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of OS-Level Virtual Machines 
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Abstract— A virtual machine(VM) can be simply created upon use and disposed upon the completion of the tasks or the detection 
of error. The disadvantage of this approach is that if there is no malicious activity, the user has to re-do all of the work in her actual 
workspace since there is no easy way to commit (i.e., merge) only the benign updates within the VM back to the host environment. 
In this work, we develop a VM commitment system called Secom to automatically eliminate malicious state changes when merging 
the contents of an OS-level VM to the host. Secom consists of three steps: grouping state changes into clusters, distinguishing 
between benign and malicious clusters, and committing benign clusters. Secom has three novel features. First, instead of relying on 
a huge volume of log data, it leverages OS-level information flow and malware behavior information to recognize malicious changes. 
As a result, the approach imposes a smaller performance overhead. Second, different from existing intrusion detection and 
recovery systems that detect compromised OS objects one by one, Secom classifies objects into clusters and then 
identifies malicious objects on a cluster by cluster basis. Third, to reduce the false positive rate when identifying malicious clusters, 
it simultaneously considers two malware behaviors that are of different types and the origin of the processes that exhibit these 
behaviors, rather than considers a single behavior alone as done by existing malware detection methods. We have successfully 
implemented Secom on the Feather-weight Virtual Machine (FVM) system, a Windows-based OS-level virtualization system. 
Experiments show that the prototype can effectively eliminate malicious state changes while committing a VM with small 
performance degradation. Moreover, compared with the commercial anti-malware tools, the Secom prototype has a smaller number 
of false negatives and thus can more thoroughly clean up malware side effects. In addition, the number of false positives of the 
Secom prototype is also lower than that achieved by the on-line behavior-based approach of the commercial tools. 

Index Terms—Virtual machine, Malware behavior, Malware detection, Virtual machine commitment

1. INTRODUCTION 
n OS-level VM has minimal startup/shutdown cost, 
low resource requirement and high scalability due to 
its sharing of the execution environment of the host 

operating system and confining state changes within the 
VM’s environment. It is thus an excellent vehicle for 
tolerating intrusions and faults, as well as consolidating 
servers. A practical application is to allow users to install 
and try new applications without worrying about malware. 
In other words, if something abnormal happens, one can 
simply throw away the infected VM. One disadvantage of 
this approach is that if all processes run normally within a 
VM and there is no malicious activity, a user has to re-do 
all the work in her actual workspace since there is no 
secure commitment mechanism to save the benign changes 
within the VM back to the host environment. Changes 
within an OS-level VM include files, directories and 
registry entries that are created, modified and deleted by 
the processes running in the VM. Secure commitment 
means merging only benign changes into the host 
environment but filtering out malicious changes when 
committing a VM. Example applications of such secure 
commitment include:  
1. Committing running results of enterprise applications. 

In order to consolidate servers, many enterprises often 
run important applications within VMs [3][4], e.g., 
web server, file server, database server. Once 
abandoning the VMs, valuable data and files 
generated by the applications, e.g., sale data, customer 

information, product files, technical files, and 
configuration data, have to be carefully preserved 
through a secure commitment mechanism.  

2. Synchronizing states of fault tolerant applications. To 
sustain a mission-critical application, fault tolerant 
systems often run a primary instance and a backup 
instance of the application in different VMs [38][7], 
and synchronize states from the primary to the 
backup every tens to hundreds of milliseconds [30]. 
However, the backup instance may be immediately 
compromised once the primary one is compromised. 
As existing anti-malware technologies can not address 
this issue properly, it desires a mechanism to quickly 
and thoroughly filter out malware impacts when 
performing the state synchronization. 

3. Committing working results of a user. To preserve the 
integrity of a computer system, a user can work 
within the space of a VM [1][13] to handle emails, 
download pictures, edit MS Word files, surf Internet, 
etc. When deleting the VM, all of the working results 
will get lost. However, the secure commitment 
mechanism can help the user to save benign results to 
the host environment. 

4. Committing installation results of untrusted software. 
Freeware, shareware or mobile code can be 
downloaded or executed within a VM to minimize the 
security risk [1][13]. Without a secure commitment 
support, such software and the running results during 
the installation will be removed when getting rid of 
the VM upon the installation is done. .  

Although it is of high importance to ensure secure 
commitment, there is a great challenge to identify all 
malicious changes which are mixed together with benign 
ones. Existing OS-level VM technologies, e.g., FreeBSD Jail 
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[10], Linux-VServer [3], Solaris Zones [4], OpenVZ [5] and 
Virtuozzo [6], do not provide the function of securely 
committing VM. Though SEE [1] can resolve conflicts on 
committing file modifications, it can not identify 
compromised files. 

