

Malware Clearance for Secure Commitment
of OS-Level Virtual Machines

Zhiyong Shan, Xin Wang, Tzi-cker Chiueh

Abstract— A virtual machine(VM) can be simply created upon use and disposed upon the completion of the tasks or the detection
of error. The disadvantage of this approach is that if there is no malicious activity, the user has to re-do all of the work in her actual
workspace since there is no easy way to commit (i.e., merge) only the benign updates within the VM back to the host environment.
In this work, we develop a VM commitment system called Secom to automatically eliminate malicious state changes when merging
the contents of an OS-level VM to the host. Secom consists of three steps: grouping state changes into clusters, distinguishing
between benign and malicious clusters, and committing benign clusters. Secom has three novel features. First, instead of relying on
a huge volume of log data, it leverages OS-level information flow and malware behavior information to recognize malicious changes.
As a result, the approach imposes a smaller performance overhead. Second, different from existing intrusion detection and
recovery systems that detect compromised OS objects one by one, Secom classifies objects into clusters and then
identifies malicious objects on a cluster by cluster basis. Third, to reduce the false positive rate when identifying malicious clusters,
it simultaneously considers two malware behaviors that are of different types and the origin of the processes that exhibit these
behaviors, rather than considers a single behavior alone as done by existing malware detection methods. We have successfully
implemented Secom on the Feather-weight Virtual Machine (FVM) system, a Windows-based OS-level virtualization system.
Experiments show that the prototype can effectively eliminate malicious state changes while committing a VM with small
performance degradation. Moreover, compared with the commercial anti-malware tools, the Secom prototype has a smaller number
of false negatives and thus can more thoroughly clean up malware side effects. In addition, the number of false positives of the
Secom prototype is also lower than that achieved by the on-line behavior-based approach of the commercial tools.

Index Terms—Virtual machine, Malware behavior, Malware detection, Virtual machine commitment

1. INTRODUCTION
n OS-level VM has minimal startup/shutdown cost,
low resource requirement and high scalability due to
its sharing of the execution environment of the host

operating system and confining state changes within the
VM’s environment. It is thus an excellent vehicle for
tolerating intrusions and faults, as well as consolidating
servers. A practical application is to allow users to install
and try new applications without worrying about malware.
In other words, if something abnormal happens, one can
simply throw away the infected VM. One disadvantage of
this approach is that if all processes run normally within a
VM and there is no malicious activity, a user has to re-do
all the work in her actual workspace since there is no
secure commitment mechanism to save the benign changes
within the VM back to the host environment. Changes
within an OS-level VM include files, directories and
registry entries that are created, modified and deleted by
the processes running in the VM. Secure commitment
means merging only benign changes into the host
environment but filtering out malicious changes when
committing a VM. Example applications of such secure
commitment include:
1. Committing running results of enterprise applications.

In order to consolidate servers, many enterprises often
run important applications within VMs [3][4], e.g.,
web server, file server, database server. Once
abandoning the VMs, valuable data and files
generated by the applications, e.g., sale data, customer

information, product files, technical files, and
configuration data, have to be carefully preserved
through a secure commitment mechanism.

2. Synchronizing states of fault tolerant applications. To
sustain a mission-critical application, fault tolerant
systems often run a primary instance and a backup
instance of the application in different VMs [38][7],
and synchronize states from the primary to the
backup every tens to hundreds of milliseconds [30].
However, the backup instance may be immediately
compromised once the primary one is compromised.
As existing anti-malware technologies can not address
this issue properly, it desires a mechanism to quickly
and thoroughly filter out malware impacts when
performing the state synchronization.

3. Committing working results of a user. To preserve the
integrity of a computer system, a user can work
within the space of a VM [1][13] to handle emails,
download pictures, edit MS Word files, surf Internet,
etc. When deleting the VM, all of the working results
will get lost. However, the secure commitment
mechanism can help the user to save benign results to
the host environment.

4. Committing installation results of untrusted software.
Freeware, shareware or mobile code can be
downloaded or executed within a VM to minimize the
security risk [1][13]. Without a secure commitment
support, such software and the running results during
the installation will be removed when getting rid of
the VM upon the installation is done. .

Although it is of high importance to ensure secure
commitment, there is a great challenge to identify all
malicious changes which are mixed together with benign
ones. Existing OS-level VM technologies, e.g., FreeBSD Jail

————————————————
 Zhiyong Shan, Xin Wang and Tzi-cker Chiueh are with the Computer

Science Department, Stony Brook University, USA. E-mail: {zshan, xwang,
chiueh}@ cs.sunysb.edu.

 Zhiyong Shan is also with the Computer Science Department, Renmin
University of China, China.

A

[10], Linux-VServer [3], Solaris Zones [4], OpenVZ [5] and
Virtuozzo [6], do not provide the function of securely
committing VM. Though SEE [1] can resolve conflicts on
committing file modifications, it can not identify
compromised files.

There are two issues to address in order to build a
secure commitment mechanism in the framework of an
OS-level virtual machine. First, the overhead of a
commitment mechanism imposed on the host OS should
be as low as possible since the virtual machine mechanism
has already incurred no trivial overhead which leads to the
performance degradation. Second, a commitment
mechanism should be able to clean up all malicious
changes rather than part of them. However, existing
technologies such as logging and analysis, host-based
intrusion detection and anti-malware can not
simultaneously address both issues. These techniques
either can not identify all malicious changes made by a
malware program or incur a big overhead on a system
although they may be effective in detecting intrusions.

In this paper, we aim to provide a light-weight
commitment approach, named Secom, for an OS-level
virtual machine to prevent malicious changes from being
merged into the host. To our best knowledge, this is the
first effort towards building a secure and practical VM
commitment mechanism. Secom focuses on filtering out
malware impacts which impose a severe security threat to
computers. As the issue of resolving inconsistency from
concurrent modifications of the same resource by multiple
processes running within different VMs has been
addressed in the literature [1][8], it is not discussed in this
paper.

The approach consists of three stages. First, it correlates
suspicious objects within a VM into a number of clusters
by tracking OS-level information flows and attaching a
cluster label to each object. Objects in a cluster are only
possible to be either all benign or all malicious. Second, it
determines malicious clusters using an online malware
detection engine to monitor malicious behaviors. Last, it
merges benign changes in a VM to the host environment
while discarding malicious clusters.

Secom has three novel features. First, unlike the
commitment approaches assumed in other fields (e.g.,
database) which rely on a huge volume of log data, it
leverages use of OS-level information flows and malware
behaviors to perform secure commitment. As a result,
Secom imposes a smaller overhead on host OS, while using
a conventional data-logging method would significantly
slow down the whole system. Second, different from
existing intrusion detection and recovery systems that
detect compromised OS objects one by one, it puts
correlated objects into clusters thus identifying and
discarding compromised objects cluster by cluster. Finally,
different from existing behavior-based malware detection
methods, it monitors a pair of malware behaviors and
labels the sources of the processes that launch the
behaviors rather than monitors a single behavior.

The contributions of this paper are five-fold.
1. We propose the first secure commitment approach,

Secom, for OS-level VM to identify compromised OS

objects and selectively merge only legitimate changes
into the host. Moreover, its three novel features allow
it to complete the task in a light-weight but efficient
manner.

2. We propose a clustering approach to segregate benign
and malicious changes within a VM. The approach
relies on the starting and tracing rules to trace OS-level
information flows to collect changes, and the labeling
method to group collected changes into clusters.

3. We devise a novel approach to track OS-level
information flow. It traces only suspicious processes
and executable files that represent malware program
themselves rather than tracing all kinds of files,
directories and IPC objects. This can avoid the
disadvantages of a classical malware tracing approach,
which imposes a heavy performance impact on the
system or makes the entire system floating with
suspicious labels.

4. We propose a new behavior-based malware detection
approach. A suspicious cluster is considered to be
malicious only when it exhibits at least two types of
malware behaviors. Moreover, as all clusters in Secom
are derived from dangerous sources, our proposed
detection procedure implicitly takes into account the
source of the processes that launch the behaviors. Our
experiments showed that the number of false positives
of our method is much smaller than that of existing
online malware detection approaches.

5. We have implemented a prototype of Secom on FVM
on Windows. Experiments show that it can effectively
filter out a number of real-world malware programs
while imposing only a small overhead on FVM.
Moreover, it filters malware objects more thoroughly
than that of commercial anti-virus software.

Secom approach depends only on tracing OS-level
information flows and monitoring malware behaviors
without the need of technical details of a specific virtual
machine. Therefore, although Secom is designed for OS-
level virtual machines, with some changes it should also
be applicable to other types of virtual machines (e.g.,
hardware-level virtual machines) in order to filter out
malware impacts. Investigating how to apply Secom to
other types of virtual machines is beyond the scope of this
paper.

In the rest of the paper, we first describe the Secom
approach for secure commitment in Section 2, and then
introduce its implementation on Feather-weight Virtual
Machine (FVM) in Section 3. The prototype is evaluated
from the perspectives of secure commitment and
performance overhead in Section 4. Last, we provide related
work in Section 5 and conclude the work in Section 6.

