
Low Cost and High Accuracy Data Gathering
in WSNs with Matrix Completion

Kun Xie , Lele Wang , Xin Wang,Member, IEEE, Gaogang Xie , and Jigang Wen

Abstract—Matrix completion has emerged very recently and provides a new venue for low cost data gathering in Wireless Sensor

Networks (WSNs). Existing schemes often assume that the data matrix has a known and fixed low-rank, which is unlikely to hold in a

practical system for environment monitoring. Environmental data vary in temporal and spatial domains. By analyzing a large set of

weather data collected from 196 sensors in ZhuZhou, China, we reveal that weather data have the features of low-rank, temporal

stability, and relative rank stability. Taking advantage of these features, we propose an on-line data gathering scheme based on matrix

completion theory, named MC-Weather, to adaptively sample different locations according to environmental and weather conditions. To

better schedule sampling process while satisfying the required reconstruction accuracy, we propose several novel techniques, including

three sample learning principles, an adaptive sampling algorithm based on matrix completion, and a uniform time slot and cross sample

model. With these techniques, our MC-Weather scheme can collect the sensory data at required accuracy while largely reducing the

cost for sensing, communication, and computation. We perform extensive simulations based on the data traces from weather

monitoring and the simulation results validate the efficiency and efficacy of the proposed scheme.

Index Terms—Sparse data gathering, matrix completion, wireless sensor network

Ç

1 INTRODUCTION

WIRELESS sensor networks (WSNs) [1], [2], [3] are
widely utilized to gather environmental information.

Some example applications include the monitoring under
the water, in the forest, and on the volcano. The data col-
lected from the monitoring of the varying environment can
generally be represented by an N � T Environment Matrix,
which records data from N sensors over T time slots.

To obtain the environment matrix, in the traditional data
gathering approach [4], a sensor node senses and sends data
to a sink every time slot, which leads to a large amount of
traffic and high sensing cost. Since the sensor nodes usually
have limited computing ability and power supply, a primary
goal of environment monitoring is to collect the sensory data
at required accuracy with the least energy consumption.

To reduce the communication cost, some conventional
methods have been proposed in WSN, such as distributed

source coding techniques [5], [6], [7], in-network collaborative
wavelet transform [8], [9], and data aggregation [10], [11],
[12], [13], [14], [15], [16]. Thesemethods exploit the spatial cor-
relation in sensory data at sink or sensor nodes, but they may
bring extra computational and communication overheads.

Recently, the compressive sensing (CS) theory provides a
newparadigm for data gathering inWSNs [17], [18], [19], [20],
[21], [22], [23], [24]. Although CS-based approaches can save
energy and reduce sensing cost, they are originally designed
to recover the sparse vector such as events. Some applications
do not have clear sparsity features, and in many cases, we
need to get more complete data which can be formed in the
matrix style such as an Environment Matrix rather than just
events for systemmanagement purpose.

With the rapid progress of sparse representation, matrix
completion [25], [26], [27], a remarkable new field, has
emerged very recently. According to the matrix completion
theory, a low-rank matrix can be accurately reconstructed
with a relatively small number of entries in the matrix. With
matrix completion, only a small set of samples need to be
taken by sensor nodes, which will not incur excessive compu-
tational and traffic overheads at resource limited sensor nodes
inWSNs. Therefore,matrix completion provides a new venue
for low cost data gathering.

In matrix completion, low-rank is necessary for accurate
reconstruction of measured data and the rank of the matrix
directly impacts the number of samples required to take.
Existing matrix completion solutions often assume that the
data matrix has a known and fixed low-rank, and therefore
the number of measurements to take is fixed and deter-
mined by the relation between the smallest required num-
ber of samples and the rank of the matrix r. Unfortunately,
such an assumption is unlikely to hold for data gathering in
a practical and dynamic environment, and our observation
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on weather data trace indicates that the rank of the environ-
ment matrix varies over time.

To study the feature of environment data, we have
deployed 196 sensors in Zhu Zhou, China, to collect weather
data for more than two years. From the large weather data
trace collected, we find that the rank of weather data may
change with time, thus existing matrix completion solutions
will not perform well. For example, if the rank of the data
matrix increases, moremeasurements are needed for accurate
reconstruction, and the reconstruction may fail otherwise.
Therefore, to handle dynamic changes in weather data, it is
desirable for the on-line data gathering system to adapt the
number of samples to take.

In this paper, we first analyze large traces of real weather
data, and our study reveals that there exist hidden structures
in the data. By taking advantage of these structures, we pro-
pose an on-line data gathering scheme based on matrix com-
pletion theory, named MC-Weather, which can adaptively
sample different locations in response to changes in environ-
ment andweather conditions.We propose several novel tech-
niques to well schedule the sampling process while satisfying
the required accuracy for matrix reconstruction. Because only
a subset of locations are sampled, our MC-Weather scheme
can largely reduce the amount of traffic and computation
cost. Our contributions are summarized as follows:

� We have analyzed the traces of a large set of real
weather data, and our results reveal that weather
data have the features of low-rank, temporal stabil-
ity, and relative rank stability. We also prove that the
observed relative rank stability is a common feature
in continuous data gathering systems.

� Taking advantage of the relative rank stability fea-
ture, we propose three sample learning principles,
based on which we propose an adaptive sampling
algorithm to quickly find an effective set of samples
to take while the complete measurement data are
recovered from matrix completion.

� To take the full advantage of our sample learning
principle, we propose a Uniform Time-Slot and
Cross Sample model (UTSCS). Compared with the
Bernoulli model, we prove that our model ensures
the matrix to have better features for higher matrix
completion performance.

� Through comprehensive simulations with real data
traces, we show that our MC-Weather scheme can
accurately acquireweather data at very low cost,which
significantly outperforms the competingmethods.

To the best of our knowledge, this is the first work that pro-
poses an adaptive matrix completion algorithm for low-cost
on-line data gathering in dynamic environment. Our data
gathering scheme is designed to be general without relying
on specific matrix reconstruction algorithm or assuming the
knowledge of the sparsity level of the unknown data.

We call our scheme MC-Weather because this paper uti-
lizes weather data gathering as a case to verify the proposed
data gathering scheme. Besides environment monitoring in
WSNs, our scheme is flexible to apply in various networked
monitoring systems including the monitoring of smart grid
[28], [29], data center [30], social network [31], and other
infrastructure.

The rest of this paper is organized as follows. We intro-
duce the related work in Section 2. The fundamentals of
matrix completion and problem formulation are presented
in Section 3. We present our empirical study with real
weather data in Section 4. The proposed MC-Weather is pre-
sented in Section 5. Finally, we evaluate the performance of
the proposed MC-Weather through extensive simulations
in Section 6, and conclude the work in Section 7.

