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Abstract—Multi-path TCP has recently shown great poten-
tial to take advantage of the rich path diversity in data center
networks (DCN) to increase transmission throughput. However,
the small flows, which take a large fraction of data center
traffic, will easily get a timeout when split onto multiple paths.
Moreover, the dynamic congestions and node failures in DCN
will exacerbate the reorder problem of parallel multi-path
transmissions for large flows. In this paper, we propose DC2-
MTCP (Data Center Coded Multi-path TCP), which employs
a fast and light-weight coding method to address the above
challenges while maintaining the benefit of parallel multi-path
transmissions. To meet the high flow performance in DCN, we
insert a very low ratio of coded packets with a careful selection
of the packets to be coded. We further present a progressive
decoding algorithm to decode the packets online with a low
time complexity. Extensive ns2-based simulations show that
with two orders of magnitude lower coding delay, DC2-MTCP
can reduce on average 40% flow completion time for small flows
and increase 30% flow throughput for large flows compared
to the peer schemes in varying network conditions.
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I. INTRODUCTION

Today’s data center networks (DCN) provide large-scale

symmetric paths to guarantee high aggregate network band-

width and transmission reliability [1]. To fully utilize the

bandwidth in DCN, Multi-path TCP (MPTCP) splits one

application flow into multiple subflows and transmits them in

parallel on different paths [2]–[4]. Since the link congestions

happen randomly over space and time in DCN [5], [6],

the subflows in one MPTCP connection will experience

asynchronous packet losses (termed APL) [2], [7], which

results in important performance issues when applying

MPTCP in DCNs.
First, the APL in DCN will seriously reduce the delay

performance of small flows, which take a large portion of

DCN traffic [2], [5], [6], [8], [9]. The small flows often

suffer from high loss probability when large flows occupy

the link buffer [9]. Specifically, when a small flow is split

into multiple subflows, the average congestion window of

each subflow becomes even smaller, and thus causing a

timeout more easily if any loss occurs [8]. When a timeout

happens on a congested subflow, even though other subflows

complete their transmissions first, the receiver has to wait for

200ms until the lost packet is retransmitted successfully by

its original subflow [10]. Since small flows are often delay-

sensitive and their latency are highly related to business

profit (e.g., Amazon estimates every 100ms of latency costs

them one percent profit [11]), such a long delay is generally

unacceptable in DCN [5], [6], [9], [12].

Second, APL may block the orderly transmissions of large

flows. As the receiver must deliver data to the application

level in sequence, the asynchronous losses will result in a

serious reorder problem. Specially, when a receiver’s buffer

is filled up with the disordered packets, all the newly received

subflow packets have to be dropped, which therefore blocks

the transmissions of large flows [10], [12].

Network coding has been exploited to alleviate the APL

issues by improving the transmission reliability through

encoding and recovering data packets across subflows [10],

[13]–[15]. Despite the potential, there are several important

challenges to apply the coding-based MPTCP designed for

general networks [10], [14], [15] to the special environment of

DCN. First, the introduced coding overhead (i.e., the coding

delay and the number of coded packets to insert) should

be low enough to meet the high transmission performance

requirements in DCN. Second, with such a low coding

overhead, it poses a great challenge to make the coded packets

effective in improving the flow throughput and reducing the

transmission time in the presence of dynamic DCN traffic.

To address the above challenges, in this paper, we propose

DC2-MTCP, a multi-path transmission protocol with a light-

weight coding technique for subflows to coordinately recover

the loss, which significantly improves the performance for

both delay-sensitive small flows and throughput-sensitive

large flows in DCN. To the best of our knowledge, this is

the first work that studies coding-based multi-path TCP in

DCN. The main contributions of our work are summarized

as follows.

First, we propose the architecture design of DC2-MTCP

to ensure the ratio (denoted by ε, ε� 1) of coded packets

to be low in DCN. Benefiting from its flexibility without any

revisions on the MPTCP congestion control and switching

hardwares, it can be easily incorporated into existing multi-

path transmission protocols with higher performance but

little overhead. Second, at the sender side, we propose

three strategies: 1) fast coding exploiting the packet sending



intervals to reduce the coding delay; 2) a simple but effective

scheme to carefully select the packets that should be coded for

a higher performance benefitting from each coded packet; 3)

a flow differentiated scheme to adapt the coding redundancy

for small flows to achieve lower transmission delay and large

flows to achieve higher throughput. Finally, at the receiver

side, we develop a progressive decoding algorithm (PDA)

by fully exploiting the feature of the low-enough coding

ratio ε in DC2-MTCP to decode the packets online. We show

that the time complexity of PDA is at most ε times that of

conventional decoding methods.

We implement DC2-MTCP in ns2 and our extensive

simulations driven by real DCN traffic traces show that

DC2-MTCP can reduce the flow completion time of small

flows by 40% and improve the throughput of large flows by

30% under varying network conditions.

II. BACKGROUND AND RELATED WORK

General issues in MPTCP. The APL is a common issue

in multi-path transmission protocols. In the conventional

loss recovery strategy, each subflow recovers its own losses

independently, thus the asynchronous packet loss of subflows

will prolong the packets’ delivery time and consequently

result in a high buffer requirement [7], [10], [12]. The buffer

size suggested by IETF can only satisfy the retransmission

triggered by triple duplicate acknowledgements [16]. In case

that a large number of subflows experience the timeout,

the receiver may not have enough buffer space to hold

all the out-of-order packets [10]. If the buffer overflows,

the transmission will be blocked, leading to a dramatic

throughput reduction [10], [17].