2. SECOM APPROACH

2.1 Overview
Committing a VM overwrites files and registries on the host
with the VM’s private versions. As malware contributes to
most security problems, to protect the integrity of the host
environment, files and registries that have been attacked by
malware programs should be discarded when committing

Step1: Correlate

Step2: Recognize

Step3: Commit

Suspicious object Malicious object Discarded object

Fig. 1. Secom approach

the VM. The design of Secom is based on results obtained
from our preliminary study of malware behaviors. To find
an approach to identify malware objects from the contents
of a VM, we have analyzed the technical details of a large
number of malware samples from Symantec Threat
Explorer [9] that stores analysis results of thousands of
malware samples by analysts.

With the study results, we design and develop a novel
approach, Secom, to commit VM. It mainly leverages light-
weight techniques such as tracing OS-level information
flows and monitoring malware behaviors to ensure secure
commitment, rather than uses logging technique which
often incurs significant storage and time overhead, and
even requires a backend host. Secom consists of three steps,
i.e., “correlate”, “recognize” and “commit”, which can be
conceptually depicted in Figure 1. The first step correlates
suspicious OS objects within a VM that are potentially
malicious into different clusters. The second step
recognizes real malicious clusters and marks them. The
third step commits all OS objects in a VM to the host except
the ones in malicious clusters or changes made on write-
protected files.

A VM can only be committed when it has completed all
the tasks and is at the stage of being shut down, because
many objects and processes within a running VM can not
be merged into the host environment. For example, some
objects (e.g., files) are often locked when accessed by some
processes. In addition, the running of most processes often
depends on some kernel objects, inter-process
communication objects or process properties that are tied
with a specific VM. Moreover, committing a running VM
may result in a partial merge of results from a task still
being performed. Therefore, the “correlate” and
“recognize” steps are executed when a VM is running,
while the “commit” step is only executed after a VM is
stopped. In the rest of this section, we describe the three
steps involved in securely committing a VM.

2.2 Correlating Suspicious Objects
One novel feature of our VM commitment approach is to

identify malicious OS objects in a cluster fashion for a
more efficient commitment, rather than one by one as
done in traditional malware detection and analysis
methods. Moreover, it is also able to remove malicious
objects more completely, because malware programs
generate or modify a non-trivial number of files or
registry entries on a single OS and only removing part of
the objects being affected could not get rid of the impacts
of a malware program thoroughly.

To identify malicious objects in a cluster fashion, first of
all, we have to address the challenge of correlating
suspicious objects into clusters. Since objects of a malware
program often have various types and are scattered all
over the system, it is difficult to associate them together.
We observe that objects of a malware program can be
correlated together by tracing information flows, and at the
same time the malicious objects can be clearly separated
from the other objects through a proper way of attaching
cluster labels to them. Accordingly, we devise a novel
approach to correlate suspicious objects into clusters,
which includes tracing and labeling suspicious objects.

2.2.1 Tracing Suspicious Objects
As all malware programs come from either the network or
removable drives, we treat the following objects as
suspicious and start-points to trace more suspicious objects,
and we call them start-point objects.

 Processes conducting remote communications;
 Executables (i.e., executable file) located at removable

drives.
An executable in this paper represents an executable file

with a specific extension, such as .EXE, .COM, .DLL,
 .SYS, .VBS, .JS, BAT, etc, or a special type of data file that
can contain macro codes, say a semi-executable, such
as .DOC, .PPT, .XLS, .DOT, etc. Secom does not allow a
suspicious process to change the extension of a file in order
to prevent its potential evasion of tracing. With these two
rules, all malware programs that attempt to enter the
system can be tracked as there are only two ways for them
to break into system, either through network
communications or through a removable drive.

To track OS-level information flow, BackTracker [2] is a
successful approach. However, the major challenge is how
to make sure that the entire system does not get marked as
suspicious and at the same time malware programs can not
evade being traced. This actually requires a trade-off
between reducing the number of marked objects and
reducing the risk of malware evasion. Our principle to
achieve the trade-off is to trace preferentially the
information flows with a high risk of propagating malware
programs while not tracing the information flows with a
low risk. Based on this principle, we mark the following
objects as suspicious.

 Files, directories and registry entries created or modified by
a suspicious process;

 Processes spawned by a suspicious process;
 Processes loading a suspicious executable file or reading a

suspicious semi-executable or script file;
The first rule records all permanent changes in a VM

made by suspicious processes so that maliciously changed
application data, executable files, system configurations,

directories, registry entries and so on can be filtered out
thoroughly when committing a VM.

To track the information flows with a high risk of
propagating malware programs, the last two rules focus on
tracing executables and processes. As an executable
represents an inactive malware while a process represents
an active malware, the information flows presented in
these three rules have a high possibility of propagating
malware programs. In the third rule, semi-executable and
script file possibly contain malware programs (e.g., macro
virus in MS Word), and thus the processes reading them
need to be marked. Although the macro virus protection in
Office software can reduce the chances of macro virus
infection, relying on it is very dangerous as crafted macro
codes are able to subvert it and cause destructive damages.
This has been observed in virus Melissa and W97M.Dranus.

To avoid tracking the information flows with a low risk of
propagating malware programs, the rules do not trace most
reading operations on files, directories and registry entries,
which are frequently invoked but difficult to propagate
malware programs. However, subtle malware programs
might evade tracing by changing registry entries or
configuration files which subsequently affect the processes
reading them, so as to run malicious executables, escalate
privileges, impose damages on system, etc. No matter what
evasion schemes the malware programs utilize, they need to
run their own executables to perform the tasks, which are
downloaded from the network, copied from removable
drives, or obtained from changing local executables. Since all
executable related operations are thoroughly traced by the
first and third rules, the malware programs will be captured
when trying to load their executables. The two rules are
applicable to all existing malware programs because they
rely on their own executables to perform malicious tasks on
a host, according to our analysis on Symantec Threat
Explorer. In case that a malware program relies only on
benign programs to perform attacks, the first starting rule
will capture it as it would require a remote communication
to accept commands to drive the benign program to perform
the malicious tasks. In addition, for a few special registry
entries and configuration files that can be used by a malware
program to fool a benign program to execute arbitrary
commands, Secom forbids a suspicious process to modify
them. Therefore, although the reading operations on registry
entries or configuration files are not traced, malware
programs still can not evade being detected by Secom.

To reduce the number of marked processes, the rules do
not trace IPCs (Inter-Process Communication). As a result,
there is a risk of evasion, i.e., a malware program can
bypass tracing via an IPC. However, the risk is very limited
because the overwhelming majority of vulnerable IPCs can
only be used to launch denial-of-service attack, disclose
sensitive information, or escalate the privileges of the
processes that send IPC data, rather than take control of the
receiver process. Accordingly, they can not be used to
propagate malware programs. Moreover, IPCs that can
propagate malware programs often rely on network (e.g.,
Remote Procedure Call) and thus are traced by the first
starting rule, according to our investigation on Microsoft
Security Bulletins [11], a primary source for analyzing

attack vectors of Windows OS [12].

2.2.2 Labeling Suspicious Objects
In this section, we employ the dependency graph to
describe how to attach cluster labels to suspicious objects.
Actually, for each start-point object, its descendent objects
are connected to each other by information flows and form
an existent but invisible dependency graph, which had
been disclosed by the literature work [2]. The graph is a
directed graph and has the start-point object as its root
node. Its nodes represent OS objects, e.g., file, process. Its
edges represent information flow related operations, e.g.,
creating a process, modifying a file. Figure 2 (a) and (c)
show two dependency graphs which are derived from a
networking process and an executable file respectively.
Note that, we do not intend to really generate dependency
graphs to help label objects since this would not be
applicable to an online approach. Instead, the labeling
methods are implemented together with the starting and
tracing rules as follows: when an object is determined as
suspicious by starting or tracing rules, a proper cluster
label, i.e., a number and a time stamp, will be attached to it
at the same time in order to denote that it is a suspicious
object and belongs to the cluster identified by the label. In
other words, the labeling methods are enforced along with
the starting and tracing rules in real-time, rather than
generating a dependency graph and then analyzing it.

When a start-point object is a network facing process, its
dependency graph is too coarse grained to be used to
recognize malicious objects in a cluster fashion since it
might contain both benign and malicious objects. In other
words, we can not determine that all objects in a graph are
malicious even if most of the objects in the graph are
recognized as malicious. Thus, we have to partition the
graph into a number of sub graphs, say clusters, so that
each cluster contains either only benign or only malicious
objects.

According to the recent researches [31][27] and our
analysis on thousands of malware descriptions in the
Symantec Threat Explorer [9], malware programs break
into a host through three basic attack channels. The first is
that, malware programs exploit bugs in network-facing
daemon programs or client programs and compromise
them, then immediately spawn a shell or back-door
process [31]. After this, the attacker typically tries to
download and install attacking tools and rootkits, as well
as performs any other adversary actions. Accordingly, we
give a cluster label to a process directly spawned by a
network-facing process as well as its descendants, calling
them a branch cluster, e.g., the Branch-cluster B in Figure 2
(b). A branch cluster corresponds to a sub graph of a
dependency graph which roots from a network-facing
process. The other attack channel is that, malware
programs increasingly use social engineering to lure users
into downloading and launching them [27]. After started,
malware programs copy themselves and make themselves
resident in a host. Consequently, we give a cluster label to
the downloaded executable and its descendants, calling
them a branch cluster as well, e.g., the Branch-cluster A in
Figure 2 (b). The last channel is removable drives.
Therefore, we give a cluster label to an executable file

located in a removable drive and all its descendent objects,
calling the formed cluster a drive cluster, e.g., the Drive-
cluster A in Figure 2(d).

