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Abstract

In recent years, we have seen a surge of interest in
enabling communications over meshed wireless networks.
Particularly, supporting peer-to-peer communications over
a multi-hop wireless network has a big potential in
enabling ubiquitous computing. However, many wireless
nodes have limited capabilities, for example, sensor nodes
or small handheld devices. Also, the end-to-end capacity
and delay degrade significantly as the path length increases
with the number of network nodes. In these scenarios,
the deployment of a backbone network could potentially
facilitate higher performance network communications.
In this paper, we study the novel Reinforcement Back-
bone Network (RBN) deployment problem considering the
practical limitation in the number of available backbone
nodes and enforcing backbone network connectivity. We
propose an iterative and adaptive (ITA) algorithm for
efficient backbone network deployment. In addition, in
order to provide the performance bound, we redefine and
solve the problem by implementing the Generic Algorithm.
Finally, we present our simulation results under various
settings and compare the performance of the proposed ITA
algorithm and the generic algorithm. Our study indicates
that the proposed ITA algorithm is promising for deploying
a connected RBN with a limited number of available
backbone nodes.

1. Introduction

Supporting peer-to-peer communications over a meshed
wireless network has seen big potential in enabling ubiq-
uitous computing. However, when the nodes have lower
capabilities or limited resources, such as small sensor
nodes or handheld wireless devices, the network may be
not reliable or have very low capacity. In addition, a flat
homogeneous ad hoc network has been shown to have poor
scalability. As the number of network nodes and therefore
the average number of hops per path increases, there will

be a rapid reduction of path throughput [1] and an increase
of the end-to-end delay [2]. The placement of a backbone
network with more capable nodes can potentially bring in
a lot of benefits in these scenarios, including more reliable
transmissions, lower delay and higher throughout to remote
destination nodes, higher quality links.

The backbone network problems have been recently
studied in [3]–[5]. The works in [3] [4] assume there are
an unlimited number of backbone nodes, and the goal is
to minimize the total number of backbone nodes in the
deployment. In many practical scenarios, however, there
is only a fixed number of backbone nodes that can be
deployed, and the deployment can be only performed
under the constraint of the available backbone resources.
Although the authors in [5] also perceived the issues and
attempted to deploy a limited number of backbone nodes,
they failed to consider an important constraint, i.e., back-
bone network connection. In addition, the paper implicitly
assumed that a regular node can reach any backbone nodes
directly, which is not very practical.

The aim of this work is to optimally deploy a Rein-
forcement Backbone Network to enhance the performance
and robustness of an underlying wireless network that
consists of nodes with lower capabilities and to facilitate
high capacity and long-range network communications. We
ascribe wireless nodes into two types. The first type of
nodes are called regular nodes (RNs), which normally have
limited capacities and transmit at a shorter range. The
second type of nodes are called backbone nodes (BNs),
which generally have much higher communication and
computation capacities and can transmit at a longer range.

The objective of our backbone deployment is to min-
imize the average backbone access delay from all the
regular nodes while satisfying the backbone connection
constraint. To our best knowledge, this is the first work
that studies the optimal deployment of backbone network
with use of the limited number of backbone nodes and
ensuring backbone connectivity. The backbone deployment
problem is made much more challenging with the practical
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consideration of the limitation of available backbone nodes
and the enforcement of backbone network connectivity. We
formulate the problem with a practical objective function
and propose an iterative and adaptive algorithm to solve
the problem. In addition, in order to find the performance
bound, we re-define the problem and solve the problem
using genetic algorithm.

The rest of the paper is organized as follows. In Sec-
tion 2, we formulate the problem and discuss its com-
plexity. In Section 3, we present the iterative and adaptive
backbone deployment algorithm. We re-define the problem
and solve the problem through genetic algorithm in Sec-
tion 4. In Section 5 we evaluate the performance of our
algorithm via simulations, and compare the performance
of our algorithm and gene algorithm. Section 6 concludes
this paper.

2. Problem Formulation

Before formulating the problem, we first introduce our
link and network connection models. For a sending node i
and a receiving node j, the receiving signal to interference
and noise ratio (SINR) at j is defined as:

SINRi,j =
Gi,j · pt(i) · d−β

i,j

N + Ij
≥ γj , (1)

As the backbone deployment is at a larger time scale,
we only consider the large scale path loss factor in our
link model. In Eq. (1), Gi,j is the channel gain between
nodes i and j, pt(i) is the transmitting power of i, di,j is
the distance between i and j, β is the path loss exponent
typically ranging between 2 and 4, N is the ambiance noise
power and Ij is the interference power at receiving node
j.