There are two issues to address in order to build a 
secure commitment mechanism in the framework of an 
OS-level virtual machine. First, the overhead of a 
commitment mechanism imposed on the host OS should 
be as low as possible since the virtual machine mechanism 
has already incurred no trivial overhead which leads to the 
performance degradation. Second, a commitment 
mechanism should be able to clean up all malicious 
changes rather than part of them. However, existing 
technologies such as logging and analysis, host-based 
intrusion detection and anti-malware can not 
simultaneously address both issues. These techniques 
either can not identify all malicious changes made by a 
malware program or incur a big overhead on a system 
although they may be effective in detecting intrusions. 

In this paper, we aim to provide a light-weight 
commitment approach, named Secom, for an OS-level 
virtual machine to prevent malicious changes from being 
merged into the host. To our best knowledge, this is the 
first effort towards building a secure and practical VM 
commitment mechanism. Secom focuses on filtering out 
malware impacts which impose a severe security threat to 
computers. As the issue of resolving inconsistency from 
concurrent modifications of the same resource by multiple 
processes running within different VMs has been 
addressed in the literature [1][8], it is not discussed in this 
paper.  

The approach consists of three stages. First, it correlates 
suspicious objects within a VM into a number of clusters 
by tracking OS-level information flows and attaching a 
cluster label to each object. Objects in a cluster are only 
possible to be either all benign or all malicious. Second, it 
determines malicious clusters using an online malware 
detection engine to monitor malicious behaviors. Last, it 
merges benign changes in a VM to the host environment 
while discarding malicious clusters. 

Secom has three novel features. First, unlike the 
commitment approaches assumed in other fields (e.g., 
database) which rely on a huge volume of log data, it 
leverages use of OS-level information flows and malware 
behaviors to perform secure commitment. As a result, 
Secom imposes a smaller overhead on host OS, while using 
a conventional data-logging method would significantly 
slow down the whole system. Second, different from 
existing intrusion detection and recovery systems that 
detect compromised OS objects one by one, it puts 
correlated objects into clusters thus identifying and 
discarding compromised objects cluster by cluster. Finally, 
different from existing behavior-based malware detection 
methods, it monitors a pair of malware behaviors and 
labels the sources of the processes that launch the 
behaviors rather than monitors a single behavior. 

The contributions of this paper are five-fold. 
1. We propose the first secure commitment approach, 

Secom, for OS-level VM to identify compromised OS 

objects and selectively merge only legitimate changes 
into the host. Moreover, its three novel features allow 
it to complete the task in a light-weight but efficient 
manner. 

2. We propose a clustering approach to segregate benign 
and malicious changes within a VM. The approach 
relies on the starting and tracing rules to trace OS-level 
information flows to collect changes, and the labeling 
method to group collected changes into clusters. 

3. We devise a novel approach to track OS-level 
information flow. It traces only suspicious processes 
and executable files that represent malware program 
themselves rather than tracing all kinds of files, 
directories and IPC objects. This can avoid the 
disadvantages of a classical malware tracing approach, 
which imposes a heavy performance impact on the 
system or makes the entire system floating with 
suspicious labels. 

4. We propose a new behavior-based malware detection 
approach. A suspicious cluster is considered to be 
malicious only when it exhibits at least two types of 
malware behaviors. Moreover, as all clusters in Secom 
are derived from dangerous sources, our proposed 
detection procedure implicitly takes into account the 
source of the processes that launch the behaviors. Our 
experiments showed that the number of false positives 
of our method is much smaller than that of existing 
online malware detection approaches.  

5. We have implemented a prototype of Secom on FVM 
on Windows. Experiments show that it can effectively 
filter out a number of real-world malware programs 
while imposing only a small overhead on FVM. 
Moreover, it filters malware objects more thoroughly 
than that of commercial anti-virus software. 

Secom approach depends only on tracing OS-level 
information flows and monitoring malware behaviors 
without the need of technical details of a specific virtual 
machine. Therefore, although Secom is designed for OS-
level virtual machines, with some changes it should also 
be applicable to other types of virtual machines (e.g., 
hardware-level virtual machines) in order to filter out 
malware impacts. Investigating how to apply Secom to 
other types of virtual machines is beyond the scope of this 
paper. 

In the rest of the paper, we first describe the Secom 
approach for secure commitment in Section 2, and then 
introduce its implementation on Feather-weight Virtual 
Machine (FVM) in Section 3. The prototype is evaluated 
from the perspectives of secure commitment and 
performance overhead in Section 4. Last, we provide related 
work in Section 5 and conclude the work in Section 6. 