Another issue for labeling objects is about a joint child
who has multiple parent nodes in a dependency graph, e.g.,
the joint children A to C in Figure 2 (a). That is, when the
parent nodes belong to distinct clusters, we have to
determine the cluster label of the joint child. Basically, we
make decision according to the priority sequence like
“process’ executable  parent process  other objects”.
Obviously, the joint child should inherit the cluster label
from its parent process or executable file (i.e., a process’
image file) if either of them exists instead of other objects.
Moreover, as loading an executable is posterior to creating
a process and necessarily overwrites the newly created
process’ code segment, the new process’ activity is based
on the loaded executable. Hence, the joint child should
inherit the label from the loaded executable rather than the
parent process if both exist. If more than one parent node
has the same priority in the sequence above, the child
inherits their labels in the reverse time order. Consequently,
the joint children A to C are classed into Branch-cluster A
and B respectively, as shown in Figure 2(b).

With the above methods, an obtained cluster will consist
of either all benign or all malicious objects. It is not possible
that a cluster contains both benign and malicious objects,
because if a cluster contains a malicious object, all objects in
the cluster should also be malicious, which can be proved
as follows:

A cluster can be represented as),(EVc  , whereV is a
set of vertices and E is a set of directed edges connecting
the vertices. The vertices represent OS objects. We use rv
to represent the root node of the cluster c , which is the
ancestor vertex of all vertices in the cluster. An edge

),(1 nn vv  represents an OS-level information flow related
operation that propagates malware programs from the
parent (source) object 1nv to the child (destination) object

nv . maliciousbenignfv |.  represents that the
corresponding object is benign or malicious.

 (1) If the root object of the cluster c is malicious, then
all objects in the cluster should be malicious. As the root
object is the ancestor of all vertices in the cluster, for an
arbitrary vertex nv in the cluster, there at least exists a
propagation path)},(),......,,(),,(),,{(132211 nnr vvvvvvvv  that
propagates malware from the root to the vertex nv .
According to the tracing rules presented in Section 2.2.1, a
malicious object can make an object to be malicious by
executing a propagation operation:

maliciousfvmaliciousfvEvv mmmm   ..),(11

So, if the root object is malicious, then

malliciousfvEvvmaliciousfv rr  .),(. 11

malliciousfvEvvmaliciousfv  .),(. 2211

……

malliciousfvEvvmaliciousfv nnnn   .),(. 11

So, any vertex in the cluster should be malicious.
(2) If any object rn vv  in the cluster is malicious, the

root vertex rv should be malicious and there should be a
propagation path to propagate malware from the root to
the vertex nv , because the root is the only source to
introduce malware into the cluster. Then, according to the
result of (1), all objects in the cluster are thus malicious
since the root object is malicious.

Therefore, if any of the objects in the cluster is malicious,
all the objects should be malicious. In other words, a cluster
contains either only benign or only malicious objects.

On the other hand, splitting a dependency graph into
different branch clusters might cause a piece of malware to
be split into two separate processes on different branch
clusters, which could work together to perform malicious
actions and potentially evade Secom's detection. We can
prevent this evasion at the time to commit a VM, which
will be presented in Section 2.4.

Our experiments in Section 4.1 demonstrate the
effectiveness of the labeling approach, and Figure 5 further
illustrates the labeling results of the objects generated by
four in-the-wild malware samples.

2.3 Recognizing Malicious Clusters
To recognize a malicious cluster, we build an on-line
engine to monitor whether the processes in the cluster
exhibit any malware behaviors. Recent research efforts
[22][32][33][34] on behavior-based malware detection often
employ dynamic data flow tracing techniques to extract
featured malware behaviors. The tracing of dynamic data
flow involves a big overhead, which significantly slows
down the system and is thus not applicable for on-line
monitoring [35]. On the other side, to complement with the
traditional signature-based detection, commercial anti-
virus software often has an online behavior-based malware
detection engine. However, the engine identifies a malware
program only based on a single suspicious behavior which
might also appear in benign software, and thus frequently
produces false alarms that distract users [36][22].

Different from existing efforts, our malware detection
engine detects malware by combining the techniques of
tracing OS-level information flow and online malware
detection. More specifically, based on the clusters

Drive-cluster A Branch-cluster
Branch-cluster

Start-point A

Start-point

(a) (c) (b) (d)
Networking process General process Executable file Other

Joint child B

Joint child A
Joint child A

Joint child B

Fig. 2. Dependency graph samples and obtained clusters

Joint child C
Joint child C

Fig. 3. Malware detection engine. It monitors raw behaviors and marks
a cluster as malicious if the cluster exhibits any predefined RBP.

Engine

Behaviors Behaviors Behaviors

Cluster A Cluster B Cluster C

Benign Benign Malicious

RBP List

formulated as a result of tracing OS-level information flow,
the engine monitors all the behaviors of processes in a
cluster and determines whether a cluster is malicious. A
cluster is considered malicious if it exhibits two behaviors
that match a predefined raw-behavior-pair, as shown in
Figure 3. A raw-behavior-pair (RBP) consists of two
independent raw behaviors. A raw behavior is extracted by
intercepting a single system/API call and its parameters. It
can differentiate malware from benign programs but may
result in a few false positives. For example, “modifying
registry for automatic startup” is such a malware behavior.

Targeting for on-line detection, however, we don’t
expect that detecting malware based on a single raw
behavior to be as accurate as done through the featured
behaviors [22][32], which are extracted via correlating two
system/API calls by dynamically tracing data flows at a
high overhead. Instead, to reduce the false positive rate,
our detection engine uses a RBP to detect malware. If the
false positive rate (FPR) of the detection based on a single
raw behavior is p, the FPR which uses a RBP consisting of
two independent behaviors will be p2. This will make the
false positive rate much lower than that generated with
commercial online detection techniques in anti-virus
software [36] which only rely on a single raw behavior to
identify malware. If the raw behaviors in a RBP are
carefully selected, the FPR of the RBP-based detection will
be as low as that of the detection based on the featured
behaviors. Moreover, since all clusters derive from
dangerous sources, i.e., the network and removable drives,
our detection approach actually considers not only
malware behaviors but also the sources of the process
launching the behaviors when determining a malicious
cluster. As a consequence, the FPR is further reduced as
demonstrated in our performance studies.

Our method is essentially in agreement with the recent
research results on behavior-based malware detection
[22][32], where two system/API calls are monitored to
extract a featured behavior to detect malware accurately.
However, different from existing techniques, we trace OS-
level information flow instead of data flow, so our method
would be much more efficient. As confirmed by studies in
[37], a set of independent behaviors can be used to
differentiate a specific category of malware programs from
other categories and benign programs with very few false
positives. In other words, the set of independent behaviors
can be used to detect malware effectively. We may use
more independent behaviors than two as done in the
researches, but this will increase nontrivial false negatives
and performance overhead while not reducing the number
of false positives significantly. Thus, we choose to monitor
two behaviors to detect a malware program.

However, there is a big challenge to realize the system
using RBP to detect malware. Commercial online engines
[36] can not achieve the goal because they can not correlate
two behaviors which may exhibit at different time and
associate them with a single malware program. For
example, two behaviors may be launched by a malware
program’s two distinct processes respectively. Although
data flow tracing techniques [22] can find potential
dependency between the behaviors, these techniques will

levy unacceptable heavy overhead on the system. Instead,
with an intelligent tracing of OS-level information flow,
our detection engine can correlate the two processes and
then naturally associate the two behaviors together.

To increase the opportunity of detecting wide categories
of malware programs, the administrator might add a large
number of RBPs. However, this makes the configuration
very tough. Even worse, the huge number of RBPs will
significantly slow down the system as the detection engine
needs to frequently search through the long RBP list.
Instead, we devise a scheme to address these issues as
follows.

A malware program generally has four types of raw
behaviors, and we determine a cluster to be malicious if it
exhibits two or more types of these raw behaviors. The four
types of behaviors are:: (Ⅰ) making itself to auto-start after
system booting, (Ⅱ) propagating itself across the system,
(Ⅲ) hiding itself from users and anti-malware tools, and
(Ⅳ) achieving malicious goals. A type of raw behaviors
actually generalizes a huge number of forms of raw
behaviors that might use a wide range of methods to
implement the same functionality. Although not every
malware program has all the four types of raw behaviors, a
malware program does implement at least a part of them.
This is because, without these types of behaviors, a
malware would be vulnerable to fail. For example, without
a type (Ⅰ) behavior, it can not survive after rebooting the
system. Without a type (Ⅱ) behavior, it might be killed by
anti-virus tools. Therefore, an RBP can be constructed with
any two raw behaviors that belong to different types
respectively. This way, we do not need to maintain a long
RBP list to search, but only make detection based on the
types of the behaviors.