Definition 1 (Link): A node i can reach a node j if
SINRi,j is larger than a threshold γj , which depends on
the decoding capability of j. For two nodes i and j, if i
can reach j and j can reach i, there is a link between i
and j.

Definition 2 (Path): There is a path Pi,j between two
nodes i and j if i and j can reach each other directly
through one link or over multiple links with relay nodes.

Definition 3 (Connected): A network is connected if ∀
node pair i and j in the network, there is a path Pi,j

between i and j.
We assume that there are n wireless Regular Nodes (RN)

in a 2D plane, which form a connected ad hoc network
GR = (NR, ER). The set NR contains all the Regular
Nodes, and |NR| = n is the size of the RN network. We
name the RNs as 1, 2, ..., n. The link between i and j is
denoted as eij , and the set ER contains all the links in the
RN network.

There are k backbone nodes (BN) to be deployed to
form a Reinforcement Backbone Network (RBN) to enable
RNs to communicate more efficiently over a long distance.
Each BN has two communication interfaces, one is used to
communicate with RNs, and the other is used to communi-
cate with other BNs. The two radio interfaces are tuned to
different radio channels so concurrent communications can
be carried in the RN network and backbone network, and
the long-range backbone communications will not interrupt
the short-range communications in RN network. After
the deployment, the backbone network can be denoted
as GB = (NB , EB), where NB is the set of BNs with
|NB | = k, and EB is the set of backbone links. We denote
the BNs as b1, b2, ..., bk.

2.1. Objective Function

It is important to optimally deploy the backbone network
to achieve a desired objective. Based on [2] and [6], one of
the major delay factors in a random access based wireless
network is the hop-number from the transmitting node to
the receiving node. When a RN needs to communicate
with another node that is farther away through a path over
only RNs, there will be a large number of hops between
the source and the destination, which will not only incur
a high transmission delay but also lead to a low end-
to-end throughput. Therefore, it is necessary to introduce
an Reinforcement Backbone Network to provide efficient
long-range communication. As shown in Fig. 1, RNt can
take advantage of the backbone network to speed up the
communication with RNr. The communication has three
parts: RNt to BNa, BNa to BNb inside the backbone
network and BNb to RNr. During backbone network
construction time, the actual transmission needs are not
known. Also, a BN has a much higher transmission band-
width and longer transmission range than a RN, thus the
delay between two BNs is much smaller than that between
two RNs with equal distance. Therefore, to facilitate the
long-range communication of regular nodes, we consider it
critical to reduce the delay for a RN to access the backbone
network.

Figure 1. An end to end long range RN transmission.



3

For each RN i, there will be an assigned BN b(i) for
the RN to efficiently access the backbone network. As
the transmission delay is directly impacted by the number
of hops in a path, we consider the number of hops h(i)
between the RN i and b(i) as hop delay between the RN
and the backbone network. Besides transmission delay,
if too many RNs want to route their packets into the
backbone network through the same BN, the BN will
become the hot spot, leading to a large competition delay.
Therefore, for each RN, we consider a delay cost factor as
a function of both hop delay and competition delay.

Let’s denote the regular nodes by the set NR =
{1, 2, ..., n} and the backbone nodes by the set NB =
{b1, b2, ..., bk}. For the regular node i, b(i) = bk represents
that the regular node i is assigned to backbone node k.
Let h(i, bJ) be the hop number from regular node i to the
backbone node bJ , and h(i) be the hop number from RN
i to its assigned BN b(i).

For a backbone node bI , the RNs assigned to the BN
form a cluster, and |(bI)| represents the number of RNs
associated with bI . For k BNs, there will be k groups of
RNs, each RN group is associated with one of the k BNs.
In this work, every RN is assigned to exactly one BN, thus∑k

I=1 |bI | = n. A RN can be assigned to a different BN
if its associated BN becomes unavailable, and could also
route around the assigned BN over a path of RNs if the
BN is not reachable.