2. SECOM APPROACH 

2.1 Overview 
Committing a VM overwrites files and registries on the host 
with the VM’s private versions. As malware contributes to 
most security problems, to protect the integrity of the host 
environment, files and registries that have been attacked by 
malware programs should be discarded when committing 
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Fig. 1. Secom approach 

the VM. The design of Secom is based on results obtained 
from our preliminary study of malware behaviors. To find 
an approach to identify malware objects from the contents 
of a VM, we have analyzed the technical details of a large 
number of malware samples from Symantec Threat 
Explorer [9] that stores analysis results of thousands of 
malware samples by analysts.  

With the study results, we design and develop a novel 
approach, Secom, to commit VM. It mainly leverages light-
weight techniques such as tracing OS-level information 
flows and monitoring malware behaviors to ensure secure 
commitment, rather than uses logging technique which 
often incurs significant storage and time overhead, and 
even requires a backend host. Secom consists of three steps, 
i.e., “correlate”, “recognize” and “commit”, which can be 
conceptually depicted in Figure 1. The first step correlates 
suspicious OS objects within a VM that are potentially 
malicious into different clusters. The second step 
recognizes real malicious clusters and marks them. The 
third step commits all OS objects in a VM to the host except 
the ones in malicious clusters or changes made on write-
protected files.  

A VM can only be committed when it has completed all 
the tasks and is at the stage of being shut down, because 
many objects and processes within a running VM can not 
be merged into the host environment. For example, some 
objects (e.g., files) are often locked when accessed by some 
processes. In addition, the running of most processes often 
depends on some kernel objects, inter-process 
communication objects or process properties that are tied 
with a specific VM. Moreover, committing a running VM 
may result in a partial merge of results from a task still 
being performed. Therefore, the “correlate” and 
“recognize” steps are executed when a VM is running, 
while the “commit” step is only executed after a VM is 
stopped. In the rest of this section, we describe the three 
steps involved in securely committing a VM. 

2.2 Correlating Suspicious Objects 
One novel feature of our VM commitment approach is to 

identify malicious OS objects in a cluster fashion for a 
more efficient commitment, rather than one by one as 
done in traditional malware detection and analysis 
methods. Moreover, it is also able to remove malicious 
objects more completely, because malware programs 
generate or modify a non-trivial number of files or 
registry entries on a single OS and only removing part of 
the objects being affected could not get rid of the impacts 
of a malware program thoroughly. 

To identify malicious objects in a cluster fashion, first of 
all, we have to address the challenge of correlating 
suspicious objects into clusters. Since objects of a malware 
program often have various types and are scattered all 
over the system, it is difficult to associate them together. 
We observe that objects of a malware program can be 
correlated together by tracing information flows, and at the 
same time the malicious objects can be clearly separated 
from the other objects through a proper way of attaching 
cluster labels to them. Accordingly, we devise a novel 
approach to correlate suspicious objects into clusters, 
which includes tracing and labeling suspicious objects. 

2.2.1 Tracing Suspicious Objects 
As all malware programs come from either the network or 
removable drives, we treat the following objects as 
suspicious and start-points to trace more suspicious objects, 
and we call them start-point objects.  

 Processes conducting remote communications; 
 Executables (i.e., executable file) located at removable 

drives. 
An executable in this paper represents an executable file 

with a specific extension, such as .EXE, .COM, .DLL, 
 .SYS, .VBS, .JS, BAT, etc, or a special type of data file that 
can contain macro codes, say a semi-executable, such 
as .DOC, .PPT, .XLS, .DOT, etc. Secom does not allow a 
suspicious process to change the extension of a file in order 
to prevent its potential evasion of tracing. With these two 
rules, all malware programs that attempt to enter the 
system can be tracked as there are only two ways for them 
to break into system, either through network 
communications or through a removable drive. 

To track OS-level information flow, BackTracker [2] is a 
successful approach. However, the major challenge is how 
to make sure that the entire system does not get marked as 
suspicious and at the same time malware programs can not 
evade being traced. This actually requires a trade-off 
between reducing the number of marked objects and 
reducing the risk of malware evasion. Our principle to 
achieve the trade-off is to trace preferentially the 
information flows with a high risk of propagating malware 
programs while not tracing the information flows with a 
low risk. Based on this principle, we mark the following 
objects as suspicious. 

 Files, directories and registry entries created or modified by 
a suspicious process; 

 Processes spawned by a suspicious process;  
 Processes loading a suspicious executable file or reading a 

suspicious semi-executable or script file; 
The first rule records all permanent changes in a VM 

made by suspicious processes so that maliciously changed 
application data, executable files, system configurations, 



 

 

directories, registry entries and so on can be filtered out 
thoroughly when committing a VM.  

