (24)

and can be rewritten as
M

N
=

q − b′

(k − 1)N + p
(25)

Since p ∈ [0, N − 1] and the co-primality of M and N ,
we have

p = 0, q = (k − 1)M + b′ (26)

Since b′ ∈ (−M,M), we can get q ∈ ((k − 2)M,kM)
which is a subset of the range [0, kM − 1] when k ≥ 2.
Therefore, (26) satisfies the constraints of p and q. In
this case, the position P is not a hole.

(ii) 0 < a′ < N , −M < b′ < 0
Equation (23) can be rewritten as

M

N
=

q − b′

(k − 1)N + p+ a′
(27)

From p ∈ [0, N − 1] and a′ ∈ (0, N), we have

(k − 1)N < (k − 1)N + p+ a′ < (k + 1)N − 1 (28)

From (27) (28) and the co-primality of M and N , we
have q − b′ = kM and (k − 1)N + p+ a′ = kN , so

p = N − a′

q = kM + b′
(29)

Since a′ ∈ (0, N) and b′ ∈ (−M, 0), (29) satisfies the
constraints of p and q. In this case, the position P is
not a hole.

(iii) 0 < a′ < N , 0 ≤ b′ < M
In this situation, the position P can be expressed as
P = (k − 1)MN + a′M + b′N where a′ ≥ 1 and
b′ ≥ 0. We have proved earlier that it is a hole.

After taking all three possible cases into consideration, we
can conclude that in the range [(k−1)MN +M,kMN −N ],
except for the positions that can be expressed as P = (k −
1)MN+aM+bN where a ≥ 1 and b ≥ 0, all other positions
are not holes.

Therefore, the sufficiency has been proved and comes to the
end of proof of Proposition 3.

B. Special Situations
In the previous subsection, we have presented and proven

the general rules followed by positions of holes in the dif-
ference co-array of an (M,N) k-times extended co-prime
array. However, in some situations, there may exist some minor
differences between the structure shown in Fig. 6 and the real
structure. Following we will provide additional discussions on
these special cases.

1) Intersection of Layers: To better observe the pattern
of holes, we divide the holes in Fig. 6 into several layers
according to the parameter a+b in the expression (k−1)MN+
aM+bN . Different from the structure in Fig. 6, in some cases,
the positions of holes in two adjacent layers may not be strictly
in the increasing order. As shown in Fig. 8, the first hole of
the latter layer is ahead of the last hole of the previous layer.
We call it the intersection between two layers.

Theorem 1. In the difference co-array of an (M,N) k-times
extended co-prime array, there exists an intersection between
layer-i and layer-(i+ 1) if and only if i > N

N−M .

Proof. From the definition of layer intersection, we have

(k−1)MN+(i+1)M < (k−1)MN+M+(i−1)N, (30)
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Fig. 8. Case 1: Intersection of two adjacent layers.

from which
i >

N

N −M
(31)

Corollary 1. In the difference co-array of an (M,N) k-times
extended co-prime array, two different hole layers cannot have
the same element.

Proof. Suppose two different hole layers layer-i and layer-j
have a common element H , that is

H = (k − 1)MN + a1M + (i− a1)N

H = (k − 1)MN + a2M + (j − a2)N
(32)

We can get

(a1 − a2)M = (a1 − a2 + j − i)N. (33)

Since i 6= j, we have a1 6= a2. Then (33) becomes

M

N
=
a1 − a2 + j − i

a1 − a2
(34)

From (13), we have

1 ≤ a1, a2 ≤ N −N/M < N (35)

Therefore
0 < |a1 − a2| < N − 1 (36)

From (36), we know that (34) contradicts to the fact of the
co-primality of M and N , as M/N cannot be reduced to a
ratio of smaller integers.

2) Incomplete Layers: Another potential situation that
needs to be considered is that some of the hole layers may
not be intact because of the limitation on the array aperture.
In Fig. 9, some of the holes in layer-i exceed the array aperture
and should be excluded from the difference co-array.

Theorem 2. In the difference co-array of an (M,N) k-times
extended co-prime array, the ith layer of holes is complete if
and only if i ≤M − 1.