Before the deployment of backbone nodes, the signal
strength cannot be measured, we use the reference trans-
mission ranges R for BNs and r for RNs to guide the
backbone node deployment. Generally, we just need to
know R > r, and our algorithm is not constrained by
the disk model. The connection between two neighboring
nodes needs to be calculated based on the link model in
Eq. (1) with a safety threshold to ensure the connectivity
under some fading conditions.

When multiple RNs are associated with one BN, there
will be channel competition in accessing the BN. If each
node has an equal probability of accessing the BN, the
delay as a result of node competition will directly be
impacted by the number of RNs associated with the BN.
To capture the impact of both hop delay and competition
delay, the delay cost factor ci between a RN i and its
assigned BN b(i) can be represented as:

ci = αh(i) + (1− α)|b(i)|, (2)

where |b(i)| indicates how many RNs are assigned to b(i).
The parameter α ∈ [0, 1] is used to adjust the trade-off
between the hop delay and the competition delay. Note
that we do not intend to model the accurate delay in
backbone access, but only consider the factors that impact
the backbone access delay.

To evaluate the overall backbone network deployment
performance, we will consider the average backbone access
delay cost factor c̄ of all RNs, and the objective of the
backbone network deployment is to minimize c̄ which is:

c̄ =
1

n

n∑
1

ci =
1

n

n∑
1

(αh(i) + (1− α)|b(i)|). (3)

2.2. The Problem

Our problem is to deploy k BNs to form a Reinforce-
ment Backbone Network where the BNs are connected
and each RN i is assigned to exact one BN b(i), with
the objective of minimizing the average backbone access
delay cost:

min c̄, (4)

Subject to:

∃PI,J ,∀bI , bJ ∈ NB ,

∃b(i) ∈ NB ,∀i ∈ NR.

A solution to this problem involves two parts: the
deployment of k BNs and the assignment of each RN to
a BN.

In order to provide the Reinforcement Service to RNs, a
RN should be able to access at least one BN, either directly
or through multi-hop RN relays. As the objective of the
backbone deployment is to minimize the average backbone
access delay from all RNs, thus for a lower overall access
delay and connectivity from a RN to the BN network, each
BN should be within the transmission range of at least one
RN. Each BN can choose which RN transmission area it
will stay and totally we have

(
n
k

)
= nk candidate deploy-

ment options. With the BN network connection constraint,
only some of these candidate deployment locations are
feasible. So there will be less than nk types of deployment.
Because k is known as a constant, the deployment solution
has a polynomial complexity. As we assume R > r, we can
first deploy the BNs to the center of the RN transmission
area, i.e., the current positions of the RN. Adjusting the
position of BN within the RN’s transmission range will
not affect the connection constraint significantly.

After each deployment of BNs, the next step is to
associate each RN to a BN. Since the RN network is
already given, we can have the following hop number
matrix H:

H(n×n) =


h(1, 1) h(1, 2) . . . h(1, n)
h(2, 1) h(2, 2) . . . h(2, n)

...
...

. . .
...

h(n, 1) h(n, 2) . . . h(n, n)

 , (5)
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where the item h(i, j) is the shortest path hop number
between RNs i and j, and h(i, i) is 0. Apparently, H
is a natural symmetric matrix. Assuming our BN nodes
{b1, b2, ..., bk} have been already deployed on the existing
RN positions, the hop number from an RN to every BN can
be found in the matrix H . Note that given the locations
of BN nodes as the candidate facility locations, and the
hop number h(i, bJ) from an RN i to each BN bJ as the
connection cost, if we let α = 1 in Eq. (3), the simplified
problem is equivalent to the NP-hard k-facility location
problem [7]. As a result, the assignment part of the problem
is NP-hard and thus the problem in Eq. (4) is NP-hard.

3. Iterative and Adaptive Backbone Deploy-
ment

As discussed earlier, in order to minimize the average
backbone network access delay cost, it will be good for
BNs to stay close to the RNs and for each BN to be within
the transmission range of one or more RNs. Considering
the transmission range of each RN as a deployment option
for a BN, with n RNs and k BNs, there are O(nk) com-
binations for the deployment. Instead of searching through
all the possible combinations for BN deployment and all
the possible association between n RNs and k BNs which
may take a significantly long time, we propose an iterative
and adaptive (ITA) backbone deployment algorithm. The
algorithm has four steps: 1) Initial deployment to determine
the initial positions of k BNs; 2) RN association, which
greedily assigns the RNs to associate with k BNs based
on the current round of BNs deployment to minimize the
average backbone network access delay cost; 3) Adaptation
of the positions of k BNs based on the association of n
RNs; 4) Checking the connectivity to ensure that the k
BNs forms a connected backbone network. The algorithm
runs iteratively through the steps 2, 3 and 4 until either
the objective function cannot be improved any more or the
BN network becomes disconnected.

