
STMS: Improving MPTCP Throughput Under Heterogeneous Networks

Hang Shi
Tsinghua University

Yong Cui
Tsinghua University

Xin Wang
Stony Brook University

Yuming Hu
Tsinghua University

Minglong Dai
Tsinghua University

Fanzhao Wang
Huawei Technologies

Kai Zheng
Huawei Technologies

Abstract

Using multiple interfaces on mobile devices to get high
throughput is promising to improve the user experience.
However, Multipath TCP (MPTCP), the de-facto standard-
ized solution, suffers when different paths have heteroge-
neous quality. This problem is especially severe when the
difference is the path latency. Our experimental results
show that it causes the burst sending of packets from the
fast path, which requires the in-network buffer to be big to
achieve the full benefit of the bandwidth aggregation. In
addition, it also requires bigger host buffer to fully utilize
the fast path. To solve these problems, we propose and
implement a new scheduler, which pre-allocates packets
to send over the fast path for in-order arrival. Instead of
relying on the estimation of network path condition, our
scheduler dynamically adapts the MPTCP-level send win-
dow based on the packets acknowledged. Our evaluation
shows that our scheduler can improve the throughput by
30% when the in-network buffer is limited, 15% when
the host buffer is limited.

1 Introduction

There is a huge demand on network bandwidth with the
rapid growth of network users and applications, as well
as the emergence of bandwidth hungry applications such
as multimedia streaming, cloud computing and virtual
reality. To obtain high network throughput, a lot of recent
interests have been drawn to exploit multi-path transmis-
sions and aggregate the bandwidth through Multi-path
TCP (MPTCP) [12]. As an example application, many
wireless devices have two network interfaces, one to the
local-area WiFi network and another to the wide-area
cellular network. As wireless bandwidth is limited, a
data stream can go through both networks to increase the
transmission rate.

MPTCP is expected to be backward-compatible with
conventional TCP and work with existing network com-

ponents such as middle-boxes [26]. For the practical
deployment of MPTCP, it is designed to be transparent to
both applications and middle-boxes. From the perspective
of applications, a single standard TCP is seen, whereas
lower in the stack, MPTCP splits the data over multiple
sub-flows. From the perspective of middle-boxes, each
sub-flow is a normal TCP connection. MPTCP has al-
ready been implemented in Linux kernel [7] and used in
iOS [4] and Giga Path in Korean Telecom [27]. Agache et
al. [2] deploy MPTCP in the datacenter network to obtain
better network utilization. Han et al. [15] apply MPTCP
to improve the user experience on video streaming.

The core element of MPTCP design is the sched-
uler [28], which determines when and how to distribute
packets to each sub-flow. MPTCP’s default scheduler
(minRTT) [26] sends packets through the available path
with the smallest estimated Round-Trip Time (RTT). How-
ever, this scheduler does not take into account the path
heterogeneity while there often exist different types and
quality of paths in practical use and this is especially the
case for wireless applications [17, 29]. The measurement
of Alexa top-500 U.S. websites from Nikravesh et al. [24]
shows that the difference in RTT between WiFi and Cel-
lular paths is common and big. When RTTs in separate
paths differ, the default scheduler will cause an out-of-
order arrival of packets at the receiver side. Thus the
memory requirements of MPTCP are much higher than
those of conventional TCP. To alleviate this problem, op-
portunistic retransmission and penalization mechanism is
proposed [26] and improved [25] along with the progress
of the default scheduler.

Despite these efforts, we find that the complete gain
from bandwidth aggregation of MPTCP is still far from
being achieved. In our experiments conducted in the
controlled lab environment (§ 2), we observe that when
the host buffer is limited, the aggregation throughput is
far smaller than two single-path TCP combined under
the same network and buffer settings. Sometimes it can
only reach 40% the throughput of two single-path TCP



together, which is even worse than a single-path TCP
running over the best network interface.

Apart from the host buffer problem, we find that it
also requires a big in-network buffer on the fast path
to reach the full-bandwidth allowed by multiple paths.
The in-network buffer requirement for the fast path is
increased by 4X when using both paths compared with
those for single-path TCP. Examining the problem care-
fully, we find that the default scheduler breaks down the
ACK clocking [19] on the fast path, which gives rise to
the burst sending of packets during fast sub-flow’s trans-
mission. Thus more in-network buffers are necessitated to
hold the burst packets, otherwise the packets that cannot
be stored have to be dropped, resulting in the throughput
degradation on the fast path. This problem is more seri-
ous in the wireless networks where WiFi path is usually
the fast one and has less buffer than that of the Cellular
path [20]. Therefore when competing with single-path
TCP, MPTCP is more likely to experience loss and the
throughput will suffer. To the best of our knowledge, we
are the first to identify the burst transmission pattern on
the fast-path of MPTCP.

In this work, we propose a new scheduler to reduce both
host buffer and in-network buffer requirements in MPTCP,
called STMS (Slide Together Multipath Scheduler). To
solve the above two problems fundamentally, we need
to reduce the out-of-order arrival. Our scheduler pre-
allocates packets for the fast path and sends packets with
larger sequence number through slow path so that packets
can arrive at the receiver in order. This task appears to
be straightforward, but it faces several challenges. As
a matter of fact, there exists a ”visibility gap” between
the sender and the receiver. Therefore, it is hard for the
scheduler that runs at the sender to ensure that packets
arrive in order at the receiver. A sender can choose to
utilize the measurement of path condition to schedule the
packets, but the network condition is fluctuated in nature.
Consequently, it is hard to measure the delay and band-
width accurately especially in wireless networks. Even
under stable network conditions, we can only obtain RTT
but not one-way delay (OWD) in a practical distributed
network. To address these challenges, we design an adap-
tation scheme that exploits the intelligent transmission of
feedback signal Data ACK existing in MPTCP to dynami-
cally schedule packet transmissions.