Proof. The position of the last hole in layer-i can be expressed
as (k−1)MN +M +(i−1)N . Then if a layer-i is complete,
it means

(k − 1)MN +M + (i− 1)N < kMN −N (37)

which is
i < M − M

N
≤M − 1 (38)

Corollary 2. If the layer-i is incomplete, then the layer-(i+1)
is incomplete.

Proof. This follows directly from the fact that

(k−1)MN+M+iN > (k−1)MN+M+(i−1)N > kMN−N
(39)

Fig. 9. Case 2: Incomplete layer-i.

Theorem 3. The difference co-array of an (M,N) k-times
extended co-prime array has bN −N/Mc layers of holes.

Proof. From (12) and the fact aM + bM < aM + bN , we
have

(k − 1)MN + aM + bM < kMN −N (40)

and we can get a+ b < N − N

M
(41)

C. Summary

Fig. 10. 2D-Representation of holes in the difference co-arrays of k-times
extended co-prime arrays.

To better understand the general rules and the special
situations discussed above, we present a 2D-representation of
all holes in the extended co-prime array in Fig. 10. All holes
can be found at positions (k − 1)MN + aM + bN where
a ≥ 1 and b ≥ 0. These positions can be divided into several
different layers according to the value of a+ b and there are
bN − N

M c layers in total. Starting from the layer-M , layers
become incomplete. Some elements exceed the array aperture
and shouldn’t be considered as holes and are excluded from
the hole list. Layer-i has i holes if it is complete. In each
layer, the positions of holes are in the ascending order and the
distance between two adjacent holes is N −M . Between two
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layers, the elements in the latter layer may not be always larger
than all elements in the former layer. We call this phenomenon
the layer intersection. It happens after the layer-d N

N−M e. We
define the distance between two layers as the distance between
two elements with the same sequence number in the two
layers, for example, the distance between the jth element of
two layers. Then the distance between two adjacent layers is
M . This constant inter-layer distance helps in filling the holes
in our complementary co-prime array proposed in Section V.

V. COMPLEMENTARY CO-PRIME ARRAY

In the last section, we have derived the expressions for the
positions of all holes in the difference co-arrays, for k-times
extended co-prime arrays. With the knowledge of the exact
hole positions, we propose a new array structure to ensure the
difference co-array hole-free. This will significantly increase
the array spatial efficiency and DoF.

We call our new array structure complementary co-prime
array. In order to create a hole-free difference co-array, the
intuition behind our design is to add as few additional antennas
as possible inside the original co-prime array aperture so that
the differences of the newly added elements and the original
elements can contain all hole positions. In addition, since all
of the newly added elements are located within the original
aperture, it can increase the number of DoFs without extending
the array aperture.

We first introduce the basic configuration of our proposed
array structure. We then present its difference co-array and
show how exactly the complementary sub-array can fill all
holes in the original virtual array. Furthermore, we provide a
strategy for selecting appropriate co-prime parameters (M,N)
and k for a given physical array aperture. Finally, we make a
comparison between our proposed structure and other sparse
arrays.

A. Array Configuration

Fig. 11. The complementary co-prime array configuration.

As Fig. 11 shows, our proposed complementary co-prime
array consists of three sub-arrays. Two sub-arrays form an
(M,N) k-times extended co-prime array (k ≥ 2, M < N ).
The third one is the complementary sub-array, which is a short
ULA located at the tail of the co-prime array with the length
M−1 and inter-element spacing d. The total number of sensors
is (k + 1)M + N − 2 and the array aperture is kMN − N .
We will prove later that using this complementary sub-array
can fill all holes in the difference co-array generated by the
co-prime sub-array.

Fig. 12 shows an example of complementary co-prime array.
It consists of a (3, 5) 2-times extended co-prime array and a

Fig. 12. An example of complementary co-prime array built upon (3, 5)
2-times extended co-prime array.

complementary sub-array with 2 sensors. The total number of
sensors is 12. The array aperture is 25d. Its difference co-
array, which is hole-free, is a ULA with unit spacing d from
−25d to 25d. Therefore, the number of DoFs after the spatial
smoothing is 25. The spatial efficiency, which is defined as the
ratio of the number of DoFs and the array aperture, is 100%.