3.1. Initial Deployment of Backbone Nodes

A simple solution of initial deployment is to randomly
pick k RN positions and put k BNs close to these reference
locations. However, this cannot guarantee that k BNs are
connected. The classic Furthest First [8] scheme or Subset
Furthest First [9] scheme also cannot ensure that the initial
BN deployment meets the connection constraint. Motivated
by the self-deployment scheme in robotic research area
[10] where robot nodes spread out from a central location
until no node could move out further, we deploy the k
BNs initially within a close distance between each other
so that the backbone network is connected. Different from
robot deployment which only considers a flat network

with a simple goal of keeping the nodes connected, the
problem is made much more challenging with the objective
of deploying a limited number of backbone nodes to
optimally serve the RNs while ensuring the backbone
network connectivity. In our deployment, the change of
BN positions is virtual until a solution is found.

To reduce the number of transmission hops to the
backbone nodes and balance the association between RNs
and k BNs for a lower competition delay, we choose to
initially deploy the BNs close to the mass center L⃗mass

of the n RNs. We first find the RN position closest to
the mass center, L⃗(0)1, to virtually deploy the first BN.
Since the n RNs already form a connected network, to
keep the remaining k − 1 BNs close to the first BN, we
perform a Breadth First Search to traverse the RN network
to deploy the remaining k−1 BNs virtually on the positions
of the closest k − 1 RNs to the root BN denoted by
L⃗(0)2, L⃗(0)3, ..., L⃗(0)k, where (0) means the round 0 of the
iteration of the algorithm, which is the initial stage. As the
transmission range of a BN is much larger than an RN,
the connectivity of the RN network will ensure the initial
deployment of BNs forms a connected network.

3.2. Random Greedy Assignment

Given the locations of the k BNs in Round t,
L⃗(t)1, L⃗(t)2, ..., L⃗(t)k, there is a need to associate each RN
to a BN to reduce its delay in accessing the backbone net-
work. We propose a Random Greedy Assignment (RGA)
approach, in which the n RNs will take turn to associate
with a BN in a random order as shown in Algorithm 1.

For each iteration round, at the beginning of the associa-
tion process, the association results from the last round will
be cleared up in Line 2, i.e.,, ∀bp ∈ {b1, b2, ..., bk}, |bp| =
0. For each RN assignment, the access delay cost from
the RN to a BN can be calculated based on Eq. (2), and
the RN will associate with the BN that provides the least
access cost. After each RN association, the number of RNs
associated with the selected backbone node p, i.e., |bp|,
is increased by one. By considering the current load of
the BNs, the algorithm attempts to balance the access load
among k BNs to reduce the competition delay in accessing
the backbone network.

3.3. Adaptation of BN Positions

After associating the RNs with the k BNs, for a BN bI ,
there are |bI | RNs assigned to it. With the same association,
adapting the position of the BN to the best position T⃗(t)I

to minimize the average hop number from all RNs will
reduce the average delay cost, as the competition cost will
stay the same. The T⃗(t)I can be determined as follows. The
backbone node bI constructs a sub hop-matrix H(t)I based
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Algorithm 1 Random Greedy Assignment
1: load the list L with RN set {1, 2, ..., n}
2: ∀bI ∈ {b1, b2, ..., bk}, |bI | = 0
3: while L is not empty do
4: randomly select an RN i from L
5: for I = 1 to k do
6: b(i) = bI
7: ci = αh(i) + (1− α)|b(i)|
8: end for
9: find the BN with the smallest ci and assign RN i to

it
10: |b(i)| = |b(i)|+ 1
11: end while

on the hop matrix in Eq. (5) by simply obtaining the rows
and columns corresponding to the RNs assigned to it in
the current round t. The sub hop-matrix thus has the size
|bI | × |bI |. As a BN uses an RN position as the reference
in each movement, bI can pick up the target position T⃗(t)I

as follows:

T⃗(t)I = Location of RN(argmin
i

(
1

|bI |
∑
j∈bI

h(t)I(i, j))),

(6)
where h(t)I(i, j) is the (i, j)th item of H(t)I . Because H
is symmetric, the sub hop-matrix H(t)I is also symmetric.
Based on Eq. (6), T⃗(t)I corresponds to the position of the
RN whose associated row has the minimum summation.
Overall, it takes O(n) time to construct the sub hop-matrix
and O(n) time to sum up each row. So the finding of new
targeted positions for all BNs has a linear running time
O(kn) in each round t.