We implemented STMS as a Linux kernel module (§ 4)
and evaluated it extensively in both emulated and real
Cellular/WiFi networks. The results show that, compared
with state-of-the-art schedulers [23, 25], STMS achieves
significantly higher performance under a wide range of
buffer/network conditions. We highlight some of results
as follows:

• Under stable network conditions, STMS can achieve

higher throughput under any buffer conditions.
When the host buffer is extremely limited, STMS
can fall back to using the single-path TCP, while
the default scheduler still uses slow path of MPTCP
and its fast path suffers from significant throughput
degradation. In this case, our scheduler can improve
the throughput as much as 400%. When the host
buffer is small, STMS can bring 15% improvement
over the default scheduler. When in-network buffer
is limited, STMS improves the throughput as much
as 30% due to the reduction of the burst.

• Under varying network conditions, STMS also per-
forms well, and brings 8% to 40% throughput im-
provement. Our adaptive scheduling scheme is reac-
tive to network condition changes.

• In real world test, STMS can reduce the file down-
loading time by 20% even when the host buffer is big
enough, proving that the limited in-network buffer
does exist in real network and our scheme effectively
alleviates the problem.

Overall, our results show that by strategically schedul-
ing packet transmissions to reduce the out-of-order ar-
rival, STMS can significantly improve the throughput of
MPTCP under heterogeneous networks. The rest of the
paper is organized as follows. Firstly, we analyze the
reason that lead to the throughput degradation when us-
ing the default scheduler in § 2. Then in § 3, we present
the design and analysis of STMS. Next we introduce our
implementation of STMS in § 4. We further present our
performance evaluations in a controlled-lab environment
in § 5, and the results from the real-world test in § 6. Fi-
nally, related work is discussed in § 7 and we conclude
the paper in § 8.

2 Background and Motivation

In this section, we first identify and analyze the problem
associated with the in-network buffer. Then we demon-
strate that host buffer problem still remains unsolved and
discuss why the existing solution is still inadequate. We
support our analyses with experiments conducted in the
controlled lab environment.

2.1 Controlled experiment setup
In our experiment setup in fig. 2, we use two PCs running
the version 0.92 kernel of MPTCP [7] as the client and
server respectively. The client has two interfaces, and the
server has one interface. Under this topology, MPTCP
will establish two sub-flows. We use the decoupled TCP
congestion control to obtain the best bandwidth aggre-
gation effect [9]. Ethernet is used to simulate WiFi and



(a) t = δ (b) t = RT Tf (c) t = RT Ts

Figure 1: Out-of-order arrival and burst transmissions on the fast path due to the use of default scheduler. Green (lighter)
packets are sent/received through the fast path, while blue (darker) ones are sent/received through the slow path.

Figure 2: Topology setup

LTE to avoid the interference of the wireless network.
Client and server are connected through a router running
OpenWrt. We use tc [30] in OpenWrt to regulate the
bandwidth and latency of the two paths. The bandwidths
of both paths are set to 30 Mbits and the loss rate is set
to 0.01%. The in-network buffer is set to 50ms for Wifi
path unless specified otherwise and 500ms for LTE path
based on [20]. Both receiving and sending buffers are set
to the Linux default size (6MB) unless specified other-
wise. Only the RTT of slow path varies. In each network
setup, we run iPerf 3 [18] 90s five times to measure the
throughput.

2.2 Big in-network buffer requirement
Guido et al. [3] points out that it becomes more and
more difficult to design the router with the buffer size
equal to the bandwidth-delay product as the link speed
increases. The router buffer is limited especially in the
bottleneck of path. However, we find that the aggregated
throughput is subject to the in-network buffer on the fast
path as shown in fig. 3. For conventional TCP, 8ms net-
work buffer (30KB) is enough to reach the full bandwidth.
However, for MPTCP under different RTT paths, the in-
network buffer requirement increases as much as 4X to
fully unleash the power of the bandwidth aggregation.
The bigger the difference of RTT between two paths, the
bigger the in-network buffer of the fast path is needed.

When there is a space in the congestion window, the
default MPTCP scheduler sends a set of packets with the
smallest sequence numbers on the path with the smallest
estimated RTT. This approach will produce the out-of-
order arrivals at the receiver, as is elaborated in the fol-
lowing example (fig. 1). At the time t = 0, we assume
the fast path is unavailable while the slow path has space,
then packets 1-10 will be sent on the slow path. Later on
at t = δ , the fast path becomes available, packets 11-30

Figure 3: MPTCP throughput degradation when in-
network buffer is limited

will be sent on the fast path. After the round-trip time of
the fast path RT Tf , packets 11-30 arrive at the receiver
but packets 1-10 do not, and the send/receive window is
blocked as shown in fig. 1b.

TCP has the delayed ACK mechanism [6] to avoid the
overhead of sending ACK packets. It works as follows.
Upon receiving a data packet, if it is in order, i.e., the right
edge of the receiving window advances, the receiver can
choose to delay the sending of ACK hoping to piggy-back
the ACK with other packets to send in the reverse direc-
tion. Nevertheless, RFC 1122 [6] suggests that each ACK
acknowledge at most two packets regardless of whether
the delayed ACK mechanism is used, i.e., upon receiving
two successive packets, an ACK must be sent. Thus, dur-
ing the congestion avoidance phase, upon receiving one
ACK, the sender’s send window can have the space for at
most two packets so that it can send at most two packets
at a time. This is also known as ACK clocking.

In MPTCP, the semantics of the TCP send window is
generalized. Instead of maintaining a separate window
for each sub-flow, a single buffer pool is shared by all
sub-flows at the MPTCP-level to avoid deadlock [26].
To remain compatible with TCP, MPTCP needs a sep-
arate ACK for MPTCP-level send window, called Data
ACK. The delayed ACK mechanism of conventional TCP
is adapted to Data ACK. When receiving data packets
in-order on the MPTCP-level, Data ACK will still be
generated every other packet. However, when receiving



11.8 11.9 12.0 12.1
Time (s)

0

10

20

30

40

50
Pa

ck
et

s/
10

m
s (

M
SS

)

fast send
slow receive

(a) RT Tf = 20ms,RT Tf = 20ms w/o PR

12.0 12.1 12.2 12.3 12.4 12.5
Time (s)

0
10
20
30
40
50
60
70
80
90

Pa
ck

et
s/

10
m

s (
M

SS
)

fast send
slow receive

(b) RT Tf = 20ms,RT Ts = 200ms w/o PR (c) RT Tf = 20ms,RT Ts = 200ms w/ PR

Figure 4: Burst sending pattern of fast path

(a) RT Tf = 20ms,RT Ts = 200ms (b) RT Tf = 20ms,RT Ts = 20ms

Figure 5: The Data ACK of fast path.