To track the information flows with a high risk of 
propagating malware programs, the last two rules focus on 
tracing executables and processes. As an executable 
represents an inactive malware while a process represents 
an active malware, the information flows presented in 
these three rules have a high possibility of propagating 
malware programs. In the third rule, semi-executable and 
script file possibly contain malware programs (e.g., macro 
virus in MS Word), and thus the processes reading them 
need to be marked. Although the macro virus protection in 
Office software can reduce the chances of macro virus 
infection, relying on it is very dangerous as crafted macro 
codes are able to subvert it and cause destructive damages. 
This has been observed in virus Melissa and W97M.Dranus. 

To avoid tracking the information flows with a low risk of 
propagating malware programs, the rules do not trace most 
reading operations on files, directories and registry entries, 
which are frequently invoked but difficult to propagate 
malware programs. However, subtle malware programs 
might evade tracing by changing registry entries or 
configuration files which subsequently affect the processes 
reading them, so as to run malicious executables, escalate 
privileges, impose damages on system, etc. No matter what 
evasion schemes the malware programs utilize, they need to 
run their own executables to perform the tasks, which are 
downloaded from the network, copied from removable 
drives, or obtained from changing local executables. Since all 
executable related operations are thoroughly traced by the 
first and third rules, the malware programs will be captured 
when trying to load their executables. The two rules are 
applicable to all existing malware programs because they 
rely on their own executables to perform malicious tasks on 
a host, according to our analysis on Symantec Threat 
Explorer. In case that a malware program relies only on 
benign programs to perform attacks, the first starting rule 
will capture it as it would require a remote communication 
to accept commands to drive the benign program to perform 
the malicious tasks. In addition, for a few special registry 
entries and configuration files that can be used by a malware 
program to fool a benign program to execute arbitrary 
commands, Secom forbids a suspicious process to modify 
them. Therefore, although the reading operations on registry 
entries or configuration files are not traced, malware 
programs still can not evade being detected by Secom. 

To reduce the number of marked processes, the rules do 
not trace IPCs (Inter-Process Communication). As a result, 
there is a risk of evasion, i.e., a malware program can 
bypass tracing via an IPC. However, the risk is very limited 
because the overwhelming majority of vulnerable IPCs can 
only be used to launch denial-of-service attack, disclose 
sensitive information, or escalate the privileges of the 
processes that send IPC data, rather than take control of the 
receiver process. Accordingly, they can not be used to 
propagate malware programs. Moreover, IPCs that can 
propagate malware programs often rely on network (e.g., 
Remote Procedure Call) and thus are traced by the first 
starting rule, according to our investigation on Microsoft 
Security Bulletins [11], a primary source for analyzing 

attack vectors of Windows OS [12]. 

2.2.2 Labeling Suspicious Objects 
In this section, we employ the dependency graph to 
describe how to attach cluster labels to suspicious objects. 
Actually, for each start-point object, its descendent objects 
are connected to each other by information flows and form 
an existent but invisible dependency graph, which had 
been disclosed by the literature work [2]. The graph is a 
directed graph and has the start-point object as its root 
node. Its nodes represent OS objects, e.g., file, process. Its 
edges represent information flow related operations, e.g., 
creating a process, modifying a file. Figure 2 (a) and (c) 
show two dependency graphs which are derived from a 
networking process and an executable file respectively. 
Note that, we do not intend to really generate dependency 
graphs to help label objects since this would not be 
applicable to an online approach. Instead, the labeling 
methods are implemented together with the starting and 
tracing rules as follows: when an object is determined as 
suspicious by starting or tracing rules, a proper cluster 
label, i.e., a number and a time stamp, will be attached to it 
at the same time in order to denote that it is a suspicious 
object and belongs to the cluster identified by the label. In 
other words, the labeling methods are enforced along with 
the starting and tracing rules in real-time, rather than 
generating a dependency graph and then analyzing it. 

When a start-point object is a network facing process, its 
dependency graph is too coarse grained to be used to 
recognize malicious objects in a cluster fashion since it 
might contain both benign and malicious objects. In other 
words, we can not determine that all objects in a graph are 
malicious even if most of the objects in the graph are 
recognized as malicious. Thus, we have to partition the 
graph into a number of sub graphs, say clusters, so that 
each cluster contains either only benign or only malicious 
objects.  