MPTCP in DCN (DC-MTCP). When the multi-path

transmission is applied in DCN, the fundamental problem

still exits [2], [8], [12], [18]. The recent work [2] proposes

to apply the IETF-MPTCP in DCN. The IETF-MPTCP has

published its experimental standard in RFC 6824 in 2013 and

implemented its most advanced linux version v0.91 in August

2016 [19]. In this standard, IETF-MPTCP chooses a best

subflow to retransmit a timeout packet, which helps relieve

the transmission bottleneck. However, the cross-subflow loss

recovery can only be triggered by a timeout [19]. A timeout

timer (RTO) is generally as long as 200ms1, which is a

long time especially for the delay-sensitive small flows in

DCN [12], [21], [22]. Even if we use a very small timeout

duration, the problems associated with asynchronous packet

loss exist. Cao et al. explore an explicit multi-path congestion

control with the Explicit Congestion Notification (ECN)

to satisfy the low latency requirement of small flows [3].

However, it requires special switching hardwares to support

the ECN function rather than using current commodity

switches in DCN.

1Reported by Google [20], reducing the length of RTO will increases the
probability of spurious timeouts. Further, a spurious timeout will force a
slow start with congestion window reset and thus slow the transfer rate.

MPTCP with network coding. Extensive recent efforts

have been made in solving the problem of asynchronous

loss in general networks with the coding technology [10],

[13]–[15]. Network coding can provide higher throughput

and reliability by mixing packets to overcome losses. Li et

al. propose to introduce the network coding to parts of the

subflows in [14] and apply a systematic coding strategy SC-

MPTCP to optimize the buffer delay in [15]. Recent work

further introduces the fountain code to encode the packet

blocks for relieving the reorder problem [10].

Although the above schemes work well in general network-

s, their heavy coding overheads cannot meet the application

requirements in DCN [12]. On the one hand, a heavy

coding overhead will lead to long coding/decoding delay

and thus pose great challenges to the transmissions of delay-

sensitive small flows. On the other hand, a heavy coding

overhead will increase congestions to dynamic traffic in DCN,

which decreases the transmission performance of throughput-

sensitive large flows. This motivates us to design a practical

light-weight coding solution to address the APL problem of

multi-path transmissions in DCN with higher performance

but little overhead.

III. ARCHITECTURE DESIGN

A. Motivation

In this section, we will present a simple example to

demonstrate how a light-weight coding can effectively address

the APL problem, compared to the conventional IETF-

MPTCP strategy. Figure 1a shows an example of a short

query flow (which is popular in DCN [9]) with 5 packets.

It has three subflows with different path quality: round-trip

time RTT1 = 4ms, RTT2 = 1ms, and RTT3=2ms. Suppose

packet P1 in the most congested subflow 1 is lost, then the

subflow 1 suffers from a timeout without three duplicate

ACKs to trigger the fast retransmission. Since IETF-MPTCP

adopts the independent loss recovery, the receiver has to

wait for a timeout duration of 200ms for the subflow 1 to

send P1’s retransmitted packet R1. After half of RTT1,

R1 arrives at the receiver side and the flow completes its

transmission. In this case, the flow completion time (FCT)

is 202ms. Suppose that after sending P2, we insert a single

coded packet C1 = P1+P2+P3 into the fastest and least

congested subflow 2. After one and a half RTT2, the packets

P2, C1, P3, P4, P5 arrive at the receiver in order. P1 will

be recovered by the coded packets C1 simply after receiving

P2 and P3. Hence the FCT is reduced to 1.5ms.

To explore a practical light-weight coding strategy in DCN,

we first analyze the real traffic traces derived from one

university data center [23]. The trace files contain about 2GB
of compressed data collected from two data centers. Figure 1b

shows the statistical results. We found that the sending gap

Γ1 in 98% transmissions is larger than 20us. Then we test the

running time τ1 (i.e., the DC2-Coding Delay in Figure 1c) of

encoding one original packet with the use of random linear
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Figure 1: Motivation

network coding. The coding operations are done over a finite

field GF (28) of size 256 in our implementation [24]. The

length of every symbol is one byte in GF(256). It optimizes

the addition as a bitwise xor of two-byte long symbols and

uses logarithms to multiply. Through running the test of

thousands of times on a server with 4-core 2.5GHz CPU, we

obtain the CDF of τ1 for the packets with the payload length

of 1000 bytes in Figure 1c. It shows that, with a probability

of 98%, the coding time τ1 is less than 20us. The above

results motivate us to take advantage of the packet sending

intervals to complete the coding operations. Specifically, in

each packet sending interval, we can have a single original

packet encoded. When there is a need to send a coded packet,

most original packets are already encoded, and thus it takes

at most τ1 to encode the last packet to send out. In this way,

we can achieve a nearly-zero coding delay.

