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Abstract— The inference of the network traffic data from
partial measurements data becomes increasingly critical
for various network engineering tasks. By exploiting the
multi-dimensional data structure, tensor completion is a promis-
ing technique for more accurate missing data inference. However,
existing tensor completion algorithms generally have the strong
assumption that the tensor data have a global low-rank structure,
and try to find a single and global model to fit the data of
the whole tensor. In a practical network system, a subset of
data may have stronger correlation. In this work, we propose
a novel localized tensor completion model (LTC) to increase
the data recovery accuracy by taking advantage of the stronger
local correlation of data to form and recover sub-tensors each
with a lower rank. Despite that it is promising to use local
tensors, the finding of correlated entries faces two challenges,
the data with adjacent indexes are not ones with higher cor-
relation and it is difficult to find the similarity of data with
missing tensor entries. To conquer the challenges, we propose
several novel techniques: efficiently calculating the candidate
anchor points based on locality-sensitive hash (LSH), building
sub-tensors around properly selected anchor points, encoding
factor matrices to facilitate the finding of similarity with missing
entries, and similarity-aware local tensor completion and data
fusion. We have done extensive experiments using real traffic
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traces. Our results demonstrate that LTC is very effective in
increasing the tensor recovery accuracy without depending on
specific tensor completion algorithms.

Index Terms— Network measurement, tensor completion.

I. INTRODUCTION

MONITORING the performance of a large network
would involve a high measurement cost. For a network

with n nodes, the cost of monitoring the operational states of
the whole network is at the order of O(n2).

Some recent studies show that network monitoring data
such as end-to-end latency and flow traffic have hidden
spatio-temporal correlations. This inspires the development of
novel sparse network monitoring technique [1]. Sample-based
network monitoring is applied in this technique, where mea-
surements are only taken between some random node pairs or
at some intervals for a given node pair, and the data of other
paths are inferred leveraging the spatio-temporal correlations
in network monitoring data. As only a few paths need to
be probed, the measurement cost can be largely reduced.
The partial measurements data may further reduce when the
network suffers from unavoidable data losses upon severe
communication conditions.

Despite the benefit of reducing measurement overhead,
network state tracking for anomaly detection and failure
recovery is highly sensitive to the missing of performance data.
Accurate recovery of missing values from partially observed
network measurements is an important procedure in sparse net-
work monitoring. The quality of missing data recovery highly
relies on the specific inference/recovery technique adopted.
Various studies have been made to handle and infer the missing
monitoring data. Designed based on purely spatial [2]–[4] or
temporal [5], [6] information, the data recovery performance of
most known approaches is low. To utilize both spatial and tem-
poral information, recent studies exploit matrix completion [1],
[7]–[9] to recover the missing data from a low-rank matrix.
Although these approaches present good performance under
low data missing ratio, when the data missing ratio is large,
the recovery performance suffers as the data analysis based
on two-dimensional matrix has the limitation in extracting
information.

For better data recovery, it helps to represent network
monitoring data as a higher dimensional array called tensor,
a higher-order generalization of vector and matrix. Exploit-
ing the inherent relationship among higher dimensional data,
tensor-based data analysis [10] has shown that tensor models
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can take full advantage of the multilinear structures to provide
better data understanding with higher information precision.
Despite the potential, existing tensor completion algorithms
generally have the strong assumption that the tensor data have
a global low-rank structure, and try to find a single and global
model to fit the data of the whole tensor. In many practical
applications, however, data entries in a large tensor may have
different levels of correlation. Taking the 3-way Internet traffic
monitoring tensor as an example, its three dimensions are
origin destination (OD) pairs, time slots, and days. A subset
of OD pairs may have similar end-to-end traffic behaviors
in some time slots (i.e., working time) in part of days (i.e.,
working day). Such a subset of OD pairs/time slots/days may
construct a sub-tensor with a lower rank.

It is well acknowledged that the ranks of sub-tensors would
be lower if the data in the sub-tensors have higher correlation.
For a given number of samples, a lower rank brings more
accurate recovery of the missing data. Therefore, the recovery
performance using sub-tensors should be better than using
global large tensor. Moreover, if we consider the data from
each sub-tensor as a set, applying a global model to complete a
large tensor consisting of multiple low-rank sub-tensors is akin
to fitting one single model to the concatenation of all the data
sets. As different data sets have different structure features,
a single model can not well capture features of all data sets,
which results in lower missing data recovery accuracy.

To well exploit the local correlation inherent in data along
the three dimensions of tensor (OD pair, time slot, and day)
for more accurate missing data recovery, we propose a novel
Localized Tensor Completion model (called LTC). In LTC,
we reorganize data in the tensor to form a set of sub-tensors,
each containing more similar data along the three tensor
dimensions. We recover each sub-tensor and fuse the recovery
data from sub-tensors to recover the data of the large tensor.

Although it is promising, traffic data in the tensor are
organized logically. That is, data in OD pair domain follow a
specific sequence to arrange the OD pairs. Data in the time
domain are organized based on sampling slot sequence, and
data in the day domain are arranged with the order of days.
The entries with adjacent indexes in a tensor dimension (i.e.,
domain) may not be similar. For example, the OD pair with
the indexes 1 and 2 may be far away in the network, while
data taken from day 1 (a Monday) and day 2 (a Tuesday)
may have a larger difference than the ones from day 1 and
day 8 where both are Monday. Thus it is impractical to build
the sub-tensor through the direct partition of the original large
monitoring tensor.

In light of the constraints of practical data, we propose to
build sub-tensors around some anchor points, then estimate the
local sub-tensors for each neighborhood of the anchor point.
This solution, however, faces three major challenges:

• Anchor points should capture the correlation of data
and distribute evenly in the whole data region. For the
accurate recovery of the whole tensor data, anchor points
should distribute evenly across different data regions to
well capture the correlation of data. Each anchor point
should be able to represent the data of its neighbors in
the sub-region.

• Anchor point selection should consider the sample den-
sity. Measurement samples may not be taken uniformly,
especially when sampling is performed dynamically fol-
lowing the traffic patterns or operational needs. Randomly
selecting anchor points may lead to poor performance
and low efficiency. If an anchor point is taken from a
region with very sparse samples, the sub-tensor formed
will contain very small number of samples and can not
be accurately recovered. On the other hand, if too many
anchor points are taken from a region with dense samples,
many sub-tensors are built in the same area and be
recovered with redundant computation and low efficiency.

• Measuring data similarity in the presence of missing
entries. A sub-tensor should be built based on similarity
(or called distance) among tensor data. However, this is
hard if the monitoring data are incomplete to reduce the
sampling overhead.