2 RELATED WORK

Structure and redundancy in data are often synonymous
with sparsity. There exist two typical sparsity representa-
tion techniques, compressive sensing and matrix comple-
tion. In this section, we review related work and identify
the differences of our work from existing work.

Compressive Sensing is a technique that can accurately
recover a vector from a subset of samples given that the vector
is sparse [18], [32], [33], [34] with only a fewnonzero elements.
The fundamental works of CS include the introduction of the
l1-minimization method to reconstruct the sparse vector.
Later works on the reconstruction techniques provide some
greedy approaches [35], [36], [37], [38] to recover the compo-
nents of the vector gradually. Compressive sensing has two
features, universal sampling and decentralized simple encod-
ing, whichmakes it a newparadigm for data gathering in sen-
sor networks [17], [18], [19], [23], [24]. Due to wireless
transmission interference [39], [40], data loss is unavoidable
in the process of data gathering. Moreover, as a powerful and
generic technique for estimating missing data, CS has been
applied to estimate the lost data [41].

The majority of work on CS consider vectors of data. A
naive approach to deal with matrices might be to transform
these matrices into vectors and then apply vector techniques.
Compared with the vector-based recovery approaches, as a
matrix could capture more information and the correlation
among the sensor data in two dimension, matrix-based
approaches can achievemuch better recovery performance.

On the heels of compressed sensing, matrix completion
has emerged very recently [25], [26], [27], [42], [43], [44].
Cand�es et al. [25] show that most n1 � n2 matrices of rank r
(r � min n1; n2f g) can be perfectly recovered with very high
probability by solving a simple convex optimization pro-
gram provided that the number of samples is sufficient.
New results show that matrix completion is provably accu-
rate even when the few observed entries are corrupted with
noises [42], [45]. Matrix completion brings new opportuni-
ties to fully exploit the low-rank property in various associ-
ated applications [43], [46], [47], [48], [49], [50], [51], [52],
[53], [54], [55], [56], [57], [58], [59], [60].

Existing schemes based on matrix completion are mostly
designed for off-line execution and can not be applied to
on-line gathering of varying environment data. Moreover,
existing algorithms determine the number of measurements
assuming the rank of data matrix is known and does not
change. This makes these algorithms difficult to apply to
the practical monitoring of dynamic environment where the
rank of the measurement matrix changes over time.

In this work, we propose an adaptive algorithm which
can respond to the environment changes to intelligently
determine the number of samples to take in a specific time
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slot based on past monitoring data and matrix reconstruc-
tion accuracy requirement. We propose different strategies
to facilitate the learning process for high quality and low
cost environment monitoring.

3 PRELIMINARY AND PROBLEM FORMULATION

In this section, we first introduce the fundamentals of
matrix completion, then present our problem formulation.

3.1 Fundamentals of Matrix Completion

Matrix completion is a new technique which can be applied
to recover a low-rank matrix from a subset of the matrix
entries [25], [26], [27], [42]. That is, an unknown matrix
M 2 Rn1�n2 with rank r � min n1; n2f g can be recovered if a
subset of its entries Mij; i; jð Þ 2 V are known and randomly
selected from the matrix. The sampling operator
PV : Rn1�n2 ! Rn1�n2 is defined by

PV Xð Þ½ �ij ¼
Xij i; jð Þ 2 V

0 otherwise:

�
(1)

If the set V contains enough information, there is a unique
rank-r matrix that is consistent with the observed entries
and can be recovered by solving the following rank minimi-
zation problem [25]

min rank Xð Þ
subject to PV Xð Þ ¼ PV Mð Þ; (2)

where the rank(.) denotes the rank of a matrixX.
However, solving this rank minimization problem in (2)

is often impractical because it is NP-hard. Then [25] proves
that most matrices M of rank r can be perfectly recovered
by solving the optimization problem

min Xk k�
subject to PV Xð Þ ¼ PV Mð Þ; (3)

provided that the number of samples m be sufficient and
meet the following condition:

m � Cn6=5r logn; (4)

where C is a numerical constant and n ¼ maxfn1; n2g.
In (3), Xk k� is the nuclear norm of the matrix X, which is

the sum of its singular values. That is, Xk k� ¼
Pmin n1;n2f g

i¼1 si

and si50 are the singular values ofX.
Many approaches have been proposed to solve the con-

vex optimization problem in (3), including iterative
reweighted least squares algorithm (IRLS-M) [61], Spectral
Matrix Completion[62], fixed point continuation algorithm
[63], OptSpace [62], FixedPoint Continuation with Approxi-
mate SVD (FPCA) [64], and singular value thresholding
(SVT) [65]. These algorithms use the observed entries as the
training data to derive the parameters needed, which helps
to better capture the global features of the matrix data and
recover the missing entries.

Our MC-Weather scheme does not depend on the
underlying reconstruction approach. We choose the sin-
gular value thresholding approach [65] to reconstruct the
matrix.

3.2 Problem Formulation

We propose an innovative and adaptive data gathering
scheme,MC-Weather, which exploitsmatrix completion tech-
nique and information learnt from existing data to continu-
ously and efficiently collect weather data according to the
environmental conditions. Our goal is to efficiently schedule
the data collection process to significantly reduce the sensing
resources neededwhilemaintaining the sensing quality.

ForN weather sensors randomly scattered in a given area,
instead of letting each sensor to periodically collect and report
data to the sink, in each time slot, only a subset of sensors are
scheduled to perform the sensing and reporting functions
based on the matrix reconstruction requirement. We define a
matrix XN�T tð Þ to hold the weather data collected within a
T -slot time measurement window starting from the time slot
t. In the weather matrix, a row corresponds to a sensing loca-
tion and a column corresponds to a time slot. An entry repre-
sents the weather data on a particular location and time slot.
The first column in the weather matrix ofXN�T tð Þ represents
theweather data collected in the time slot t.

Collecting the weather information in all locations and
time slots is costly. Since weather data normally have strong
correlation between neighboring locations and time slots,
the weather matrix should have low rank. This is confirmed
with our analyses on measurement data in the next section.
MC-Weather collects the weather data only at a subset of
the locations in a given time slot and varies the data collec-
tion locations in different time slots. Rather than randomly
selecting the measurement locations as instructed by con-
ventional matrix completion theory, we find that the perfor-
mance can be improved if we could select the collection
locations more intelligently based on the information learnt
from existing measurement data.