A crafted malware program might exhibit only one type
of raw behaviors instead of two to avoid matching any RBP.
Then, it waits until it is committed to the host environment
to perform malicious behaviors. However, if the exhibited
behaviors in the VM are any type but type Ⅰ, the malware
program will be actually disabled after merged into the
host environment since it is not able to auto-start anymore.
Hence, we only need to consider the behaviors of type Ⅰ
that represents the behaviors hooking ASEP (Auto-Start
Extensibility Point [24]). An ASEP is used to enable auto-
starting of programs without an explicit user invocation,

and thus becomes a common target of infection by
malware programs [13][26]. Only by setting up an ASEP, a
malware program can make itself resident in a host. To
fight against such malware programs, at the committing
stage, we will discard any changes on ASEP if the
corresponding cluster is not derived from a trusted source.
Thus, such malware programs will be disabled after the
commitment without setting an ASEP in advance.

In case that some malware programs try to thwart the
Secom mechanism, we deny some intentional bypassing
behaviors including “Create global Windows hooks”,
“Create multi-extension executables”, “Change file
extensions”, “Change file access control attributes”,
“Change registry entry attributes” and “Execute Secom
special system calls”. However, disallowing some
behaviors (such as changing a file extension) makes it
easier for malware programs to detect the presence of
Secom. The malware programs might simply decide to stay
dormant in this case, which undermines the malware
detection capability. Therefore, we also mark the cluster
requesting any bypassing behavior as malicious when
disallowing the behavior.

Consequently, the decision logic of the detection engine
can be concisely presented by the following five
independent rules. Let b represent the raw behavior
currently handled by the detection engine. pb. represents
the process that executes the behavior b . },,,,{. 4321 bttttttb 
represents the type of the behavior. bt denotes the
behaviors that can bypass Secom. A cluster is represented
as Cc , where c consists of a set of OS objects and C is
the set of all clusters in the system. tc. represents the type
of the first raw behavior exhibited by cluster c .

maliciousbenignfc |.  represents cluster c is benign or
malicious.

The rule (1) will not trigger any action, because the
process launching the current raw behavior does not
belong to any cluster, i.e., the process is not derived from
dangerous sources including the network and removable
drives. The rule (2) will record the type of the raw behavior
into the related cluster. The rule (3) will mark the cluster as
malicious since it exhibits two different types of behaviors.
The rule (4) will not take any action as the cluster exhibits
two behaviors of the same type. The rule (5) will mark the
cluster as malicious and at the same time refuse the current
raw behavior because the cluster requests a bypassing
behavior.

There are two potential evasions to our detection
approach. First, a malware program might use the social-
engineering technique to disguise itself as a multi-
extension executable (e.g., help.txt.exe) in order to lure the
user to launch it after the commitment since it does not
have an ASEP. However, this malware program will also
be detected as the behavior “Create muti-extension

executables” is treated as a bypassing behavior as
mentioned previously. The other evasion is that, a malware
program does not exhibit any behavior monitored by
Secom. Such a malware program can not auto-start itself in
the host while a user might carelessly start the program. To
prevent the evasions, we design a post-commitment
mechanism that will be presented in Section 2.4.

A question on the approach of identifying malicious
clusters is why only marking rather than blocking after
detecting a cluster to be malicious? As some malware
programs bind together with useful software or processes
[24], forcibly blocking malicious behaviors will make the
software or processes unstable or unusable. For example,
to hide from anti-virus software, a worm runs as a thread
inside a system process. Unexpectedly blocking its
behaviors might cause the process and even the whole
system to crash as malware programs are often buggy [24].
Moreover, blocking malware behaviors will prevent a VM
from performing some important tasks, e.g., analyzing
malware programs, assessing system vulnerability [13],
which would require that the malicious codes can run
smoothly within a VM.

2.4 Committing Benign Clusters
When a VM is stopped and the user requires deleting or
committing the VM, Secom invokes the commitment
function. Since the VM has been terminated, there is not any
pending task or job in the VM. Meanwhile, all of the
processes and other volatile objects, e.g., IPC objects, within
a VM have already been erased from the OS and thus do
not need to be committed. Only the permanent objects, e.g.,
files, directories, registry entries, need to be considered. The
commitment procedure is completed following three steps.

First, we check all benign clusters and mark a benign
cluster as malicious if it contains an ASEP but does not
derive from a trusted source. This step is to prevent the
potential evasion to Secom mentioned above, i.e., a
malware program merely sets up an ASEP and waits for
the commitment to execute the rest of the behaviors in the
host environment. The trusted source described in this step
aims to eliminate the potential false positives occurring
when users install software or manage the system from a
remote host instead of the local host. A trusted source is
represented by Remote Administration Point (RAP), which
is a special application dedicated to install software or
manage the system from the remote. The RAP is
constructed based on the principle of diversity [28][29]and
integrity protection techniques. Specifically, we install two
different forms of programs with the same function, e.g.,
different kinds of web browsers. One is for daily use while
the other is for RAP. Thus, we can set tight restrictions on
the RAP program without affecting usability since one can
use the other program. The RAP program is configured to
have the highest security protection level, and only
communicate with a few remote hosts through secure
protocols. Moreover, Secom discards any changes made on
the configurations and files of the RAP program so as to
strictly preserve the integrity of the RAP program.

Second, we check every ASEP in malicious clusters to
see whether the corresponding auto-start executables are
placed in other benign clusters, and then mark such benign

)(...,)5(

...,)4(

.....,)3(

....,)2(

.,)1(

bDenymaliciousfcttbcpbCc

NoActiontctbcpbCc

maliciousfcNoTypetctctbcpbCc

tbtcNoTypetccpbCc

NoActioncpbCc

b 









clusters as malicious. Thus, we can completely remove the
malware programs that intentionally distribute ASEP
hooks and the auto-start executables into different clusters.

Third, we discard all the objects in malicious clusters,
and merge the objects in benign clusters into the host.
Meanwhile, the objects not included in any cluster also
need to be merged as they are not derived from the
network or removable drives and thus benign.

To be clear, the three steps to commit a VM are formally
presented as follows. Let sc. represent the source of cluster
c . Ao represents an ASEP object and A represents the
set of ASEP objects on the system. Aooo 121 , represents

2o is the corresponding auto-start executable of 1o . R
represents the set of RAP programs on the system. O
represents all created or modified objects in the VM to be
committed.

Our approach will not lead to a significant internal
inconsistency, because the discarded changes do not
contain benign working results. As presented in Section 2.2,
Secom can make a cluster to include either only malicious
changes or only benign ones. Consequently, discarding the
malicious clusters will not affect the internal inconsistency
of benign working results. Our experiments in Section 4.1
further verified this point.

As mentioned in Section 2.2, a sophisticated malware
might thwart Secom by dividing itself into separate clusters
to reduce the chance of being captured. According to our
VM commitment procedure presented in this section, in the
first step, all clusters that contain the ASEPs of the malware
program are marked as malicious. In the second step, the
clusters containing the auto-start executables are marked as
malicious. In the third step, the malicious clusters that
contain ASEPs, auto-start executables and other objects of
the malware program will be removed. Therefore, after
being merged into the host, the malware will not have a
chance of starting itself automatically.

 A user may start an actually malicious executable file
which is committed into the host. To avoid this problem, we
devise a post-commitment mechanism, which traces the
executables using their cluster labels and follows the
tracing rules presented in Section 2.2.1. To simplify the
tracing, we do not trace non-executable files and directories
according to our former work [39]. Once a cluster exhibits a
behavior of type Ⅰ or two behaviors with different types,
Secom blocks its malicious behaviors and sends an alarm to
the user. The mechanism is rarely invoked because the
executable needs to satisfy four conditions simultaneously:
downloaded not through the RAP, identified as benign in a
VM, unable to auto-start in the host, carelessly clicked by a
user.

However, it seems that a denial-of-service style attack is
possible. For example, a malicious cluster taints all non-
malicious clusters by associating with them an ASEP as in

the step 2 of the commitment procedure. This would mean
that no correct state can be committed back by the VM.
However, in performing this attack the malware can be
easily identified and the user can be informed. As a result,
the changes made by the malware will be removed or
ignored.

In addition, as multiple processes within different VMs
and host may concurrently access the same system object,
an object modified within a VM may have already been
independently modified outside the VM after the VM’s
private space is created. This will cause the inconsistency
problem when committing the VM. As Secom focuses on
providing secure commitment, it assumes the approaches
provided in [1][8] would solve the problem.

3. IMPLEMENTATION

3.1 Architecture
To demonstrate the applicability of the OS-level VM
commitment approach, we have successfully developed a
prototype under the framework of Feather-Weight Virtual
Machine [7] that partitions the name space of a single
Windows OS to form a number of virtual machines. The
implementation codes of VM commitment stay together
with FVM virtualization layer that consists of a kernel
driver and a user level DLL. Besides, the VM commitment
mechanism has an extra VM committing module inside the
FVM management tool at the user level. Figure 4 shows the
general architecture.