Similarly, at the receiver side, we can also utilize the

time gap between receiving packets to perform progressive
decoding operations after receiving each packet (i.e., the PDA

algorithm in Section V), rather than starting the decoding until

receiving enough packets. We test the interval Γ2 between

receiving two packets and the decoding time τ2 in PDA on

handling each newly received packet. We find that Γ2 has

a distribution similar to Γ1 and is larger than 20us in 98%

transmissions. Figure 1c shows that with a probability of

97%, the τ2 (i.e., the DC2-Decoding Delay) is less than 20us.

Therefore, most of the decoding operations can be completed

using the coded packets already received, and a receiver

needs only τ2 to perform the remaining decoding operations.

PDA thus has a lower decoding delay and can timely deliver

the recovered packets to the application.

Recent work in [15] proposes a systematic coding named

SC-MPTCP to reduce the coding and decoding delay. To

compare with our method, we further evaluate its coding and

decoding delay per packet under the same setting in Figure 1c.

Since SC-MPTCP can not utilize the sending/receiving gaps

for efficient encoding/decoding, we can see that the coding

and decoding delay of SC-MPTCP is about two orders of

magnitude larger than that of our DC2-MTCP strategy.

Socket Buffer

ENCODING

APP 

...

Original 
Data 

Allocation

Redundancy 
Rate 

Adaption

Congestion 
Control 

Algorithm

...
...

Subflow
Transm

ission

Connection 
level 

Decoding 
Matrix

APP Layer

Preemptive 
Decoding 
Algorithm

Figure 2: Architecture of DC2-MTCP

B. Architecture of DC2-MTCP

Our architecture of DC2-MTCP is built upon the protocol

stack of IETF-MPTCP. Actually, it also has good compati-

bility with many other MPTCP protocols (e.g., delay-based

MPTCP [4]). We add the coding/decoding modules without

revising existing stack while adopting the same functions

of the MPTCP protocols like path management, subflow

interface and congestion control. The sender design of DC2-

MTCP is illustrated in Figure 2 and includes two key modules.

The first is the Original Data Allocation (ODA) module. By

modeling the losses at the connection level, it is responsible

for selecting suitable original packets to be coded so that

the loss recovery is efficient. We note that only independent
packets can help recover the loss. If all the original packets

used to form the coded one are successfully received, the

coded packet is dependent and useless for the loss recovery.

By cautiously selecting the packets to encode together, ODA

module can essentially increase the effectiveness of coding.

The second is the Redundancy Rate Adaption (RRA) module,

which adjusts the sending rate of coded packets (termed the

redundancy rate) by modelling the connection-level path

quality. A reasonable redundancy rate can effectively recover

the losses with a minimal overhead. Moreover, it needs to

take the flow characteristics in DCN into account and ensure

the priority of delay-sensitive small flows.

To support our coordinated loss recovery mechanism,

we add a new DC2 option in the optional TCP header

fields. The protocol statck of IETF-MPTCP uses a 64-bit

data sequence number (DSN) at the connection level to



… 31 32 33 35 36 … 79 80 … 92 93 …

Left Edge 
of CSW

Actual size = 15
Vitual size = 60

Right Edge 
of CSW

ACKed
Orderly;

Removed

Unsend

34

Allocated to 
subflow 1; 
Unacked

Allocated to 
subflow 2; 

Acked and removed 

Allocated to 
subflow 2; 
Unacked

Figure 3: The structure of CSW

number all the data sent over different subflows [25]. We

take advantage of this number to ensure that the original

data from different subflows can be encoded together and

the losses can be recovered across subflows. To ensure a fast

coding process, we use the random linear network coding

as illustrated in Section III-A. Correspondingly, we use a

preemptive decoding algorithm at receiver side to perform

the progressive decoding and deliver the recovered packets to

the application layer online. To control the header overhead,

every coded packet contains Cmax original packets at most.

For a coded packet, its DSN equals the DSN of the first

original packet mixed in it. We use 1 byte to denote the

number n of original packets mixed in the coded packet and

2 bytes to denote the offset of their DSNs. Specially, when

n = 0, it denotes this is an original packet. Hence the total

size of the DC2 option is 3n− 1 bytes.

IV. CODING DESIGN OF SENDER

In this section, we will provide the detailed sender design

in DC2-MTCP to address the APL problem for multi-path

transmissions in DCN. In the following, we will address

the three challenges in order: 1) how the sender can sense

the APL to help select appropriate original packets to be

coded. 2) how to decide the proper redundancy rate; 3) how

to perform a time-scattering coding process to reduce the

coding delay.

A. Original Data Allocation

There are two kinds of coding process in network coding.

The first is pre-coding process which performs the Forward

Error Correction (FEC) at the packet level. The second is

post-coding process which performs the Backward Error

Correction (BEC) according to the losses already happened.

The losses recovered by pre-coding process do not incur

any retransmission delay. Since we can not predict the

specific losses ideally, and there is a tradeoff between coding

redundancy and transmission reliability, there may be some

losses after the pre-coding process. When the sender senses

any actual losses, it is emergent to perform the post-coding

to recover the lost packets in time. Post-coding helps avoid

unnecessary overhead introduced into the pre-coding.

