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Abstract—Vehicles equipped with various types of sensors can
act as mobile sensors to monitor the road conditions. To speed
up the information collection process, the monitoring data can
be shared among vehicles upon their encounters to facilitate
drivers to find a good route. The vehicular network experiences
intermittent connectivity as a result of the mobility, which makes
the inter-vehicle contact duration a scarce resource for data
transmissions and the support of monitoring applications over
vehicular networks a challenge.

We propose a novel compressive sensing (CS)-based scheme to
enable efficient decentralized context sharing in vehicular delay-
tolerant networks, called CS-Sharing. To greatly reduce the data
transmission overhead and speed up the monitoring processing,
CS-sharing exploits two techniques: sending an aggregate message
in each vehicle encounter, and quick collection of information
taking advantage of data sharing and the sparsity of events in ve-
hicle networks to significantly reduce the number of measurements
needed for global information recovery. We propose a novel data
structure, and an aggregation method that can take advantage
of the random and opportunistic vehicle encounters to form the
measurement matrix. We prove that the measurement matrix
satisfies the Restricted Isometry Property (RIP) property required
by the CS technique. Our results from extensive simulations
demonstrate that CS-Sharing allows vehicles in a large network to
quickly obtain the full context data with the successful recovery
ratio larger than 90%.

Index Terms—Compressive Sensing, Vehicular Delay Tolerant
Network, Context Sharing

I. INTRODUCTION

In vehicular networks, more and more vehicles are equipped
with sensors of different types, such as accelerators, pollution
sensors and Global Positioning System (GPS) receivers. There-
fore, vehicles are becoming powerful mobile sensors which can
be exploited to gather data from the environment [1], [2], and
vehicular networks can serve as promising new platforms to
support a wide range of monitoring applications, such as road
surface monitoring [3] and urban sensing [4].

The goal of this work is to develop an efficient algorithm that
enables every vehicle in the network to quickly and efficiently
collect the context data of all hot-spots with a vehicular
network. As there often exist heavy and dynamic traffic as
well as constant road repairs in the urban areas, we use the

important road condition monitoring as an example to illustrate
our algorithm in this paper.

Rather than letting each vehicle monitor all the hot spots
itself, we take advantage of two features to speed up the
monitoring process: 1) The mobility of vehicles, which allows
encountering vehicles to exchange messages and share infor-
mation collected; and 2) The rareness of the events to monitor,
for example, the traffic congestions or road repairs, which
enables the use of compressive sensing technique to recover
the global context information with much smaller number of
measurements.

Due to the mobility of vehicles, the vehicle network ex-
periences intermittent connectivity, which makes inter-vehicle
contact duration a scarce resource for data transmission. As it
is difficult to find a connected path over vehicles at any time,
road condition data may be exchanged during the opportunistic
inter-vehicle contacts. Two vehicles can directly exchange the
raw context data, however as the encountering duration is often
short, the transmission of large amount of raw data is costly
and subject to the packet loss. Therefore, it is critical to reduce
the information to transmit in the vehicular Delay-Tolerant
Networking (DTN) to well utilize scarce contact resources.

As a ground-breaking signal processing technique, recently
compressive sensing (CS) has been applied in wireless sensor
networks (WSNs) [5]–[16] and vehicle networks [17]–[23] to
facilitate data gathering at low cost. According to the compres-
sive sensing theory [24]–[27], sparse signals can be accurately
reconstructed with a relatively small number of random mea-
surements. Despite the large amount of effort, existing work
on CS usually assumes that the sparsity level K of unknown
data is known as a prior, based on which a pre-defined M ×N
measurement matrix (M < N ) is usually applied to take M
samples. With the need of exchanging M messages at a time,
the transmission cost is still very high. In addition, as the
sparsity level of the global road condition is often unknown,
the use of pre-defined measurement matrix may either result in
a failure of recovering the global information when the number
of samples are insufficient or high measurement overhead.

As congestions in off-traffic time or road repair are rare



events, the global context vector x ∈ RN to capture the road
condition is usually sparse, which provides the opportunity
to recover the global context data from a significantly lower
number of context measurements based on the CS technique.

Different from existing studies, in this paper, we propose
a novel CS-enabled decentralized context sharing scheme in
vehicular DTNs, called CS-Sharing. In our proposed system,
vehicles act as the mobile sensors to monitor the road condi-
tions. We propose an efficient algorithm to aggregate messages
stored in the vehicle to reduce the communication cost for
message exchanges among vehicles. Instead of monitoring all
the hot-spots of interests directly or flooding the information
throughout the network, each vehicle can obtain the global road
context data through CS recovery based only on a small number
of aggregate messages exchanged among vehicles.