B. The Hole-free Difference Co-array

In this section, we will prove that the difference co-array of
a complementary co-prime array is hole-free.

We use the set H to hold the positions of all holes in the
difference co-array of the original (M,N) k-times extended
co-prime array and the sets K and C to contain the positions of
the elements in the original k-times extended co-prime array
and the newly added complementary sub-array respectively.
From our previous conclusion of hole positions and the
definition of the complementary co-prime array, we have

H = {(k − 1)MN + aM + bN | a ∈ N+, b ∈ N0,

(k − 1)MN + aM + bN < kMN −N}
(42)

K = {pM | p ∈ [0, N − 1]} ∪ {qN | q ∈ [0, kM − 1]} (43)

C = {kMN−N−1, kMN−N−2, ..., kMN−N−(M−1)}
(44)

Our proof on our hole-free can be carried out in 3 steps:
1) C ⊆ H, that is, all the elements in C are the hole

positions in the original difference co-array.

Proof. We give proof by contradiction. Suppose C * H,
that is ∃i ∈ C but i /∈ H which means i is an element
of the original difference co-array. Then ∃p ∈ [0, N−1]
and q ∈ [0, kM − 1] such that

qN − pM = i (45)

Since i ∈ C and (44), we have

kMN −N − (M − 1) ≤ i ≤ kMN −N − 1 (46)

Take (45) into (46), we can get

kMN−N−(M−1) ≤ qN−pM ≤ kMN−N−1 (47)

Since p ≥ 0, we have

qN ≥ qN − pM ≥ kMN −N − (M − 1) (48)

and get

q ≥ kM − 1− M − 1

N
(49)

From (49) and q ∈ [0, kM − 1], we have

q = kM − 1 (50)
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Substitute (50) into (47) and simplify it we can get
1

M
≤ p ≤ M − 1

M
(51)

which contradicts the fact that p is an integer. Therefore,
by proof of contradiction, C ⊆ H.

2) The elements in the set C are at the bottom of all anti-
diagonal directions (top right to bottom left) in the 2D-
representation of holes.

Proof. From Theorem 3 we know there are M − 1
complete layers in the 2D-representation of holes and
therefore there are M − 1 anti-diagonal directions.
We have proven that all elements in C are holes. Since
they are located at the end of the difference co-array,
they are the M−1 greatest holes. Thus it is not possible
for other holes to be below them in the anti-diagonal
directions, and they are the bottom of all M − 1 anti-
diagonal directions in the 2D-representation of holes.

3) All elements in the set H \ C can be found in the
difference set {n1 − n2 | n1 ∈ C, n2 ∈ K}.

Proof. In the discussion part of Fig. 10, we have shown
that the distance between two adjacent layers is constant
value M . So any element in the 2D-representation of
holes can be expressed as its bottom element in the anti-
diagonal direction (i.e., in the set C) minus its distance
to the bottom element, where the distance is an integral
multiple p′ of the constant inter-layer distance M . From
Theorem 4, we know there are bN − N

M c layers, so p′

meets the following condition:

p′ ≤ bN − N

M
c − 1 < N − 1 (52)

From (52) and (43), we know the set {p′M} ⊂ K.
Therefore, all elements in the set H\C can be expressed
as n1 − n2, where n1 ∈ C and n2 ∈ K.

From the three steps above, we have proven that the newly
added complementary sub-array itself can fill a part of holes
and the remaining holes can be filled by the difference between
the complementary sub-array and the co-prime sub-array.
Therefore, using our proposed complementary sub-array can
fill all holes in the difference co-array of the original (M,N)
k-times extended co-prime array and the new complementary
co-prime array structure has a hole-free difference co-array.