out-of-order packets on the MPTCP-level, it will not send
a duplicate Data ACK immediately since out-of-order
packets on the MPTCP-level is a normal behavior espe-
cially when paths are heterogeneous. The Data ACK
won’t be sent until the packets from the slow path reach
the receiver, i.e., the hole is filled. This Data ACK will
acknowledge many packets sent from the fast path at the
same time, thus fast path can send many packets at once,
leading to the burst sending. In a nutshell, the out-of-order
arrival of packets breaks down the ACK clocking effect
of fast sub-flow, causing the burst sending behavior. This
is shown in fig. 1c. At t = RT Ts, packets 1-10 arrive at the
receiver and packets 1-30 are acknowledged to the sender.
So both the send and receive window will progress with a
large step, and packets 31-50 are sent from the fast path
in a burst. Simply removing the delayed ACK mecha-
nism can not solve the problem, since the MPTCP-level
send window progress is still blocked by the late arriving
packets from the slow path.

We conduct a simple experiment to demonstrate the
burst transmission pattern of the fast sub-flow.

First we analyze the progress of Data ACK of the fast
path from the trace file. The result is shown in fig. 5. Only
when packets from the slow path arrive, the Data ACK
can make a progress with a large step (fig. 5a). When RTT
is the same, no sudden Data ACK progress happens. Then
we check the free space in the send window of the fast

(a) RT Tf = 20ms,RT Ts = 200ms (b) RT Tf = 20ms,RT Ts = 20ms

Figure 6: Send window free space jitter when RTT differs

path. We record the free space of send window when the
sub-flow receive ACK (fig. 6). When RTT is the same, the
ACK clocking is maintained like the conventional TCP
(fig. 6b). However, when RTT over two paths significantly
differs, the ACK clocking of the fast path is broken down.
Consequently, MPTCP-level send window is stalled until
the packets from the slow path arrive. As a result, the
free space of the send window of the fast sub-flow will
accumulate as we see in fig. 6a.

The sudden progress of MPTCP-level window and the
big send window space of fast path will lead to the burst
packet transmissions on the fast path as we see in fig. 4b.
Compared to the sending behavior of the fast path when
RTT is similar (fig. 4a), the fast sub-flow clearly demon-
strates an on-off transmission pattern that leads to the
burst of the fast sub-flow. When the network buffer is
not big enough, the loss will happen and the Congestion
window (CWND) is capped to a small value as we see in
fig. 7a. When there is a difference between RTT on the
two paths, the CWND of the fast path is capped around
40, compared to 60 when RTT values of two paths are
the same. Note that there is usually a large space in fast
path’s CWND when RTT is different, so the area below
the CWND line is actually bigger than the total through-
put.

We also verify the loss rate under different in-network
buffer configurations (table 1). Note that this loss is more



Table 1: Loss rate of fast path under different in-network buffer setting

in-network buffer/KB observed loss rate Fast path in MPTCP/Mbps Single TCP/Mbps Utilization
30 0.05% 12.1 28.4 42.76%
60 0.02% 20.8 28.4 73.50%
90 0.02% 25 28.4 88.34%

150 0.01% 26.5 28.4 93.64%

(a) RT Tf = 20ms,RT Ts = 200ms (b) RT Tf = 20ms,RT Ts = 20ms

Figure 7: CWND of fast sub-flow is capped when in-
network buffer is limited and RTTs are different.

detrimental to the throughput than the random packet loss
since each time CWND grows to certain value, the packet
burst will exceed the in-network buffer size and the loss
will happen. As a result, the throughput of the fast path
is significantly limited. As shown in table 1, to reach the
same throughput as that of single-path TCP, the buffer for
two-path MPTCP has to be increased by 4X from 30KB
to 150KB.

2.3 Big host buffer requirement
Another problem of MPTCP when RTTs are different is
the big host buffer requirement. Let us denote the band-
width of fast and slow sub-flow as B f and Bs respectively.
The one-way delay (OWD) values of both paths are de-
noted as OWD f and OWDs respectively. The RTTs of
both paths are denoted as RT Ts and RT Tf . Raciu et al.
[26] derives that the default scheduler buffer requirement
is:

Bu f (de f ault) = (B f +Bs)×RT Ts (1)

From eq. (1) we can see that the key to reducing the
buffer requirement is to reduce the effective RTT of the
connection i.e., to acknowledge packet as soon as possible
so that the buffer can get freed.

Raiciu et al. [26] proposed the penalize and oppor-
tunistic retransmission mechanism (PR) to deal with the
host buffer problem. When it detects the left edge of
the send window blocks the sending of packets, it will
retransmit the packet from the fast path. To avoid con-
stant retransmissions, it will penalize the slow sub-flow
by halving the CWND of slow sub-flow. This approach
does improve the throughput when the receiving buffer

20-20 20-100 20-200
RTT (ms)

0

10

20

30

40

50

60

70

Th
ro

ug
hp

ut
 (M

bp
s)

recv buf = 0.1M
recv buf = 0.5M
recv buf = 1M
recv buf = 4M

(a) Receive buffer

20-20 20-100 20-200
RTT (ms)

0

10

20

30

40

50

60

70

Th
ro

ug
hp

ut
 (M

bp
s)

send buf = 0.1M
send buf = 0.5M
send buf = 1M
send buf = 4M

(b) Send buffer

Figure 8: MPTCP throughput degradation when host
buffer is limited

is limited because the blocked packets will get retrans-
mitted and acknowledged through the fast path. Thus the
effective RTT of MPTCP connection can be reduced to
OWDs +OWD f ideally. As shown in fig. 4c, the packets
marked get retransmitted and the new Data ACK goes
back through the fast path so many packets can be sent.
Due to its opportunistic nature, the PR scheme can not al-
ways reduce the RTT to the optimal value. Moreover, the
retransmission wastes the bandwidth. fig. 4c also shows
that the retransmission does not change the fast path’s
burst transmission pattern, as the Data ACK coming back
through the fast path will still acknowledge many packets.
Hence the in-network buffer requirement issue remains
unsolved which is also shown in the in-network buffer re-
quirement measurement. Enabling retransmission doesn’t
improve the throughput at all.