Our CS-Sharing scheme takes advantage of the message
sharing and sparse data feature to enable quick context data
collection with a small number of on-site measurements, and
reduces the number of messages to exchange each time exploit-
ing novel message aggregation scheme. A vehicle driver can be
quickly made aware of the road traffic conditions several miles
ahead and find a route that allows for more smooth driving.

Our contributions in the CS-Sharing framework can be
summarized as follows:

• To the best of our knowledge, CS-Sharing is the first work
that applies the compressive sensing in vehicular DTN to
learn the global environment information through sparse
context sharing among vehicles. With vehicles driven
around the network, CS-Sharing can exploit the large
number of mobile vehicle sensors to efficiently collect the
environment information over a vast area.

• We propose a novel message aggregation algorithm for
each vehicle in the system to form an aggregate message
from its sensory data stored. Rather than transmitting the
raw context information upon vehicle encountering or M
messages like other CS-related existing network, vehicles
in our system opportunistically exchange an aggregate
message upon each vehicle encounter, so that the message
cost can be largely reduced.

• The proposed CS-Sharing scheme does not assume that the
sparsity of the road condition data is known as a prior and
uses a pre-defined measurement matrix as done in many
CS-related studies. Instead, with our well designed data
structure and the aggregation algorithm, the measurement
matrix required for CS is naturally formed in each vehicle
in a distributed way taking advantage of the random and
opportunistic vehicle encounters.

• We prove that when a vehicle in the network gathers more
than M = cK logN messages (where c is a constant, N
is the number of hot-spots, K is the sparsity level of the
global context vector with K << N ), the vehicle can
accurately recover the global urban context data of interest
even when M is much smaller than N .

• To support efficient on-line message collection, we pro-
pose a data recovery algorithm along with a sufficient sam-

pling principle so that a vehicle can identify whether the
messages gathered contain enough information to recover
the global context data without requiring the knowledge
of the sparsity of unknown road condition data.

We have performed extensive simulations to demonstrate the
effectiveness of our proposed CS-Sharing scheme. Although
there are only a smaller number of aggregate message ex-
changed among vehicles, our results show that CS-Sharing
allows vehicles in a large network to obtain the full context
information within very short time period at high data estima-
tion accuracy and low communication cost.

The rest of the paper is organized as follows. Section II and
Section III briefly introduce the fundamentals of CS and related
work. Section IV introduces the system model and the problem.
Section V and Section VI present our aggregation algorithm and
CS-based context recovery algorithm, respectively. Simulation
results are given in Section VII. In Section VIII, we conclude
the paper.

II. FUNDAMENTALS OF COMPRESSIVE SENSING

According to the CS theory [24]–[27], a sparse signal can be
recovered with a high probability by solving an optimization
problem from non-adaptive linear projections, which preserves
the structure of sparse signals. Suppose x ∈ RN is an unknown
sparse vector where ∥x∥0 = K and K ≪ N . We call K
the sparsity level of x. Then x can be reconstructed by a
small number of measurements from the acquisition system by
solving the following problem

min
x

∥x∥0
subject to y = Φx

(1)

where Φ is an M ×N measurement matrix and the number of
measurements M satisfies:

M ≥ cK log
N

K
(2)

where c is a constant value.
However, Eq.(1) is intractable because it is an NP-hard

problem [28]. In recent research work [29], [30], it has been
proven that the signal x can be recovered by solving the
following minimum l1-norm optimization problem with a very
high probability

min
x

∥x∥1
subject to y = Φx

(3)

with the measurement matrix Φ satisfying the Restricted Isom-
etry Property (RIP) [31], expressed as

(1− δs) ∥x∥2 ≤ ∥Φx∥2 ≤ (1 + δs) ∥x∥2 (4)

where δs is a constant and δs ∈ [0, 1) .
The RIP condition quantifies how well the measurement

matrix Φ preserves the norm of sparse vectors. In Section VI,
we will show that the measurement matrix is naturally formed
during the message exchange process in our CS-Sharing scheme
and the matrix satisfies the RIP condition.



III. RELATED WORK

With the recent advances in inter-vehicular communications
via Dedicated Short-Range Communication (DSRC) [32] and
Wireless Access in the Vehicular Environment (WAVE) [33],
vehicular networks are drawing growing attentions from both
research and industrial fields. Equipped with various types
of sensor, vehicles can serve as mobile sensors for many
monitoring applications [3], [4]. In [1], a good survey on
urban vehicular sensing platforms is given. Despite the large
amount of effort, there are only very limited studies on applying
compressive sensing to vehicular networks.