C. Comparison of Different Co-prime Structures
Table. I shows a comparison of the specification of different

co-prime array structures. We can see that compared with the
k-times extended co-prime array, the complementary co-prime
array can achieve about MN more DoFs without expanding
the array aperture. On the other hand, when utilizing similar
number of sensors, the complementary co-prime array can
achieve similar number of DoFs with MN smaller array
aperture. This makes the complementary co-prime array better
fit for the use in the space constrained scenarios.

Fig. 13. An example of hole-filling in the difference co-array of a (5,8)
extended co-prime array.

TABLE I
COMPARISON OF THE SPECIFICATION OF DIFFERENT CO-PRIME ARRAYS

Extended
Co-prime Array

k-times Extended
Co-prime Array

Complementary
Co-prime Arrray

No. of
Sensors 2M +N − 1 kM +N − 1 (k + 1)M +N − 2

Array
Aperture 2MN −N kMN −N kMN −N

No. of
DoFs MN +M − 1 (k − 1)MN +M − 1 kMN −N

D. Strategy of Selecting (M,N) with fixed k

In all co-prime array techniques, selecting a pair of ap-
propriate co-prime array factors (M,N) is crucial and a
challenge. In this section, we provide a scheme to find the
optimal (M,N) in our proposed complementary co-prime
array for a given number of DoFs (N0) requested.

Since there exist no holes in the difference co-array of the
complementary co-prime, the number of DoFs equals to the
physical array aperture. To achieve the required DoFs, we
would like the array to have as few sensors as possible. For the
complementary co-prime array built upon an (M,N) k-times
extended co-prime array, the problem can be formulated as:

min
M,N∈N∗

|T | = (k + 1)M +N − 2

subject to kMN −M ≥ N0

gcd(M,N) = 1

(53)

We first do not take the integrality and the coprimality of
(M,N) into consideration, then the original problem becomes:

min
M,N∈R+

|T | = (k + 1)M +N − 2

subject to kMN −M = N0

(54)

When k is fixed, its optimum solution can be achieved when

M =

√
N0

k(k + 1)
+

1

k

N =

√
(k + 1)N0

k

(55)

Equations (55) shows that the ideal N to M ratio is close
to k + 1 in the complementary co-prime array.
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We can then test the coprimality of the integers around the
optimum M and N in (55) and find the optimal solution to
the original problem (53).

E. Comparison with Other Sparse Arrays

Following, we will compare our proposed complementary
co-prime array with the nested array, the super nested array
and the Wichmann Ruler [33] on two aspects, the coupling
effect and the robustness analysis.

1) Mutual Coupling Effect: In practical antenna arrays,
electromagnetic interaction between the antenna elements al-
ways exists. The radiation pattern in each antenna element of
an array depends on its own excitation and also the contri-
butions from adjacent antenna elements. The effect of mutual
coupling is inversely proportional to the spacing between the
different antenna elements in an array. It has been studied in
[3], [15] that the first weight function w(1) which represents
the number of pairs of physical antennas with unit element-
spacing d = λ/2 dominates the effects of mutual coupling.

Proposition 4. The first weight function w(1) of an (M,N)
k-times extended co-prime array equals to 2.

Proof. The proof can be divided into three parts:
First, from the fact that the difference co-array of a co-prime

array always contains the element 1d, we know there exists at
least one pair of physical antennas with unit element-spacing
d, that is, w(1) ≥ 1.

Second, we can prove that for any pair (x1d, x2d) =
(p1Md, q1Nd) where |x2−x1| = 1 in the physical array, there
always exists another pair (y1d, y2d) = ((N − p1)Md, (M −
q1)Nd) in the physical array such that |y2 − y1| = 1, that is,
w(1) is even. The proof is as follows:

Suppose x2 − x1 = 1, that is, q1N − p1M = 1. Then
y1 − y2 = (N − p1)M − (M − q1)N = q1N − p1M = 1.
Similarly, when x1 − x2 = 1, we can get y2 − y1 = 1.