In the figure, the “Correlating” module is responsible
for correlating suspicious objects into clusters. We intercept
Windows system calls at the kernel level and Win32 API
functions at the user level to attach a proper cluster label to
each suspected object according to the tracing and labeling
methods. Most of the interceptions are located in the kernel
rather than the user level so that it is difficult to be
bypassed. For the permanent objects, the labels of files and
directories are stored in a specially created stream of each
file or directory. The labels of registry keys are recorded in
a file under the VM’s directory which holds all objects
changed by FVM. However, for the volatile objects, e.g.,
processes, their labels are temporarily stored in memory. In
addition, each cluster has a data structure to record
whether it is malicious.

The “Recognizing” module is responsible for
monitoring raw behaviors and determining whether a
cluster is malicious according to the decision logic of the
detection engine. All raw behaviors are extracted by
intercepting a single essential system call/API function

Correlating Recognizing

System Libraries (kernel32, user32, advapi32, ws2_32,…)

FVM Virtualization
Layer

FVM Virtualization Layer

FVM Tool

Windows NT Executive (Ntoskrnl.exe)

Committing

VM 1 VM 2 VM 3 VM n

User
Level

Kernel
Level

Fig. 4. General Architecture of Secom. The gray rectangles
represent the modules of Secom

)().(,
)(,,
)().(,)3(

.
).,,(

).(,,,)2(
.

),().().(,)1(

2
22122

11111

cDiscardmaliciousfcCc
oMergecoCcOo

cMergebenignfcCc
maliciousfc

benignfcooco
maliciousfcCccoAo

maliciousfc
AocoRscbenignfcCc















and analyzing the parameters. For example, monitoring
NtCreateKey() for “Create Windows service”. Some
malware behaviors consist of more than one system call or
Win32 function, for instance, the behavior “Inject into other
processes” consists of OpenProcess(), VirtualAllocEx(),
WriteProcessMemory(), CreateRemoteThread(), etc. We
only intercept the first essential function, i.e.,
OpenProcess(). Moreover, to prevent intended bypassing,
we always intercept a function at the kernel level rather
than the application level if possible. Thus, for the behavior
“Inject into other processes”, we actually intercept
NtOpenProcess() at the kernel level rather than
OpenProcess() at the application level.

The “Committing” modules in the kernel and the FVM
management tool are responsible for committing virtual
machines. The modules first scan the changed files,
directories and registry keys that are stored under the
directory of the VM to be committed, and then drop or
merge the changed items into the host environment. The
commitment modules are only called when a user requests
to delete or commit a VM that has already been stopped.

3.2 Self-replication
Though most of the raw behaviors can be captured by
monitoring a single system call, an exceptional behavior is
self-replication that involves two system calls for reading
and writing files respectively. As it is most frequently used
by malware programs, a dedicated approach to capturing
it is necessary. A natural algorithm might correlate the read
and write operations to identify a self-replication behavior.
This algorithm requires tracing data flow otherwise it
would be trivially bypassed. However, tracing data flow
often causes heavy overhead [22] and thus is not applicable
to an online system.

To address this issue, we design a novel mechanism that
directly compares the executable files created by a cluster
with the image files of the processes in the cluster. If the
similarity exceeds a predefined threshold value, we
identify that the cluster has a self-replication behavior. The
mechanism consists of two parts. One part monitors the
self-reading operations that a suspicious process reads its
own image file. The other part compares the image file
with the executable files that are created or modified by the
cluster. The comparison is invoked when a suspicious
process loads a suspicious executable file, changes a
suspicious non-executable file to be executable or creates a
suspicious executable file. Note that a self-reading
operation and an operation that creates or modifies an
executable file are the prerequisites of the comparison. The
mechanism may impose a relatively high overhead only on
the malware processes that frequently exhibit both self-
reading and executable file creation operations but not on
benign processes, because benign processes rarely
simultaneously exhibit these operations.

3.3 Extensible Behavior Monitoring
If the detection of malware is only based on their
predefined behaviors, the identification of malicious
clusters cannot be dynamic over time. That is, a detection
tool cannot recognize the new malware characteristics and
behaviors that newly emerge. To address this issue, Secom

is novelly implemented as an extensible mechanism for
dynamically adding in new behaviors to be monitored. A
behavior can be defined as follows:

behavior :: = (operation, object, parameters, type)
An operation is a generalization of one or several system

calls that have similar functions. For example, the
operation create_file corresponds to two system calls:

Algorithm 1. Loading the hash tables
INPUT: Configuration file

1: Load the configuration file into ConfigTable;
2: FOR each behavior X in the ConfigTable
3: SN = HashFunc(X.object,ConfigTable);
4: IF(HashTable1(SN).B = true)
5: IF(HashTable1(SN).C = false)
6: Record the behavior X and the behavior corresponding

to HashTable1(SN) into ConflictTable1;
7: HashTable1(SN).C = true;
8: ELSE
9: Record the behavior X into the ConflictTable1;

10: END
11: ELSE
12: HashTable1(SN).T = X.type;
13: HashTable1(SN).B = true;
14: END
15: END
16: FOR each behavior Y in the ConflictTable1
17: SN = HashFunc(Y.parameter,ConflictTable1);
18: IF(HashTable2(SN).B = true)
19: IF(HashTable2(SN).C = false)
20: Record the behavior Y and the behavior corresponding to

HashTable2(SN) into ConflictTable2;
21: HashTable2(SN).C = true;
22: ELSE
23: Record the behavior Y into the ConflictTable2;
24: END
25: ELSE
26: HashTable2(SN).T = Y.type;
27: HashTable2(SN).B = true;
28: END
29: END
30: FOR each behavior Z in the ConflictTable2
31: SN = HashFunc(Z.operation,ConflictTable2);
32: IF(HashTable3(SN).B = true)
33: IF(HashTable3(SN).C = false)
34: Record the behavior Z and the behavior corresponding to

HashTable3(SN) into OverTable;
35: HashTable3(SN).C = true;
36: ELSE
37: Record the behavior Z into the OverTable;
38: END
39: ELSE
40: HashTable3(SN).T = Z.type;
41: HashTable3(SN).B = true;
42: END
43: END

Algorithm 2. Finding the type of a behavior
INPUT: behavior X

1: SN = HashFunc(X.object,HashTable1);
2: IF(HashTable1(SN).B = false)
3: RETURN no behavior;
4: END
5: IF(HashTable1(SN).C = false)
6: RETURN HashTable1(SN).T;
7: END
8: SN = HashFunc(X.parameter,HashTable2);
9: IF(HashTable2(SN).C = false)

10: RETURN HashTable2(SN).T;
11: END
12: SN = HashFunc(X.operation,HashTable3);
13: IF(HashTable3(SN).C = false)
14: RETURN HashTable3(SN).T;
15: END
16: FOR each behavior Y in the OverTable
17: IF((Y.object=X.object) AND

(Y.parameter=X.parameter) AND (Y.operation=X.operation))
18: RETURN Y.type;
19: END
20: END

NtOpenFile and NtCreateFile. In contrast, a single system
call may contain more than one operation. For example,
NtOpenFile contains four operations: read_file, write_file,
create_file, and delete_file. The object and parameters of a
behavior are extracted from a related system call. A
behavior belongs to one of four types: making resident in
the host, propagating malware, hiding malware and
bypassing Secom.

In each concerned system call, we use the operation,
object and parameters to determine whether the current
access forms a malware behavior and the type of the
behavior by searching through a carefully designed
behavior table in the memory. The behavior table is read
from a modifiable configuration file when FVM boots up.

However, when there are thousands of behaviors in the
table, the searching procedure will be very slow. To
address this issue, we devise a hash algorithm using four
hash tables: HashTable1, HashTable2, HashTable3 and
OverTable, and a hash function:
HashFunc(String,Table) = (ASCII(String)+StrLen)%TableLen

Each element of the former three tables has merely four
bits. The first bit named “B” records whether there is a
corresponding behavior, the second bit named “C”
indicates whether there is a conflict, and the last two bits
named “T” record the type of the corresponding behavior.
The OverTable stores the behaviors that conflict with each
other in the former three hash tables. Each element of the
OverTable records the complete information of a behavior
including its operation, object, parameters and type. The
hash function is used to find the type of a given behavior
from a given hash table. The ASCII() function calculates the
total ASCII value of a give string, StrLen is the length of the
given string and TableLen is the total number of the
behaviors in the table.

Algorithm 1 presents how to load the four tables from
the configuration file. For a given behavior, we fill it in a
table according to the priority sequence: HashTable1
HashTable2HashTable3OverTable. Specifically, we first
try to fill it into HashTable1. If a conflict occurs, we then try
to fill the behavior into HashTable2, and so on. Algorithm 2
presents how to find the type of a given behavior from the
hash tables. We also follow the priority sequence to find the
type of the behavior. The algorithms are efficient for an
online application as we do not need to perform string
searching and only require four bits for a behavior.