In the following, we will illustrate the feasibility for

the sender to sense the asynchronous losses based on the

disordered ACKs. At the DC2-MTCP sender side, all the

subflows share one data buffer in the kernel at the connection

level. When one subflow has room to send a data packet,

it picks the data from the buffer sequentially. As a result,

the packets with continuous DSNs are orderly allocated to

different subflows. Due to the asynchronous losses among

subflows, the packets may arrive at the receiver out of order.

As a result, the sender will get the disordered ACKs and thus

detect the APL. Figure 3 shows an example of connection-

level send window (CSW) in a condition of disordered ACKs.

There are two subflows in the connection. The CSW stores

all the original packets which are sent but not acknowledged.

Packets 33 and 35-79 of the subflow 2 are all acknowledged.

However, the packets 32 and 34 of the subflow 1 are still

not acknowledged. Then the sender can infer that there exist

asynchronous losses and the path of subflow 1 currently has

low transmission quality. In this case, the receiver must store

all the packets with the sequence number larger than 32.

Next, we present a novel metric ψ for the sender to quantify

how much APL it senses. Let Wv denote the virtual size

of CSW, i.e., the difference between CSW’s left bound and

right bound. It demonstrates the size of data that the receiver

buffer needs to store currently. Let Ws denote the actual size

of CSW which contains only the unacknowledged packets in

Wv (the acknowledged packets in Wv are already removed

from memory). For example, in Figure 3, Wv is 60 and Ws

is 15. Then we denote ψ = Wv −Ws. Intuitively, the ψ
increases when more and more packets of the high-quality

paths are blocked in the receiver buffer due to the delayed

arrival of only a few packets from the low-quality paths. In

the example of Figure 3, the reorder problem becomes worse

with larger ψ when more packets sent on subflow 2 before

the packets 32 and 34 have arrived or been recovered at the

receiver side. On the contrary, if a multi-path connection has

similar path qualities for all the subflows, the Wv and Ws

will have similar values to keep ψ close to zero.

Since a light APL may be caused by lightly varied RTTs

and can be recovered by the flow itself quickly, we set

a threshold δ for different data allocation schemes. When

ψ < δ, the sender infers that the APL is light enough and

we choose the last α unacknowledged packets in the CSW

to perform the pre-coding process. When ψ > δ, the sender

infers that the APL problem is becoming worse and it would

be hard for a flow to recover the loss alone. We choose

the first β unacknowledged packets in the CSW to perform

the post-coding process. With the coded packets allocated

to different subflows, even if the packets are lost on some

low-quality paths, the receiver can still recover the original

data and thus the subflows on low-quality paths no longer

block the ones on high-quality paths. By testing the value δ
in range [0, 20] with simulations, we find that δ = 3 works

efficiently to alleviate the APL problem.

Next, we illustrate how to choose a proper value for α and

β. Intuitively, since the number of coded packets to insert is

kept small in our architecture, we desire α and β to be large

enough so that each coded packet encodes more original



packets. However, a too large value for α and β would lead

to a long coding delay. To achieve a reasonable low coding

overhead, we set the upper bound of α as a controllable

constant Cmax, and in this paper we set Cmax to 15, the

same value as that in [20]. Moreover, since β is used in the

case where losses already happen, it desires higher efficiency

to recover the lost packets rather than simply encoding more

original packets as the pre-coding α intends to. When testing

the β value in range of (0, Cmax], we find that β = 2
3Cmax

is large enough to efficiently recover the lost in DCNs.

B. Redundancy Rate Adaption

A proper redundancy rate adaption (RRA) is essential

to increase the DC2-MTCP performance in DCN. In this

section, we will present the detailed design of RRA and how

it performs the flow differentiated control.

1) Redundancy rate adaption for large flows: For large

flows in DCN, the asynchronous packet losses will enlarge

the required buffer size at the receiver side. For a multi-

path transmission with n subflows, when waiting for a fast

retransmission on the slowest subflow, the minimal buffer size

that can store all the reorder packets is Bfr =
�n

i=1BWi ∗
max1≤i≤nRTTi, where BWi is the bandwidth of subflow

i. The Bfr is the product of maximum RTT and the total

bandwidth available across all subflows, which is also the

suggested receiver buffer size by IETF standard [25]. The

required buffer size Bfr will grow fast when the bandwidth

and subflow number increase. For a multi-path connection

with 8 subflows, considering a DCN with bandwidth 10Gbps

and maximum RTT 1.5ms, the Bfr would be 120Mb which

is costly to deploy for each data flow in DCN. If the

buffer overflows, the transmission will be blocked [10], [12],

resulting in a large throughput reduction. In this case, it is

essential to perform the coordinated loss recovery to address

the reorder problem.

An effective coordinated loss recovery scheme should

fully utilize the light-loaded paths to help compensate for

the losses on the heavy-loaded ones. To achieve this goal,

DC2-MTCP adjusts the redundancy sending rate based on

the connection-level transmission quality and the subflows’

original packet transmission schedule.

For a connection with the loss probability p, the theoreti-

cally optimal redundancy rate γ is (p/(1− p))λ [10], where

λ is the sending rate of original packets. This is because

that the successful receiving rate of the original packets is

only (1 − p)λ on average at the receiver side. To achieve

the coordinated loss recovery, we schedule the redundancy

rate γi on the subflow i based on the connection-level loss

probability p, rather than the loss probability pi of the subflow

itself. We define the redundancy rate of subflow i as

γi1 = (p/(1− p))λi (1)

where λi is the sending rate of the original packets in the

subflow i. According to (1), the number of coded packets (i.e.,

the redundancy) allocated on subflow i is proportional to the

number of original packets sent through the subflow i. The

congestion control algorithm LIA provided in RFC6356 [26]

ensures that the subflows on less congested paths send the

original packets faster than those from the congested paths.