To address the three challenges, we propose a few tech-
niques in LTC:

• Candidate anchor point calculation based on locality
sensitive hash (LSH). To more accurately recover data
in each sub-tensor, we propose to exploit LSH to quickly
reorder data and put data with higher correlation into
the same sub-tensor. With traffic data projected onto
three lines, each corresponding to a dimension of OD
pairs, time slots, or days, we can easily divide each line
into buckets of equal width, and use the bucket center
to facilitate the finding of anchor points that can well
represent data mapped to the same bucket. Selecting
anchor points from each bucket also helps to evenly
distribute them across different regions.

• Construction of sub-tensors around properly selected
anchor points. To reduce the computation cost and
increase the data recovery accuracy, we further propose
an anchor-point selection algorithm, taking into account
the density of samples already taken and distances of
anchors selected.

• Novel encoding of sparse traffic data. We propose to
represent the monitoring data of OD pairs, time slots, and
days with novel codes under factorized basis matrices to
cope with the challenge of calculating similarity/distance
along each of these dimensions in the presence of partial
measurements of the tensor.

• Similarity-sensitive local tensor completion and data
fusion. We propose a similarity-sensitive local tensor
completion algorithm and a data fusion algorithm for
more accurate missing data recovery, taking advantage
of similarity calculation based on the encoded data.

• Extensive experiment based on real traffic traces.
We implement the proposed LTC using two real traffic
flow traces (Abilene [11] and GÈANT [12]). Compared
with peer tensor completion algorithms, LTC can achieve
much higher data recovery accuracy.

The rest of the paper is organized as follows. Section II
presents the related work. We present our problem and solution
overview in Section III. We present our algorithms on the
calculation of candidate anchor point, LSH table building,
sub-tensor extraction and completion, and data fusion in
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Section IV, Section V, Section VI, and Section VII, respec-
tively. Finally, we implement the proposed LTC and evaluate
the performance using real traffic trace data in Section VIII,
and conclude the work in Section IX.

II. RELATED WORK

There is rapid progress of sparse representation techniques.
Following the compressive sensing [13] and matrix completion
[14]–[16], tensor completion [17]–[20] has attracted lots of
research interests recently. To infer the unavailable/missing
data, these schemes usually employ both the low rank property
of data and the information of partial observed entries to
provide the best estimation of the whole data. These techniques
have been widely used in recommendation systems [21]–[23],
social network [24]–[26], disease detection [27], [28] and
network data gathering and analysis [29]–[34].

Compared with matrix-based completion algorithm,
the tensor-based approach can better handle the missing
data in applications. Tensor completion algorithms [17]–[20]
capture the global data structure for recovering the missing
data via a high-order CANDECOMP PARAFAC (CP)
decomposition [35], [36] and Tucker decomposition [37].
Some typical tensor completion algorithms are CPnmu [18],
CPopt [19], CPwopt [18], CPals [38], and Tuckerals [39].
Some recent studies [32], [44] have modeled the traffic
matrices of different time slots/days as a tensor to recover the
missing data through tensor completion.

However, existing tensor completion algorithms commonly
assume the rank of the whole tensor is low and attempt to
fit a single model with data of the entire tensor through
an optimization. These approaches cannot benefit from lower
ranks of sub-tensors with closer data correlations for higher
data recovery accuracy.

Some recent studies show that matrix data of many appli-
cations have the local properties [45]–[47] and can form
some local sub-matrices with higher correlation. Well exploit-
ing these properties can more accurately infer the missing
data. For example, [47] has demonstrated that network traffic
sub-matrices typically show very low effective rank if the
elements of sub-matrices are highly similar. Thanks for this
property, recovering missing data through sub-matrices instead
of the global matrix can achieve better performance.

Inspired by these local properties hidden in the matrix,
we verify that modeling traffic data as a tensor still retain
local low rank attributes. Specially, we notice that a subset of
OD pairs may have more similar end-to-end traffic behaviors
in some time slots (i.e., office hours) and days (i.e., week
day). To well utilize the local data feature for more accurate
data recovery, we propose a novel localized tensor completion
model where we propose several novel techniques including
sub-tensor building with intelligent selection of anchor points,
novel encoding of sparse traffic data, and similarity-sensitive
local tensor completion and data fusion.

III. PROBLEM AND SOLUTION OVERVIEW

We first formulate the traffic data recovery problem, and
then present the solution overview.

A. Problem Formulation

Based on the analyses of real traffic trace, our recent work
on tensor completion [29], [30], [44] reveals that the traffic
data have the features of temporal stability, spatial correlation,
and periodicity. To fully exploit these traffic features for
accurate traffic data recovery, following [29], [30], [44], in this
paper, we model the traffic data as a 3-way tensor M ∈
R

I×J×K (the left top figure of Fig. 1), where K corresponds
to the number of origin and destination (OD) pairs in the
network, and there are J days to consider with each day having
I time intervals. For the Abilene trace [11], I = 288, J = 168,
and K = 144. Our LTC scheme, however, is general and does
not depend on how the traffic tensor is modeled.

As partial OD pairs are often monitored to reduce the
measurement load and also there are an unavoidable data
losses upon severe communication conditions, M is generally
an incomplete tensor. If there are no traffic data between a pair
of nodes in a given time interval, it leaves the corresponding
entry in M empty. Let Ω be the set of indices of the sample
entries in M.

The traffic recovery problem is to obtain all data entries of
the tensor M with rank R based on its measurement samples
through the tensor factorization. With the factorization based
on the CP decomposition, we would like to find the factor
matrices A = [a1, · · · , aR] ∈ R

I×R, B = [b1, · · · ,bR] ∈
R

J×R, and C = [c1, · · · , cR] ∈ R
K×R to approximate the

tensor M with the minimum recovery loss:

min
A,B,C

∑
(i,j,k)∈Ω

(
[[A,B,C]]i,j,k − mi,j,k

)2

(1)

where [[A,B,C]]i,j,k and mi,j,k are the recovered entry and
the observed entry at (i, j, k). [[A,B,C]]i,j,k − mi,j,k is the
recovery loss at (i, j, k). After finding three factor matrices A,
B, and C, the original traffic tensor can be recovered by

M̂ = [[A,B,C]] (2)

where [[A,B,C]] =
∑R

r=1 ar ◦br ◦ cr and ar ◦br ◦ cr is the
outer product of three vectors ar,br, and cr.

B. Solution Overview

The tensor completion problem in Eq.(1) is established
based on the assumption that the rank of the overall tensor
is low. This global low-rank assumption serves as the base for
traditional tensor completion algorithms to fit a single model
with the overall tensor data through the global optimization.