After finding the target position, instead of letting a BN
to directly move to its target position which may lead to
a large oscillation and prevent the system from reaching a
better deployment option, in our scheme, the BN will move
towards its target location gradually. Specifically, if the BN
has the current position L⃗(t)I and the target position T⃗(t)I ,
the BN will move with a step length proportional to the
vectorial difference between L⃗(t)I and T⃗(t)I towards the
intermediate location L⃗′

(t)I :

L⃗′
(t)I = L⃗(t)I + l · (T⃗(t)I − L⃗(t)I). (7)

To deploy the BN close to an RN, the position of the RN
closest to L⃗′

(t)I will be found, i.e, L⃗(t+1)I . Therefore, the
BN will move from L⃗(t)I to L⃗(t+1)I . This can be illustrated
using the example in Fig. 2, where position 1 is the current
bI position L⃗(t)I . The RNs between ”RN Network Part
A” and ”RN Network Part B” are assigned to bI after
one round of the RGA. The position 2 is the target T⃗(t)I ,

and the position 3 is L⃗′
(t)I . As the initial BN movement

is in the granularity of RN hop, the proportion should be
bigger than 0.5 to make sure a BN could move to its target
position in case sometimes T⃗(t)I is only one hop away from
L⃗(t)I . The position 4 of the RN node closest to 3 is finally
taken as the new position L⃗(t+1)I of bI , to ensure that
the average access delay from RNs to the BN network is
smaller.

Figure 2. Move toward the BN Target

3.4. Checking the BN network connectivity

In order for the backbone network to be functional
and support more efficient and long range transmission
for RNs, the BN network needs to be connected. So the
adaption of backbone node positions is under the constraint
of the backbone network connectivity. There are two
methods to check whether the BN network is connected:
with the construction of a k-node spanner tree or with the
construction of adjacent matrix. In this work, we take the
first method as it has a lower computational complexity.
The construction can root from an arbitrary BN. If the
constructed spanning tree has a size k, the BN network is
connected; otherwise, the step length of adapting the BN
position needs to be adjusted or the adaptation cannot be
performed.

As the determination of the BN deployment is a virtual
process, the connection between two neighboring nodes
needs to be calculated based on the link model in Eq. (1)
with a safety threshold to ensure the connectivity under
some fading conditions. After the deployment, the position
of a BN node can be adjusted based on the strength of the
signals received from the neighboring nodes.

3.5. Complete Algorithm

The complete algorithm will be an iterative process
through Random Greedy Assignment, adaptation of BN
positions, and checking the connectivity as shown in Al-
gorithm 2.
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On lines 1 to 4, the positions of k BNs are initialized,
and RGA is performed on line 6 for RN association.
On lines 7 to 11, the updated positions of the BNs are
determined. If the BN network remains connected, the BN
positions are updated and the algorithm moves to the next
round; otherwise the positions of BNs are adapted to where
they can still keep the network connected.

The adaption of the BN positions is based on the
control law. The check of the network connectivity is
initially performed over the updated positions of BNs on
line 12. When the connectivity cannot be maintained, an
adjustment process is used on line 25 for a BN to explore
the neighboring area to potentially adapt the its position
for a lower cost under the connection constraint until the
objective function can no longer be improved.

Our algorithm stops when the cost cannot be reduced
any more or the BN network is disconnected. For the
second situation, the algorithm uses an adjustment process
to control each BN to explore its neighbor area until the
objective function can’t get improved.