Finally, we need to prove that there are no more than 2 pairs,
that is, w(1) ≤ 2. The proof is provided by contradiction:

Suppose there are 2 more pairs,
((p′1Md, q′1Nd) and (p′2Md, q′2Nd).
We must have

p1M − q1N = p′1M − q′1N (56)

or
p1M − q1N = p′2M − q′2N (57)

Suppose (56) holds, then we can get

(p1 − p′1)M = (q1 − q′1)N (58)

Since p1 6= p′1 and q1 6= q′1, (58) becomes

M

N
=
q1 − q′1
p1 − p′1

(59)

and it contradicts to the co-primality of M and N .

Proposition 5. The first weight function w(1) of an (M,N)
complementary co-prime array equals to M + 1.

Proof. From Proposition 4 we know the original co-prime
sub-arrays has 2 pairs of physical antennas with unit element-
spacing d. Since N−M ≥ 1, the newly added complementary
sub-array only leads to another M − 1 pairs. Therefore, the
total number of pairs is M + 1.

Proposition 6. The first weight function w(1) of an (N1, N2)
nested array equals to N1.

Proof. This proposition directly follows the definition of the
nested array.

In our previous analysis, the optimal N to M ratio is close
to k + 1. As a result, the length of the dense ULA in the
complementary sub-array (M − 1) is usually far smaller than
that in the optimal nested array. Table II shows some numerical
results. Our complementary co-prime array has w(1) = 4,
which is much smaller than that of the optimal nested array
(w(1) = 17). On the other hand, when having the same first
weight function w(1) = 4, our proposed complementary co-
prime array has 266 DoFs, which is much larger than that of
the nested array (154).

2) Robustness Analysis: In this part, we take the robustness
of different array geometries into consideration. In practice,
there may exist perturbations, that is, small horizontal shifts, in
the antenna positions. Moreover, antenna failures may happen
in some extreme conditions. Therefore, holding appropriate
redundancy can help keep the system robust and stable.

Definition 2. (Redundancy Rate). The redundancy rate of a
sparse array is the ratio of the number of repetitive elements
in the difference co-array to the total number of elements
(including repetitions) in the difference co-array.

rredun =
|L|2 − |D|
|L|2

(60)

The sets L and D denote the locations of physical array
and difference co-array receptively. Operator | · | denotes the
cardinality of the set (number of elements in the set).

0

5

10
(3,7) Nested Array

-30 -20 -10 0 10 20 30
Difference co-array location

(a) (3,7) Nested array

0

5

10
(3,5) 2-times Complementary Co-prime Array

-30 -20 -10 0 10 20 30
Difference co-array location

(b) (3,5) 2-times Complementary co-prime array

Fig. 14. The co-array location of the nested array and the complementary
co-prime array.

Although the redundancy rate can reflect the robustness
to some degree, it has limitation. When the redundancy is
restricted to be around some particular points, even if there
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TABLE II
NUMERICAL RESULTS

Array
Specification

Number
of Sensors

Array
Aperture

Number
of DoFs

Spatial
Efficiency w(1)

Redundancy
Rate Reliability

Extended
Co-prime Array (9,19) 36 323 179 55.42% 2 61.19% 42.35%

k-times Extended
Co-prime Array (3,19) 6-times 36 323 287 88.85% 2 52.85% 17.18%

Complementary
Co-prime Array (3,19) 5-times 35 266 266 100% 4 56.49% 33.58%

Nested Array (4,31) 35 154 154 100% 4 74.78% 21.04%
(17,18) 35 323 323 100% 17 47.18% 10.05%

Super Nested Array (17,18) 2nd-order 35 323 323 100% 1 47.18% 19.01%
(17,18) 5th-order 35 323 51 15.79% 1 47.51% 40.90%

Wichmann Ruler Wichmann (5,12) 35 419 419 100% 10 31.51% 15.61%

is a high redundancy rate, we cannot achieve high robustness.
Fig.14(a) shows the co-array location of a (3, 7) nested array,
where most of the redundancy is concentrated at locations 0,
±4, ±8, ±12, ±16 and ±20. Many locations in the co-array
have no redundancy, and any perturbations or failures in these
locations will compromise the detection performance.

Therefore, besides the redundancy rate, we define another
more appropriate parameter to evaluate the robustness.