In network fields, a subset of OD pairs may have more close
end-to-end traffic behaviors in part of time slots (i.e., working
hours) of certain days (i.e., week days). Obviously, samples
taken from these partial OD pairs have higher correlation
and would form a sub-tensor of lower rank. Simply applying
the global optimization over the whole traffic tensor can not
benefit from the higher local correlation among data.

In order to better exploit the local correlations from the
three corresponding domains for more accurate missing data
recovery, we propose a novel localized tensor completion
model, where we first reorganize data from a large tensor to
build a set of sub-tensors and then complete and fuse the data
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Fig. 1. Solution overview.

recovered from sub-tensors to form the completed large tensor.
Fig.1 shows the basic three steps of our solution:

1) Choose some anchor points.
2) Build local sub-tensors (each corresponding to an anchor

point) by selecting samples that are within the distance d
of the anchor point, where the distance is determined by
the similarity of data rather than the Euclidean distance
of indexes.

3) After inferring missing data in sub-tensors, we fuse the
recovered data of sub-tensors to form the original large
tensor data taking consideration of the similarity of data.
In Fig.1, missing data entry 1 is finally recovered by
fusing its recovered values from two sub-tensors which
cover it. Similarly, the value of missing data entry 2 is
fused by the recovered values from the three sub-tensors.

IV. SELECTION OF ANCHOR POINTS

To build the low-rank sub-tensor, similar OD pairs from
a subset of time slots and days need to be grouped together.
Anchor points are selected to facilitate building the sub-tensors
in our solution.

A straightforward way is to randomly select a set of
OD-time-day triplets as anchor-points, then take the sample
entries within a distance d of the anchor-points to construct
a local sub-tensor. As discussed in introduction, measure-
ment samples may not be taken uniformly but with different
sampling rate based on the traffic patterns and operational
needs. In addition, as the data in the tensor are arranged
logically, even though samples are taken uniformly (as shown
in Fig.2(a)), some data may have higher similarity and can
be reorganized into a sub-tensor. We can regroup data to
form different sub-tensors (Fig.2(b)), with data from the same
sub-tensor having higher correlation and data from different
ones having lower correlation. We can take advantage of
higher correlation among data from sub-tensors and sub-tensor
completion to more accurately recover the data.

If a sub-tensor is formed with data of higher correla-
tion, it will improve the accuracy of missing data inference.
To achieve the goal, we will reorganize data samples according
to the data correlation to form different sub-tensors.

Fig. 2. Randomly selecting anchor-points results in uneven sub-tensor
distribution.

Measurement samples may not be taken uniformly, espe-
cially when the sampling is performed dynamically following
the traffic patterns or operational needs. Even when measure-
ment samples are taken uniformly, after the data reorganization
based on correlation, the samples may distribute unevenly
across the data region.

Fig.2(a) shows that the original sample data are uniformly
distributed in a domain of monitoring. After reorganizing the
data according to their correlation, the samples are distributed
unevenly in Fig.2(b).

Randomly selecting anchor points may lead to uneven local
sub-tensor distribution. Some regions with dense samples may
not be well covered by sub-tensors while the regions with
sparse samples may be over-covered. In Fig.2(c), the region
B with dense samples is covered by one sub-tensor, while
the region A with sparse samples is covered by a number of
sub-tensors. Selecting anchor points in the sparse area will
make a sub-tensor built with very few samples and difficult
to be accurately recovered. Moreover, if many anchor points
are selected in a small area, it will build redundant sub-
tensors, and redundant tensor recovery will result in high
computational overhead.

To find anchor points that can well represent the correlations
of data in a local tensor and distribute evenly inside the
big tensor, we propose an algorithm following three steps
(in Fig.3):

• Step 1: We build three LSH tables to reorder time slots,
days, and OD pairs into X , Y , and Z groups based on the
data correlation in each dimension. With good properties
brought by our well designed LSH hash function (to be
presented in Section V), each group includes similar time
slots, days, and OD pairs.

• Step 2: With group centers selected along three
dimensions {a1, a2, · · · , aX}, {b1, b2, · · · , bY },
and {c1, c2, · · · , cZ}, we can obtain the candidate
anchor-points mai,bj ,ck

by combining group centers ai,
bj , and ck (1 ≤ i ≤ X, 1 ≤ j ≤ Y, 1 ≤ k ≤ Z).
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Fig. 3. Candidate anchor points.

• Step 3: To reduce the computation cost and increase
the data recovery accuracy, we propose an anchor-point
selection algorithm (in Section VII-A) to select appro-
priate anchor-points from the candidate anchor-points
to form the sub-tensors, taking into account the den-
sity of samples already taken and distances of anchors
selected. Our selection algorithm can avoid building
multiple sub-tensors in one sub-area to reduce redundant
computations.

In Fig.3 (b), candidate anchor points are found with the
combination of group centers of different domains. For exam-
ple, the candidate anchor-point ma2,bY ,c2 is built by combining
group centers a2, bY , and c2.

V. EXPLOITING LSH TO QUICKLY FIND CANDIDATE

ANCHOR-POINTS

As shown in Section IV, to find candidate anchor points,
we first group similar time slots, days, and OD pairs together
based on LSH tables. Although the k-means algorithm is often
applied to cluster items, it runs iteratively with the need of
calculating distances among items in each iteration step, which
may incur a high computation cost. To reduce the computation
cost, we propose to exploit LSH function to quickly reorder the
data for quickly grouping similar data. In this section, we will
show that our LSH table has following good features:

• Only requiring hash calculations, our LSH tables reorder
OD pairs in a fast and effective way.

• With data projected to different lines according to the
dimensions of OD pair, time slot and day, we can divide
projected data on each line into buckets of equal distance
to ensure even anchor point selection across the whole
data region.

• The LSH tables provides a new indexing method that
approximates the nearest neighbor query by placing OD
pairs, time slots and days with closer correlations to
close-by positions. This good properties can be further
utilized to form sub-tensor with similar entries, as shown
in Section VI. As both the sample density and anchor
distance are considered, we will not select multiple
anchor points in one sub-area to reduce the redundant
computation.

A. Challenge in Distance Calculation

Although the solution in Section IV can help find can-
didate anchor-points, the LSH based reordering algorithm
(in Section V-C) and further the sub-tensor building algorihm
(in Section VI) depend on the distance calculation. In order to
reduce the measurement overhead, the traffic tensors are often
sparse with only a subset of entries having sample data. This
makes the distance calculation a challenge.