4. EVALUATIONS
In this section, we present details on the experimental
evaluation of our proposed Secom mechanism. The
evaluation consists of three parts. First, we investigate the
effectiveness of our secure virtual machine commitment
approach using a group of real-world malware programs.
Then, we compare Secom with commercial anti-malware
tools. Finally, we perform tests to evaluate the performance
overhead of our prototype.

4.1 Secure Commitment
To verify the capability of Secom to filter out malware
objects when committing a VM, we collected 60 real-world
malware samples. We intentionally did not select the

samples that were used by our preliminary study of
malware behaviors. We also prepared 50 benign samples
from trustworthy websites. To further facilitate the
experiments, we prepare a set of monitoring tools to help
check experimental results, which include ApiMonitor to
record system call and Win32 API, ProcessExplorer to
analyze processes, Regmon to trace registry activities, and
Filemon to monitor file operations. Meanwhile, we set up a
local network consisting of two servers and two hosts as a
testing environment. Server A mainly stores malware
samples, and runs IIS web server, ftp server and EZ-IRC
server. Server B mainly stores benign samples, and runs IIS
web server as a reputable website. The host machines
installed with Windows XP run the client programs that
are often the attacking vectors for malware programs. On
one host, Firefox is installed as a RAP program to
download samples from the server B. To emulate the real-
world usage scenarios, we login into the hosts and perform
tasks including browsing the malicious website and ftp
server in the local network and downloading samples,
sending and receiving adverse instant messages and emails,
accessing P2P shared folders or removable drives that
contain samples, etc. Thus, the samples are introduced into
a host through various channels. With this testing
environment, the capability of Secom to securely commit a
VM can be thoroughly evaluated.

 To recognize malicious clusters, we configured
following raw behaviors into the detection engine: Type Ⅰ:
Modifying registry for auto-startup, Creating or modifying
Windows services, Installing or modifying Windows drivers.
Type Ⅱ : Self-replication, Injecting into other processes,
Creating processes abnormally. Type Ⅲ: Modifying registry to
hide its presence, Lowering security settings, Disabling the host
firewall, Killing anti-malware processes, Compromising anti-
malware files or settings, Closing system restoring mechanism.
Type Ⅳ: Stealing confidential information.

For every malware sample, we perform a three-step
experiment. First we run the malware sample in a newly
created VM without turning on the Secom and record what
objects it creates or modifies. Then, we enable the Secom,
run the same malware sample and other arbitrary benign
applications together in a new VM, and eventually commit
the VM. When performing the commitment, we make the
VM committing module to print out the names of
discarded objects. Lastly, we run the benign applications
committed in the host environment in order to check
whether the commitment process damages the internal
consistency of the benign applications.

The testing results are reported in Table 1. For each type
of samples, the table shows the total number of tested
sample programs, FNs (false negatives) and FPs (false
positives). We can see that Secom was able to correctly
discard all malware samples on two servers, but falsely
determine two benign samples to be malicious. Hence, the
FN rate and FP rate of Secom are 0% and 4% respectively.
Moreover, all of the benign applications which were mixed
together with the malware samples can work smoothly
after being committed into the host environment. In other
words, the commitment process does not have impact on
the internal consistency of the benign changes that coexist

with malicious ones in the same VM.
The false positives occur when we download and install

certain benign programs without using the RAP program
from server B. The benign programs are a personal firewall
program and a file system tool. By analyzing the logs, we
observed that a few behaviors of these benign programs
closely resemble those of malware, for example, “Creating
or modifying Windows services”, “Installing or modifying
Windows drivers”, “Modify registry for auto-startup”, etc.
As Secom relies on the source and behaviors of a program
to identify malware, the benign programs that are not
downloaded by the RAP program and exhibit malware like
behaviors are wrongly treated as malicious ones.

To further illustrate the working procedure of our
approach, we present four tested samples in details.
“Worm.Win32.Lovesan.a” is a variant of the well-known
network worm “Blast”. Figure 5(a) illustrates its
dependency graph resulted from the analysis of FVM logs
printed out by FVM virtualization layer. The graph stems
from a compromised svchost.exe process and is divided
into three clusters according to the tracing and labeling
methods. The Branch-Cluster A contains the Wmiprvse.exe
process and its descendents, which is known as Windows
Management Instrumentation and thus benign. However,
the Branch-Cluster B was recognized as malicious because
it showed two malicious behaviors: abnormally creating
the process cmd.exe and modifying registry for auto-
startup. The cluster includes all of the changes the malware
sample made inside a VM. Consequently, Secom
successfully discarded all negative changes made by the
malware sample after committing the VM by not merging
the Branch-Cluster B into the host.

“Backdoor.Win32.Ghost.24.a” is a Trojan facilitating a
hacker to gain full control over the system, which is depicted
in Figure 5(b). Secom identifies Branch-Cluster C as
malicious because the Branch-Cluster C abnormally created
the process Run_cd.exe and modified the registry for auto-
startup. As all changes made by the malware sample are
collected in the Branch-Cluster C, Secom successfully
eliminated all of them when committing the VM.

“Win32.Worm.P2P.Puce.G” spreads across eMule file-
sharing networks by alluring eMule users to download and
run the program. Figure 5(c) illustrates its dependency
graph that is composed of two clusters. The Branch Cluster
O is identified as malicious because it copied itself as

svchost.exe and created the registry entry WindowsSe-
rvicesStartup to automatically invocate itself. Since all
changes are included in the Branch-Cluster O, the
malicious modifications of the malware sample can then be
easily cleaned up.

“Virus.Win32.AutoRun.p.bak” spreads through
removable storage devices and is depicted in Figure 5 (d).
Drive-Cluster A is identified as malicious because it copied
itself as romdrivers.bak and added the registry entry
romdrivers.dll to restart itself. Secom successfully discarded
all of its changes by not committing the Drive-Cluster A.

4.2 Comparison with Commercial Tools
To further evaluate Secom, we performed another
experiment using two popular commercial anti-malware
tools: Kaspersky and VIPRE.

First, we use both commercial tools to scan the
commitment results of Secom in the host environment after
running a malware sample. For each sample, neither
commercial tool could detect the malware in the host
environment. Thus, we conclude that Secom has removed
the malware to the satisfaction of the commercial tools.

Second, we test all of the samples in Table 1 using the
signature-based module and behavior-based module of
every anti-malware tool. Figure 6 shows the FP rates
obtained from running five categories of benign samples. S
and B represent signature-based module and behavior-
based module respectively. From the figure, FP rate of
Secom is slightly higher than that of signature-based
modules while much lower than that of behavior-based
modules. The reason is that, behavior-based technique
often causes a higher FP rate than signature-based scheme
(which can not detect unknown malware programs), but
considering double behaviors and the originators of the
processes exhibiting the behaviors will dramatically reduce
FPs. Figure 7 shows the FN rates of detecting five
categories of malicious samples. In the figure, both
commercial tools only detect 50~75% of malicious changes
regardless of what techniques they use. However, Secom
identifies all of the changes imposed by different categories
of malicious samples. In other words, Secom successfully
clears all malicious changes when committing a VM.

4.3 Overhead
In the following experiments, we evaluate the additional
overhead imposed by Secom from three perspectives:
interception overhead of individual system calls, overall
execution overhead of independent applications, and
performance degradation of network-facing server
applications. The test-bed used in the evaluation consists of
two machines. Machine A contains a Pentium-4 2.8GHz
CPU with 512MB memory and runs applications including
WinZip32, xCopy, BCC32 and WebBench, etc. Machine B
contains an Intel Core 2 Duo 2GHz CPU with 2GB memory,
and runs web server and Telnet server. We installed
Windows XP and FVM on both machines.

Since the performance overhead of Secom comes from
the overhead of executing additional instructions
associated with every intercepted system calls, we carry
out an experiment to measure the overhead of system call
interception. The average CPU cycles of every system call

Samples Total FNs FPs
Worm 20 0 -

Trojan 19 0 -

Backdoor 17 0 -

Script Virus 2 0 -

Rootkit 2 0 -

 malware
programs

Sum 60 0 -

Security utilities 10 - 1

System utilities 9 - 1

Games 5 - 0

Multi-media 5 - 0

Web Pages (ActiveX, Script) 21 - 0

Benign
programs

Sum 50 - 2

TABLE 1
COMMITTING RESULTS OF THE TESTED SAMPLES

Svchost.exe -k DcomLaunch-vm0

(a) Worm.Win32.Lovesan.a

C:\WINDOWS\system32\
wbem\Logs\wmiprov.log

Wmiprvse.exe

C:\WINDOWS\systm32\wbem\
Logs\mofcomp.log

cmd.exe

tftp.exe

C:\WINDOWS\syste
m32\TFTP1172

mslaugh.exe mslaugh.exe

HKEY_LOCAL_MACHINE
\Software\Microsoft\Windows\Curre
ntVersion\Run\Windows Automation

Branch Cluster A
Branch Cluster B

(d) Virus.Win32.AutoRun.p.bak

malware.exe

malware.exe

C:\program files\Internet
Explorer\romdrivers.bak

C:\program files\Internet

fvmshell.exe

HKEY_CLASSES_ROOT\CLSID\{AEB6717E-7E19-
11d0-97EE-00C04FD91972}\InProcServer32\"@" =
"shell32.dll"