Definition 3. (Reliability). The reliability of a sparse array is
the ratio of the number of elements that is not unique in the
difference co-array to the number of distinct elements in the
difference co-array.

Reliability =
|{i|w(i) 6= 1, i ∈ D}|

|D|
(61)

The reliability is defined as the ratio of locations with
redundancy in the virtual array. Compared to the redundancy
rate, it can better reflect the robustness of the system.

Fig.14(b) shows the co-array location of a (3, 5) 2-times
complementary co-prime array. Compared to the nested array
shown in Fig.14(a), the redundancy of our proposed array
geometry has more even distribution. This helps to increase
the reliability to keep the system more robust and stable when
unexpected perturbations or antenna failures happen.

Table II shows the trade-offs among different array struc-
tures. The traditional extended co-prime array has higher
reliability but lower spatial efficiency and smaller number
of DoFs. The k-times extended co-prime array sacrifices the
reliability for a larger number of DoFs. As an enhancement
of the k-times extended co-prime array, the complementary
co-prime array can achieve comparable number of DoFs and
higher spatial efficiency but twice the reliability with a smaller
array aperture. The optimal nested array and the array based
on Wichmann Ruler [33] can achieve a larger number of DoFs
but suffer a lot from the mutual coupling and are sensitive to
perturbations due to the limited reliability. Keeping w(1) the
same, the non-optimal nested array has much smaller number
of DoFs than our proposed complementary co-prime array.
Although super nested arrays reduce the mutual coupling, low
order super nested arrays still have poor reliability while high
order super nested arrays may have holes in the difference co-
array which will significantly reduce the number of DoFs. In
practice, customers should select appropriate structure accord-
ing to different application scenarios.

VI. PERFORMANCE EVALUATION

We evaluate the performance of our proposed complemen-
tary co-prime array through simulations over matlab. We apply
the MUSIC algorithm [34] to detect DOAs of a group of uni-
formly distributed sources. We first compare the performance
of our complementary co-prime array built upon k-times
extended co-prime array (CCPA-k) with two other co-prime
geometries: the traditional extended co-prime array (ECPA)
and the k-times extended co-prime array (kCPA). Then we
take the mutual coupling and the robustness into consideration
and compare our structures with three other sparse geometries:
the nested array (NA), the super nested array (SNA) and the
sparse array based on Wichmann Ruler (WR).

A. Comparison with Co-prime Arrays

TABLE III
PARAMETERS OF DIFFERENT ARRAY STRUCTURES

ULA ECPA kCPA CCPA-k
Array Aperture 50 49 49 50

Array
Specification 51-ULA (4,7) (2,7)

4-times
(3,10)

2-times
Number of Sensors 51 14 14 17
Number of DoFs 50 31 43 50

We first compare the performance of different arrays with
the constraint of the physical array aperture (A ≤ 50d).

Table III shows the specific parameters of different array
structures. The co-prime parameters M = 3, N = 10 and k =
2 in CCPA-k are selected based on our proposed strategy. We
can see that with the same aperture constraint, our proposed
CCPA-k has the largest number of DoFs. On the other hand,
when compared with ULA, it requires much fewer sensors.

Fig. 15 shows the MUSIC spectra of different array struc-
tures described above. 25 target sources are uniformly dis-
tributed within the range −60◦ to 60◦. The covariance matrix
is estimated by using 500 snapshots. SNR is set to 0dB. We can
see that our proposed kCPA and CCPA-k have much clearer
spectra compared with the traditional ECPA and the root mean
squared error (RMSE) can decrease by over 70% and 75%
respectively. When compared with ULA of 51 sensors, our
proposed structures only need 14 and 17 sensors respectively
with little decrease of the detection quality. They can still
successfully identify all targets with RMSE < 0.2◦. This
demonstrates the feasibility and effectiveness of our proposed
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-60 -40 -20 0 20 40 60

DOA (degrees)

0

0.5

1

N
or

m
liz

ed
S

pe
ct

ru
m

(c) (2,7) 4-times kCPA, rmse=0.1623
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(d) (3,10) 2-times CCPA-k, rmse=0.1304

Fig. 15. MUSIC spectra of different array structures, where SNR=0dB, 500
snapshots are applied, and 25 target sources are uniformly distributed within
the range −60◦ to 60◦.