As shown in Fig.4, a frontal slice, a lateral slice, and a
horizontal slice of the traffic tensor X record respectively the
data of an OD pair, the data in a day, and the data at a time slot.
Intuitively, calculating distances in the domains of OD pairs,
days, and time slots can leverage frontal slices, lateral slices,
and horizontal slices, respectively. For example, in Fig.4,
to calculate the distance between time slots i and i′, we can
compare slices Xi:: and Xi′:: directly. However, as the traffic
tensor is sparse with incomplete data, this straightforward way
may fail. To address the challenge, we propose a novel strategy
based on the encoding of slices.

B. Encoding Tensor Slices Under the Bases of
Factorized Matrices

In Fig.5(a), the CP decomposition of a 3-way tensor X can
be written as follows.

X =
∑R

r=1
ar ◦ br ◦ cr = [[A,B,C]] (3)

where matrices A ∈ R
I×R, B ∈ R

J×R, and C ∈ R
K×R are

the factor matrices. In Fig.5(b), a frontal slice X::k can be
written as

X::k = ck1a1 ◦ b1 + · · · + ckRaR ◦ bR =
∑R

i=1
ckiai ◦ bi.

(4)

where ck1, ck2, · · · , ckR are the entries of the k-th row of the
factor matrix C. Similarly, a lateral slice X:j: and a horizontal
slice Xi:: can be written in (5) and (6).

X:j: = bj1a1 ◦ c1 + · · · + bkRaR ◦ cR =
∑R

i=1
bjiai ◦ ci.

(5)
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Fig. 4. Directly calculate distance using slices.

Fig. 5. The relationship between CP decomposition and frontal slice
representation.

where bj1, bj2, · · · , bjR are the entries of the j-th row of the
factor matrix B.

Xi:: = ai1b1 ◦ c1 + · · · + aiRbR ◦ cR =
∑R

j=1
aijbj ◦ cj .

(6)

where ai1, ai2, · · · , aiR are the entries of the i-th row of the
factor matrix A.

Equation (6) shows that each horizontal slice Xi:: can be
expressed as a superposition of R rank-1 matrices bi ◦ ci

(1 ≤ i ≤ R). That is, the traffic data Xi:: at a time slot i is
represented by the linear combination of R rank-1 matrices
bi ◦ ci.

These rank-1 matrices can thus be called horizontal basis
matrices, and parameters ai1, ai2, · · · , aiR are coordinates of
the horizontal slice Xi:: under this new basis and together
they are considered as a code to represent the traffic data
at the slot k. Given two horizontal slices Xi:: and Xi′::,
if the traffic data at time slots i and i′ are close, the codes
under the horizontal basis, ai1, ai2, · · · , aiR (i.e., ai:, the i-th

row of the factor matrix A) and ai′1, ai′2, · · · , ai′R (i.e., ai′:,
the i′-th row of the factor matrix A) should also be close to
each other.

Directly calculating the distance between slices correspond-
ing to time slots, days, and OD pairs requires each matrix to
have complete data. Instead, we encode slices and calculate
the distances among their codes. Denoting ai:, bj:, and ck: as
the codes of the time slot i, day j, and OD pair k. Obviously,
they are the rows in the factor matrices A, B, and C. We can
apply

min
A,B,C

∑
(i,j,k)∈Ω

(
[[A,B,C]]i,j,k − mi,j,k

)2

(7)

to the incomplete monitoring tensor to obtain the three factor
matrices A, B, C by approximating the monitoring tensor
through CP-decomposition with the minimum recovery loss.

As discussed in the introduction (Section I), lower rank
sub-tenors exist in the large global tensor. Therefore, using
a completion algorithm that works based on the hypothesis of
a global low rank structure may not yield good recovery per-
formance. The missing data will be more accurately recovered
through the sub-tensor taking advantage of higher correlation
among data. Therefore, we don’t directly recover the global
tensor using the factor matrices trained by CP decomposition
on the global tensor. However, to conquer the challenge of
distance calculation brought by the sparse data, we still need
to train these factor matrices to facilitate encoding time slot,
day, and OD pair and finding the anchor-points for forming
the sub-tensors with data of higher similarity.

C. Build LSH Tables to Reorder Time, Day, and OD Pair

We need three LSH tables, one for time slots, one for days,
and the other for OD pairs. We take the LSH table for OD pairs
as an example to illustrate how our LSH algorithm re-orders
the OD pairs with low computation cost.

Based on the principle of LSH [50], if two data points
are close together, they will remain close after a “projection”
operation. To group similar OD pairs together, we apply LSH
to the code of OD pair to map OD pairs into the LSH table
with the following two steps:

• Step 1: Projecting OD pairs to a line. Given an OD pair
k with its code being ck: ∈ R

R (1 ≤ k ≤ K), we define
the LSH hash function as

ha(ck:) = a · ck:

‖ck:‖ (8)

Eq. (8) applies a scalar dot operation to project the OD
pair k to a point on a straight line whose direction is
identified by a. a is a vector with its components selected
at random from a Gaussian distribution, for example
N (0, 1). In this paper, we call this line the projection
line.

• Step 2: Building the LSH table. We denote the first
projected value and the last projected value on the line as
ps and pe, respectively. Given the total number of groups
to divide, Z , we partition the projection line between ps

and pe into Z parts to build the hash table, with the bucket
width of the table being pe−ps

Z .
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Fig. 6. An example to illustrate how to build the LSH table.

Fig. 6(a) shows geometrically the projection process of
Step 1. After applying the LSH hash function (8) to OD pairs
k1, k2, k3, k4, k5, k6, these OD pairs are projected along a
line. In Fig.6(b), the first projected value and the last projected
value are ps = ha(ck2:) and pe = ha(ck3:), respectively. If we
assume Z = 2, all projected values are clustered into two hash
buckets (groups), with the width of each bucket being pe−ps

2 .

D. Good Property of the Bucket Center

We denote the center of a hash bucket in the OD pair LSH
table as y0, which may be projected from ck0 that exists either
physically or virtually. If ps = pe, all ck: ∈ R

R (1 ≤ k ≤ K)
are colinear and we can hardly build the hash table, otherwise,
the following Theorem show that ck0: has good properties to
represent OD pairs in the hash bucket.

Theorem 1: The group center ck0: has the following two
properties:

• Property 1: For any an OD pair kj that is close to the
OD pair k0, there is a high probability P1 that these two
OD pairs fall into the same bucket. That is, if || ck0 :

‖ck0 :‖ ,
ckj :

‖ckj :‖||2 ≤ r, Pr
[∣∣ha(ckj:) − ha(ck0:)

∣∣ ≤ pe−ps

2Z

] ≥
P1.