The work in [17]–[21] estimates the mobility trajectories via
a small number measurements from mobility traces, and pro-
poses a trajectory compression algorithm based on compressive
sensing to avoid network congestion in vehicular networks. In
[17], the proposed scheme AACAT can achieve an accuracy in
the order of meters for the reconstructed trajectories, and an im-
proved compression scheme SimpleTrack [18] can achieve the
sub-meter accuracy. In these schemes, the measurement matrix
required for CS is maintained by both the vehicle itself and the
receiver. The vehicle transmits its own compressed trajectory
messages to the receiver, while the receiver recovers the original
trajectory information with the aid of the measurement matrix.
Different from these studies, the goal of our work is to enable
every vehicle in the network to quickly and efficiently collect
the context data of all hot-spots. To achieve this, this paper
considers vehicles as mobile sensors to collaboratively collect
information on the road conditions. Therefore, the problem and
main solution of our work are very different from those of the
existing studies.

Li et al. [22] investigate the use of probing vehicles for
traffic sensing, where each vehicle senses its speed and position
periodically. The authors propose a CS-based method based on
the principal component analysis of data traces of taxies in
an urban environment and reveal the existence of the hidden
structures of the traffic data. In [23], the authors addressed
two issues: tradeoff between the communication cost and the
estimation accuracy, and guaranteeing the estimation accuracy
in the highly dynamic network. The work also demonstrates
that the number of vehicles and Access Points (APs) have
impact on the estimation accuracy. Instead of depending on
the deployment of APs on the side of the road to recover the
raw data, every participating vehicle in our system would like
to know the global set of hot-spot data by benefiting from the
context sharing.

Besides above studies, compressive sensing is becoming a
new paradigm for data gathering in WSNs as it can greatly
improve the communication efficiency [5]–[16], [34], [35]. CS-
based data gathering in WSNs often relies on a sink node to
perform CS data reconstruction, which requires the knowledge
of the packet transmission paths to derive the measurement
matrix structure and collect the data at each intermediate node.
This makes the solutions developed for WSNs difficult to apply
in vehicular networks where the network topology constantly
changes as a result of movement of vehicles. Also, different

from WSNs, nodes in our proposed system would like to share
the information and learn the global context information at low
cost. This would require each vehicle rather than the fusion
center to recover the complete set of data of interest, which
makes the context sharing problem much harder to solve than
the conventional data gathering problem in WSNs.

Despite the large amount of effort on CS (in WSNs and in
vehicular networks), existing studies usually apply a pre-defined
M ×N measurement matrix, with M determined based on the
sparsity level K assumed to be known and M messages to
transmit from a node. In contrast, our CS-Sharing scheme does
not rely on the knowledge of the sparsity level of the road
condition data and any pre-defined measurement matrix. With
our well designed data structure and the aggregation algorithm,
the measurement matrix required for CS is naturally formed at
each vehicle in a distributed way by taking advantage of the
random and opportunistic vehicle encounters. Moreover, only
one aggregate message is exchanged upon a vehicle encounter.
Therefore, the message cost can be largely reduced compared
with other CS-related work.

IV. SYSTEM MODEL AND PROBLEM DESCRIPTION

Sensing

Exchange Message

Sensing

Exchange Message

hot-spot

vehicle

Fig. 1. System model

Fig. 1 shows the system model. A set of vehicles, V =
{v1, v2, . . . , vC}, can communicate with each other when they
are within the communication range through inter-vehicle radio
technologies such as Dedicated Short-Range Communication
(DSRC) [32]. The vehicles collaboratively monitor N hot-spot
locations in a set H = {h1, h2, . . . , hN}.

A vehicle can be considered as a mobile node in the vehicular
network, whose moving path is usually determined by the
driver and/or the passengers. When a vehicle passes by a
hot-spot location, the vehicle can collect the road conditions
(such as traffic congestion or road surface repair) and store the
corresponding context information in its storage. The sensing
can be performed by a roadside unit and the data can be carried
away by a passing vehicle; alternatively, vehicles equipped
with sensors can gather information on the location and road
conditions of the nearby hot-spots directly. How to sense the



road condition is not our focus. Our goal is to propose an
efficient scheme to facilitate in-network data processing and
data transmission for vehicles to more quickly gather the global
context data.

The mobility of vehicles on the one hand provides the
opportunity for vehicles to exchange data upon their encounter,
and on the other hand leads the network connectivity to be
intermittent which further makes inter-vehicle contacts scarce
resources for data transmissions. To allow every vehicle to
be aware of the context information of all the hot-spots of a
target monitoring environment so it can determine the best path,
we propose to leverage the vehicle encountering opportunity
to enable efficient and opportunistic context sharing among
vehicles.
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Fig. 2. Exchanging context information by leveraging the opportunity
encounter.

In the example of Fig. 2, before vehicles v1 and v2 meet each
other, vehicle v1 collects the context information at the location
h1 first and then the location h2, while vehicle v2 collects the
information at h5. Instead of sending raw sensing data, a vehicle
in our proposed system will exchange an aggregate message to
another vehicle encountered to reduce the message cost. When
vehicles v1 and v2 meet, v1 will combine context messages
at locations h1 and h2 and send an aggregate message to v2.
Similarly, vehicle v2 also sends an aggregate message to v1.