Despite the PR approach, the throughput of MPTCP is
still unsatisfactory as shown in fig. 8. When evaluating
the receiving buffer, the sending buffer size is set to the
default value of Linux which is 6 MB (Big enough under
our network setting). As we can see in fig. 8a: the big-
ger the RTT difference of two paths, the more receiving
buffer is needed to get full bandwidth aggregation effect
of MPTCP. The same conclusion goes to the sending
buffer as is shown in fig. 8b.

Actually, the burst sending pattern can be fixed by
adding traditional pacing to the fast path. Linux has sup-
ported pacing in tc qdisc fq [13] since the version 2.4.
However the pacing rate argument needs to be manu-
ally tuned according to the bandwidth of the network
path. New congestion control algorithm Bottleneck Band-
width and Round-trip propagation time (BBR) [8] incor-



porates the pacing and can set the pacing rate equal to
the measured bottleneck bandwidth automatically. How-
ever the congestion control of MPTCP needs to be fair
with the conventional TCP. Many active research ef-
forts [5, 21, 31] have been put into developing the coupled
congestion control algorithms of MPTCP, but there is no
coupled BBR congestion control for MPTCP yet. To put
it another way, this approach is not congestion control
agnostic. Besides, the pacing can not solve the big host
buffer requirement issue. Pacing works only on sub-RTT
level and thus the packet sent from the slow path will still
arrive later than packets sent from the fast path. We verify
that by adding pacing manually and it turns out that the
throughput is not improved at all.

3 Design

The root cause of the throughput degradation is the stall
and sudden progress of MPTCP-level send window. To
solve both host buffer and in-network buffer problems, we
need to restore the ACK clocking for MPTCP. To achieve
this, packets need to arrive in order at the receiver.

In this section, we first present our algorithm design,
then derive the size required from the host-buffer for no-
blocked transmissions, and finally compare the transmis-
sion latency of different schemes.

3.1 STMS algorithm

We propose STMS to schedule the packets strategically
so that they arrive in order. This solution is congestion
control agnostic which allows for separate evolving of
congestion control algorithm and scheduler algorithm.

Scheduler algorithm The core idea of our scheduler is
to buffer packets for the fast sub-flow and assign packets
with larger sequence numbers to the slow sub-flow so that
they arrive in order. The running process of our algorithm
is shown on fig. 9 and algorithm 1. The scheduler runs
when at least one of paths is available to send packets. The
fast sub-flow always sends the packets with the smallest
set of sequence numbers in the buffer. As illustrated
in fig. 9a, the slow sub-flow sends packets with bigger
sequence numbers. Rather than taking packets whose
numbers are right after those transmitted on the fast path,
it leaves a sequence gap for the fast path to send the
corresponding packets in the future. By the time the
packets from the slow path arrive, all packets from the fast
path which have smaller sequence numbers should have
already arrived (fig. 9b). Since packets arrive in order,
the normal ACK clocking is ensured, so there are no
burst transmissions on the fast path and the send/receive
window will not be blocked.

Algorithm 1 Slide Together Scheduler

1: procedure ST SCHEDULE(unsentPackets) .
Scheduler runs when one of sub-flow is available

2: if Fast sub-flow has space in send window then
3: Fast sub− f low←unsentPackets[0]
4: elseSlow sub-flow has space in send window
5: Slow sub− f low←unsentPackets[Gap]
6: end if
7: end procedure

The key parameter of the scheduler algorithm is Gap,
which is the number of packets pre-allocated for fast path
to send. The efficiency of the scheduler algorithm depends
on the accuracy of the gap value. Any deviation from the
true value will cause out-of-order arrival of packets.

The naive way to get the gap value is to utilize the mea-
surement of path conditions. If we can measure network
conditions accurately, then we can derive the true gap
value in the following way. It takes OWD f +

Gap
B f

for all
packets in the gap to arrive at the receiver through the fast
path, where B f is the bandwidth of the fast path. This
should be equal to OWDs so that the first packet from the
slow path arrives at the same time as packets from the fast
path. Then we have the true Gap value:

True Gap = B f × (OWDs−OWD f ) (2)

However, the naive solution has two fundamental flaws.
One is that the one-way delay of path can not be measured
accurately. We can not assume the uplink delay and the
downlink delay are the same on both paths. If we mod-
ify the protocol to carry the one-way delay information,
it may cause other compatibility problem with middle-
boxes [16]. The other one is that the bandwidth of the
path can not be measured accurately, especially when the
in-network buffer is limited. Because of the burst send-
ing pattern of fast sub-flow, it can never reach the actual
available bandwidth. So we design the feedback-based
gap adjustment scheme to adjust the value of gap more
accurately and quickly.

Key insight: Every out-of-order packet in the receiver
will generate duplicate Data ACK or burst Data ACK.

What STMS actually does is moving stalled packets
from the receiver to the sender (i.e., the packets inside
gap). The out-of-order packets will be acknowledged at
one time when packets from the slow path arrive to fill
in the hole. The number of packets acknowledged by
Data ACK reflects the degree of out-of-order arrival of
packets. Accordingly we can use this as the feedback
signal to adjust the gap value. Since Data ACK is pre-
sented in MPTCP, our scheme remains compatible with
current MPTCP. In addition, this scheme does not require



(a) t = 0 (b) t = 2RT Tf (c) t = RT Ts

Figure 9: Demonstration of STMS, with green and blue for packets over fast and slow paths respectively. Let
RT Ts = 3RT Tf and assume the uplink delay and downlink delay are symmetric, then we have gap =CWND f according
to eq. (2). Note that slow path always send packets with sequence numbers bigger than those of the fast path.

any modification at the receiver, which further eases the
deployment process.