• Property 2: For any an OD pair kj that is far from OD
pair k0, there is a low probability P2 < P1 that they fall
into the same bucket. That is, if || ck0:

‖ck0:‖ ,
ckj:

‖ckj:‖ ||2 ≥ cr,

Pr
[∣∣ha(ckj:) − ha(ck0:)

∣∣ ≤ pe−ps

2Z

] ≤ P2.

Above, r is a search radius, c (c > 1) is a scaling factor,
|| ck0:

‖ck0:‖ ,
ckj:

‖ckj:‖||2 is the Euclidean distance between OD pairs

kj and k0, and Pr
[∣∣ha(ckj:) − ha(ck0:)

∣∣ ≤ pe−ps

2Z

]
is the

collision probability of hashing OD pair kj and k0 to the
same bucket.

Proof: In the domain of hash function, given two OD
pairs kj and k0, if the pairs are mapped to the same bucket,
there is a collision in hashing. We analyze the properties of the
hash table through the calculation of the collision probability,
i.e., Pr

[∣∣ha(ckj:) − ha(ck0:)
∣∣ ≤ pe−ps

2Z

]
.

According to [51], we know that Gaussian distribution
N (0, 1) is 2-stable distribution. Thus the distribution of
a · ckj:

‖ckj:‖ − a · ck0:

‖ck0:‖ follows that of dX , where d =

|| ck0:

‖ck0:‖ ,
ckj:

‖ckj:‖||2 is the distance between OD pairs kj and

k0 and X is a random variable drawn from N (0, 1). Let
f (x) be the probability density function (PDF) of N (0, 1),

i.e., f (x) = 1√
2π

e−x2/2. The probability that the OD pairs kj

and k0 collide in our LSH hash table is computed as follows:

Pr (d) = Pr

[∣∣ha(ckj:) − ha(ck0:)
∣∣ ≤ pe − ps

2Z

]

= Pr

[
|dX | ≤ pe − ps

2Z

]

= Pr

[
−pe − ps

2dZ
≤ X ≤ pe − ps

2dZ

]

=
∫ pe−ps

2dZ

− pe−ps
2dZ

f (t)dt (9)

Obviously, we have

Pr (d) = 1 − 2norm(−pe − ps

2dZ
) (10)

where norm (x) =
∫ x

−∞ f (t)dt is simply the cumu-
lative distribution function (CDF) of N (0, 1), which
increases monotonically as x increases. For a fixed pe−ps

Z ,
norm(− pe−ps

2dZ ) increases monotonically as d increases.
Accordingly, Pr(d) decreases monotonically as d increases.
In another word, Pr(d) increases as d becomes smaller.

Replacing d in Eq(9) with r and cr respectively, we obtain
P1 = Pr (r) and P2 = Pr (cr). As r < cr when c > 1,
we have P2 < P1.

Finding the group center with our LSH table brings the
above two good properties, and our method can map similar
OD pairs with a shorter distance to the group center into
the same hash bucket with a high probability. Therefore,
the group center can be a representative point of the OD pairs
in the bucket.

For the bucket center y0, its corresponding ck0: may be an
OD pair that physically exists in the tensor or a virtual point
without corresponding to any OD pair. In the latter case, we set
the OD pair whose projected value is the closest to y0 as the
group center.

In Eq.(8), we project an OD pair using its normalized
code instead of its original code. Moreover, in Theorem 1,
the distance is also calculated using the normalized code. This
is because that we care more about the codes’ directions (thus
the angles among OD pairs) than their absolute values for
more accurate tensor recovery.

According to Property 2 in Theorem 1, with one LSH hash
function, two OD pairs kj and k0 have up to P2 probability
of being hashed into the same bucket when their distance
|| ck0 :

‖ck0 :‖ ,
ckj :

‖ckj :‖||2 ≥ cr. To help buffer similar OD pairs into

the same bucket while reducing the probability of hashing
uncorrelated ones to the same hash bucket to create the colli-
sion, instead of using a single hash function, we could apply
multiple hash functions. With n hash functions, we have the
hash index of {ha1(ckj:), ha2(ckj:), ..., han(ckj:)}. Straight
forwardly, this would require n hash tables to store the OD
vectors, and thus requires O(n) to store the hash index and
also O(n) to search for a close-by neighbor. Without a physical
bucket to hold all items closely-related, this storage and search
scheme is difficult to find the cluster centers thus anchor-
points.
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To reduce the storage and query cost, and more importantly,
to support the quick finding of the cluster center, inspired by
MIT’s E2LSH [52], we will instead use a super index which
involves n hash functions:

H(ckj:) =
∑n

i=1
rihai

(ckj:) (11)

where ri is a random integer. With this super index, two distant
OD kj and k0 have the same super index under Eq.(11) only if
all n hash indexes are in the same bucket under the correspond-
ing single hash scenario, that is,

∣∣hai

(
ckj:

) − hai
(ck0:)

∣∣ ≤
pei

−psi

2Z where psi and pei are the first projected value and the
last projected value on the projection line defined by ai.

According to Property 2 in Theorem 1, using a single hash
function, the probability for two distant OD pairs with the
distance || ck0 :

‖ck0 :‖ ,
ckj :

‖ckj :‖||2 ≥ cr to be hashed into the same

bucket is not larger than P2. Thus, the probability in Eq.(11) is
not larger than (P2)n. Obviously, we have (P2)n < P2 because
0 < P2 < 1. That is, the use of a group of hash functions helps
to reduce the probability of hashing uncorrelated OD pairs to
the same bucket to create the collision. In this paper, we set
n = 10.

E. Scalability to Handle Real Time Data Set

In our method, for each data item (can be time, day,
OD pair) that needs to be reordered, we obtain their codes
through CP decomposition, then apply LSH hash function on
the codes to project the data on the projection lines. When new
data arrive, we can apply the incremental CP proposed in our
recent study [53] to obtain the new codes corresponding to the
new data, without the change of the code of the history data.
Therefore, to update the LSH table, we only need to apply the
LSH function on the new codes to add the new data item. The
projections on the old codes corresponding to the history data
will not change. So the computation cost can remain low to
handle real time data set with sequential incoming new data.

VI. SUB-TENSOR EXTRACTION AND COMPLETION

For more accurate missing data recovery, a sub-tensor
should contain data entries from similar OD pairs with related
time slots and days. As discussed in introduction, we can not
build a sub-tensor with simple tensor partition as entries with
adjacent indexes in the large tensor may not be similar.