We use a Binary Sample Vector ~B tð Þ 2 RN to indicate the
locations that takemeasurement in a given time slot t, where

~B tð Þ
h i

i
¼ 1 if location i at time t is sampled

0 otherwise:

�
(5)

Accordingly, a Binary Sampling Matrix BN�T tð Þ can be
defined as BN�T tð Þ ¼ ½~B tð Þ; ~B tþ 1ð Þ; . . . ; ~B tþ T � 1ð Þ�, and
the incomplete sensory matrixMN�T tð Þ is represented as

MN�T tð Þ ¼ XN�T tð Þ �BN�T tð Þ; (6)

where � represents a scalar product (or dot product) of two
matrices,Mij tð Þ ¼ Xij tð ÞBij tð Þ.

According to the matrix completion technique intro-
duced in Section 3.1, when the number of samples is suffi-
cient, the weather matrix XN�T tð Þ can be recovered from
sensory matrixMN�T tð Þ by solving the following problem

min X tð Þk k�
subject to Xij tð Þ ¼ Mij tð Þ
MN�T tð Þ ¼ XN�T tð Þ �BN�T tð Þ:

(7)

We denote the matrix reconstructed from (7) as X̂N�T tð Þ.
Obviously BN�T tð Þ directly reflects the sensing scheduling,
and the key problem in our MC-Weather scheme is to iden-
tify the optimal BN�T tð Þ ðt � 0Þ so as to minimize the com-
munication cost and sensing cost while satisfying the
matrix reconstruction requirement. The sampling matrix
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BN�T tð Þ indicates which locations need to take samples in a
time slot.

Although the literature work on matrix completion pro-
vides some solutions to recovering data with a limited num-
ber of samples, existing schemes mostly assume that the
rank of the sensory matrix is low and has a constant value.
However, the weather data values (and accordingly the
matrix rank) may vary significantly over time and locations,
and the sparsity level (rank-level) is often not known a pri-
ori. It is thus very challenging to apply the matrix comple-
tion theory in a practical weather gathering system.

Before we present our data collection algorithm based on
Intelligent Matrix Completion in Section 5, we first analyze
a large set of data for weather monitoring to better under-
stand the structure and characteristics of weather data in
the next section.

4 EMPIRICAL STUDY WITH REAL WEATHER DATA

We have deployed 196 sensors to collect the weather data in
Zhu Zhou, China. Fig. 1 shows the map of Zhu Zhou, where
the red dot represents the location of a deployed sensor.
Each sensor reports its data once an hour to the weather
monitoring center via the cellular network. We have col-
lected a large amount of weather trace data from ZhuZhou.
Each data element includes weather data of rain, tempera-
ture, and wind. Specially, we choose rain data to analyze
because ZhuZhou is in the area prone to flood. The trace data
are collected in the duration of more than two years from
2011 to 2013. In our experiment, we set N ¼ 196, T ¼ 168.
The trace data reveal the existence of some special structures.

4.1 Low-Rank Feature

The low-rank feature is the prerequisite for using the matrix
completion. In this section, we validate that the weather
matrix data have the low rank feature.

Weather data collected over different locations and time
slots are not independent. There exists inherent data redun-
dancy. We first apply the singular value decomposition
(SVD) to examine whether the matrix has a good low-rank
structure. A weather matrixXN�T can be decomposed as

X ¼ USV T ; (8)

where U ¼ u1; . . . ; uN½ � is an N �N unitary matrix,
V ¼ v1; . . . ; vT½ � is a T � T unitary matrix, and S is an N � T
diagonal matrix with the diagonal elements (i.e., the singu-
lar values) organized in the decreasing order (i.e.,
S ¼ diag s1; s2; . . . ; sr; 0; . . . ; 0ð Þ). The rank of a matrix X,

denoted by r, is equal to the number of its non-zero singular
values. In this paper, we call this rank definition as “precise
rank”. A matrix is low-rank if its r � minfN; Tg.

Although the definition of the precise rank is of high the-
oretical interest, it is not realistic to use this definition for
the practical data. The calculation of the precise rank of the
matrix is an ill-posed problem in a practical environment
because arbitrary small perturbations of matrix elements
may change the rank [66]. Instead of performing the matrix
completion based on the precise rank, this paper adopts the
approximate rank [66]. We say thatX has v-rank k if

inf X � Yk k : Y has rank kf g 	 v: (9)

A theorem proof provided by Eckart and Young [67] shows
that the error in approximating a matrix X by Xk can be
written as: X �Xkk k2F	 X � Yk k2F where Y is any matrix
with rank k, Xk is the rank-k truncated SVD of matrix X,
that is Xk ¼

Pk
i¼1 siuiv

T
i . The ratio g kð Þ ¼Pk

i¼1 s
2
i =
Pr

i¼1 s
2
i

indicates what fraction of the total variance (Frobenius
norm) in X is explained by the rank k approximation of X,
i.e., Xk. According to Principal components analysis (PCA),
if a matrix has low-rank, its top k singular values occupy
the total variance, that is,

Pk
i¼1 s

2
i 


Pr
i¼1 s

2
i .

Fig. 2 plots the fraction of the total variance captured by
the top k singular values for different weather trace data
from different seasons. We find that the top 20 singular val-
ues capture 70-90 percent variance in the real traces. These
results indicate that the data matrix X has a good low-rank
approximation in all the scenarios under investigation.

4.2 Temporal Stability

Weather data usually change slowly over time. To study the
short-term stability of weather matrix, we calculate the gap
between each pair of adjacent readings at a location. Specifi-
cally, the gap between each pair of adjacent readings cap-
tured in two consecutive time slots (j, and j� 1) is equal to

gapði; jÞ ¼ xij � xi;j�1

�� ��; (10)

where 14 i 4N and 24 j 4 T . Obviously, gapði; jÞ ¼ 0 if
the weather data at location i is not changed from time slot
j� 1 to j. The smaller the gapði; jÞ, the more stable the sen-
sory readings for location i around the time slot j.

By computing the normalized difference values between
adjacent time slots, we measure the temporal stability at
node i and time slot j according to

Fig. 1. Weather sensor deployment in Zhu Zhou, China.
Fig. 2. Fraction captured by top k singular values.
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Dgapði; jÞ ¼ xij � xi;j�1

�� ��
max14i4N;24j4T xij � xi;j�1

�� �� ; (11)

where max14i4N;24j4T xij � xi;j�1

�� �� is the maximal gap
between any two consecutive time slots in theweathermatrix.