How to adjust The gap adjustment algorithm is shown
in algorithm 2. Let delta gap and ad just interval be
the gap adjustment step and interval. When the gap is
smaller than the true gap value, the packets from the slow
path arrive late and the send window of MPTCP-level
will be stalled by packets sent from the slow path. There-
fore the left edge of the send window is determined by
unacknowledged packets from the slow path. Symmet-
rically, when the gap is bigger than the true gap value,
the left edge of the send window will be determined by
the packets sent from the fast path. Each time we re-
ceive a Data ACK, we first calculate how many pack-
ets this Data ACK acknowledged (data acked). If the
data acked is bigger than 2, we will adapt the gap value.
We check the packet of the left edge of the send win-
dow. If the packet is the first one sent from the slow
path, delta gap = data acked; otherwise, delta gap =
−data acked. We use the Exponentially Weighted Mov-
ing Average (EWMA) of delta gap over ad just interval
to adjust the gap value. The ad just interval is a tunable
parameter, which determines how fast the gap adjustment
can react to the network change. Setting it too small will
cause the gap overshoot and oscillation since the previous
gap adjustment has not taken into effect yet. However,
setting it too big leads to the slow convergence time.

Algorithm 2 Gap Adjustment Algorithm

1: procedure GAP ADJUST(data acked) . This
function gets called when receiving Data ACK

2: if data acked > 2 then
3: send una← left edge of MPTCP-level send

window
4: if send una was sent from slow path then
5: delta gap = data acked
6: elsesend una was sent from fast path
7: delta gap =−data acked
8: end if
9: end if

10: gap+= EWMA(delta gap,ad just interval)
11: end procedure

3.2 Analysis of host buffer size require-
ment

At a first glance, buffering packets for the fast path may
require a big buffer on the sender side. However, we can
prove that when both paths are fully utilized, the send
buffer requirement is actually less than that of the default
scheduler without PR (eq. (1)).

When using STMS the send buffer consists of three
parts:

1. sent but unacknowledged packets from the fast path:
B f ×RT Tf

2. sent but unacknowledged packets from the slow path:
Bs× (OWDs +OWD f ) (Data packet is sent through
the slow path, but ACK returns from the fast path).

3. buffered packets for the fast path i.e., True Gap
(eq. (2))

By adding these three parts together, we get the buffer
requirement of STMS:

Bu f (ST MS) = (B f +Bs)× (OWDS +OWD f ) (3)

This is smaller than Bu f (de f ault) (eq. (1)). It also re-
veals that STMS reduces the effective RTT of the MPTCP
connection to OWDs +OWD f , which is the smallest RTT
when both paths are utilized. Thus our STMS can reduce
the send buffer requirement.

If we take into consideration the opportunistic retrans-
mission, then in the ideal case, upon receiving the late
arrival packet from the slow path, the Data ACK of the
retransmitted packet will go back through the fast path.
Therefore the effective RTT of the MP connection is re-
duced to OWDs +OWD f , which is the same as STMS
and the buffer requirement is also the same.

When the host buffer is between [Bu f (ST MS),
Bu f (de f ault)], both retransmission and STMS can im-
prove the throughput. But STMS can always achieve the
optimal throughput by ensuring RTT of MP connection
to be the minimum.

If the host buffer is smaller than Bu f (ST MS), neither
STMS nor default scheduler can get the full bandwidth



aggregation. In this case, STMS will prefer to use the fast
path. The slow path will be used only if it will not cause
the blocking. The buffer requirement to take advantage
of the use of the slow path is:

Bu f ( f allback) = RT Tf ×B f +Gap

= B f × (OWDs +OWD f )
(4)

When the host buffer is between [Bu f ( f allback),
Bu f (ST MS)], STMS will use the fast path first, as the
slow path will not block the fast path. However, for the
default scheduler, the slow path will get the frequent use,
which would trigger the retransmission of packets. This
will further lead to the goodput degradation and the big
end-to-end latency.

What if the host buffer is even smaller than
Bu f ( f allback)? Then STMS will fall back to the sin-
gle TCP over the fast path. But the default scheduler
will still send some packets from the slow path, which
pushes the effective RTT of MPTCP connection to at least
OWDs +OWD f . Thus the throughput will be even worse
than the bandwidth B f allowed by the fast path alone.
Actually, in this case, falling back to the single-path TCP
is the optimal choice.

So our scheduler can get the optimal throughput across
all range of host buffer sizes.

3.3 Analysis of latency
It seems that STMS will cause the inflation of transmis-
sion latency because it holds packets in the gap longer
than the default scheduler. However, it also reduces the
time duration for the packets to be stalled in the receiver.
Using both types of scheduler, the end-to-end latency of
packets sent from the slow path is OWDs. The latency of
the fast path is OWD f +Delay(Stalled). For each packet
sent from the fast path, it is either stalled at the receiver
buffer or held at the send buffer. Delay(Stalled) remains
the same. Therefore STMS does not increase the average
end-to-end latency of packets.

4 Implementation

We implement STMS in the Linux kernel based on
MPTCP version 0.92 from [7]. The algorithm 1 is imple-
mented as a scheduler module.

The MPTCP scheduler will run when two types of
event happen. The first type of event happens when ACK
returns from one of the sub-flows, which means there will
be space in the sub-flow send window. The second type
of event happens when application sends more data. The
scheduler makes the decision every data segment. For
each segment pushed in by the application, the scheduler
will determine which sub-flow to send the packet. This

framework of scheduler limits how we can implement our
scheduler, since we can not access an arbitrary segment
inside the send buffer. To remain compatible with this
framework. We implement our scheduler as follows.

When the scheduler picks the next segment to send,
we first check if the fast path is available, i.e., there is
space in the send window. If the space is available, then
send the packet over the fast path; otherwise, we check if
the slow path is available. If it is available, we find the
packet according to the gap value, i.e., jump across the
gap packets to find the packets to send over the slow path.
If the packet does not exist, that means either the packet
is out of the right boundary of the send window or the
application has not pushed enough data yet, in either of
which case we skip this round of scheduling. Note that
we need to mark the packets sent from the slow path so
that we can skip the out-of-order packets when finding
the next packet to send from the slow path. To avoid
traversing the send buffer from the beginning each time,
we save the pointer of the last send packet of the slow
path as the beginning point for the next search.

We implement two variants of STMS: STMS-C (”Cal-
culation”) and STMS-A (”Adjustment”). They both pre-
allocate packets for the fast sub-flow so that packets can
arrive in-order at the receiver side (section 3.1). They dif-
fer in how they obtain the gap value. Each time a packet
is sent from the slow path, STMS-C calculates the gap
value from the bandwidth estimation and smoothed RTT
of two sub-flows(assume the uplink and downlink delay
are symmetric). For STMS-A the Data ACK process
function is modified to calculate delta gap according to
algorithm 2.