Algorithm 2 Iterative and Adaptive Backbone Deployment
1: n RNs, k BNs
2: calculate L⃗mass

3: L⃗(0)1 = L⃗mass as the root
4: get L⃗(0)2, ..., L⃗(0)k by BFS RN network
5: while ∃L⃗(t)I != T⃗(t)I do
6: run Random Greedy Assignment
7: for bI = b1 to bk do
8: T⃗(t)I = argmini (

1
|bI |

∑
j∈bI

h(t)I(i, j)))
9: L⃗′

(t)I = L⃗(t)I + l · (T⃗(t)I − L⃗(t)I)

10: L⃗(t+1)I = closest(L⃗′
(t)I)

11: end for
12: Constructing the spanning tree SPT BN over the

updated backbone network.
13: if Size of (SPT BN) == k then
14: connectivity = 1;
15: else
16: connectivity = 0;
17: end if
18: if connectivity == 0 then
19: return to the previous locations L⃗(t)I , I = 1, ..., k
20: break
21: else
22: t = t+ 1
23: end if
24: end while
25: Adjusting BN positions to reduce the cost while keep-

ing the network connectivity.

4. Gene Algorithm for Performance Bound

Genetic Algorithm(GA) [11] has been shown to be good
in finding global optimal solution. In this section, we
present the application of GA to look for the solution that
can achieve the optimum, i.e., the performance bound of
our algorithm.

Genetic Algorithm is a stochastic optimization algorithm
based on the mechanisms of natural selection and natural
genetic operation. It starts with a fixed-size population of
solutions. Each solution consists of a string of numbers,
alphabets or other types of variables, typically binary
numbers. The solutions in GA evolve generation by gen-
eration. For each generation, GA decides which solution
can stay in the next generation based on the probability
generated according to a solution’s fitness function which
is related to the objective function of the optimization
problem. After this natural selection process, once we have
the next generation’s population, GA applies the genetic
operators such as mutation or crossover to these solutions
and therefore produces the new solution for the next round
of natural selection.

As discussed earlier, since R > r and also the objective
of the deployment is to minimize the average backbone
access cost, the BNs will be deployed within the commu-
nication ranges of one or a set of RNs. The total possible
combinations of the deployment is O(nk), which can be
achieved in polynomial time. We will find all the possible
BN deployment combinations first and then use GA to
search in the possible assignment combinations to look
for the optimum solution. In the following we introduce
our design in applying gene algorithm for achieving the
optimal assignment for a given deployment option, which
consists of several steps.

4.1. coding

Each solution si corresponds with a string of integer
numbers with string length n, which represents one of the
assignment results of n RNs. Each RN could be assigned to
one of the k BNs from b1 through bk, and for simplicity, we
use 1, 2, ..., k to represent the BN that an RN is assigned
to. For each si, we can find out the hop number from
each RN to a BN (located within the transmission range
of an RN) by looking up Eq. (5) and the number of RNs
assigned to each BN respectively. As mentioned above, in
each generation, there will be a fixed-size S solutions.

4.2. initialization

To start the GA, we need to set up an initial population
of solutions. Normally, the initial solutions will be gen-
erated randomly, but in this case, total randomness may
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cause no RN assignment to one or more BNs. To avoid
this problem, we first randomly pick k RNs and assign
them to BN from b1 to bk individually, and then assign the
remaining (n− k) RNs to the set of BNs randomly.

4.3. selection

GA selects the next generation with population size
S from the previous solutions, and pick one each time
with the probability related to the fitness functions of
the solutions in the previous generation. For example, the
solution si is picked with the probability of P (si):

P (si) =
F (si)∑p
i=1 F (si)

. (8)

F (si) is the fitness function of solution si. We set F (si)
by applying the σ-truncation method [12] to the average
delay cost as a result of the assignment si. Denoting the
average delay cost value with solution si as c̄(si). Based
on the σ-truncation method, we have cne(si) = −c̄(si) and
g(si) = cne(si)−(c̄ne−c·σ), where c̄ne and σ are the mean
and standard deviation of cne(si) in the current population
respectively. The parameter c is a constant between 1 and
3 [12]. Thus, the fitness function of si is given by

F (si) =

{
g(si), if g(si) ≥ 0;
0, otherwise. (9)

4.4. crossover

Since we consider the deployment of an enforcement
backbone network based on the existence of an RN net-
work, the objective function is not dynamic [13]. We
thus decide not to adopt the crossover operation, because
they will cause a longer running time and much more
generations to converge to the optimum [13].