We plot the CDF of Dgapði; jÞ in Fig. 3. The X-axis repre-
sents the normalized difference values between two consecu-
tive time slots, i.e., Dgapði; jÞ. The Y -axis represents the
cumulative probability.We observe that more than 90 percent
Dgapði; jÞ are very small ð< 0:05Þ. These results indicate that
temporal stability exists in real environments. In Section 5.4.2,
we design our cross samplemodel by utilizing this feature.

4.3 Rank-Stability

We plot the rank of the consecutive weather matrix in Fig. 4
by varying the starting time slot from 0 to 100 to further
investigate the rank feature. In this paper, we calculate the
matrix rank according to (9) by setting v ¼ 0:01. Each
weather matrix only includes the sensing data of T time
slots. The X-axis represents the first time slot of a weather
matrix. The Y -axis represents the matrix’s rank of the corre-
sponding T-time-slot measurement window.

Obviously, the weather matrix does not have a constant
rank and the rank of matrix varies with time slots and sea-
sons, which contradicts to the assumption in existing work
that the matrix has the constant rank. On the other hand,
even though the rank of weather matrix may change, the
rank between adjacent matrices changes only slightly, thus
there exists relative rank stability. In Section 5.2, we will
exploit the relative rank stability in our learning algorithm
for more efficient on-line weather gathering.

5 ON-LINE WEATHER GATHERING BASED ON

MATRIX COMPLETION

In this section, by taking advantage of the weather matrix’s
low-rank, temporal stability, and relative rank stability fea-
tures, we design an innovative on-line weather gathering
scheme (MC-Weather) based on matrix completion to effi-
ciently schedule the data collection at different sensors for
lower sensory cost while ensuring accurate XN�T recon-
struction. Compared to sampling at each location and time
slot, this leads to a variety of benefits, including low power
consumption, long lifespan of sensors, and reduced data
transmissions in the network.

5.1 Rank of Adjacent Matrices

To support continuous weather gathering and reduce the
computation cost for reconstructing the weather matrix, our

MC-Weather is implemented based on the sliding window
model, where the oldest time slot in the window is removed
when a new time-slot is added to the window. We apply
matrix completion technique to reconstruct the weather
matrix from the sensory matrix obtained in a window, and
we call the window containing the current time slot the
active measurement window.

Fig. 5 shows an example sliding window with the size
T ¼ 6, and the current time slot is 9. There are two adjacent
measurement windows, with the first one from time slots 3
to 8 and the second one from 4 to 9. The second one is the
activemeasurementwindow. There are 10 sensors in the sys-
tem, and the two adjacentweathermatrices corresponding to
these twowindows are denoted byX10�6 3ð Þ andX10�6 4ð Þ.

From the matrix completion theory, the rank of the
matrix has a direct impact on the number of samples
required to accurately reconstruct the weather matrix from
partial sensory data. In a dynamic environment, however, it

Fig. 3. Temporal stability feature. Fig. 4. Rank feature of weather data.

Fig. 5. Slide window based weather gathering.
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is difficult to determine the number of samples needed in a
new active window because the rank of its corresponding
matrix is unknown.

As shown in Fig. 5b, obviously, most columns of the two
adjacent matrices are the same except one column. There-
fore, there exists a strong relationship between these two
matrices. Before we discuss their relationship in Theorem 2,
the following Theorem presents the rank relationship of
two matrices with the same number of rows. Let ðA;BÞ be a
matrix formed with A and B concatenated.

Theorem 1. Given two matrices A 2 Rm�n and B 2 Rm�k, the
rank of matrix A, B and ðA;BÞ satisfies
maxfrankðAÞ; rankðBÞg4rankðA;BÞ4rankðAÞ þ rankðBÞ:

(12)

Specially, if B is a non-vanishing vector and B 2 Rm, we
have

rankðAÞ4rankðA;BÞ4rankðAÞ þ 1: (13)

Proof. The rank of a matrix is the number of dimensions of
the space spanned by it. Thus, by concatenating twomatri-
ces (A;B), one extreme case is that the resulting space will
be unchanged (e.g., each column of A is a linear combina-
tion of columns of B) and the other is that their rows/col-
umns are linearly independent and thus the number of
dimensionswill be added. Therefore, we have (12).

If B is a non-vanishing vector in Rm, obviously
rankðBÞ ¼ 1 and we can obtain

rankðAÞ4rankðA;BÞ4rankðAÞ þ 1; (14)

which completes the proof. tu
Theorem 2. Given two weather matrices of adjacent windows

XN�T tð Þ; XN�T tþ 1ð Þ and rank XN�T tð Þð Þ ¼ r, the rank of
the matrixXN�T tþ 1ð Þ satisfies

r� 14rankðXN�T tþ 1ð ÞÞ4rþ 1: (15)

Proof. Because XN�T tð Þ; XN�T tþ 1ð Þ are the weather matri-
ces of adjacent windows, we can obtain that XN�T ðtÞ ¼
ð~BðtÞ; XN�ðT�1Þðtþ 1ÞÞ and XN�T tþ 1ð Þ ¼ ðXN� T�1ð Þ tþ 1ð Þ;
~B tþ T � 1ð ÞÞ where ~BðtÞ 2 RN and ~B tþ T � 1ð Þ 2 RN

are non-vanishing vectors.
Calculating the rank of XN�T tð Þ by applying Theorem

1, we can obtain

rank XN� T�1ð Þ tþ 1ð Þ� �
4rank XN�T tð Þð Þ
4rank XN� T�1ð Þ tþ 1ð Þ� �þ 1:

(16)

From (16), we can further obtain

r� 14rank XN� T�1ð Þ tþ 1ð Þ� �
4r: (17)

Calculating the rank of XN�T tþ 1ð Þ by applying Theo-
rem 1, we can obtain

rank XN� T�1ð Þ tþ 1ð Þ� �
4rank XN�T tþ 1ð Þð Þ
4rank XN� T�1ð Þ tþ 1ð Þ� �þ 1:

(18)

Combining (17) and (18), we can obtain

r� 14rankðXN�T tþ 1ð ÞÞ4rþ 1; (19)

which completes the proof. tu

Theorem 2 verifies the relative rank stability feature
which we have observed from real weather data traces in
Section 4. Based on this feature, we will design our learn-
ing-based scheduling scheme for sensor data collection in
the following section.

5.2 Sample Learning Principle

As proven in Theorem 2, the rank difference of adjacent
weather matrices is no more than 1. Based on this feature,
the number of samples to take in a new time slot t can be
learnt from the last window. Accordingly, we propose three
learning principles to identify the initial sampling number
to use in the new time slot:

� LearningFirst. The number of samples to take in a
new time slot t is learnt and set to the same as that in
the time slot t� T . In Fig. 6, the initial number of
samples to take in slot 9 is set to 2, the same as that
in slot 3.