The road conditions such as traffic congestion and road report
will not change instantly. Vehicles passing by the same hot-
spot within a short time period will obtain similar context data.
Through a small number of random aggregations of the sensory
data and message exchanges among vehicles, each vehicle
in our proposed network system can achieve a shared view
of some aggregate measurements of the global context after
several opportunistic encounters. We will apply a CS-based

recovery algorithm to recover the global context information
based on the aggregate measurement data, so that each vehicle
in the network can obtain the full context information in the
network.

V. MEASUREMENT AGGREGATION

One of the key issues in the proposed CS-Sharing scheme is
to generate the aggregate message to reduce the data exchanged
in vehicle networks. We first introduce the structure of the
context message, and then our aggregation algorithm.

A. Message structure

Two types of context messages are stored in each vehicle,
the atomic message containing the context data of only one
hot-spot location, and the aggregate message summarizing the
context of multiple hot-spot locations for a vehicle to exchange
with others at low cost.
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Fig. 3. Format of the context information

In Fig.3, each context message includes two parts, a tag and
the corresponding message content. A tag is represented with
an N -bit binary vector, and tag[i] = 1 indicates the context
at hi (1 ≤ i ≤ N ) is included in the message. An atomic
context message has one bit set to 1, but an aggregate message
generated with n atomic messages will have n corresponding
bits set to 1.

B. Message Aggregation

As the vehicle encounter duration is short and a valuable
resource which can be exploited for wireless communications,
rather than directly transmitting raw context data, we propose
to exchange aggregate messages to dramatically reduce the total
number of messages and thus the communication cost.

When a vehicle obtains a new message, which can be a new
atomic context message collected by itself when passing by
a hot-spot or an aggregate context message transmitted from
another vehicle, the vehicle will generate a new aggregate
message for the future message exchange. Thus, the aggregate
message is generated as a random measurement of the global
context based on either type of messages. In the next section,
we will provide a CS recovery algorithm to reconstruct the
individual context data for all locations of interest based on a set
of aggregate messages the vehicles obtains. The performance of
the CS recovery depends on the properties of the measurement
matrix Φ, which is required to meet conditions such as Restrict-
ed Isometry Property (RIP) and uniform uncertainty principle
(UUP) [26].



Different from the conventional CS work where the mea-
surement matrix is known as a priori, in the next section, we
will show that a row of the measurement matrix Φ in the CS-
Sharing scheme is generated naturally following the message
aggregation process. Thus the message aggregation process
directly impacts the properties of the matrix Φ. According to the
RIP requirement, the aggregate message should be generated
as a random projection of the global context data, so an
aggregation algorithm should follow the principles below:

Principle 1. For vehicles in the network to quickly obtain
enough information of the global context, an aggregate message
should contain as much information as possible.

Principle 2. To make Φ a Bernoulli random measurement
matrix to satisfy the RIP property, the corresponding Φ will not
have values larger than 1. Thus when generating an aggregate
message, there is a need to avoid including the context data of
the same location multiple times, i.e., causing the problem of
redundant context.

m1

m2

m3

m4

m5

m6

m7

V5

0,0,0,0,0,1,0,0 X6

0,0,1,1,0,0,0,1 X3+X4+X8

0,0,0,0,1,0,1,1 X5+X7+X8

1,0,1,0,0,1,0,0 X1+X3+X6

0,1,0,1,0,0,0,0 X2+X4

0,0,1,1,1,0,0,0 X3+X4+X5

0,0,0,1,0,0,0,0 X4

Redundant context problem

happens when combining 

message 6 with message 5

Fig. 4. An illustration of the redundant context problem

In Fig. 4, both messages m5 and m6 include the information
of the location h8, which would lead to information redundancy
if the two messages are aggregated.

Principle 3. The aggregate message exchange during each
encounter corresponds to one measurement in the CS algorithm.
As repetitive aggregate messages bring no extra information,
to efficiently utilize the inter-vehicle contact opportunities for
more information, the aggregate messages exchanged should
vary in different encounters with each independently generated.

According to the above principles, we design our aggregation
algorithm below.

On line 1 of the Algorithm 1, the vehicle will append the new
message at the end of the message list to be used for generating
the aggregate message. The maximum length of the message list
is set based on the number of measurement messages needed to
recover data at a desired accuracy, beyond which the outdated
data will be removed from the list.