According to the recent researches [31][27] and our 
analysis on thousands of malware descriptions in the 
Symantec Threat Explorer [9], malware programs break 
into a host through three basic attack channels. The first is 
that, malware programs exploit bugs in network-facing 
daemon programs or client programs and compromise 
them, then immediately spawn a shell or back-door 
process [31]. After this, the attacker typically tries to 
download and install attacking tools and rootkits, as well 
as performs any other adversary actions. Accordingly, we 
give a cluster label to a process directly spawned by a 
network-facing process as well as its descendants, calling 
them a branch cluster, e.g., the Branch-cluster B in Figure 2 
(b). A branch cluster corresponds to a sub graph of a 
dependency graph which roots from a network-facing 
process. The other attack channel is that, malware 
programs increasingly use social engineering to lure users 
into downloading and launching them [27]. After started, 
malware programs copy themselves and make themselves 
resident in a host. Consequently, we give a cluster label to 
the downloaded executable and its descendants, calling 
them a branch cluster as well, e.g., the Branch-cluster A in 
Figure 2 (b). The last channel is removable drives. 
Therefore, we give a cluster label to an executable file 



 

 

located in a removable drive and all its descendent objects, 
calling the formed cluster a drive cluster, e.g., the Drive-
cluster A in Figure 2(d). 

Another issue for labeling objects is about a joint child 
who has multiple parent nodes in a dependency graph, e.g., 
the joint children A to C in Figure 2 (a). That is, when the 
parent nodes belong to distinct clusters, we have to 
determine the cluster label of the joint child. Basically, we 
make decision according to the priority sequence like 
“process’ executable  parent process  other objects”. 
Obviously, the joint child should inherit the cluster label 
from its parent process or executable file (i.e., a process’ 
image file) if either of them exists instead of other objects. 
Moreover, as loading an executable is posterior to creating 
a process and necessarily overwrites the newly created 
process’ code segment, the new process’ activity is based 
on the loaded executable. Hence, the joint child should 
inherit the label from the loaded executable rather than the 
parent process if both exist. If more than one parent node 
has the same priority in the sequence above, the child 
inherits their labels in the reverse time order. Consequently, 
the joint children A to C are classed into Branch-cluster A 
and B respectively, as shown in Figure 2(b). 

With the above methods, an obtained cluster will consist 
of either all benign or all malicious objects. It is not possible 
that a cluster contains both benign and malicious objects, 
because if a cluster contains a malicious object, all objects in 
the cluster should also be malicious, which can be proved 
as follows: 

A cluster can be represented as ),( EVc  , whereV  is a 
set of vertices and E  is a set of directed edges connecting 
the vertices. The vertices represent OS objects. We use rv  
to represent the root node of the cluster c , which is the 
ancestor vertex of all vertices in the cluster. An edge 

),( 1 nn vv   represents an OS-level information flow related 
operation that propagates malware programs from the 
parent (source) object 1nv  to the child (destination) object 

nv . maliciousbenignfv |.   represents that the 
corresponding object is benign or malicious. 

 (1) If the root object of the cluster c  is malicious, then 
all objects in the cluster should be malicious. As the root 
object is the ancestor of all vertices in the cluster, for an 
arbitrary vertex nv  in the cluster, there at least exists a 
propagation path )},(),......,,(),,(),,{( 132211 nnr vvvvvvvv   that 
propagates malware from the root to the vertex nv . 
According to the tracing rules presented in Section 2.2.1, a 
malicious object can make an object to be malicious by 
executing a propagation operation: 

maliciousfvmaliciousfvEvv mmmm   ..),( 11  

So, if the root object is malicious, then 

malliciousfvEvvmaliciousfv rr  .),(. 11  

malliciousfvEvvmaliciousfv  .),(. 2211  

…… 

malliciousfvEvvmaliciousfv nnnn   .),(. 11  

So, any vertex in the cluster should be malicious.  
(2) If any object rn vv  in the cluster is malicious, the 

root vertex rv should be malicious and there should be a 
propagation path to propagate malware from the root to 
the vertex nv , because the root is the only source to 
introduce malware into the cluster. Then, according to the 
result of (1), all objects in the cluster are thus malicious 
since the root object is malicious.  

Therefore, if any of the objects in the cluster is malicious, 
all the objects should be malicious. In other words, a cluster 
contains either only benign or only malicious objects. 

On the other hand, splitting a dependency graph into 
different branch clusters might cause a piece of malware to 
be split into two separate processes on different branch 
clusters, which could work together to perform malicious 
actions and potentially evade Secom's detection. We can 
prevent this evasion at the time to commit a VM, which 
will be presented in Section 2.4. 

Our experiments in Section 4.1 demonstrate the 
effectiveness of the labeling approach, and Figure 5 further 
illustrates the labeling results of the objects generated by 
four in-the-wild malware samples. 