.....
C:\autorun.inf D:\autorun.inf E:\autorun.inf

C:\Ghost.pif

D:\Ghost.pif E:\Ghost.pif

C:\Windows\system32\
drivers\etc\hosts

HKEY_CLASSES_ROOT\CLSID\{09B68A
D9-FF66-3E63-636B-
B693E62F6236}\InProcServer32\"@" =
"%ProgramFiles%\Internet
Explorer\romdrivers.dll"

HKEY_LOCAL_MACHINE\SOFT
WARE\Microsoft\Windows\Current
Version\Explorer\ShellExecuteHooks
\{06E6B6B6-BE3C-6E23-6C8E-
B833E2CE63B8}

Drive Cluster A

Branch Cluster C

(b) Backdoor.Win32.Ghost.24.a

IExplore.exe

C:\Windows\syste
m\Run_cd.exe

Run_cd.exe

HKEY_LOCAL_MACHINE\S
oftware\Microsoft\Windows\C
urrentVersion\Run\Run_cd

C:\Documents and
Settings\szy\Local
Settings\Temp\~F1FC6.t
mp

C:\Documents and
Settings\szy\Local
Settings\Temporary Internet
Files\createpage.js

Branch Cluster D

Branch Cluster N

.....C:\Documents and
Settings\szy\Local
Settings\Temporary Internet
Files\about.js

Networking process General process Executable file Other
bj

HKEY_LOCAL_MACHINE
\SOFTWARE\Microsoft\Windows\C
urrentVersion\Run\WindowsServices
Startup

Fig. 5. Dependency graph examples of four tested malware samples

C:\Program
files\emule\incoming\classesu
pdated-fixed07-2010.rar

C:\Program
files\emule\incoming\filesup
dated-fixed07-2010.zip

emule.exe

Winamp556 full.exe

Winamp556_full.exe

svchost.exe

LOG.TXT

C:\Documents and
Settings\szy\Local
Settings\Temp\svchost.exe

(c)Win32.Worm.P2P.Puce.G

Branch Cluster O

C:\Download\toolsupdated
-fixed07-2010.zip

or API function is calculated from 100 invokes. Figure 8
shows a set of intercepted system calls and their average
CPU cycles, including file, process, registry and IPC related
system calls. The FVM which is enforced with Secom takes
1.9%~11.3% more CPU cycles than the original FVM. As
Secom only intercepts a small part of the whole system
calls and API functions on Windows OS, the performance
degradation of independent applications will be smaller
than that of system calls.

To evaluate an application’s overall performance loss
under Secom, we further measure the execution time of a
set of programs. The execution time is the average elapsed
time from the start of a program to its termination. The
results are listed in Figure 9. We can see that Secom
imposes only 0.8%~8.7% more overhead on the system
when running these programs compared to that of FVM.

To assess the performance impact of Secom on network-
facing server applications, we measured the throughput of
the IIS web server. Figure 10 shows the performance when
three web server instances are running on the original FVM
and the Secom-enforced FVM, respectively. We measured
the performance using WebBench [23], a licensed PC
Magazine benchmark program, and each reported
measurement is an average of results from ten runs. In
every testing session, each web server had one to twenty
clients concurrently sending requests to it, and each client
had only one outstanding request at a time. The results are
depicted in Figure 10. The aggregate throughput of three

web server instances when running on the Secom-enforced
FVM is about 95% of that when their running on the
original FVM. This indicates that Secom has little impact on
the performance of the network-facing servers.

In summary, all the experimental results demonstrate
that enforcing Secom incurs a tolerable performance
overhead on Windows OS. It slows down the running
speed of independent applications 0.8%~8.7% and reduces
the performance of network-facing server applications
about 5%.

5. RELATED WORK
There is no such a project that can securely commit VM on
an OS-level virtual machine platform in the literature.
Popular OS-level VM technologies, e.g., FreeBSD Jail [10],
Linux-VServer [3], Solaris Zones [4], OpenVZ [5] and
Virtuozzo [6], do not provide the functionality to securely
commit VM. Feather-weight Virtual Machine (FVM) [7] only
checks and abandons the resource updates under the
security-related file directory and registry entry within a VM
to eliminate side effects left by malicious programs before
VM commitment. However, simply examining special
resource updates confined inside a VM is not sufficient to
detect all the suspicious behaviors or to recognize the exact
scope of the attack due to malware execution. Sun et al. [1]
present an approach for realizing a safe execution
environment (SEE) that enables users to “try out” new

software without the fear of damaging the system in any
manner. It implemented a commitment approach to ensure
semantic consistency of the committed results. Before
commitment, user needs to make his own decision on
whether the running results contained in a SEE are safe to
commit. Secom, however, aims at automatically identifying
unsafe results inside a VM before commitment. Hence,

Secom differs from paper [1] and can be a complementary
technology to [1] to help recognize unsafe results.

As an alternative technology, system call log analysis is
able to detect compromised system resources and prevent
them from being committed. Research efforts demonstrate
the potential capability of log analysis to securely commit
VM since log analysis can identify compromised files or
derive malicious process behaviors [2][15][16][17][18].
However, the enforcement of log recording and analysis
often significantly slows down the system which makes it
very inefficient and possibly unusable. Our former work
[39] also traces OS-level information flow, but it aims to
block critical malware behaviors instead of committing safe
changes in a VM back to the host. It also does not further
correlate objects into clusters which will facilitate the fast
commitment.

Secom is also different from other candidate
technologies, such as host-based intrusion detection
[19][20] and anti-malware [21][22], though all of them are
able to recognize malicious objects. Secom aims to
recognize all side effects of a malware program imposed
on a system while intrusion detection and anti-malware
technologies typically are interested in determining
whether a single file or process is adverse. A recent
approach proposed in [14] can remove all effects of a
malware program, but requires a training stage to
generate a remediation program for cleaning the impacts
of a specific malware. Therefore, Secom meets the
requirement of secure commitment better than these
candidate technologies.

The limitation of Secom is that it can only commit VM
states when VM is stopped. Hence, it can not be applied to
synchronize states of fault tolerant applications because it
is unrealistic for the primary VM to do so before
synchronizing the backup VM each time.

6. SUMMARY
In this paper, we propose Secom, a scheme towards
securely committing OS-level virtual machines, which is
required by intrusion-tolerant applications and system
administrations to save benign changes within a VM to the
host environment. So far, none of the publicly available
documents on OS-level virtualization technologies ever
provides a feasible scheme to securely commit VM. We thus
believe that Secom is the first secure commitment scheme.
The critical challenge behind securely committing VM is to
identify compromised objects thoroughly and lightly. To
address the challenge, we propose Secom that consists of
three steps. First, it correlates suspicious OS objects within a
VM together by tracking OS-level information flows and
grouping them into clusters by intelligently attaching
different labels to objects. Then, it recognizes a malicious
cluster by a behavior-based malware detection engine. Last,
it commits VM while discarding malicious clusters. Secom
has three novel features. First, Secom can lightly commit
VM using OS-level information flows and malware
behaviors. Second, Secom detects and discards malicious
changes in a cluster fashion to clean up malware impacts
quickly and thoroughly. Finally, to reduce the false positive

Fig. 6. Detecting results of the benign samples using
commercial tools and Secom

Fig. 7. Detecting results of the changes made by malware
samples using commercial tools and Secom

Fig. 8. System call interception overhead. Secom imposes
1.9%~11.1% additional overhead on individual system calls.

Fig. 9. Applications’ overall performance. Secom only imposes
0.8%~8.3% additional overhead on independent applications.

(msec)

0 5000 10000 15000 20000 25000 30000 35000

Reg import

Telnet date

Telnet cd

Winzip32

BCC32

FVM Secom

(CPU Cycles)

0 100000 200000 300000 400000 500000 600000

NtSetInformationFile

NtCreatePort

NtQueryAttributesFile

NtCreateSection

NtOpenFile

NtCreateNamedPipeFile

NtCreateProcessEx

NtSetValueKey

NtCreateFile

NtQueryDirectoryFile

NtCreateKey

FVM Secom

Fig. 10. IIS throughput on the original FVM and the Secom-enforced
FVM. Secom causes about 5% of performance degradation on FVM.

0

50

100

150

200

250

300

350

400

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

Number of Concurrent Clients

Re
qu
es
ts
/S
ec
on
d

FVM Secom

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

Security
utilities

System
utilities

Games Multi-media Web Pages

F
a
l
s
e

P
o
s
i
t
i
v
e

R
a
t
e

Secom Kaspersky-S VIPRE-S Kaspersky-B VIPRE-B

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

Worm Trojan Backdoor Script Virus Macro Virus

F
a
l
s
e

N
e
g
a
t
i
v
e

R
a
t
e

Secom Kaspersky-S VIPRE-S Kaspersky-B VIPRE-B

rate, Secom considers two malware behaviors which are of
different types and the originator of the processes which
exhibit the behaviors when identifying a malicious cluster.
We implemented Secom under the framework of FVM and
conducted experiments concerning the performance of
commitment and overhead. The experiment results
demonstrate that Secom can effectively clean up malware
impacts when performing commitment and only causes
0.8% to 8.7% additional performance overhead on system.
Moreover, compared with commercial anti-malware tools,
it can erase malware more thoroughly and produce a lower
false positive rate. Hence, it fits the task of VM commitment
better.