To generate the aggregate message as a random combination
of the sensory data, we first randomly generate a starting
location i, and then combine all the messages in the order of
mi, mi+1, · · · , mn, m1, · · · , mi−1. Obviously, starting from

Algorithm 1 Message Aggregation (Executed at each vehicle
when a new message is obtained)
Input: The message list stored in a vehicle, MList =

{m1,m2, · · · ,mn}, which contains n messages.
The newly obtained message Mnew;

Output: The aggregate message Magg
1: Append Mnew to MList;
2: Update the total message number, n = n+ 1;
3: Magg = NULL;
4: i = random[1, n], Li = i;
5: while i < Li + n do
6: j =

{
i mod n i ̸= n

n i = n
;

7: Magg=Redundancy-Avoidance-Aggregation(Magg , mj);
8: i++;
9: end while

10: Return Magg .

different locations will allow for a higher probability of forming
different aggregate messages at a vehicle.

On line 7, two messages are combined into an aggregate mes-
sage through the function Redundancy-Avoidance-Aggregation
in Algorithm 2 to avoid including the redundant information.

Algorithm 2 Redundancy Avoidance Aggregation
Input: Messages m1 and m2

Output: The aggregate message Magg
1: Magg = m1;
2: for i = 1 to N do
3: if m1.tag[i] = m2.tag[i] then
4: Message m1 and m2 have redundant information;
5: Return Magg

6: end if
7: end for
8: Magg .tag = m1.tag + m2.tag;
9: Magg .content = m1.content + m2.content;

In Algorithm 2, CS-sharing compares the tags of two mes-
sages to determine whether they contain the information of the
same location. If there is no redundant context, the aggregate
message is generated by setting its content to the summation of
the content value of each message, and the tag is set to indicate
all hot-spot locations corresponding to the summation.

As vehicles serve as the mobile nodes to opportunistically
collect the context information of the hot-spot locations passed
by, to prevent losing the sensed information of a hot-spot,
the raw context information collected by a vehicle should be
included in the aggregate message to spread across the network.
Thus, wherever the starting location is chosen to combine the
messages, our algorithm ensures that the atom context data
collected by this vehicle are included in the aggregate message
to transmit for other vehicles to more accurately recover the
global context information.

Fig. 5 shows the messages stored in vehicles v5 and v6 before
and after their encounter. Figs. 5 (a) and (b) show the messages
stored before the encountering. Vehicle v5 randomly selects its
starting location at m3 to generate the aggregate message, and
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(a) Message stored in the vehicle 5 (b) Message stored in the vehicle 6
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(c) Message stored in the vehicle 5 when encounter (d) Message stored in the vehicle 6 when encounter
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Fig. 5. Messages stored before and after vehicle v5 and v6 encounter

v6 takes the similar operation. The atom messages m1 and
m7 are included in the aggregate message of vehicle v5, while
the atom message m1 is included in the aggregate message of
vehicle v6.

When vehicles v5 and v6 encounter, they exchange the aggre-
gate message generated individually. Figs. 5 (c) and (d) show
the different messages stored after the two vehicles encounter.
Generated independently from different starting locations each
time, there is a high probability for the aggregated message to
be different to follow the Principle 3.

VI. GLOBAL CONTEXT RECOVERY

After a short period of time, a vehicle in the network
may store M messages, MList = {m1,m2, . . . ,mM}, and
the number of messages stored in different vehicles may be
different.

The goal of the vehicle is to recover the raw context informa-
tion of N monitoring locations using the M messages stored.
That is, given a vector y ∈ RM containing M measurement
values and the measurement matrix Φ, a vehicle will solve
the recovery problem y = Φx to recover the global context
vector x ∈ RN , with x = {x1, x2, · · · , xi, · · · , xN}T , where
xi represents the context data on the hot-spot hi. That is

y = Φx ⇔


y1
y2
...

yM

 =


ϕ11 ϕ12 · · · ϕ1N

ϕ21 ϕ22 · · · ϕ1N

...
...

...
...

ϕM1 ϕM2 · · · ϕMN




x1

x2

...
xN


(5)

where yi is the content value of message mi, with yi =
mi.content. The ith row of matrix Φ corresponds to the tag
of message mi, with ϕ(i) = mi.tag. The entry of matrix Φ is

ϕij = mi.tag[j] =

{
1 mi includes the context at hj

0 otherwise

Obviously, if M < N , Eq.(5) is an under-determined equa-
tion and cannot be solved using the conventional matrix theory.
Fortunately, in vehicle DTNs, x ∈ RN is usually sparse because
events such as congestions in off-traffic time or road repair
usually seldom happen. In the traffic hour, the congestion levels
can be differentiated, so the number of heavy traffic places is
still small. Recent research shows that CS can reconstruct a
sparse signal with a lower sampling rate (smaller number of
measurements in this paper). Therefore, the sparse context data
provides the possibility for us to apply CS theory to recover
the global context information in the whole network.

A. RIP property

As stated in CS theory, a sufficient condition for the suc-
cessful recovery of the event information by CS is that the
measurement matrix Φ satisfies some conditions (RIP, UUP)
to preserve the norm of sparse vectors. In Theorem 1, we will
show that our proposed CS-Sharing scheme can yield a random
and binary matrix, which provides the vehicle the capability
of accurately recovering the global context data with a set of
messages gathered by solving the optimization problem defined
in (5).