TABLE IV
PARAMETERS OF DIFFERENT ARRAY STRUCTURES

ULA ECPA kCPA CCPA-k
Number of Sensors 30 30 30 30

Array
Specification 30-ULA (8,15) (4,15)

4-times
(3,14)

5-times
Array Aperture 29 225 225 196

Number of DoFs 29 127 183 196

k-times extended co-prime structure and complementary co-
prime array structure.

Fig. 16 shows the root mean squared errors of the DOA
estimation of three co-prime structures with the increase of
the number of target sources. SNR is set to 0dB and 2000
snapshots are applied. The number of target sources D varies
from 3 to 38. For a 0.2◦ RMSE threshold, the maximum num-
ber of targets detected by our proposed CCPA-k approaches
38 instead of 24 in the traditional ECPA and 32 in kCPA.
Our complementary co-prime array can detect about 50% and
20% more targets compared with the traditional extended co-
prime array and the k-times extended co-prime array when
utilizing the same array aperture. Therefore, our proposed
complementary co-prime arrays have higher capacity.

We then study the impact of the number of snapshots on the
root mean squared error of the DOA estimation of different
co-prime structures. As Fig. 17 shows, our proposed CCPA-k
has the lowest RMSE, which is consistent with the theoretical
analysis in Table III that the complementary co-prime array
has the largest number of DoFs under the same array aperture.
Compared with ECPA and kCPA, the CCPA-k structure can
save over 90% and 50% snapshots respectively to achieve the
same RMSE threshold (0.2◦) under the same SNR (0dB). The
significant reduction of the number of snapshots will allow for
faster scanning and detection as well as cost reduction.

Next, we consider the scenario where all the array structures
have the same number of physical sensors (30). Table IV
shows the specific parameters of different array structures. We

can see that with the same number of sensors, our proposed
CCPA-k has much larger number of DoFs compared with
ECPA and ULA. On the other hand, when compared with
kCPA, it has comparable DoFs with a much smaller array
aperture.

Fig. 18 shows the root mean squared errors of the DOA
estimation of three co-prime structures under different SNR.
We can see that our proposed structures kCPA and CCPA-k
have similar results. In the theoretical analysis of Table. IV,
they have similar number of DoFs which is much larger than
the traditional extended co-prime array. As a result, our pro-
posed structures can reduce RMSE over 50% under the same
SNR. In other words, if we would like to achieve the same
RMSE threshold, our methods can bear much lower SNR.
Furthermore, since CCPA-k has even smaller array aperture
compared to kCPA, it can perform much better estimation in
a space constrained and low SNR scenario such as underwater
sonar detection.

B. Comparison with Other Sparse Arrays
We have shown above that our proposed complementary

co-prime geometry can improve the performance of co-prime
arrays. Following we will compare the performance of our pro-
posed geometry with nested arrays (NA), super nested arrays
(SNA) and the array based on Wichmann Ruler (WR) when
taking mutual coupling and robustness into consideration.

We take the mutual coupling model in [35] and set the
impedances of the element and load to 50. Table V shows
the specific parameters of different array structures. All array
structures have 14 physical sensors. Fig. 19 shows the RMSE
of DOA estimation of different structures with/without mutual
coupling. Under the impact of mutual coupling, even though
the nested array has a larger number of DoFs, our CCPA-k
performs better. Super nested array performs the best in this
situation due to its smallest w(1). Although WR has the same
w(1) as our CCPA-k, it has a larger number of DoFs and
thus lower RMSE. However, compared to other sparse array
structures, the array aperture of CCPA-k is much smaller.