5 Evaluation in a controlled lab environ-
ment

In this section, we test both STMS-C and STMS-A in
a controlled lab setting, which allows us to evaluate the
performance across a wide variety of network conditions.
We compare our scheduler with the default scheduler with
PR (denoted as Default thereafter) and ECF [23]. ECF
use the send buffer length to estimate the flow complete
time(FCT) of using each path. If using slow path will
cause inflation of FCT, it will wait for fast sub-flow. How-
ever, for elephant flow, the send buffer is full for most
of the time. Only when flow is about to finish, the send
buffer length can be small enough to wait for fast sub-
flow. Besides, when calculating the FCT, ECF does not
take into account the one way delay thus it is not able to
achieve accurate in-order arrival. STMS schedules the
packets out-of-orderly to achieve the in-order arrival re-
gardless of the send buffer status so STMS can outperform
ECF. For apples-to-apples comparison, we port the ECF



(a) OOO delay distribution (b) Varying slow path latency (c) Varying receive buffer (d) Varying send buffer

Figure 10: Out-of-order latency of different schedulers

code [10] to the same MPTCP version as our scheduler.
The experiment setup is the same as section 2.1. We tune
the ad just interval of STMS-A to RT Ts+RT Tf

2 according
to the analysis in section 3.1. The parameter of ECF is
chosen as the same as [23].

5.1 Microbenchmarks

We first focus on some micro-benchmarks to see whether
our scheduler can accomplish the design goal.

5.1.1 Reducing the out-of-order arrival at the re-
ceiver side

We first investigate whether our scheduler can achieve
the in-order arrival at the receiver side. We use the out-
of-order (OOO) delay as the metric. The OOO delay of
a packet is defined as the time difference between when
a packet arrives at the receiver to when the packet can
be submitted to the application (i.e., all packets with the
smaller data sequence numbers have already arrived).

fig. 10a shows the CDF of the OOO delay of each
packet with different schedulers. STMS-C and STMS-A
can both achieve smaller OOO delay than Default and
ECF. Default effectively pushes the OOO delay of most
packets sent from fast path to OWDs. ECF sends tail pack-
ets out-of-orderly so it can reduce OOO delay for those
tail packets. However since we transmit many packets
for a test, this delay reduction is negligible. STMS-A can
effectively push the OOO delay close to zero.

We vary the latency of slow path and calculate average
of OOO latency. The result is shown in fig. 10b. When
paths become more heterogeneous (i.e., the RTT differ-
ence gets bigger), both Default and ECF have larger OOO
delay. However STMS-A can keep its average OOO delay
at a very small value.

We also test the OOO delay under different host buffer
sizes. The result is shown in fig. 10. It demonstrates
that both STMS-A and STMS-C can effectively reduce
the OOO delay regardless of the host buffer size, and the
gain is larger when the host buffer sizes are larger with
more packets stalled at the receiver. For ECF, only when

the send buffer is very small, it wait for fast sub-flow to
reduce the OOO delay.

5.1.2 Reducing the burst on the fast path

20 50 100 150 200
RTT_s (ms)

0.0
2.5
5.0
7.5

10.0
12.5
15.0
17.5

Pa
ck

et
s (

M
SS

)

STMS-A
Default
ECF
STMS-C

Figure 11: Burstness of all four schedulers under different
path latencies

We now study whether our scheduler can reduce the
burst of the fast path thus the in-network buffer require-
ment accordingly. We print the CWND free space of the
fast sub-flow when it receives ACK. Since all schedulers
try to fill this free space, the peak value of CWND free
space reflects the burst of fast path. The average CWND
free space throughout the running time is used as a metric
of burstness of fast subfow. The result is shown in fig. 11.
Both Default and ECF schdulers produce a bigger burst
when paths become more heterogeneous. Our scheduler
can reduce the burstness of the fast path and makes it
close to that of the single-path TCP.

5.1.3 Gap adjustment is reactive to network change

To understand how STMS-A handles dynamic network
conditions, we change the network conditions in the mid-
dle of MPTCP flow and record the gap value changes
around the condition changing point. Recall that the true
gap value is calculated using eq. (2). It is affected by the
accuracy of the measurement of the fast path bandwidth
and the one-way delay of both fast path and slow path.
We choose to change the latency of the fast path and slow
path to demonstrate how our Gap adjustment algorithm



reacts to the network change. In fig. 12a, the latency of
the fast path changes from 20ms to 5ms. Therefore there
will be many ACK packets and the fast path can send a lot
of packets out which leads to the wrong estimation of the
bandwidth. Thus, we see the peak of the gap calculated
value. However, our gap adjustment algorithm can con-
verge to the new value smoothly. In fig. 12b, the latency
of the slow path changes from 200ms to 100ms. Again
STMS-A converges to the new value smoothly and fast.

(a) Gap increase (b) Gap decrease

Figure 12: Gap adjustment is reactive to network change

5.2 Macrobenchmark: improving aggre-
gated throughput

We then investigate how our scheduler improves the ag-
gregated throughput under different buffer sizes setting.

Stable network condition We begin by investigating
whether our scheduler improves the throughput when
the network condition is stable. fig. 13 shows the result.
When the in-network buffer is limited, our scheduler can
improve the throughput by about 30% compared to De-
fault and ECF. When the host buffer is extremely limited,
our scheduler falls back to single path TCP and outper-
forms Default as analyzed in section 3.2. When the host
buffer is big enough, there is no blocking, so all four
schedulers can get the full bandwidth aggregation effect.
The STMS-C and STMS-A produce analogous results
under the same buffer settings, which indicates the gap
adjustment algorithm can track the true gap value pre-
cisely.

We then vary the latency of slow path. Both STMS-C
and STMS-A improve the aggregation throughput over
Default and ECF. We pick the improvement of STMS-A
over Default as an example. fig. 14 shows the through-
put of STMS-A normalized relative to that of Default.
The improvement become more prominent as the paths
become more heterogeneous and the buffer gets smaller.