Thus, our DC2-MTCP design balances the redundancy load

in DCN by transmitting more redundant packets through a

high-quality path.

Although the equation (1) offers good theoretical proper-

ties, it requires an exact knowledge about the packet loss

probability at the connection level in real time, which is

hard to acquire in current DCNs. Even if great efforts can

be made to actively detect the packet loss probability, its

value can only be updated after the actual loss has been

observed, which can not satisfy the need of our pre-coding.

In the following, we present another practical calculation to

estimate it based on only the metrics that easy to acquire in

real-time (e.g., the window size and RTT of subflows).

Since our DC2-MTCP is built over IETF-MPTCP stack,

it adopts the standard congestion control algorithm LIA.

Suppose each subflow i maintains its own congestion window

Wi, and let Wtotal denote the sum of the congestion windows

of all subflows. The detailed LIA algorithm is as bellow:

(1) for each ACK received from the subflow i, increase Wi

by min(α/Wtotal, 1/Wi); (2) for each loss of the subflow i,
decrease Wi by Wi/2. The α determines the aggressiveness

of all the subflows and is a function of the RTT and window

of each flow:

α =Wtotal
max1≤i≤nWi/RTT

2
i

(
�n

i=1Wi/RTTi)2
. (2)

In order to find the redundant sending rate, we have the

following set of derivations. First, based on the network utility

model [27], at the network equilibrium point of subflow i
with a loss rate pi, the increase and decrease of the sending

rate are equal, and we have

α

Wtotal
(1− pi) =

Wi

2
pi (3)

Further, based on (3), the connection-level loss probability

can be calculated as:

p =

�n
i=1Wipi
Wtotal

=

�n
i=1Wi(

2α
2α+Wi

Wtotal)

Wtotal
(4)

By applying the equation (4) into the original equation

(1), we have the redundancy rate for a large flow as

γ1 =
n�

i=1

γi1 =
n�

i=1

(p/(1− p))λi

= {1/(1−
�n

i=1Wi(
2α

2α+Wi
Wtotal)

Wtotal
)− 1}λ (5)

The above redundancy rate calculation takes only the real-

time information of the window size and RTT of subflows,

which are already embedded in the existing protocol stack



of MPTCP and can be directly read with little effort. There

are two key features in this design. First, by adjusting the

redundancy rate based on the connection-level transmission

quality, the losses on different subflows can be recovered

jointly with a small ratio of coding packets. Second, for

a subflow, we make the redundancy rate set according to

the sending rate of original packets. Subflows that have

the ability to send more original packets will be allocated

more redundant transmissions. It actively schedules the

transmissions through less congested subflows to recover

the losses from more congested ones.
2) Redundancy rate adaption for small flows: Although

conventional IETF-MPTCP has the potential to use multiple

paths to improve the throughput for large flows in DCN,

it performs worse than single-path TCP for small flows

with fewer than 10 packets [2], [8]. Small flows like the

query traffic (2KB to 20KB in size) typically complete

in just a few RTTs in DCN and always have a small

congestion window [2], [8]. Multi-path transmission increases

the probability of timeout for such a small flow.
For a subflow i with the congestion window size Wi and

path loss probability pi, the timeout probability Pto is equal

to the probability without three multiple ACKs [10]:

Pto =

�
1− (1− p)Wi , if Wi ≤ 3�2

j=0 C
Wi−j
Wi

pWi−j(1− pi)
j , if Wi > 3

(6)

Based on the LIA algorithm, a small flow does not have

enough time to increase its congestion window into a large

size and easily gets timeout when losses occur [9]. According

to (6), the case becomes worse when the transmissions from

a flow are distributed into n sublfows because the congestion

window Wi becomes even smaller on average than that of a

single-path small flow.
Since small flows often finish in very few RTTs, the CSWs

are small and there is little time to sense the real path quality.

The conventional path quality metrics like the loss probability

and even RTT are difficult to be estimated accurately. Hence

we turn to the statistical properties obtained by previous data

center traffic measurements. In the recent traffic measurement

of a large Google DCN, it is reported that about 10% of

the TCP connections incur losses [20]. Furthermore, among

the flows with losses, the measurements indicated that most

of them experience only a single loss on a burst bottleneck

(known as the single packet tail drop). Since the above

property is related to the single-path TCP flow, we first

analyze the relationship between a single-path TCP flow and

a multi-path TCP flow. Based on equation (3), we have

pi =
2α

2α+Wi
Wtotal (7)

For a single-path TCP on path i, based on the network

equilibrium theory similar to the equation (3), we have

1

W s
i

(1− pi) =
W s

i

2
pi, (8)

where W s
i denotes the congestion window size of the single-

path TCP on the path of subflow i at the network equilibrium

point.