� LearningEnd. The number of samples to take in a new
time slot t is learnt and set to the same as that in the
time slot t� 1. In Fig. 6, the initial sampling number
in slot 9 is learnt from slot 8 and set to 4.

� LearningMean. The number of samples to take in a
new time slot t is learnt and set to be the average
sampling number of those from time-slots in the last
window. In Fig. 6, the initial sampling number in
slot 9 is set to 3.

Obviously, if two adjacent windows have the same rank,
LearningFirst is the most effective principle. As shown in
Fig. 6, there are three parts in the two continuous measure-
ment windows, part1 (slot 3), part 2 (slots 4, 5, 6, 7, 8) and part
3 (slot 9). When the time slot 9 starts, the samples in part 1 and
part 2 remain the same. If the number of samples in the previ-
ous measurement window ranging from slots 3 to 8 are suffi-
cient to reconstruct the weather data with high reconstruction
accuracy, it is also sufficient to set the number of samples in
slot 9 to 2, the same as that in slot 3. If two adjacent windows

Fig. 6. Different sample learning principle.
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have different ranks and the ranks vary with time, the last
time slot can better approximate the rank from the previous
window, therefore, LearningEndmay bemore effective.

In a practical data gathering process, the sink node can
apply a learning principle according to the environmental
conditions. In the simulation part, we will compare the per-
formance of different learning principles.

5.3 Adaptive Sampling

This paper focuses on continuous and on-line data gather-
ing in WSNs. As it is impossible to know the whole matrix
data a priori and only the sample data are observed, one
challenging problem is how we can determine whether the
matrix has been accurately reconstructed in the sequential
sampling process.

In this section, we first present the opportunity to identify
whether thewholematrix is recovered given only the sample
data, then propose our adaptive sampling algorithm.

5.3.1 Reconstruction Error Control

Given a matrix A and the sample index set V, we let ~A to
denote the recovered matrix through the matrix completion
using the samples in V. The reconstruction error on samples

is defined as
PVð ~A�AÞk kF
PVðAÞk kF . The reconstruction error on the

whole matrix is defined as
~A�Ak kF
Ak kF .

Following we will show that given a matrix A with only
entries in the index set V known, the reconstruction error of
the whole matrix can be controlled though the control of the
reconstruction error on samples.

From [65], for a fixed matrix A 2 Rn1�n2 under the inco-
herence assumption in [25], we have the following relation-
ship with a very large probability

1��ð Þ m

n1 � n2
Ak k2F	 PV Að Þk k2F	 1þ�ð Þ m

n1 � n2
Ak k2F ; (20)

provided that the rank of A is not too large, where � is a con-
stant that is smaller than 1/2 [65]. Based on Eq. (20), we have

PVðAÞk k2F¼ c1
m

n1 � n2
Ak k2F ; (21)

where c1 is a small constant in the range of 1
2 to

3
2. Applying

(20) to the matrix ~A�A, we have

PVð ~A�AÞ�� ��2
F
¼ c2

m

n1 � n2

~A�A
�� ��2

F
; (22)

where c2 is a small constant in the range of 1
2 to

3
2. Combining

(21) and (22), we have

PVð ~A�AÞ�� ��2
F

PVðAÞk k2F
¼ c3

~A�A
�� ��2

F

Ak k2F
; (23)

where c3 ¼ c2
c1
is a constant with the value in the range of 1

3 to

3. As the value of
PVð ~A�AÞk k2F
PVðAÞk k2F

is proportional to the value of
~A�Ak k2F
Ak k2F

, we could control the reconstruction error of the

whole matrix by controlling the relative error at the set of

sampled locations.

5.3.2 The Proposed Algorithm

Wepropose our adaptive sampling algorithm in Algorithm 1.
In step 1, the sampling number in a new time slot t,C, is deter-
mined following the learning principle of choice. With C new
samples taken in the slot t, the sink runs the matrix recon-
struction algorithm to obtain data in the active window
X̂N�T t� T þ 1ð Þ and calculate the reconstruction error "
according to Eq. (24), which is the reconstruction error on
sampleswithBij tð Þ ¼ 1.

Algorithm 1. The Matrix Completion Based Adaptive
Sampling Algorithm

1: Based on a learning principle selected, identify the initial
sampling number to use in the new time slot t, denoted as
C. According to the cross sampling principle in Section
5.4.2, select sampling locations and initialize ~BðtÞ with
j~BðtÞj ¼ C. The sink announces the sampling schedule
according to ~BðtÞ.

2: Once receiving C measurements, the sink runs the matrix
reconstruction algorithm to obtain data in the active win-
dow X̂N�T t� T þ 1ð Þ and calculate the reconstruction error
" as

" ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiP

i;j;Bij tð Þ¼1 Mij tð Þ � X̂ij tð Þ� �2q
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiP

i;j;Bij tð Þ¼1 Mij tð Þ2
q (24)

3: while "� "bj j > b do
4: if "� "b > 0 then
5: Add aCð"� "bÞ extra measurements according to

cross-based sampling principle in Section 5.4.2,
and update ~B tð Þ and C ¼ C þ aCð"� "bÞ.

6: else
7: Obtain the effective number of samples in the time

slot t by updating C ¼ C � aCð"b � "Þ and ~B tð Þ.
8: end if
9: Based on the updated ~B tð Þ, calculate the reconstruction

error " according to Eq. (24).
10: end while
11: The sink stores ~B tð Þ to indicate the effective sampling in

time slot t.

If the recovery error is large, our algorithm goes to the
step 5 to determine the number of supplemental measure-
ments to take. Without knowing the actual number of sam-
ples needed, the sink could schedule sensors to take
additional samples in multiple rounds until the recovery
accuracy is reached. A straight-forward approach is to take
additional samples at a given rate in each round at the cost
of extra computational and communication cost. To reduce
the overhead, we propose to adapt the sampling number
according to the recovery error " and the tolerable error "b.
We add aCð"� "bÞ extra measurements according to cross-
based sampling principle to be presented in Section 5.4.2,
and update C ¼ C þ aCð"� "bÞ until the error gap "� "b is
smaller than b.

If the error is too low with "b � " > b, the reconstruction
can reach the accuracy requirement, and we consider X̂ as a
successful recovery. However, we don’t expect to take too
many samples unnecessarily in the future. To get a proper
sample number that can guide sampling in future slots, our
algorithm goes to step 7 to obtain the effective number of
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samples in the current time slot by updatingC ¼ C� aCð"b �
"Þ until the error gap ð"b � "Þ is smaller than b.