In order to find the similarity between data points mijk and
mi′j′k′ in the tensor, we define their distance as

d(mijk , mi′j′k′) = d(ai:,ai′:) × d(bj:,bj′:) × d(ck:, ck′:)
(12)

where d(ai:,ai′:) = arccos
(

〈ai:,ai′:〉
‖ai:‖·‖ai′:‖

)
,

d(bj:,bj′:) = arccos

( 〈bj:,bj′:〉
‖bj:‖·‖bj′:‖

)
, and d(ck:, ck′:) =

arccos
(

〈ck:,ck′:〉
‖ck:‖·‖ck′:‖

)
are the angular distance between two

time slots i and i′, two days j and j′, and two OD pairs k
and k′.

After calculating the distance between items in each domain,
we apply following equations to normalize the angular distance
to the range [0, 1]:

d(ai:, ai′:) =
d(ai:, ai′:) − min(d(ai:, ai′:))

max(d(ai:, ai′:)) − min(d(ai:, ai′:))
(13)

d(bi:,bi′:) =
d(bi:,bi′:) − min(d(bi:,bi′:))

max(d(bi:,bi′:)) − min(d(bi:,bi′:))
(14)

d(ci:, ci′:) =
d(ci:, ci′:) − min(d(ci:, ci′:))

max(d(ci:, ci′:)) − min(d(ci:, ci′:))
(15)

In Eq.(13), Eq.(14), and Eq.(15), max(d(ai:,ai′:)),
max(d(bi:,bi′:)), and max(d(ci:, ci′:)), are respectively
the maximum angular distance between two time slots i
and i′, two days j and j′, and two OD pairs k and k′.
min(d(ai:, ai′:)), min(d(bi:,bi′:)), and min(d(ci:, ci′:)), are
respectively the minimum angular distance between two
time slots i and i′, two days j and j′, and two OD pairs k
and k′. Using the normalized angular value, entry distance is
obviously within the range [0, 1] according to Eq.(12).

Given an anchor-point mat,bt,ct , where at, bt, and
ct are group centers from three different domains with
at ∈ {a1, a2, · · · , aX}, bt ∈ {b1, b2, · · · , bY }, and ct ∈
{c1, c2, · · · , cZ}, the sub-tensor can be built by selecting the
entry mijk whose distance to mat,bt,ct is less than h:

d(mijk, mat,bt,ct) < h (16)

As we have re-ordered the time slots, days, and OD pairs
in LSH table, to find the entry mijk closest to mat,bt,ct ,
the candidate entry index i, j, k can be easily found in the
bucket that is the same or adjacent to the bucket of at, bt,
and ct. Facilitated by the LSH table, the calculation cost of
selecting tensor entries to build the sub-tensor can be largely
reduced.

Rather than using the Euclidean distance, as the distance
of two entries is defined based on the angular distances along
three tensor dimensions, the sub-tensors built with the same
h may have different sizes as shown in Fig.1, 2, and Fig.7.
Formulating a sub-tensor this way helps to better capture
the correlations hidden in the traffic data for more accurate
missing data recovery.

For a sub-tensor with the anchor point mat,bt,ct , the local
tensor completion problem can be formulated as follows:

min
At,Bt,Ct

∑
(i,j,k)∈Ω

K(mat,bt,ct , mijk)

× ([[At,Bt,Ct]]i,j,k − mi,j,k)2 (17)

which gives a low-rank approximation for each neighborhood
by minimizing the squared reconstruction error, weighted by
the similarity of the sample point (mijk) to the anchor point
(mat,bt,ct). In (17), At, Bt, Ct denote the factor matrices of
the sub-tensor, K(mat,bt,ct , mijk) is a smoothing kernel that
measures the similarity between the sample point mijk and
the anchor point mat,bt,ct as

K(mat,bt,ct , mijk)

=

{
(1 − d(mat,bt,ct , mijk)2) d(mat,bt,ct , mijk) < h

0 otherwise
(18)
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Using the normalized angular value (shown in Eq.(13),
Eq.(14), and Eq.(15), the distance d(mat,bt,ct , mijk) is within
the range [0, 1]. Thus, the kernel value K(mat,bt,ct , mijk)
obviously is not a negative value.

We use the kernel function to convert the distance to simi-
larity. Obviously, a larger distance will have smaller similarity
thus smaller kernel value, while a smaller distance often
results in a larger similarity thus larger kernel value. With the
introduction of kernel function, entries with shorter distances
to the anchor point will have larger kernel values thus higher
weights in Eq.(17), thus can be more accurately recovered with
smaller error ([[At,Bt,Ct]]i,j,k − mi,j,k).

VII. DATA FUSION

After obtaining the candidate anchor points, a straightfor-
ward way of recovering the large tensor is to first recover all
sub-tensors with each around an anchor point, then fuse the
recovered data of all sub-tensors to obtain the data of the large
tensor. Although promising, the computation cost is high. As a
sample data point may be contained in multiple sub-tensors,
to reduce the computation cost, we need to carefully select
anchor-points from all candidate ones.

A. Density and Distance Aware Anchor Point Selection

To efficiently and accurately recover missing data, we need
to select appropriate anchor-points from the candidate
anchor-points to form the sub-tensors. We adopt two criteria
to select the anchor-points: 1) each sub-tensor selected should
contain more information to recover the missing data in the
sub-tensor; 2) the sub-tensors selected should contain more
information to recover the original large tensor.

According to the tensor completion theory [10], given a
low rank tensor, the sampling density directly impacts the
performance of missing data recovery. Given a candidate
anchor-point mat,bt,ct , according to (16), samples having
higher correlation with mat,bt,ct are selected to group into
the sub-tensor. Denoting the total number of samples selected
in the sub-tensor as Nt, we define the sample density as the
ratio of total number of samples in the sub-tensor to its size
as

density(mat,bt,ct) =
Nt

It × Jt × Kt
(19)

where It, Jt, and Kt denote the number of distinct indices of
selected samples in time slot domain, day domain, and OD
domain respectively, and It × Jt × Kt is the size of the sub-
tensor.

Obviously, a sub-tensor with a higher density will have more
data points, and thus contain more information to achieve
higher data recovery accuracy. Moreover, to capture more
diversified information hidden in different sub-tensors for
more accurate data recovery in the large tensor, the distance
among anchor points selected should also be large.

Considering both the sampling density and anchor distance,
we propose to select anchor-points one by one until the
total number of selected anchor-points reaches q. Specially,
if we have selected l anchor-points, among all the candidate

Fig. 7. Anchor-point selection.

anchor-points left, we will select the anchor-point mai,bi,ci

that maximizes the following equation

α × density (mai,bi,ci) +
1 − α

l

l∑
p=1

d
(
mai,bi,ci , map,bp,cp

)
(20)

where the second item of the equation is the average distance
between the anchor-point mai,bi,ci and the l anchor-points
selected, α is the adjustment coefficient to balance sampling
density and distance with 0 ≤ α ≤ 1. In the simulation,
we will study how α impacts the recovery performance.
Fig.7 is an example to illustrate our anchor-point selection
algorithm, where two anchor-points ma1,b1,c1 and ma2,b2,c2

have already been selected. Among the left un-selected candi-
date anchor-points ma3,b3,c3 , ma4,b4,c4 , and ma5,b5,c5 , because
ma4,b4,c4 has the largest distance to the two anchor-points
selected as well as the sub-tensor corresponding to ma4,b4,c4

has the large sampling destiny, ma4,b4,c4 is the next selected
anchor-point.