Varying bandwidth Then we investigate the perfor-
mance of our scheduler under network fluctuations. Here
we change the bandwidth of both path randomly every
10 seconds. The bandwidth value is chosen from set {5,
10, 20, 30}Mbps. We generate 5 network configurations

using different random seeds and run test five times for
each network configurations.

fig. 15a shows the average throughput of four sched-
ulers for each configuration. Note the error bar indicates
the variability of the same configuration. Our sched-
uler outperforms other schedulers in every configuration.
STMS-A performs even better than the STMS-C. This
indicates that STMS-A is more adaptive to network fluc-
tuations than the STMS-C.

Varying latency We simulate the varying latency con-
dition using tc netem module. Both paths’ latency is
changed every 10 seconds, and the stddev of latency is
set to 40% of the mean latency. We generate five latency
configurations and run the test five times (fig. 15b). Sim-
ilar to the bandwidth change scenario, STMS-A always
performs best.

6 Evaluation in the wild

We next evaluate our scheduler in more realistic environ-
ments. The server is deployed in Aliyun [1] and has only
one interface. The client is located inside our campus and
connects to the server through WiFi and LTE. The China
Telecom LTE cellular network incurs higher delay than
the WiFi network. The average bandwidth and latency
characteristic of each path are shown in table 2. We use
tc to add extra latency on LTE path.

Table 2: Path characteristics

Bandwidth(Mbps) Latency(ms)
WiFi 40 50
LTE 30 70

We compare our scheduler against Default and ECF.
We measure the download time of 200MB file of different
schedulers. For each latency setting, we run the test five
times. The result is shown in fig. 16. Both STMS-C and
STMS-A outperform Default and ECF. The STMS-A can
get the best performance, reducing the file download time
by as much as 20% over Default.

7 Related work

There are many studies on the improvement of MPTCP
scheduler. To solve the host buffer problem, Raiciu et al.
[26] propose the PR mechanism. Ferlin et al. [11] pro-
pose the Blocking Estimation-based Scheduler (BLEST)
which aims to prevent the blocking by reducing the us-
age of slow path even if it has available CWND space.
Both schedulers try to restrict the use of the slow path
to alleviate the need of big host buffer resulting in the
under-utilization of slow path.



20 40 60 80 100 120 140
In-network buffer (KB)

30

35

40

45

50

Th
ro

ug
hp

ut
 (M

bp
s)

Default
ECF
STMS-A
STMS-C

(a) Varying in-network buffer

0 1 2 3 4 5 6
Receive buffer (MB)

25

30

35

40

45

50

55

Th
ro

ug
hp

ut
 (M

bp
s)

Default
ECF
STMS-A
STMS-C

(b) Varying receive buffer

0 1 2 3 4 5 6
Send buffer (MB)

10

20

30

40

50

Th
ro

ug
hp

ut
 (M

bp
s)

Default
ECF
STMS-A
STMS-C

(c) Varying send buffer

Figure 13: Throughput of different schedulers

20 50 100 150 200
RTT_s (ms)

30.0

50.0

70.0

90.0

110.0

130.0

150.0

In
-n

et
wo

rk
 b

uf
fe

r (
KB

)

1.00

1.05

1.10

1.15

1.20

1.25

(a) Varying in-network buffer

20 50 100 150 200
RTT_s (ms)

1.0

2.0

3.0

4.0

5.0

6.0
Re

ce
iv

e 
bu

ffe
r (

M
B)

1.00

1.05

1.10

1.15

1.20

(b) Varying receive buffer

20 50 100 150 200
RTT_s (ms)

1.0

2.0

3.0

4.0

5.0

6.0

Se
nd

 b
uf

fe
r (

M
B)

1.00

1.05

1.10

1.15

1.20

1.25

(c) Varying send buffer

Figure 14: STMS-A throughput normalized by Default

1 2 3 4 5
Run

20.0

22.5

25.0

27.5

30.0

32.5

35.0

37.5

40.0

Th
ro

ug
hp

ut
 (M

bp
s)

Default
ECF

STMS-A
STMS-C

(a) Bandwidth change

1 2 3 4 5
Run

24
26
28
30
32
34
36
38
40

Th
ro

ug
hp

ut
 (M

bp
s)

Default
ECF

STMS-A
STMS-C

(b) Latency change

Figure 15: Throughput under dynamic network conditions

Kuhn et al. [22] propose DAPS to address the RTT
difference of two paths. But it only considers the stable
CWND and the scheduler running interval is very big thus
can not react to the dynamic network changes.

Lim et al. [23] propose ECF which outperforms both
DAPS and BLEST. But it only considers the tail packets.

Guo et al. [14] propose a new scheduler to balance
two sub-flow completion time by sending packets inside
a ”chunk” in the opposite direction. Nonetheless, this
approach will require a huge host buffer to store the whole
chunk.

8 Conclusion

In this work, we identify a new root cause of MPTCP
throughput degradation under heterogeneous path con-

70 130 190 250 310
LTE latency(ms)

0
5

10
15
20
25
30
35
40
45

Do
wn

lo
ad

 ti
m

e(
s)

Default
ECF

STMS-A
STMS-C

Figure 16: Average file download time in the wild (lower
is better)

ditions. We propose STMS to effectively alleviate the
problems due to the limitation in the host buffer size and
in-network buffer size. Our experimental results show
that STMS outperforms state-of-the-art schedulers in di-
verse network and buffer settings, especially when the
path heterogeneity is large.

Acknowledgments. We thank the anonymous reviewers
and our shepherd Theophilus Benson for their feedback
on the paper. This work is supported by National Key
R&D Program of China under Grant 2017YFB1010002,
National 863 project (no. 2015AA015701).



References
[1] Alibaba Cloud. https://www.alibabacloud.com/.

[2] AGACHE, A., DEACONESCU, R., AND RAICIU, C. Increasing
datacenter network utilisation with grin. In NSDI (2015), pp. 29–
42.

[3] APPENZELLER, G., KESLASSY, I., AND MCKEOWN, N. Sizing
router buffers, vol. 34. ACM, 2004.

[4] APPLE Opens Multipath TCP In iOS11. http:

//www.tessares.net/highlights-from-advances-

in-networking-part-1/.