When the updating process above stops, the resulting C
is the number of effective samples needed in the time slot t.
According to the learning principles proposed in Section
5.2, the number of effective samples in current time slot will
guide the future weather monitoring.

5.4 Sampling Initiation and Scheduling

Our adaptive sampling algorithm provides a guide on the
number of samples to take in a new time slot based on the
information from the previous measurement window and the
recovery error. However, at the beginning of the data gather-
ing procedure, there are not enough historical measurements
to guide the sampling process. We introduce a training phase
in Section 5.4.1 to initialize the sampling process based on data
collected from the first T-time slots, and a scheme to determine
the sampling locations in each time slot in Section 5.4.2.

5.4.1 Uniform Time-Slot Sampling

In the training phase, each sensor senses and reports data to
the sink. The key problem to solve in this phase is to identify
the effective sampling set among all measurement data to
initialize the sampling schedule for future time slots.

As all locations are sensed in the training phase, the sink
knows the exact weather data XN�T 1ð Þ and the rank of
r ¼ rank XN�T 1ð Þð Þ. Therefore, the sink can infer the effec-
tive sampling numberm according to Eq. (4).

Obviously, the sample distribution has direct impact on
the reconstruction accuracy. To reconstruct the matrix, the
samples should be taken randomly to avoid matrix comple-
tion failure when a row or a column is un-sampled.

In [68], the authors analyze two models to obtain the sam-
ple set, the Bernoulli model and the uniform model. Under
the Bernoulli model, each entry in the matrix is sampled with
a probability p ¼ m= n1 � n2ð Þ (where n1 and n2 are the num-
ber of rows and columns of the matrix, respectively). Under
the uniform model, V is taken uniformly at random from the
matrix with the cardinality of V being m. The two models
were shown to have the equivalent performance.

In our adaptive sampling algorithm, the samples taken in
a time slot t can guide the sample-taking process in future
time slots. If applying the uniform model or the Bernoulli
model, we cannot guarantee that every time slot has sam-
ples. When there is no sample in a column, we cannot know
the number of samples to take in later time slots. Neither of
the existing sample models is suitable to apply in our MC-
weather gathering scheme. We propose our uniform time
slot sampling model as follows.

The desired sampling model in MC-weather gathering
scheme should be simple to implement, and have an equal
number of samples in each time slot in the training window
so that every time slot has sampling data and can reflect the
rank of the training window. Accordingly, we propose a
uniform time-slot sampling model so that the number of
samples taken in each time slot within the training window
is equal and set to m

T

� 	
.

With the number of samples to take in each column
determined, we still need to identify the locations to take
samples in each time slot. In the following section, we pro-
pose our cross sampling principle to achieve this goal.

5.4.2 Cross Sampling Principle

Due to the temporal stability of sampling data, the desired
sampling principle in MC-Weather scheme should avoid
sampling the same location in adjacent time slots. To
achieve the objective, we divide the locations into two parts,
and different time slots have different priority to sample
one of the parts. We call this cross sampling principle.

Fig. 7 shows an example of our Uniform Time-slot and
cross-based sampling model. The training measurement
window is X10�10 1ð Þ and the required sampling number is
m ¼ 30. According to the model, each time slot should have
30/10 = 3 effective samples. Moreover, to implement uni-
form sampling while not sampling the same location in
adjacent time slots to increase the data diversity, the loca-
tions are divided into two parts, white part and jacinth part.
In the time slot 1, effective samples have high priority to
take in jacinth part, while in the time slot 2, effective sam-
ples have higher priority to take in the white part.

5.4.3 Sample Model Analysis

The key difference between our Uniform Time-Slot and Cross
based Sampling model and the other two models (Bernoulli
model and the uniform model) is that under the UTSCS
model, every column is guaranteed to be sampled at least
once and the same location is avoided to take samples in adja-
cent time slots.AlthoughUTSCS adopted in this paper divides
the locations into two parts and schedules the sampling based
on the partitions, ourUTSCS can be easily extended to support
more partitions formore uniform sampling.

Fig. 8 shows an example of UTSCS in which locations are
divided into four parts (Jacinth region, Purple region, Blue
region,White region). Totally 24 samples are distributed into
12 time slots, thus each time slot has two samples. Similar to
Fig. 7, in the time slot 1, samples have a high priority to take
in the white part; in time slot 2, samples are taken in the
jacinth part; in the time slot 3, samples are taken in the purple
part; in the time slot 4, samples are taken in the blue part.

It is clear that if we fail to observe at least one entry in a
row (or a column) of the matrix, we have no way of recover-
ing the matrix. In the Theorem 3 below, we will show that
the probability of missing an entire row under our UTSCS
model decreases with the increase of k.

Theorem 3. Let F be the event that an entire row is missed to
sample. The probability of event F (denoted by PUTSCS kð Þ)

Fig. 7. UTSCS sampling model.
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under UTSCS sampling model satisfies that

PUTSCS kð Þ > PUTSCS kþ 1ð Þ k 	 NT
mþT

PUTSCS kð Þ ¼ 0 k > NT
mþT;

(
(25)

where k is the number of partitions.

Proof. Our UTSCS adopts a uniform time-slot sampling
model. Under such a model, when there are m samples,
each time slot hasm=T samples. If we divide theN sensor
locations into k parts, in one time slot, there are N=k loca-
tions to schedule the sampling in each part.

Under the UTSCS sampling model, the probability of
event F is

PUTSCS kð Þ ¼
C

N=k�1
m=T

C
N=k
m=T

0
@

1
A

T=k

¼ NT � km

NT


 �T=k

; (26)

where
C
N=k�1

m=T

C
N=k

m=T

 !
is the probability that an entry is not

sampled. In (26), C
N=k�1
m=T is the combination of selecting

m=T locations among N=k� 1 locations to take sample.

C
N=k
m=T is the combination of selecting m=T locations

among N=k locations to take sample. The exponent in
(26) is T=k because when there are totally k parts, each

part should be sampled within T=k time slots.
Obviously, such a probability PUTSCS kð Þ holds when

N=k � m=T andN=k� 1 � m=T (that is k 	 NT
mþT) are sat-

isfied. Let log PUTSCS kð Þð Þ ¼ T
k log

NT�km
NT

� �
. We have

@log PUTSCS kð Þð Þ
@k

¼ � T

k2
log

NT � km

NT


 �
þ 1

ln 10
� NT � km

NT


 ��1

��m

NT
� T

k

¼ �T

k



1

k
� 1

ln 10
� � ln

NT

NT � km


 �
 �
þ 1

ln 10

� NT

NT � km


 �
� m

NT

�

¼ �T

k
� 1

ln 10

1

k
� � ln

NT

NT � km


 �
 �
þ m

NT � km


 �

¼ �T

k
� 1

ln 10
� 1

k
� ln

NT

NT � km


 �
þ km

NT � km


 �

¼ T

k
� 1

ln 10
� 1

k
ln

NT

NT � km


 �
þ 1� NT

NT � km


 �
:

(27)

Let u ¼ NT
NT�km, we obtain @ log PUTSCS kð Þð Þ

@k ¼ T
k � 1

ln 10�
1
k ln u þ 1� uð Þ. We can see that f uð Þ ¼ ln u þ 1� uð Þ is a

continuous function of u when u > 0. Further, f uð Þ is an
decreasing function with u when u > 1.