2.3 Recognizing Malicious Clusters 
To recognize a malicious cluster, we build an on-line 
engine to monitor whether the processes in the cluster 
exhibit any malware behaviors. Recent research efforts 
[22][32][33][34] on behavior-based malware detection often 
employ dynamic data flow tracing techniques to extract 
featured malware behaviors. The tracing of dynamic data 
flow involves a big overhead, which significantly slows 
down the system and is thus not applicable for on-line 
monitoring [35]. On the other side, to complement with the 
traditional signature-based detection, commercial anti-
virus software often has an online behavior-based malware 
detection engine. However, the engine identifies a malware 
program only based on a single suspicious behavior which 
might also appear in benign software, and thus frequently 
produces false alarms that distract users [36][22].  

Different from existing efforts, our malware detection 
engine detects malware by combining the techniques of 
tracing OS-level information flow and online malware 
detection. More specifically, based on the clusters 
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Fig. 3. Malware detection engine. It monitors raw behaviors and marks 
a cluster as malicious if the cluster exhibits any predefined RBP. 
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formulated as a result of tracing OS-level information flow, 
the engine monitors all the behaviors of processes in a 
cluster and determines whether a cluster is malicious. A 
cluster is considered malicious if it exhibits two behaviors 
that match a predefined raw-behavior-pair, as shown in 
Figure 3. A raw-behavior-pair (RBP) consists of two 
independent raw behaviors. A raw behavior is extracted by 
intercepting a single system/API call and its parameters. It 
can differentiate malware from benign programs but may 
result in a few false positives. For example, “modifying 
registry for automatic startup” is such a malware behavior.  

Targeting for on-line detection, however, we don’t 
expect that detecting malware based on a single raw 
behavior to be as accurate as done through the featured 
behaviors [22][32], which are extracted via correlating two 
system/API calls by dynamically tracing data flows at a 
high overhead. Instead, to reduce the false positive rate, 
our detection engine uses a RBP to detect malware. If the 
false positive rate (FPR) of the detection based on a single 
raw behavior is p, the FPR which uses a RBP consisting of 
two independent behaviors will be p2. This will make the 
false positive rate much lower than that generated with 
commercial online detection techniques in anti-virus 
software [36] which only rely on a single raw behavior to 
identify malware. If the raw behaviors in a RBP are 
carefully selected, the FPR of the RBP-based detection will 
be as low as that of the detection based on the featured 
behaviors. Moreover, since all clusters derive from 
dangerous sources, i.e., the network and removable drives, 
our detection approach actually considers not only 
malware behaviors but also the sources of the process 
launching the behaviors when determining a malicious 
cluster. As a consequence, the FPR is further reduced as 
demonstrated in our performance studies.  

Our method is essentially in agreement with the recent 
research results on behavior-based malware detection 
[22][32], where two system/API calls are monitored to 
extract a featured behavior to detect malware accurately. 
However, different from existing techniques, we trace OS-
level information flow instead of data flow, so our method 
would be much more efficient. As confirmed by studies in 
[37], a set of independent behaviors can be used to 
differentiate a specific category of malware programs from 
other categories and benign programs with very few false 
positives. In other words, the set of independent behaviors 
can be used to detect malware effectively. We may use 
more independent behaviors than two as done in the 
researches, but this will increase nontrivial false negatives 
and performance overhead while not reducing the number 
of false positives significantly. Thus, we choose to monitor 
two behaviors to detect a malware program. 

However, there is a big challenge to realize the system 
using RBP to detect malware. Commercial online engines 
[36] can not achieve the goal because they can not correlate 
two behaviors which may exhibit at different time and 
associate them with a single malware program. For 
example, two behaviors may be launched by a malware 
program’s two distinct processes respectively. Although 
data flow tracing techniques [22] can find potential 
dependency between the behaviors, these techniques will 

levy unacceptable heavy overhead on the system. Instead, 
with an intelligent tracing of OS-level information flow, 
our detection engine can correlate the two processes and 
then naturally associate the two behaviors together. 

To increase the opportunity of detecting wide categories 
of malware programs, the administrator might add a large 
number of RBPs. However, this makes the configuration 
very tough. Even worse, the huge number of RBPs will 
significantly slow down the system as the detection engine 
needs to frequently search through the long RBP list. 
Instead, we devise a scheme to address these issues as 
follows. 

A malware program generally has four types of raw 
behaviors, and we determine a cluster to be malicious if it 
exhibits two or more types of these raw behaviors. The four 
types of behaviors are:: (Ⅰ) making itself to auto-start after 
system booting, (Ⅱ) propagating itself across the system, 
(Ⅲ) hiding itself from users and anti-malware tools, and 
(Ⅳ) achieving malicious goals. A type of raw behaviors 
actually generalizes a huge number of forms of raw 
behaviors that might use a wide range of methods to 
implement the same functionality. Although not every 
malware program has all the four types of raw behaviors, a 
malware program does implement at least a part of them. 
This is because, without these types of behaviors, a 
malware would be vulnerable to fail. For example, without 
a type (Ⅰ) behavior, it can not survive after rebooting the 
system. Without a type (Ⅱ) behavior, it might be killed by 
anti-virus tools. Therefore, an RBP can be constructed with 
any two raw behaviors that belong to different types 
respectively. This way, we do not need to maintain a long 
RBP list to search, but only make detection based on the 
types of the behaviors. 