[5] Balanced Linked Adaptation Congestion Control Algorithm for
MPTCP. https://tools.ietf.org/html/draft-walid-

mptcp-congestion-control-00.

[6] BRADEN, R. Requirements for internet hosts-communication
layers.

[7] C. PAASCH, S. BARRE, E. A. Multipath TCP in the Linux Kernel.
http://www.multipath-tcp.org.

[8] CARDWELL, N., CHENG, Y., GUNN, C. S., YEGANEH, S. H.,
AND JACOBSON, V. Bbr: Congestion-based congestion control.
Queue 14, 5 (2016), 50.

[9] DENG, S., NETRAVALI, R., SIVARAMAN, A., AND BALAKR-
ISHNAN, H. Wifi, lte, or both?: Measuring multi-homed wireless
internet performance. In Proceedings of the 2014 Conference on
Internet Measurement Conference (2014), ACM, pp. 181–194.

[10] ECF implementation in old MPTCP version. http://www.cs.

umass.edu/~ylim/mptcp_ecf.

[11] FERLIN, S., ALAY, Ö., MEHANI, O., AND BORELI, R. Blest:
Blocking estimation-based mptcp scheduler for heterogeneous
networks. In IFIP Networking Conference (IFIP Networking) and
Workshops, 2016 (2016), IEEE, pp. 431–439.

[12] FORD, A., RAICIU, C., HANDLEY, M., AND BONAVENTURE, O.
Tcp extensions for multipath operation with multiple addresses.
Tech. rep., 2013.

[13] manpage of linux tc-fq . https://www.systutorials.com/

docs/linux/man/8-tc-fq/.

[14] GUO, Y. E., NIKRAVESH, A., MAO, Z. M., QIAN, F., AND SEN,
S. Accelerating multipath transport through balanced subflow
completion. In Proceedings of the 23rd Annual International
Conference on Mobile Computing and Networking (2017), ACM,
pp. 141–153.

[15] HAN, B., QIAN, F., JI, L., GOPALAKRISHNAN, V., AND
BEDMINSTER, N. Mp-dash: Adaptive video streaming over
preference-aware multipath. In Proceedings of the 12th Interna-
tional on Conference on emerging Networking EXperiments and
Technologies (2016), ACM, pp. 129–143.

[16] HONDA, M., NISHIDA, Y., RAICIU, C., GREENHALGH, A.,
HANDLEY, M., AND TOKUDA, H. Is it still possible to extend
tcp? In Proceedings of the 2011 ACM SIGCOMM conference on
Internet measurement conference (2011), ACM, pp. 181–194.

[17] HUANG, J., QIAN, F., GERBER, A., MAO, Z. M., SEN, S., AND
SPATSCHECK, O. A close examination of performance and power
characteristics of 4g lte networks. In Proceedings of the 10th
international conference on Mobile systems, applications, and
services (2012), ACM, pp. 225–238.

[18] iPerf - The ultimate speed test tool for TCP, UDP and SCTP.
https://iperf.fr/iperf-download.php.

[19] JACOBSON, V. Congestion avoidance and control. In ACM SIG-
COMM computer communication review (1988), vol. 18, ACM,
pp. 314–329.

[20] JIANG, H., WANG, Y., LEE, K., AND RHEE, I. Tackling
bufferbloat in 3g/4g networks. In Proceedings of the 2012 ACM
conference on Internet measurement conference (2012), ACM,
pp. 329–342.

[21] KHALILI, R., GAST, N., POPOVIC, M., UPADHYAY, U., AND
LE BOUDEC, J.-Y. Mptcp is not pareto-optimal: performance
issues and a possible solution. In Proceedings of the 8th inter-
national conference on Emerging networking experiments and
technologies (2012), ACM, pp. 1–12.

[22] KUHN, N., LOCHIN, E., MIFDAOUI, A., SARWAR, G., MEHANI,
O., AND BORELI, R. Daps: Intelligent delay-aware packet
scheduling for multipath transport. In Communications (ICC),
2014 IEEE International Conference on (2014), IEEE, pp. 1222–
1227.

[23] LIM, Y.-S., NAHUM, E. M., TOWSLEY, D., AND GIBBENS, R. J.
Ecf: An mptcp path scheduler to manage heterogeneous paths.
In Proceedings of the 2017 ACM SIGMETRICS/International
Conference on Measurement and Modeling of Computer Systems
(2017), ACM, pp. 33–34.

[24] NIKRAVESH, A., GUO, Y., QIAN, F., MAO, Z. M., AND SEN,
S. An in-depth understanding of multipath tcp on mobile de-
vices: measurement and system design. In Proceedings of the
22nd Annual International Conference on Mobile Computing and
Networking (2016), ACM, pp. 189–201.

[25] PAASCH, C., KHALILI, R., AND BONAVENTURE, O. On the
benefits of applying experimental design to improve multipath
tcp. In Proceedings of the ninth ACM conference on Emerging
networking experiments and technologies (2013), ACM, pp. 393–
398.

[26] RAICIU, C., PAASCH, C., BARRE, S., FORD, A., HONDA, M.,
DUCHENE, F., BONAVENTURE, O., AND HANDLEY, M. How
hard can it be? designing and implementing a deployable mul-
tipath tcp. In Proceedings of the 9th USENIX conference on
Networked Systems Design and Implementation (2012), USENIX
Association, pp. 29–29.

[27] In Korean, Multipath TCP is pronounced GIGA Path.
http://blog.multipath-tcp.org/blog/html/2015/

07/24/korea.html.

[28] Why is the Multipath TCP scheduler so important ? http://

blog.multipath-tcp.org/blog/html/2014/03/30/why_

is_the_multipath_tcp_scheduler_so_important.html.

[29] SOMMERS, J., AND BARFORD, P. Cell vs. wifi: on the perfor-
mance of metro area mobile connections. In Proceedings of the
2012 ACM conference on Internet measurement conference (2012),
ACM, pp. 301–314.

[30] tc: Linux Advanced Routing and Traffic Control. http://lartc.
org/lartc.html.

[31] WISCHIK, D., RAICIU, C., GREENHALGH, A., AND HANDLEY,
M. Design, implementation and evaluation of congestion control
for multipath tcp. In NSDI (2011), vol. 11, pp. 8–8.