Obviously, we have NT > NT � km, and thus u > 1.
Therefore, f uð Þ < f 1ð Þ ¼ ln 1þ 1� 1ð Þ ¼ 0, based on

which we have that @ log PUTSCS kð Þð Þ
@k < 0 and PUTSCS kð Þ is a

decreasing function with kwhen k 	 NT
mþT .

When N=k� 1 < m=T thus k > NT
mþT , under the

UTSCS sampling model, no row will miss sample, that is,
we have PUTSCS kð Þ ¼ 0. Therefore, we have (25) and the
proof completes. tu
Although Theorem 3 shows that more partitions bring a

smaller probability of missing an entire row, it also brings a
larger complexity in scheduling the sample taking. For prac-
tical and simple implementation, this paper adopts UTSCS
with k ¼ 2 in the performance study.

From [68], we know that sampling according to Bernoulli
model has been analyzed and shown to be able to recover
the matrix satisfactorily with high probability. Under the
Bernoulli model, as each sample is taken independently, the

probability of event F is PBernoulli ¼ 1� m
NT

� �T ¼ NT�m
NT

� �T
,

where m
NT is the probability that each entry in the matrix is

sampled. Obviously, PBernoulli ¼ PUTSCS 1ð Þ ¼ NT�m
NT

� �T
when

k ¼ 1, that is, Bernoulli model is a special case under
UTSCS.

As Bernoulli model is a special case under UTSCS when
k ¼ 1, according to (25), the sampling using our UTSCS
(with k � 2) has the probability of missing an entire row
smaller than that of using the Bernoulli model. In the simu-
lation part, we will show that our UTSCS with k ¼ 2 can
achieve better performance for matrix completion compared
with the sampling based on Bernoulli model.

5.5 Complete MC-Weather Gathering Scheme

As shown in Fig. 9, the whole MC-weather gathering
scheme can be summarized as follows.

(1) In the training phase at the beginning of the first T
time slots, every node senses and sends weather
data to the sink (Fig. 9a).

(2) The Uniform Time-slot and cross Sampling model is
applied to identify the effective sample sets within
the training window (Fig. 9b).

(3) In each new time slot t after ðT � 1Þth time slot, the
sink node first identifies the initial sample number fol-
lowing the proposed sample learning principle, and
then identifies an initial sample set in this new time
slot according to the cross sampling principle (Fig. 9c).

(4) The sink can adapt the sampling set following the
adaptive algorithm in Section 5.3 to accurately recon-
struct the weather matrix in the presence of the
change of environmental conditions and accordingly
the rank of the weather data matrix (Figs. 9d and 9e).

6 PERFORMANCE EVALUATIONS

To evaluate the performance of our MC-Weather algorithm,
we first perform simulations using weather traces, then we
check two existing environment trace data (e.g., PM2.5 and

Fig. 8. UTSCS sampling model with k=4.

XIE ETAL.: LOW COSTAND HIGH ACCURACY DATAGATHERING IN WSNS WITH MATRIX COMPLETION 1603



PM10) to validate the features and also evaluate the perfor-
mance of our MC-Weather algorithm.

6.1 Evaluations on Weather Traces

We first perform extensive simulations based on data traces
collected by our deployed 196 weather sensors. Specifically,
we chose the rain traces gathered from July 1 to August
31st, 2012.

6.1.1 Impact of a and b

According to Algorithm 1, the number of samples to add or
reduce in each new time slot is adaptively set to aCð"b � "Þ
until the reconstruction error " satisfies "� "bj j 	 b, where "b
and b are the tolerable error and the allowable error devia-
tion, respectively. Usually, we can set the tolerable error "b
and the allowable error deviation b according to the require-
ment of applications. In this paper, to control the reconstruc-
tion error of matrix completion in weather data gathering,
the tolerable error is set to "b ¼ 0:4%. To investigate the
impact of a and b on the convergency of our MC-Weather
scheme, we vary these two parameters and runAlgorithm 1.

Fig. 10 shows the convergency behavior under different a
and b. It is clear that under all a and b, our MC-Weather
scheme is able to converge within two iterations to get accu-
rate reconstruction error within "b � b 	 " 	 "b þ b. As
expected, it converges faster for larger b, as b directly impacts
the stopping condition in the MC-Weather scheme. Accord-
ing to Fig. 10, we set b ¼ 0:05% and a ¼ 500 in this paper.

6.1.2 Impact of Sampling Learning Principles

To evaluate the performance with different sample learning
principles proposed in Section 5.3, we calculate the gap
between the learned initial sample number (denoted by

Clearning½i� for time slot i) and final effective sampling num-
ber (denoted by Ceffective½i� for time slot i) obtained from the
adaptive algorithm. Specifically, the gap ratio between these
two sample numbers is equal to

Gapratio i½ � ¼
CLearning i½ � � CEffective i½ �
�� ��

CEffective i½ � : (28)

Obviously, the smaller the resulting Gapratio½i�, the better the
learning principle is.

We plot the CDF of Gapratio i½ � in Fig. 11. The X-axis
presents the gap ratio. The Y -axis presents the cumulative
probability. For the LearningEnd principle, more than 90
percent probability the values of Gapratio i½ � are very small
ð< 0:01Þ. This indicates that the LearningEnd principle is
more suitable to apply in data gathering when the environ-
ment is dynamic and the rank of the data matrix varies.
Accordingly, we adopt the LearningEnd principle in our
practical weather gathering system.