A crafted malware program might exhibit only one type 
of raw behaviors instead of two to avoid matching any RBP. 
Then, it waits until it is committed to the host environment 
to perform malicious behaviors. However, if the exhibited 
behaviors in the VM are any type but type Ⅰ, the malware 
program will be actually disabled after merged into the 
host environment since it is not able to auto-start anymore. 
Hence, we only need to consider the behaviors of type Ⅰ 
that represents the behaviors hooking ASEP (Auto-Start 
Extensibility Point [24]). An ASEP is used to enable auto-
starting of programs without an explicit user invocation, 



 

 

and thus becomes a common target of infection by 
malware programs [13][26]. Only by setting up an ASEP, a 
malware program can make itself resident in a host. To 
fight against such malware programs, at the committing 
stage, we will discard any changes on ASEP if the 
corresponding cluster is not derived from a trusted source. 
Thus, such malware programs will be disabled after the 
commitment without setting an ASEP in advance. 

In case that some malware programs try to thwart the 
Secom mechanism, we deny some intentional bypassing 
behaviors including “Create global Windows hooks”, 
“Create multi-extension executables”, “Change file 
extensions”, “Change file access control attributes”, 
“Change registry entry attributes” and “Execute Secom 
special system calls”. However, disallowing some 
behaviors (such as changing a file extension) makes it 
easier for malware programs to detect the presence of 
Secom. The malware programs might simply decide to stay 
dormant in this case, which undermines the malware 
detection capability. Therefore, we also mark the cluster 
requesting any bypassing behavior as malicious when 
disallowing the behavior. 

Consequently, the decision logic of the detection engine 
can be concisely presented by the following five 
independent rules. Let b  represent the raw behavior 
currently handled by the detection engine. pb. represents 
the process that executes the behavior b . },,,,{. 4321 bttttttb   
represents the type of the behavior. bt  denotes the 
behaviors that can bypass Secom. A cluster is represented 
as Cc , where c  consists of a set of OS objects and C  is 
the set of all clusters in the system. tc. represents the type 
of the first raw behavior exhibited by cluster c . 

maliciousbenignfc |.  represents cluster c is benign or 
malicious. 

The rule (1) will not trigger any action, because the 
process launching the current raw behavior does not 
belong to any cluster, i.e., the process is not derived from 
dangerous sources including the network and removable 
drives. The rule (2) will record the type of the raw behavior 
into the related cluster. The rule (3) will mark the cluster as 
malicious since it exhibits two different types of behaviors. 
The rule (4) will not take any action as the cluster exhibits 
two behaviors of the same type. The rule (5) will mark the 
cluster as malicious and at the same time refuse the current 
raw behavior because the cluster requests a bypassing 
behavior. 

There are two potential evasions to our detection 
approach. First, a malware program might use the social-
engineering technique to disguise itself as a multi-
extension executable (e.g., help.txt.exe) in order to lure the 
user to launch it after the commitment since it does not 
have an ASEP. However, this malware program will also 
be detected as the behavior “Create muti-extension 

executables” is treated as a bypassing behavior as 
mentioned previously. The other evasion is that, a malware 
program does not exhibit any behavior monitored by 
Secom. Such a malware program can not auto-start itself in 
the host while a user might carelessly start the program. To 
prevent the evasions, we design a post-commitment 
mechanism that will be presented in Section 2.4. 

A question on the approach of identifying malicious 
clusters is why only marking rather than blocking after 
detecting a cluster to be malicious? As some malware 
programs bind together with useful software or processes 
[24], forcibly blocking malicious behaviors will make the 
software or processes unstable or unusable. For example, 
to hide from anti-virus software, a worm runs as a thread 
inside a system process. Unexpectedly blocking its 
behaviors might cause the process and even the whole 
system to crash as malware programs are often buggy [24]. 
Moreover, blocking malware behaviors will prevent a VM 
from performing some important tasks, e.g., analyzing 
malware programs, assessing system vulnerability [13], 
which would require that the malicious codes can run 
smoothly within a VM. 

2.4 Committing Benign Clusters 
When a VM is stopped and the user requires deleting or 
committing the VM, Secom invokes the commitment 
function. Since the VM has been terminated, there is not any 
pending task or job in the VM. Meanwhile, all of the 
processes and other volatile objects, e.g., IPC objects, within 
a VM have already been erased from the OS and thus do 
not need to be committed. Only the permanent objects, e.g., 
files, directories, registry entries, need to be considered. The 
commitment procedure is completed following three steps. 