4.5. mutation

For every generation, we divide the whole generation
into two halves. We apply the directional mutation on the
first half in order to speed up the convergence of the good
solutions to their nearby local optimal value. At the same
time, we apply the random mutation on the second half
solutions to have some solutions get out of the bad local
optimal point.

4.5.1. directional mutation. For a solution si, the muta-
tion of the jth item happens if the assignment for the jth
RN changes from its current BN to another BN bp. The
mutation probability is given by

Prob(si(j) = p) =
λcmax − c̄(si(j) = p)∑k

q=1(λcmax − c̄(si(j) = q))
(10)

Each solution si is an assignment combination with a
cost c̄(si), and cmax = maxj c̄(si(j)) is the maximum
delay cost factor and λ is a constant larger than 1. In Eq.
(10), each RN has a higher probability to take the BN
with the lower delay cost factor. This selection is greedy
in probability and can conduct a local optimal solution.

4.5.2. random mutation. To avoid our solution being
trapped to an unfavorable local optimal position, we em-
ploy the random mutation to let the solution move away
from the local optimal value. For a solution si, each item
has a probability Probrm to change from its current BN
assignment, and probability 1 − Probrm to stay with the
current BN. Therefore, if some RN of si is assigned to BN
bI , then it will have the probability Probrm

k−1 to be assigned
with k − 1 other BNs except the current bI . Normally the
Probrm is very low.

4.6. The Complete GA

GA has several ways of termination. We set a limit to
the generation number Gt, beyond which the algorithm
will stop and report the best solution it has ever found.

Algorithm 3 Genetic Algorithm
1: while untested BN deployment combination exists do
2: pick an untested deployment combination
3: if this BN network is not connected or is an obvi-

ously bad option then
4: continue
5: else
6: set up an initial population P0 with S solutions
7: i = 1
8: for i = 1 to Gt do
9: P ′

i = Selection(Pi−1)
10: update the best c̄(si)
11: split P ′

i into P ′
i1 and P ′

i2

12: Pi1 = DirectionalMutation(P ′
i1)

13: Pi2 = RandomMutation(P ′
i2)

14: Pi = Pi1 ∪ Pi2

15: i = i+ 1
16: end for
17: end if
18: end while
19: pick the best c̄(si) among O(nk) group of results

In summary, we first find all the deployment combina-
tions within polynomial running time O(nk). We can get
rid of a number of deployment combinations, as they either
don’t satisfy the connectivity constraint or are obviously
bad options. For each possible deployment combination,
we use GA to look for an optimum. After GA running
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through every deployment combination, we select the best
one as the overall optimum, which is used as our simulation
bound to evaluate our ITA’s performance.

5. Performance Evaluation

We use simulations to evaluate the performance of our
proposed algorithms. 100 RNs are generated one by one
in random locations. Each new RN is ensured to get
connected with those distributed RNs. Thus these 100
RNs form a connected network with random topology.
RN transmission range r = 30m, with default BN number
k = 5 and default BN transmission range R = 6r, trade-off
coefficient α in Eq. (2) is 0.5 and the moving proportion
l in Eq. (7) is 0.55. A simulation result is obtained by
averaging over several runs of simulations with different
random seeds.

According to the default parameter setup, an RN net-
work with random topology is formed as in Fig. 3. The
Reinforcement Backbone Network deployed using the ITA
algorithm is also shown in Fig. 3.

5.1. Impact of k

The impact of BN number k is shown in Fig. 4. The BN
number varies from 5 to 10 while other parameters keep
the default values. ITA has the close performance to the
simulation optimum performance bound provided by GA.
As expected, the adjustment process of ITA executed at the
end of algorithm 2 can effectively reduce the average delay
cost when k is small because if we have fewer BNs, the
algorithm will probably come out of the iteration when
the BN network gets disconnected. When k is bigger,
the adjustment does not affect the performance much.
With more BNs, the algorithm usually guarantees the
iteration and adaption loop stops when the average access
delay cost cannot be improved without conflicting with
the connection constraint. So there will be no adjustment
needed. However, when k increases, both the average delay
costs of ITA and performance bound decrease because if
we have more BNs, the average BN association size will
be reduced thus each RN inside its BN association will
have less competition delay cost.