B. Similarity Sensitive Data Fusion

An tensor entry (i, j, k) may be contained in different
sub-tensors. After recovering each sub-tensors, we need to
fuse their results to form the final tensor. If we have q
sub-tensors selected with the corresponding anchor points
ma1b1c1 , ma2b2c2 , · · · , maqbqcq , we can find the entry of
the final recovered large tensor through the following fusion
operation:

m̂i,j,k =
q∑

t=1

K(matbtct , mijk)∑q
s=1 K(masbscs , mijk)

[[At,Bt,Ct]]i,j,k (21)

where At,Bt,Ct are the factor matrices obtained in the
sub-tensor corresponding to the anchor-point matbtct accord-
ing to (17). [[At,Bt,Ct]]i,j,k is the recovered value in the
t-th sub-tensor. Actually, Eq.(21) is the weighted sum of the
recovered values in the related sub-tensors. Given an entry
mijk that is contained in multiple sub-tensors, our fusion in
Eq.(21) gives a larger weight to the entry which has a smaller
recovery error in its sub-tensor. Therefore, our fusion process
can help to achieve more accurate missing data recovery in
the large tensor.
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If a missing entry (i, j, k) is not covered by any selected
sub-tensors, we can estimate its entry value using the fac-
tor matrices A, B, and C obtained from Eq.(7) with
m̂i,j,k = [[A,B,C]]i,j,k.

VIII. PERFORMANCE EVALUATIONS

We use two public traffic traces Abilene [11] and
GÈANT [12], and a synthetic trace to evaluate the performance
of our proposed LTC. The synthetic trace is a large trace data
which is generated through following steps. We firstly generate
4 low rank tensors with 400× 800× 400, then combine these
tensors to be a large tensor with 800 × 800 × 800.

In the experiment, we apply the proposed tensor completion
scheme to recover the full data from part of data samples.
Then, using the raw trace data as reference, we calculate the
performance metrics by comparing the recovered data with the
original data in the trace.

We use two relative error ratio metrics to evaluate the
recovery accuracy:

Error(sampled) =

√∑
(i,j,k)∈Ω (mi,j,k − m̂i,j,k)2√∑

(i,j,k)∈Ω (mi,j,k)2

and

Error(inferred) =

√∑
(i,j,k)∈Ω (mi,j,k − m̂i,j,k)2√∑

(i,j,k)∈Ω (mi,j,k)2
,

where Ω and Ω denote the sets of indices of the sample and
un-sample entries, respectively. mijk and m̂ijk denote the raw
data and the recovered data at (i, j, k)-th element of M where
1 ≤ i ≤ I , 1 ≤ j ≤ J and 1 ≤ k ≤ K . The first metric is the
relative error to evaluate the impact of tensor completion on
the data elements with values observed already, and the second
is error for the element locations with the values inferred from
the tensor completion. For both traces, the sampling ratio is
set to 40%.

In this paper, our LTC is designed based on CP decom-
position (denoted as CP-LTC). For performance comparison,
we also implement the tensor completion algorithm based on
standard CP decomposition (denoted by CP). We perform two
categories of experiments. In the first category of experiments,
we investigate the parameters used in the CP-LTC, based on
which, we provide proper parameter setting for performance
studies of CP-LTC in our experiments. In the second category
of experiments, we implement other tensor completion algo-
rithm following our LTC scheme, and demonstrate that our
LTC design is general and can be exploited to increase the
missing data recovery accuracy regardless of the underlying
tensor completion algorithms.

As all tensor completion approaches are executed itera-
tively to train the parameters needed, for a fair comparison,
we adopt the same two stop conditions: 1) The difference
in the recovery loss between two consecutive iterations is
smaller than a given threshold value, set to 10−6 in this
paper; 2) The maximum number of iterations is reached,
and we set the threshold to 100 in this paper. The iteration

Fig. 8. Study impact of h (Abilene).

Fig. 9. Study impact of h (GÈANT).

process will continue until either of the two stop conditions is
satisfied.

As LTC and CP have many random components (for exam-
ple, the random initiation of the factor matrices) and the results
may vary across different runs, for each parameter setting,
we repeat our experiments 20 times and present the statistical
results in the experiments.

A. Parameter Study

1) Impact of h: In our LTC, the entries with the distance
to the anchor point less than h are selected into the sub-
tensors. h directly impacts the size of the sub-tensor and
correlation level among data in the sub-tensor. In our LTC, data
correlation is calculated through angular distance. Besides,
we also implement our LTC with Euclidean distance for
performance comparison.

For each parameter setting, we repeat our experiments
20 times. To show the statistic results, a box plot (a.k.a.
box and whisker diagram) is a good way of displaying the
distribution of data based on the five number summary:
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Fig. 10. Study impact of h (synthetic data).

minimum, first quartile, median, third quartile, and maximum.
As a result, we use the box plot to draw the statistical
results of our CP-LTC impacted by different h. Moreover,
in Fig.10 (b)(c), Fig.8 (b) (c) and Fig.9 (b)(c), we also draw
the curve to denote the average result.

Fig.10 (b)(c), Fig.8 (b) (c) and Fig.9 (b)(c) show how
h impacts the missing data recovery performance. With the
increase of h (both angular distance and Euclidean distance),
the error rate decreases initially, but starts to increase when
h exceeds a certain value. On the one hand, the increase of
h allows more correlated entries to be included in the sub-
tensors, which helps to increase the recovery accuracy. On the
other hand, a larger h brings entries with lower correlation
into the sub-tensor, which reduces the recovery accuracy.
As CP does not have parameter h, we just show the average
and variation of the experiment results. Obviously, compared
with CP, our LTC achieves better recovery performance with
smaller error rate.

By comparing Fig.10 (b) with Fig.10 (c), Fig.8 (b) with
Fig.8 (c), and Fig.9 (b) with Fig.9 (c), the recovery per-
formance under angular distance is better than that under
Euclidean distance. This may be because that angular distance
can better capture similar data trend instead of data value,
and consequently bring higher recovery gain to the tensor
completion algorithm. Therefore, instead of Euclidean dis-
tance, our LTC uses angular distance for sub-tensor building.
From Fig.10, Fig.8 and Fig.9, we find the best performance
is achieved when angular distance h = 0.6 for synthetic data,
h = 0.5 for trace Abilene and GÈANT.