6.1.3 Performance Comparison

To evaluate the performance of our scheme, we implement
four weather gathering schemes. The first scheme is our
MC-Weather scheme in which the effective number of sam-
ples in the training windows are obtained according to our
UTSCS Sampling model proposed in Section 5.4 and the
effective samples in each new time slot is set according to
Algorithm 1. According to the result of Theorem 3, we take
data from one week for training purpose with the training
windows set to 196� 168ð168 ¼ 24� 7Þ. The second scheme
is a uniform random sample scheme. Given a fix sampling
ratio, the sensors in each location take samples according to
the uniform sampling model with three different sampling
ratios, 0.6, 0.7 and 0.8, denoted as Uniform 0.6, Uniform 0.7,
and Uniform 0.8, respectively. In the third scheme, the uni-
form-time slot sampling model proposed in Section 5.4.1 is
applied in the training windows, while for each new time
slot, the uniform sampling with a given sampling ratio (0.6)
is applied, denoted as TimeUniform-0.6. Different from the
third scheme, in the fourth scheme, our cross sampling prin-
ciple proposed in Section 5.4.2 is applied to identify the sam-
ple set in a new time slot, denoted as TimeUniformCross-0.6.

� Estimation error
In Fig. 12, we compare the reconstruction errors of the

four weather data gathering schemes. The reconstruction
errors of three peer schemes fluctuate over the time period
simulated, while the errors of our MC-Weather remain low
and stable. This is because that the rank of the weather data

Fig. 9. MC-Weather gathering scheme.

Fig. 10. Impact of a and b.
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varies with time, and sampling with a fixed ratio is not suit-
able for dynamic weather data gathering.

As shown in Fig. 12a, the error rate under Uniform-0.8
around time slot 1,300 raises up to 1 percent, which is much
larger than the tolerable error ("b ¼ 0:4%). These simulation
results indicate that even for Uniform-0.8 (sampling with the
largest ratio), the reconstruction error can not be controlled
at a low level if the samples are simply taken randomly as
done in the literature work. In contrast, the error rate of MC-
Weather can be well controlled to be around the tolerable
error during the testing period, which demonstrates that
MC-weather can successfully adapt the sampling rate in
response to the change of data in a dynamic environment.

Compared to Uniform-0.6 scheme, TimeUniform-0.6 has
lower error even though both schemes have the same sam-
pling ratio. This implies that the sampling model taken by
TimeUniform-0.6 is better to apply with the matrix comple-
tion to recover data. Moreover, compared to TimeUniform-
0.6, the TimeUniformCross-0.6 has lower error rate by fol-
lowing our cross sampling principle to avoid taking sam-
ples from the same location in adjacent time slots. These
results demonstrate that our uniform time slot and cross
sampling model help to achieve much better data gathering
performance.

� Sample number

Figs. 14 and 15 compare the number of samples and the
accumulative number of samples taken under different
schemes. To better understand the effectiveness of the adap-
tive sampling strategy, we also draw Fig. 13 to show the rank
variation of the matrices over time. Although Fig. 4 shows
that rank between adjacent matrices changes only slightly, in
Fig. 13, we find in a longer period time, the rank of matrices
varies over a large range, and thus the static sampling strat-
egy with fix sampling ratio can not work well. As expected,

when the rank becomes large in Fig. 13, the number of sam-
ples needed become large accordantly in Fig. 14.

In consistence with the results shown in Fig. 12, the curves
in all the schemes in Fig. 14 are parallel to the X-axis except
our MC-scheme. This is because the other schemes utilize a
fixed sampling ratio, while MC-weather can adjust the sam-
pling ratio according to the rank variation to accurately
recover datamatrix while reducing the sampling overhead.

Fig. 15 also demonstrates that our uniform Time slot and
cross sample model is good for matrix completion. As
shown in Fig. 15, the accumulative sample number of MC-
Weather is not larger than the other three schemes (Uni-
form-0.6, TimeUniform-0.6, TimeUniformCross-0.6) while
the error rate of MC-Weather is much smaller (Fig. 12).

6.2 Evaluations on Other Environment Traces

The information about the urban air quality, e.g., the con-
centrations of PM2.5 and PM 10 is of great importance to
protect the human health and control the air pollution.
Besides the weather traces, we use two publicly available
PM2.5 and PM10 [69] to further validate the features found
in the weather data and also evaluate the performance of

Fig. 11. Sample gap under different sample learning principle.

Fig. 12. Reconstruction error.

Fig. 13. Rank.

Fig. 14. Adaptive sample number.

Fig. 15. Total sample number.
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our proposed MC-Weather in gathering the PM2.5 and
PM10 data. Specifically, we chose the traces gathered from
May 1 to June 15, 2013.

6.2.1 Feature Validation

In Section 4, we reveal that weather data has the features of
low-rank, temporal stability, and relative rank stability. Fol-
lowing the similar simulation setup in Section 4, we perform
the simulations on the traces PM2.5 and PM10. As almost all
physical conditions monitored are continuous without sud-
den changes, sensory data generally exhibit strong spatio-
temporal correlation [70]. Thus the sensory data matrix
(PM2.5 and PM 10) has the feature of Temporal stability (in
Fig. 16c) and low-rank (in Fig. 16b). We also draw the rank
of the consecutive data matrix in Fig. 16a by varying the
starting time slot from 0 to 300 to further investigate the
rank feature. As expected, we observe that the rank between
adjacent matrices changes only slightly, and thus the PM 2.5
and PM10 trace also have the feature of rank-stability.

6.2.2 Performance Comparison

PM 2.5 and PM 10 data traces have the features of low-rank,
temporal stability, and relative rank stability. As these fea-
tures are the basis for our design of the MC-weather
scheme, we expect that our scheme can also work well to
collect the air quality data with low cost. As demonstrated
in Figs. 17 and 18, our MC-Weather can adaptively change
the sampling ratio according to the variation of matrix
ranks. Compared with other sampling strategy with a fix
sampling ratio, our MC-Weather can control the

reconstruction error ratio at low level with the total number
of samples lower than the peer sampling strategies.

7 CONCLUSION

In this paper, we focus on continuous and on-line data gath-
ering in WSNs. Through analyzing datasets of real weather
data in ZhuZhou, China, we observe that weather data have
the features of low-rank, temporal stability, and relative rank
stability. Taking advantage of these structures, we propose
an on-line MC-Weather scheme based on matrix completion
theory.We prove that the observed relative rank stability is a
common feature in continuous data gathering systems.
Based on this important feature and our observations, we
propose three sample learning principles, which are applied
to guide our adaptive sampling algorithm to quickly deter-
mine the effective sampling set. To take full advantage of our
sample learning principles, we also propose a Uniform
Time-slot and Cross Sample model. Compared with the Ber-
noulli model, we prove that our UTSCSmodel allows for bet-
ter data matrix reconstruction. Trace-driven simulations
based on real weather data traces and other sensory data
traces (PM 2.5 and PM 10) show that MC-Weather can
achieve a high accuracy in data recovery with low sensing
and communication costs in a dynamic environment.
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