Based on (2),(7) and (8), we have

n�
i=1

Wi

RTTi
≤ max

W s
i

RTTi
(9)

where the ratio of window size and RTT is a conventional

path quality metric in IETF-MPTCP.

The equation (9) shows that a multi-path flow does not

take up more capacity than that of single-path TCP flows

when they share the same bottleneck link. Based on the

further fact that losses generally occur at the bottleneck, we

conservatively estimate the multi-path TCP flow would have

the single-loss property at the connection level, i.e., we have

the redundancy rate as 1/Wtotal for small flows.

Another practical issue is that it is generally difficult to

identify a small flow until it is finished in DCN [28]. As the

CSW of small flows are always small, we set the redundancy

rate of a small flow as

γ2 =
1

Wtotal
, when Wtotal ≤ 5n (10)

where n is the number of subflows. That is, we consider the

flow with Wtotal ≤ 5n as a small flow because each of its

subflows has an average window size less than 5.

So far we have given the settings of redundancy rate for

the large flows and small flows respectively. Now we will

present the specific procedure to apply them in the coding

process. First, we use a variable R to denote the accumulated

redundancy based on the redundancy rate. It is initialized

as zero. Then the redundancy variable R will increase by γ
when any original packet is sent, where γ = γ1 (i.e., Equ (5))

for large flows and γ = γ2 (i.e., Equ (10)) for small flows.

When reaching a time point that some subflow i sends an

original packet to make R > 1, a request to send a coded

packet on subflow i is generated, and R is updated as R− 1.

C. Time-scattering Coding Process

The traditional random linear coding in general networks

starts the coding computation only after the coded packet

is requested [20], [22], [24], termed the on-demand coding

scheme. This would introduce a high coding delay when

applied in DCN. Since the RTT in DCN is very short (e.g.,

250us with empty buffer queue [9]), to make the coding

strategy more effective than simple retransmission in DCN,

we must strictly control the coding delay. Therefore, we

propose a time-scattering coding scheme to achieve a nearly-

zero delay to send the coded packets when they are requested.

The basic motivation is that in every gap between packet

sending, we can encode one original packet with specific

length into the current coded packet (termed the unit coding).

Figure 1b and 1c demonstrate that 98% unit coding operations

can be completed in the sending gap.



Algorithm 1 Sender Algorithm for DC2-MTCP

Input: Connectional send window CSW
//Triggered at the beginning of flow transmission

1: R← 0, Start← False, Pre← True
//Triggered by the sending of an original packet P
on subflow k

2: Set γ ← γ2 based on Equ. (11) if Wtotal <= 5n.
Otherwise, set γ = γ1 based on Equ. (6).

3:R=R+ γ
4: if Start True then
5: Encode the packet P in C when Pre is true. Or

encode the packet P ∗ before Plast in C and set
Plast as P

∗ when Pre is false.
6: else
7: When R+ αγ > 1 and ψ ≤ δ, encode the packet

P in C and set Start as true, Pre as true.
8: When R + βγ > 1 and ψ > δ, encode the βth

packet Plast of CSW in C and set Start as true,
Pre as false.

9: end if
10: When R > 1, send the coded packet C on subflow

k, Start← False, R← R− 1.

The detailed time-scattering coding process is shown in

Algorithm 1. In previous Section IV-B, we introduce how to

initialize and update the accumulated redundancy R (line 1-3)

so that the request to send a coded packet C =
�n

i=1 αiPi

is generated until R > 1 (line 10). Now we present when

to trigger the start of the coding process before the arrival

of the coding request. Since the original packets Pi in CSW

are sent continuously in one RTT, the γ changes little during

their sending. Consider the current accumulated redundancy

R < 1. For the pre-coding process (line 7), if R+ αγ > 1,

we need to start coding the last packet of CSW so that

after α time gaps, the coded packet will be completed and

sent immediately as expected. Similarly, for the post-coding

process (line 8), if R+ βγ > 1, the coding starts to encode

the βth packet of CSW. The setting of α and β are discussed

in the previous Section IV-A.

V. DECODING DESIGN OF RECEIVER

In DCN, the receiver needs to perform a light-weight

decoding to ensure that the performance benefits outweigh

the decoding overhead. The state-of-art decoding algorithm

for random linear coding is Gaussian-Jordan elimination [24].

It is designed for general networks without any knowledge

about the ratio of coding packets against original packets (i.e.,

the C-O ratio). To address this issue, we design a preemptive
decoding algorithm (PDA) at the receiver side to effectively

reduce the decoding overhead by taking full advantage of

the low C-O ratio feature in DCN.

At the receiver side, the decoding is performed at the

connection level. All subflows share a decoding matrix for a

multi-path connection. PDA will start progressive decoding

once receive any packet by fully utilizing the receiving gaps.

When a new packet arrives, the receiver should first check

the coding number n in DC2 option of the packet head. If

n = 0, it is an original packet, we should first notify its

subflow to generate corresponding ACK. Then we take it

into the connection-level decoding matrix to help decode the

coded ones. If n > 0, it is a coded packet. Next, there are

three steps of PDA at the receiver side. The first and the third

step are the same as those of the Gauss-Jordan elimination.

The second step is different when an original packet arrives.

At this step, the original packet replaces its own row in a

preemptive way if the row is occupied by a combination C.