Before providing the proof, we first normalize the measure-
ment matrix Φ in (5) to Θ, where

Θ =


θ11 θ12 · · · θ1N
θ21 θ22 · · · θ2N

...
...

...
...

θM1 θM2 · · · θMN

 (6)

with the entry of Θ defined as

θij =
1√
N
ϕij =

{ 1√
N

mi includes the context at hj

0 otherwise

After the normalization, we can define another optimization
problem z = Θx, where z ∈ RM and z = y√

N
. This problem

has the same solution as that defined in (5).

Theorem 1. According to the CS theory, the global context
x can be accurately reconstructed from z = Θx if M ≥
cK logN where c is a constant, K (K << N) is the sparsity
level of the context vector x.

Proof: Obviously, z = Θx can also be expressed as




z1
z2
...

zM

 =


θ11 θ12 · · · θ1N
θ21 θ22 · · · θ2N

...
...

...
...

θM1 θM2 · · · θMN




x1

x2

...
xN



=
(
θ1 θ2 · · · θN

)


x1

x2

...
xN

 =
∑N

i=1 xiθi ;

where column vector θi =


θ1i
θ2i
...

θMi


According to our aggregation algorithm and the random

opportunistic encounters, the matrix Θ is a {0 ,+1} Bernoulli
measurement matrix with P (θij =

1√
N
) = P (θij = 0) = 1

2 :

θij =

{
1√
N

P (θij = 1√
N
) = 1

2

0 P (θij = 0) = 1
2

(7)

Let ẑ = Θ̂x, where

Θ̂ =


θ̂11 θ̂12 · · · θ̂1N
θ̂21 θ̂22 · · · θ̂2N

...
...

...
...

θ̂M1 θ̂M2 · · · θ̂MN

 (8)

with

θ̂ij = 2θij − 1√
N

=

{
1√
N

mi includes the context at hj
−1√
N

otherwise
(9)

We can rewrite ẑ as follows

ẑ =


θ̂11 θ̂12 · · · θ̂1N
θ̂21 θ̂22 · · · θ̂2N

...
...

...
...

θ̂M1 θ̂M2 · · · θ̂MN




x1

x2

...
xN



=


2θ11 − 1√

N
2θ12 − 1√

N
· · · 2θ1N − 1√

N

2θ21 − 1√
N

2θ22 − 1√
N

· · · 2θ2N − 1√
N

...
...

...
...

2θM1 − 1√
N

2θM2 − 1√
N

· · · 2θMN − 1√
N

×


x1

x2

...
xN


= 2z−C

(10)
where C is defined as

C =


1√
N

1√
N

· · · 1√
N

1√
N

1√
N

· · · 1√
N

...
...

...
...

1√
N

1√
N

· · · 1√
N




x1

x2

...
xN

 = 1√
N


Sx

Sx

...
Sx


(11)

where Sx =
∑N

i=1 xi.
According to Eq.(9), we obtain that Θ̂ is the {−1,+1}

Bernoulli measurement matrix with P (θ̂ij = 1√
N
) = P (θ̂ij =

− 1√
N
) = 1

2 . The work in [26] proves that for the {−1,+1}
Bernoulli measurement matrix, if M ≥ cK logN measure-
ments are collected, according to the uniform uncertainty
principle (UUP) condition defined in [26] (and UUP can be
refined as Restricted isometry property (RIP) in [31]), then x
can be recovered accurately from ẑ = Θ̂x if x is K-sparse.

Denote the solution of ẑ = Θ̂x as x′. We further define
ΩK (x′) as the set of the K sparse location of x′. Obviously,
when i ∈ ΩK (x′) we can obtain that⟨

ẑ, θ̂i

⟩
∈
⟨
ẑ, Θ̂

⟩
TOPK

(12)

where θ̂i is the i-th column vector of matrix Θ̂,
⟨
ẑ, Θ̂

⟩
TOPK

is the set of the largest K Inner product between ẑ and each
column of Θ̂.

Insert ẑ = 2z−C into
⟨
ẑ, θ̂i

⟩
, we have

⟨
ẑ, θ̂i

⟩
=

⟨
2z−C, θ̂i

⟩
=


2z1− Sx√

N

2z2− Sx√
N

...
2zM− Sx√

N



T 
θ̂1i
θ̂2i

...
θ̂Mi



= 2


z1
z2
...

zM


T


2
(
θ1i− 1√

N

)
2
(
θ2i− 1√

N

)
...

2
(
θMi− 1√

N

)

−


Sx√
N

Sx√
N
...

Sx√
N



T 
θ̂1i
θ̂2i

...
θ̂Mi


= 4 ⟨z, θi⟩−

(
2Sz√
N

+
SxS

θ̂i√
N

)
(13)

where Sz =
∑M

i=1 zi, and Sθ̂i
=

∑M
j=1 θ̂ji.