5.2. Impact of R/r

The impact of transmission range ratio R/r is shown
in Fig. 5 with R/r varying from 3 to 8. The adjustment
process is shown to be very effective in reducing the
average delay cost when R/r is small because if BN
transmission range R is small, the algorithm will jump
out of the iterations when the BN network becomes dis-
connected, therefore the adjustment is crucial to improve

Figure 3. RN network and its RBN deployment.
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Figure 4. Impact of k.

the performance in this situation. When R is bigger, ITA
and ITA without adjustment have the same performance
because when R has a long range that the BN network
can keep connected almost everywhere it is deployed, the
algorithm usually guarantees the iteration is stopped when
the average access delay cost factor cannot be improved
without conflicting with the connection constraint. When
R is increased further (when R/r > 6), however, the
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Figure 5. impact of R/r.
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Figure 6. Impact of α: (a) Association size variance; (b) Average
hop number.

average delay costs of ITA and GA will keep the same
value. Because the RN network area is fixed, no matter
how much more R increases, the RN network area and
topology don’t change, thus the average delay cost will
stay the same.

5.3. Impact of α

With other parameters fixed, α changes from 0.1 to
0.9. The smaller α puts more emphasis on achieving the
balance of association sizes to get rid of hot spots. As a
result of controlling the balance of the load associated with
each BN, the variance of association sizes is very small in
Fig. 6 (a). On the other hand, the average hop number is
bigger in Fig. 6 (b). The bigger α relaxes the control of
load balancing among BNs, and instead gives the freedom
for each RN to take the closest BN greedily in order to
reduce the hop delay. Therefore, the average hop number
in Fig. 6 (b) is smaller when α is bigger at the cost of
higher association variance in Fig. 6 (a).

5.4. Impact of l

Varying from 0.55 to 0.95, the moving proportion l
introduces a trade-off between the number of iteration steps
and the number of adjustment steps as shown in Fig. 7.
When we have a lower l, the BNs move to their target
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Figure 7. Impact of l

positions for a smaller distance in each iteration, thus it
requires more iteration steps to move to their target posi-
tions. When l is high, although a BN will move towards
its target position in a very few iterations, it will jump
over and ignore those positions that may provide a lower
access delay. Thus after all the iterations, the algorithm
needs more steps to do the adjustment, reconsidering those
positions it ignored before.

5.5. Impact of InitialPosition

We propose the method to find the initial positions by
find the mass center of the RNs and then do BFS traverse.
In this simulation, we did another 5 experiments in 5 differ-
ent random RN network. In each RN network, we set initial
positions as both the mass center (50 simulations) and the
random pick (50 simulations) to obtain the average result.
With random pick up initial position, we first randomly
pick an RN position and then still do BFS traverse rooted
on this RN to find other k−1 BN initial positions as close
as possible to the root RN. Illustrated in Fig. 8 (a), the
performances with the mass center and the random pick are
close, which means our BFS initial deployment is pretty
robust with different initial positions. The initialization
in reference to the mass center, however, offers a faster
convergence speed, while the initialization through random
pick generally takes longer time to converge as shown in
Fig. 8 (b).

6. Conclusion

In this paper we propose algorithms for the deployment
of a Reinforcement Backbone Network to improve the
communication performance of a meshed wireless net-
work. The objective of the deployment is to minimize the
average backbone access delay cost from regular mesh
network nodes which have lower capabilities. We prove
that the problem is NP-hard.
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Figure 8. Impact of the initial BN positions (a) Average delay cost;
(b) Total number of convergence steps.

Inspired by the theories in data mining and robotics
fields, we propose an iterative and adaptive algorithm (ITA)
which can construct a robust Reinforcement Backbone
Network which is not sensitive to the initial deployment
positions. Moreover, we exploit genetic algorithm to obtain
the lower cost bound of the problem. We have performed
extensive simulations to study the impact of different
parameters on the performance of the proposed ITA algo-
rithm and compare the results with that obtained through
the genetic algorithm. The results indicate that the ITA
algorithm can quickly converge and achieve performance
close to that obtained through the generic algorithm, which
requires several days of running. Our study indicates that
the proposed ITA algorithm is promising for the deploy-
ment of a connected Reinforcement Backbone Network
with a limited number of available backbone nodes.

For future work, we will extend the algorithm to work
in a mobile environment and develop a closed-form math-
ematical performance bound.
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