Then the combination C will perform like a newly arrived one

as in the process of Gauss-Jordan elimination to transform

the decoding matrix into the reduced row echelon form [22].

Once a coded packet recovers a single loss at the connection

level, more packets in the receiver buffer can be delivered

to the application layer immediately in order.

For a full-rank decoding matrix M with m original

packets and l coded packets, the decoding time complexity

of Gauss-Jordan elimination is O((m + l)2) [24]. Rather

than performing elimination on each packet (either a coded

packet or an original packet) as Guass-Jordan elimination,

our PDA requires no elimination for the original packets

while keeping the same number of elimination operations on

the coded packets as Gauss-Jordan elimination. Hence PDA

will reduce the decoding time complexity to O(l(m+l)), i.e.,

the time complexity of PDA is reduced to l
m+l fraction that

of the Gauss-Jordan elimination. In the evaluation section,

we will show that l < 0.05m, i.e., the reduced fraction (i.e.,
m

m+l ) of decoding time complexity can be achieved above

95%.

VI. EVALUATION

In this section, we implemented DC2-MTCP and other

existing MPTCP schemes in the NS-2 simulation platform.

We first present the methodologies of our evaluations and

then analyze the simulation results.

A. Evaluation Setup and Methodologies

We simulate the DCN topology as a commonly used 3-

layer Fat-Tree with 8 pods [3], where the link bandwidth

is set as 1Gbps. The network accommodates totally 128

hosts, where each pair of host has 16 equal-length shortest

paths. The default routing function in NS2 adopts a single-

path routing for each flow. However, the multiple-path

transmission in our study requires each flow to be split

into several subflows and route on multiple different paths.

To support the ECMP routing protocol for multiple-path

transmissions in NS2, we add a hash function in the packet

forwarding class Classifier to hash the IP head plus the

subflow ID of the packets received at each node to one of

its next available hops.

The recent work SC-MPTCP [15] proposes a systematic

coding to reduce the coding overhead when integrating the

coding strategies into MPTCP. Although it is designed for

general IP networks, it shows a lower coding overhead than

other existing non-systematic coding methods in MPTCP [15]
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Figure 4: Average FCT with random pattern

and is thus more likely to work for DCN. Hence we

implement SC-MPTCP to compare with our method and

also use IETF-MPTCP to serve as the baseline strategy. For

comparative analysis, we evaluate the flow performance of

all the three schemes under two traffic patterns. First, to test

the flow performance in the average traffic case, we derive

30 random flows from the real traffic traces provided in [23]

to serve as the simultaneously running MPTCP flows (see

more details about the trace in Section III-A). We simulate

the random traffic pattern by adding 128 random TCP flows

to serve as the background traffic in the network, where

each of them is randomly attached to a host. Based on

previous measurements [9], the data center traffic usually

consists of delay-sensitive short messages (100KB to 1MB)

and throughput-sensitive long flows (1MB to 100MB). Hence

we analyze the flow completion time (FCT) for short flows

whose size is smaller than 1MB and the throughput for

long flows whose size is larger than 1MB respectively. To

eliminate the long tail effect in DCN traffic, the performance

of 99% flows is also evaluated.

Second, to test the flow performance under the popular hot-
spot traffic patten [6] in DCN, we add a small portion of the

100MB MPTCP flows to serve as the hot flows. We further

add random failures among the subflows to evaluate the

robust flow performance on handling the transmission failures

(e.g., caused by link/node failures) among the subflows. The

coding overhead is evaluated in all the above cases. All the

simulations are running ten rounds to obtain the average

values for each point in the evaluation figures. We equally

scale the average flow traffic size to simulate the varying

network loads.

B. Random Traffic Pattern

Flow completion time. Fig. 4 shows the FCT performance

under various average flow sizes. Overall, we can see that

DC2-MTCP obtains lower FCT than both the SC-MPTCP and

IETF-MPTCP under different cases with the same subflow

number. Specifically, compared to MPTCP-2 (i.e., IETF-

MPTCP with 2 subflows), the average FCT of DC2-2 (i.e.,

DC2-MTCP with 2 subflows) is reduced by about 25% while

that of DC2-4 is reduced by about 43%. On the other hand,

the FCT of SC-MPTCP (i.e., SC-2 and SC-4) is on average

only 10% lower than that of IETF-MPTCP with the same

subflow number. Moreover, we can see that for each scheme,

the case with 2 subflows has lower FCT than that with 4

subflows. This is because most of the flows in the traces are

small flows1. For a small flow, when the number of subflows

increases, its flow completion time becomes longer since it

is more likely to suffer from the asynchronous losses. Since

the SC-MPTCP does not distinguish between small flows

and large flows, it only relies on the estimation of loss rate

to adapt the redundancy, which however, is not accurate for

small flows (Section IV-B2). Instead, DC2-MTCP detects

the path quality by monitoring the real-time CSW status.

The above improvements illustrate the effectiveness of DC2-

MTCP in adapting the coding redundancy when the CSW of

flow is small (Section IV-B2), which alleviates the problem

of asynchronous losses in the subflows of each small flow.

Flow performance with timeouts. An interesting finding

is that in Fig. 4d, each CDF curve has two distinct jumps

with an interval of about 200ms. This is due to the timeout

duration is 200ms, and the flows without any timeout are all

completed within 50ms. Compared to MPTCP-2, DC2-2 has

5% more flows that are completed without any timeout while

SC-2 performs the worst with 5% fewer flows completed.