We can easily obtain that lim
K<<M<<N→∞

2Sz√
N

= 0 and

lim
K<<M<<N→∞

SxSθ̂i√
N

= 0, based on which, we obtain

lim
K<<M<<N→∞

⟨
ẑ, θ̂i

⟩
= 4 ⟨z, θi⟩. Therefore, we obtain when

i ∈ ΩK (x′) both
⟨
ẑ, θ̂i

⟩
∈

⟨
ẑ, Θ̂

⟩
TOPK

and ⟨z, θi⟩ ∈
⟨z,Θ⟩TOPK hold.

Even though different measurement matrixes are adopted in
the optimization problems (ẑ = Θ̂x, z = Θx), when M ≥
cK logN , the sparsity locations of originally x can be identified
in both ẑ = Θ̂x and z = Θx. According to greedy pursuit
algorithm, if the sparsity locations can be identified, x can be
accurately reconstructed. That is, when M ≥ cK logN , x can
be accurately reconstructed from z = Θx.

Denote K as the sparsity level. According to Theorem 1,
when the number of messages gathered by a vehicle meets M ≥
cK logN , the vehicle can apply the CS recovery algorithm to
accurately recover the global context data of all the N hot-
spots. Our CS-Sharing does not depend on the CS-recovery
algorithm, in this paper, we adopt Large-Scale l1-Regularized
Least Squares (l1-ls) algorithm [36].

Obviously, the measurement matrix Φ varies in different
vehicles because each row in matrix Φ corresponds to an
independent aggregate-message generation process. In the sim-
ulation part, we will show that despite the difference in the
measurement matrices, vehicles in the network can obtain all
the global context information in very short time.

VII. PERFORMANCE EVALUATION

We evaluate the proposed CS-sharing scheme through ex-
tensive simulations using the Opportunistic Network Environ-



ment simulator (ONEs) [37]. As shown in Fig.6, we use the
map of Helsinki, Finland as the simulation reference, and the
simulations are performed within a 4500m × 3400m area.
N = 64 hot-spots are randomly deployed on the simulation
map, among which events only happen at K hot-spots. There
are C Bluetooth-equipped vehicles in the network. Each vehicle
is equipped with sensors to collect the road condition. These
vehicles are randomly deployed in the network initially, and
can move randomly in the network at a speed S.

Fig. 6. Simulated map for vehicular DTN

A. The recovery performance under CS-Sharing

In this section, we evaluate the recovery performance under
CS-Sharing by varying the sparsity level of the context. In these
simulations, we set the number of vehicles to C = 800 and
the vehicle speed to S = 90km/h. We vary the sparsity level
K of the context data from 10 to 20. We use the error ratio
and the successful recovery ratio as the performance metrics to
evaluate the proposed CS-Sharing scheme. These two metrics
are defined as follows.

Definition 1. Error Ratio: a metric for measuring the recon-
struction error of all entries in context vector after the recovery,
which can be calculated as√∑N

i=1 (xi − x̂i)
2√∑N

i=1 xi
2

(14)

where N is the number of hot-spots, x and x̂ are the raw
context data and the recovered context data, respectively.

Definition 2. An element xi in x is considered to be successful-
ly recovered if the raw data x and the recovered data x̂ satisfy
that

|xi − x̂i|
|xi|

≤ θ (15)

where θ is a small threshold for successful reconstruction. In
this paper, θ is set to 0.01.
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Fig. 7. Different sparsity level K

Definition 3. Successful Recovery Ratio: a metric measuring
the percentage of the context data that are successfully recov-
ered, which can be calculated as:

N∑
i=1

λi

N
where λi =

{
1

|xi−x̂i|
|xi|

≤ θ

0 otherwise
(16)

After obtaining multiple measurements, each vehicle can re-
cover the global context data through the CS recovery algorithm
l1-minimization. In the following simulations, the error ratio
and the successful recovery ratio are the average values among
all vehicles in the simulation. For a given set of parameters,
we repeat the simulations 20 times and take their average.

Fig.7(a) plots the error ratio under different sparsity levels.
As the time moves on, there are more vehicles encounters thus
more measurements collected by vehicles. Therefore, as shown
in Fig. 7(a), for the same sparsity K, the error ratio decreases as
the time increases. Moreover, as expected, when K increases,
more measurements are needed to recover the global context
data to meet the accuracy requirement.

Fig. 7(b) shows the successful recovery ratio under different
sparsity level K. According to Eq.(2), the larger the K, the
larger the number of measurements needed to successfully
recover the global context data. Consequently, with a given
number of measurements, the successful recovery ratio reduces
as K becomes larger. When time =1 minute, the successful
recovery ratios are about 75%, 80%, and 90%, corresponding to
K = 20, K = 15, and K = 10, respectively. These demonstrate
that our CS-Sharing can correctly recover a large amount of
context data within a very short time, which proves that it can
be used to efficiently gather context data and share the data
among vehicles.