2) Impact of α: In Section VII-A, the parameter α control
the proportion of the distance and the density thus their
tradeoff when we select anchor points from the candidate
anchor points. The density ratio will be increased and the
distance ratio will be reduced when α becomes larger. With
different α, the anchor points selected will be changed, and
thus change the recovery performance. Fig.13, Fig.11, and
Fig.12 show the recovery performance by varying α. The
curves in Fig.13, Fig.11, and Fig.12 are the quadratic fitting the
average value. From the experiment results, we can conclude

Fig. 11. Study impact of α using Abilene.

Fig. 12. Study impact of α using GÈANT.

Fig. 13. Study impact of α using synthetic data.

that our CP-LTC can achieve the best recovery performance
when α = 0.5 in the three traces. Therefore, we set α = 0.5
in the rest of experiments.

3) Impact of q: Fig.16, Fig.14, and Fig.15 show the recov-
ery performance as a function of the number anchor points
(i.e., q) selected. For the comparison of different algorithms,
we only draw the curves of their average results from
many rounds. Besides the anchor point selection algorithm in
Section VII-A, two other anchor point selection algorithms are
implemented. The first selects the anchor point randomly in
the large tensor and is denoted by RAN. The second scheme
(denoted by RAN-LSH) selects anchor points randomly from
the group centers calculated in Section IV.

Among all the local tensor completion schemes (CP-LTC,
CP, RAN, and RAN-LSH), our CP-LTC achieves the best
performance if the number of anchor points are the same.
Obviously, when q is less than 5 in Fig.16, q is less than 8 in
Fig.14, and q is less than 10 in Fig.15, the recovery errors
of all the local tensor completion schemes (CP-LTC, RAN,
and RAN-LSH) decline fast. When the sub-tensor number
close to 4 (synthetic data) and 10 (Abilene and GÈANT), our
CP-LTC reaches the convergent result with stable recovery
errors. However, RAN-LSH converges when the sub-tensor
number is close to 10 (synthetic data), 27 (Abilene) and
20 (GÈANT). Thus, the efficiency of our CP-LTC for local
low-rank tensor approximation doubles that of RAN-LSH.
According to the result, we set q = 4 (synthetic data) and
q = 10 (Abilene and GÈANT) in our rest experiments.

B. Effectiveness of Localized Tensor Completion Scheme

1) Running Time: By inserting the timer into the programs
of CP and the CP-LTC, we compare the computation time. The
computation time under our CP-LTC includes: (a) encoding,
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Fig. 14. Study impact of q (Abilene).

Fig. 15. Study impact of q (GÈANT).

Fig. 16. Study impact of q (synthetic data).

Fig. 17. Effectiveness of LTC (Abilene).

the time to train factor matrix to encode the data of three
domains (time, day, OD pair); (b) sub-tensor building and
selection: consisting of the time of applying LSH function
to reorder the data of the three domains, the time of building
sub-tensors, and the time of selecting sub-tensors considering
density of samples; (c) completing sub-tensor: the time to
complete sub-tensors; (d) fusion: the time to obtain the final
data through fusion.

In Fig.20, obviously, the computation time under CP-LTC is
slightly smaller than that under CP. However, our CP-LTC can
more accurately recover the missing data in Fig. 19, Fig.17,
and Fig.18. According to the stop condition described at the
beginning of the experiment setting in Section VIII, although
the maximum iteration number is set to 100 for CP to train
the factor matrices for data recovery, in our encoding phase,
we only run 10 iterations to obtain the rough codes of the data
in three domains for data clustering. From results in Fig. 19,
Fig.17, and Fig.18, we find that such encoding works well to
cluster data for sub-tensor completion. Therefore, the encoding
time is small in our CP-LTC. Moreover, although we have
multiple sub-tensors to complete, the completion tasks in
different sub-tensors are independently and can be executed in

Fig. 18. Effectiveness of LTC (GÈANT).

Fig. 19. Effectiveness of LTC (synthetic data).

Fig. 20. Computation time comparison.

parallel. Therefore, the total time in completing all sub-tensors
is also not large.

2) Accuracy: Fig. 19, Fig.17, and Fig.18 compare the accu-
racy of tensor completion with the facilitation of our localized
tensor factorization scheme. Similar to Fig.16, Fig.14, and
Fig.15, we only show the average results of many rounds of
different algorithms in Fig. 19, Fig.17, and Fig.18.

We implement three tensor completion algorithms CP ,
CPopt [19], and CPnmu [18] under our scheme. Following
our scheme, these algorithms are first applied to the large
incomplete monitoring tensor to obtain the codes of data in
each domain, which are then used to determine the candi-
date anchor points using the algorithm in Section IV. After
well selecting the sub-tensors and recovering the missing
sub-tensors, the final results are fused by combining the
recovery results of sub-tensors. For performance comparison,
we also implement the tensor completion algorithms directly
using the whole large tensor without sub-tensor extraction.

Compared with the tensor completion algorithms executed
using the whole data, our localized tensor factorization scheme
groups entries with closer relationship into sub-tensors to
more accurately recover the missing data. All the performance
results (in Fig. 19, Fig.17, and Fig.18) demonstrate that
our localized tensor factorization scheme is very effective in
improving the recovery accuracy, and our localized tensor
factorization scheme is general without depending on the
underlying tensor completion algorithms.

IX. CONCLUSION

We propose a novel LTC scheme which can exploit higher
correlation among subsets of data to form and recover
local sub-tensors for more accurately missing data recovery.
To facilitate the finding of data similarity in the presence
of incomplete measurement data, we propose a technique to
encode tensor slices under the bases of factorized matrices.
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Taking advantage of similarity calculation based on the
encoded data, we propose following three techniques to build
the local sub-tensors and recover the large tensor. 1) In LTC,
the local sub-tensors are built around some anchor points.
To find anchor points that can well represent the correlations
of data in a local tensor and distribute evenly inside the large
tensor, we propose an algorithm to efficiently calculate the
anchor points based on locality-sensitive hash. 2) To reduce
the computation cost and increase the data recovery accuracy,
we propose an anchor-point selection algorithm, taking into
account the density of samples already taken and distances of
anchors selected. 3) To more accurately recover the large ten-
sor, we propose a similarity-sensitive local tensor completion
algorithm and a data fusion algorithm. Extensive experiments
using two real traffic traces demonstrate the effectiveness and
efficiency of our LTC.
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