Finally, we evaluate the robustness of different array struc-
tures from the perspective of redundancy rate and reliability in
Fig. 21 and Fig. 22 respectively. We can see that the co-prime
arrays (ECPA, kCPA and CCPA-k) have higher redundancy
rate then the nested arrays (NA and SNA) and the array
based on Wichmann Ruler (WR). Although NA has similar
redundancy rate as SNA which is greater than that of WR,
the reliability of NA is the worst. As discussed in SectionV,
redundant virtual sensors of NA tend to center around a few
locations. The reliability of high-order super nested array
is similar to that of CCPA-k, however, a high-order super
nested array does not have a determinate number of DoFs.
As Fig. 23 shows, existing holes in the super nested array
may significantly reduce its number of DoFs from O(N2) to
O(N). The uncertainty and the instability of the DoF will
prevent the use of high-order super nested arrays in practice.
Furthermore, Fig. 24 shows that our CCPA-k has the smallest
array aperture among the referenced geometries.

Fig. 20 shows the RMSE of DOA estimation of different
structures where all structures have a 0.25d horizontal shift on
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Fig. 16. RMSE versus the number
of targets D, with 2000 snapshots and
0 dB SNR. D targets are uniformly
distributed from −60◦ to 60◦.
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Fig. 17. RMSE under the impact of the
number of snapshots, with SNR=0dB
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tributed within the range −60◦ to 60◦.
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Fig. 18. RMSE under the impact of
SNR, where 2000 snapshots are applied
and 50 target sources are uniformly
distributed from −60◦ to 60◦.

TABLE V
PARAMETERS OF DIFFERENT ARRAY STRUCTURES

ULA ECPA kCPA CCPA-k NA SNA WR
Number of Sensors 14 14 14 14 14 14 14
Array Specification 14-ULA (4,7) (2,7) 4-times (3,7) 2-times (7,7) (7,7) 3rd-order W(2,3)
Number of DoFs 13 31 43 35 55 55 68
Array Aperture 13 49 49 35 55 55 68

w(1) 13 2 2 4 7 1 4
RMSE (no coupling/perturbations) 0.0804 0.0717 0.0399 0.0468 0.0298 0.0263 0.0291

RMSE (with coupling) 0.6517 0.1059 0.0752 0.1386 0.2399 0.0634 0.0847
RMSE (with perturbations) 0.0960 0.1032 0.1546 0.1078 N/A 0.0616 N/A
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Fig. 19. RMSE under the impact of
mutual coupling, where 2000 snap-
shots and 0dB SNR are applied.
10 target sources are uniformly dis-
tributed within the range −60◦ to
60◦.
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antenna perturbations, where 2000
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10 target sources are uniformly dis-
tributed within the range −60◦ to
60◦.
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Fig. 21. Redundancy rate of differ-
ent array geometries.
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Fig. 22. Reliability of different array
geometries.

the 4th physical antenna. As expected, most arrays have the
higher detection errors, while NA and WR completely fail to
detect the targets. kCPA has a larger RMSE compared with
CCPA-k, ECPA and SNA. This result is in consistent with our
analysis of reliability in Fig. 22.

VII. CONCLUSION

We first introduce the k-times extended co-prime geometry
and illustrate the rules of the holes in its difference co-array,
based on which we derive concise expressions for all hole

5 10 15 20 25 30 35 40

Number of Physical Sensors

0

100

200

300

400

500

D
oF

DoF Analysis

ECPA
kCPA
CCPA-k
NA
4th-order SNA
Wichmann Ruler

Fig. 23. DoF of different array ge-
ometries.
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Fig. 24. Array aperture of different
array geometries.

positions and reveal the characteristics of holes. These analy-
ses provide the fundamentals to facilitate advanced co-prime
array designs. We then further propose a complementary co-
prime array structure, which includes an extra sub-array that
can fill all of the holes. Our performance results demonstrate
that, the estimation quality of our complementary co-prime
array outperforms that of other co-prime structures. Compared
with other types of sparse arrays, complementary co-prime
array has either equivalent or better performance when mu-
tual coupling effect and antenna perturbations are taken into
consideration. Furthermore, when using the same number of
sensors, our proposed array has remarkable estimation quality
and smaller aperture. This significant reduction of the array
aperture will make it better fit for use in a space constrained
scenario such as air-borne and underwater applications.
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