B. Performance comparison with other context sharing
schemes

To the best of our knowledge, no existing work applies the
compressive sensing to share the information and learn the
global context information. To demonstrate the effectiveness
of our proposed CS-Sharing scheme, we implement other three
schemes (described as follows) which are usually designed for
data gathering by sending all data to the sink instead of data
sharing for all the vehicles to obtain the global data. Moreover,



for performance comparison in a fair way, these three schemes
are implemented in the data sharing scenarios similar to this
paper.

• Straight. As discussed in the introduction, a straight-
forward approach to achieve context sharing is to exchange
the raw data upon a vehicles encounter.

• Custom CS. Following data gathering algorithms in [6],
[23], we implement a compressive sensing based data
sharing scheme, denoted as Custom CS. In the scheme,
for a given sparsity level, a pre-defined M ×N Gaussian
matrix is utilized as the measurement matrix according to
the sparsity level, and M messages are transmitted in each
data exchanging procedure when vehicles encounter.

• Network coding. Following algorithms in [38], [39], we
implement a network coding based data sharing scheme,
in which each vehicle mixes all the messages via algebraic
operations to generate the aggregate message to transmit,
and vehicles recover the global context information by
solving a linear problem defined by messages stored after
the vehicles gathered N messages.

We apply the following three metrics to evaluate the perfor-
mance.

• Successful delivery ratio: the ratio of the successful deliv-
ery messages to the total number of messages that need
to be transmitted.

• The number of accumulated messages: the number of
accumulated messages needed to transmit among all the
vehicles in the system.

• Time needed to obtain the global context: the time duration
needed for all the vehicles in the system to obtain the
global context.

Fig. 8 plots the successful delivery ratio under different data
sharing schemes. Our CS-Sharing and Network Coding have
the same and the highest successful delivery ratio (i.e., 100%),
as both algorithms transmit a fixed-length aggregate message
during each vehicle encounter. With the straight-forward raw
data exchanges, as the simulation time moves on, vehicles
can acquire a large number of messages which makes the
transmissions difficult during a short vehicle encounter. This
results in the big message loss, and thus quick decrease of
the successful delivery ratio, lower than 50% after running
4 minutes. With a fix number of M messages to transmit in
each data exchange process, the curve of Custom CS is nearly
parallel to the x-axis.

Fig.9 compares the number of accumulated messages to
transmit. As expected, our CS-Sharing and Network Coding
have the lowest message cost with only one aggregate message
transmitted in each vehicle encounter. Custom CS always
transmits a fix number of M messages, while every vehicle
in Straight needs to transmit all its stored messages which
increases with the simulation time. Therefore, the number of
accumulated messages in Straight is smaller than that in Custom
CS initially, but quickly picks up after the simulation time is
beyond 7 minutes.

Fig.10 plots the time needed for all the vehicles to obtain the
global context data. Among all the implemented four schemes,
our CS-Sharing achieves the lowest time needed. Network
coding faces ”All or Nothing” problem. That is, if N messages
are combined using the network coding, the receiver has to
collect at least N messages to recover the N original messages.
Thus each vehicle needs to obtain at least N messages to obtain
the global context with N hot-spots, which would take a long
time to complete. In contrast, CS-sharing can conquer the ”All
or Nothing” problem faced by the network coding to greatly
speed up the information collection. Although the Custom CS
adopts compressive sensing technique, as it needs to transmit
M messages upon a vehicle encounter, a message loss may lead
to the failure of recovering the global context data. Therefore,
Custom CS presents the worst performance.

These simulation results demonstrate that, compared with
other three data sharing schemes, our CS-Sharing can achieve
significantly higher performance, with the lowest message cost
and the highest information collect speed.

VIII. CONCLUSION

In vehicular networks, data can be shared among vehicles
through exchanges upon their encounters. To more efficiently
leverage the short encountering duration for better opportunistic
sharing of the context data, we propose a novel CS-Sharing
scheme to enable decentralized context sharing in vehicular
DTNs. To reduce the communication cost, rather than transmit-
ting the raw context information, each vehicle opportunistically
forwards to other vehicles it encounters an aggregate message
summarized from its sensory data stored. In addition, CS-
Sharing exploits the sparsity of events to further reduce the
total number of message exchanges needed. We propose a
novel data structure and an aggregation method that can take
advantage of the random and opportunistic vehicle encounters
to naturally form the measurement matrix required for CS. Our
results demonstrate that in our simulation setting, CS-Sharing
allows vehicles in a large network to obtain the full context
information within only 1 minute with the successful recovery
ratio larger than 90% and a low communication cost.
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