Similar difference between them can be found for the flows

completed within one timeout. In the case with 4 subflows,

DC2-4 has 18% more flows without timeout than MPTCP-

4, while about 80% flows in DC2-4 are completed within

one timeout while such flows only take 45% in MPTCP-

4 and 58% in SC-4. SC-MPTCP fails to allocate enough

coding redundancy for small flows because it has a hard

time to estimate accurate loss rate when the flow is small. It

demonstrates the effectiveness of the coding strategy in DC2-

MTCP to achieve the joint loss recovery among different

subflows, especially for the transmission cases with more

subflows.

Flow throughout. Fig. 5 shows the throughput perfor-

mance with different flow sizes. We can see that DC2-MTCP

achieves on average 30% higher throughput than IETF-

MPTCP and 15% higher throughput than SC-MPTCP. For

large flows, DC2-4 achieves about 36% higher throughput

than MPTCP-4 while DC2-2 achieves about 28% higher

throughput than MPTCP-2. Correspondingly, SC-MPTCP

has a 5% lower throughput than DC2-MTCP. Compared

1Based on previous measurements of data center traffic [5], [6], [9], the
small flows take the majority of all the DCN flows.
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to the small flows, SC-MPTCP can estimate the loss rate

more accurately for large flows, and the unified redundancy

setting of SC-MPTCP increases the aggressiveness of large

flows. It further demonstrates the advantage of applying

the distinguished redundancy adaptation for large flows

(Section IV-B1) in DC2-MTCP to address the reordering

issues when experiencing asynchronous losses among the

subflows.

C. Hot-spot Traffic Pattern

As Fig. 6 shows, the large flows in DC2-MTCP achieve

on average 30% higher throughput than those in MPTCP.

For small flows, the FCT of DC2 keeps more stable than

that of MPTCP and SC-MPTCP when the average flow size

increases. Specially, DC2-2 reduces the FCT by about 75%

than MPTCP-2, while DC2-4 reduces the FCT by about 90%

than MPTCP-4. SC-4, however, reduces the FCT by only 10%

than MPTCP-4, while SC-2 even doubles the FCT of MPTCP-

2. The small flows in SC-MPTCP not only suffers from the

congestions caused by hot flows but also the allocation with

very little redundancy because most of the redundancy is

allocated for hot flows. In contrast, DC2-MTCP can detect

and adapt the coding redundancy to make up the losses online

distinguished for the large flows and small flows whenever

the losses are caused by the congestions of hot flows or the

link failures. Finally, IETF-MPTCP will take a long time

after several timeouts to detect the link failure and thus can

not make up the losses timely.

Table I: C-O ratio under different traffic patterns
All-2 Small-2 Large-2 All-4 Small-4 Large-4

Random 0.013 0.02 0.002 0.026 0.04 0.011

Hot-spot 0.0002 0.02 4.19E-05 0.0008 0.04 0.0003

D. C-O Ratio

Table I shows the average ratio between the number

of coded packets and the original packets (i.e., the C-O

ratio) in DC2-MTCP. We can see that it has an average

C-O ratio of 0.02 under random traffic pattern and 0.005

under the hot-spot pattern. As the comparison, conventional

non-systematic coding in MPTCP requires a C-O ratio at

100% [10], while the systematic coding utilized in SC-

MPTCP keeps an average C-O ratio about 0.02 under all the

cases. Since SC-MPTCP generates two orders of magnitude

higher coding delay per packet than DC2-MTCP (see Fig. 1c),

the total coding overhead (in terms of the product of the

number of coding packets to insert and the coding delay per

packet) of SC-MPTCP is two orders of magnitude larger than

that of DC2-MTCP in the case of random traffic pattern, and

three orders of magnitude larger than that of DC2-MTCP for

the hot-spot traffic pattern. While obtaining the highest flow

performance in both patterns, such a low C-O ratio helps

our DC2-MTCP solution to run with a low coding overhead.

Among all of flows, the average C-O ratio of large flows in

DC2-MTCP is 0.004, which is one magnitude smaller than

that of small flows. We can see that the smaller the flow

size is, the higher the C-O ratio our coding scheme requires.

This is due to our flow differentiated scheme (Section IV-B)

in DC2-MTCP intends to provide higher priority for small

flows and thus ensure their high FCT performance.

VII. CONCLUSION

In this paper, we propose a light-weight coding based

multi-path transmission scheme to efficiently address the

asynchronous packet losses problem in DCN. At the sender

side, we first detect the online losses by monitor the CSW

to select the proper packets to be coded. Then we provide a

flow differentiated scheme to adapt the coding redundancy

for large flows and small flows respectively according to the

online path quality. Finally, we propose a time-scattering

coding strategy by fully exploiting the packet sending

intervals to reduce the coding delay. At the receiver side,

we propose a preemptive decoding algorithm to efficiently

reduce the decoding overhead. The evaluations show that on

average only <5% coded packets are inserted to coordinately

recover the losses across subflows in our scheme while it can

reduce on average 40% FCT for small flows and improve

about 30% throughput for large flows in DCN.
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