ACKNOWLEDGMENT

We would like to thank Professor Prashant Shenoy and
Professor Sam King for their insightful comments and
feedback. This work is supported by US National Science
Foundation under grants CNS-0751121, CNS-0751121 and
CNS-0628093.

7. REFERENCES
[1] W. Sun, Z. Liang, R. Sekar, and V.N. Venkatakrishnan. One-way isolation: An

effective approach for realizing safe execution environments. In Proc. of the
12th NDSS 2005, pages 265–278.

[2] S. T. King, P. M. Chen. Backtracking Intrusions. In Proc. of SOSP, p. 223–236,
2003.

[3] S. Soltesz, H. Pötzl, M. E. Fiuczynski, A. Bavier, L. Peterson. Container-based
operating system virtualization: a scalable, high-performance alternative to
hypervisors. In Proc. of the 2nd ACM European Conference on Computer
Systems 2007, Lisbon.

[4] D. Price, A. Tucker. Solaris Zones: Operating system support for consolidating
commercial workloads. In Proc. of the 18th Large Installation System
Administration Conference (2004), p. 241–254.

[5] OpenVZ. Unique features of OpenVZ. http://openvz.org/documentation/tech/features.
[6] SWsoft. Virtuozzo server virtualization. http://www.swsoft.com/en/

products/virtuozzo.
[7] Y. Yu, F. Guo, S. Nanda, L. Lam, T. Chiueh. A Feather-weight Virtual

Machine for Windows Applications. In Proc. of the 2nd VEE, p. 24–34, 2006.
[8] Y. Yu. OS-level Virtualization and Its Applications. Ph.D. Dissertation, 2007.
[9] Symantec, Inc, http://www.symantec.com/business/security_response/

threatexplorer/threats.jsp.
[10] P.-H. Kamp and R. N. M. Watson. Jails: Confining the omnipotent root. In Proc.

of the 2nd International SANE Conference, 2000.
[11] Microsoft Security Bulletins, http://www.microsoft.com/technet/security/current.aspx.
[12] M. Howard. Fending Off Future Attacks by Reducing Attack Surface.

http://msdn.microsoft.com/en-us/library/ms972812.aspx, 2003.
[13] Y. Yu, H. K. Govindarajan, L. Lam, T. Chiueh. Applications of Feather-Weight

Virtual Machine. In Proc. of VEE, Seattle WA, March 2008.
[14] R. Paleari, L. Martignoni, E. Passerini, D. Davidson, M. Fredrikson, J. Giffin, S.

Jha, "Automatic generation of remediation procedures for malware", In Proc. of
USENIX Security, Washington DC, August 2010.

[15] F. Hsu, H. Chen, T. Ristenpart, J. Li, and Z. Su. Back to the Future: A
Framework for Automatic Malware Removal. In Proc. of ACSAC, 2006.

[16] G. W. Dunlap, S. T. King, S. Cinar, M. A. Basrai, P. M. Chen, ReVirt: enabling
intrusion analysis through virtual-machine logging and replay, In Proc. of the
5th OSDI, December 09-11, 2002, Boston, Massachusetts.

[17] A. Goel, K. Po, K. Farhadi, Z. Li, E. Lara, The taser intrusion recovery system,
In Proc. of the 20th SOSP, October 23-26, 2005, Brighton, United Kingdom.

[18] N. Zhu and T. Chiueh. Design, implementation, and evaluation of repairable file
service. In Proc. of DSN, p. 217–226, 2003.

[19] S. N. Chari and P.-C. Cheng. BlueBox: A Policy-driven, Host-Based Intrusion
Detection System. In Proc. of NDSS, Feburary 2002.

[20] S. A. Hofmeyr, S. Forrest, and A. Somayaji. Intrusion Detection Using
Sequences of System Calls. Journal of Computer Security, 6(3):151-180, 1998.

[21] M. Christodorescu, S. Jha, S. A. Seshia, D. Song, R. E. Bryant, Semantics-
Aware Malware Detection, In Proc. of S&P, p.32-46, May 08-11, 2005

[22] H. Yin, D. Song, M. Egele, C. Kruegel, E. Kirda, Panorama: capturing system-
wide information flow for malware detection and analysis, In Proc. of the 14th
CCS, 2007.

[23] PC Magazine. PC Magazine benchmarks. http://www.pcmag.com/
encyclopedia_term/0,2542,t=WebBench&i=48947,00.asp

[24] Y.-M. Wang, R. Roussev, C. Verbowski, A. Johnson, M.-W. Wu, Y. Huang,
S.-Y. Kuo, Gatekeeper: Monitoring Auto-Start Extensibility Points (ASEPs) for
Spyware Management, In Proc. of the 18th USENIX conference on System
administration, 2004, Atlanta, GA.

[25] Z. Shan, X. Wang, T. Chiueh. Safe Side Effects Commitment for OS-Level
Virtualization. In Proc. of the 8th ICAC, June 2011.

[26] C. Verbowski, E. Kiciman, A. Kumar, B. Daniels, S. Lu, J. Lee, Y.-M. Wang,
R. Roussev, Flight data recorder: monitoring persistent-state interactions to
improve systems management, In Proc. of the 7th OSDI, p.117–130, 2006.

[27] M. Egele, P. Wurzinger, C. Kruegel, E. Kirda, Defending Browsers against
Drive-by Downloads: Mitigating Heap-Spraying Code Injection Attacks, In
Proc. of the 6th DIMVA, July 2009, Como, Italy.

[28] B. Littlewood and L. Strigini. Redundancy and diversity in security. In Proc. of
the 9th ESORICS (2004), p. 423–438.

[29] E. Totel, F. Majorczyk, L. Mé. COTS diversity based intrusion detection and
application to web servers. In Proc. of the 8th RAID, September 2005.

[30] J. Zhu, Z. Jiang, Z. Xiao, and X. Li. Optimizing the Performance of Virtual
Machine Synchronization for Fault Tolerance, IEEE Trans.on Computers, 2011.

[31] N. Li, Z. Mao, H. Chen, "Usable Mandatory Integrity Protection for Operating
Systems”, In Proc. of the IEEE S&P, p.164-178, May 20-23, 2007.

[32] E. Kirda, C. Kruegel, G. Banks, G. Vigna, R. A. Kemmerer, Behavior-based
spyware detection, In Proc. of the 15th USENIX Security, p.19-19, 2006.

[33] L. Martignoni, E. Stinson, M. Fredrikson, S. Jha, J. C. Mitchell, A Layered
Architecture for Detecting Malicious Behaviors, In Proc. of the 11th RAID,
September 15-17, 2008, Cambridge, MA, USA.

[34] A. Lanzi1, M. Sharif, W. Lee. K-Tracer: A System for Extracting Kernel
Malware Behavior. In Proc. of the 17th NDSS, 2009.

[35] C. Kolbitsch, P. M. Comparetti, C. Kruegel, E. Kirda, X. Zhou, X. Wang,
Effective and efficient malware detection at the end host, In Proc. of the 18th
USENIX security, p.351-366, 2009.

[36] O. Sukwong, H. Kim, J. Hoe, "Commercial Antivirus Software Effectiveness:
An Empirical Study," Computer, vol. 44, no. 3, p. 63-70, Mar. 2011.

[37] K. Rieck, T. Holz, C. Willems, P. Düssel, P. Laskov. Learning and
Classification of Malware Behavior. In Proc. of the 5th DIMVA, p.108–125,
June 2008.

[38] B. Cully, G. Lefebvre, D. Meyer, M. Feeley, N. Hutchinson, A. Warfield,
“Remus: High Availability via Asynchronous Virtual Machine Replication”. In
Proc. of the 5th NSDI, 2008.

[39] Z. Shan, X. Wang, T. Chiueh. Tracer: Enforcing Mandatory Access Control in
Commodity OS with the Support of Light-Weight Intrusion Detection and
Tracing. In Proc. of the 6th ASIACCS, p. 135~144, March 2011.

Zhiyong Shan is an associate professor in the department of
Computer Science of the Renmin University of China. He was
a postdoctoral research associate in the department of
computer science of the Stony Brook University. He received
the PhD degree in computer science from Chinese Academy
of Science. Dr. Shan won president award of Chinese
Academy of Science in 2004 and Beijing Science &

Technology Achievement Award in 2005. His research interests
include operating system and computer security.
Xin Wang is an associate professor in the department of
Electrical and Computer Engineering and an affiliated professor
in the department of Computer Science of the Stony Brook
University. She received the PhD degree in electrical and
computer engineering from Columbia University. Her interests
include wireless networks, mobile and distributed computing,
computer security. She won NSF career award in 2001.
Tzi-cker Chiueh is a professor in the department of Computer
Science of the Stony Brook University. He received the PhD
degree in computer science from UC Berkeley. His research
interests include computer security and storage system. He
received an NSF CAREER award in 1995, a Best Paper Award
from 2005 Annual Computer Security Applications Conference.