First, we check all benign clusters and mark a benign 
cluster as malicious if it contains an ASEP but does not 
derive from a trusted source. This step is to prevent the 
potential evasion to Secom mentioned above, i.e., a 
malware program merely sets up an ASEP and waits for 
the commitment to execute the rest of the behaviors in the 
host environment. The trusted source described in this step 
aims to eliminate the potential false positives occurring 
when users install software or manage the system from a 
remote host instead of the local host. A trusted source is 
represented by Remote Administration Point (RAP), which 
is a special application dedicated to install software or 
manage the system from the remote. The RAP is 
constructed based on the principle of diversity [28][29]and 
integrity protection techniques. Specifically, we install two 
different forms of programs with the same function, e.g., 
different kinds of web browsers. One is for daily use while 
the other is for RAP. Thus, we can set tight restrictions on 
the RAP program without affecting usability since one can 
use the other program. The RAP program is configured to 
have the highest security protection level, and only 
communicate with a few remote hosts through secure 
protocols. Moreover, Secom discards any changes made on 
the configurations and files of the RAP program so as to 
strictly preserve the integrity of the RAP program. 

Second, we check every ASEP in malicious clusters to 
see whether the corresponding auto-start executables are 
placed in other benign clusters, and then mark such benign 
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clusters as malicious. Thus, we can completely remove the 
malware programs that intentionally distribute ASEP 
hooks and the auto-start executables into different clusters.  

Third, we discard all the objects in malicious clusters, 
and merge the objects in benign clusters into the host. 
Meanwhile, the objects not included in any cluster also 
need to be merged as they are not derived from the 
network or removable drives and thus benign. 

To be clear, the three steps to commit a VM are formally 
presented as follows. Let sc.  represent the source of cluster 
c . Ao  represents an ASEP object and A  represents the 
set of ASEP objects on the system. Aooo 121 , represents 

2o is the corresponding auto-start executable of 1o . R  
represents the set of RAP programs on the system. O 
represents all created or modified objects in the VM to be 
committed. 

Our approach will not lead to a significant internal 
inconsistency, because the discarded changes do not 
contain benign working results. As presented in Section 2.2, 
Secom can make a cluster to include either only malicious 
changes or only benign ones. Consequently, discarding the 
malicious clusters will not affect the internal inconsistency 
of benign working results. Our experiments in Section 4.1 
further verified this point. 

As mentioned in Section 2.2, a sophisticated malware 
might thwart Secom by dividing itself into separate clusters 
to reduce the chance of being captured. According to our 
VM commitment procedure presented in this section, in the 
first step, all clusters that contain the ASEPs of the malware 
program are marked as malicious. In the second step, the 
clusters containing the auto-start executables are marked as 
malicious. In the third step, the malicious clusters that 
contain ASEPs, auto-start executables and other objects of 
the malware program will be removed. Therefore, after 
being merged into the host, the malware will not have a 
chance of starting itself automatically. 

 A user may start an actually malicious executable file 
which is committed into the host. To avoid this problem, we 
devise a post-commitment mechanism, which traces the 
executables using their cluster labels and follows the 
tracing rules presented in Section 2.2.1. To simplify the 
tracing, we do not trace non-executable files and directories 
according to our former work [39]. Once a cluster exhibits a 
behavior of type Ⅰ or two behaviors with different types, 
Secom blocks its malicious behaviors and sends an alarm to 
the user. The mechanism is rarely invoked because the 
executable needs to satisfy four conditions simultaneously: 
downloaded not through the RAP, identified as benign in a 
VM, unable to auto-start in the host, carelessly clicked by a 
user. 

However, it seems that a denial-of-service style attack is 
possible. For example, a malicious cluster taints all non-
malicious clusters by associating with them an ASEP as in 

the step 2 of the commitment procedure. This would mean 
that no correct state can be committed back by the VM. 
However, in performing this attack the malware can be 
easily identified and the user can be informed. As a result, 
the changes made by the malware will be removed or 
ignored. 

In addition, as multiple processes within different VMs 
and host may concurrently access the same system object, 
an object modified within a VM may have already been 
independently modified outside the VM after the VM’s 
private space is created. This will cause the inconsistency 
problem when committing the VM. As Secom focuses on 
providing secure commitment, it assumes the approaches 
provided in [1][8] would solve the problem. 

3. IMPLEMENTATION 

3.1 Architecture 
To demonstrate the applicability of the OS-level VM 
commitment approach, we have successfully developed a 
prototype under the framework of Feather-Weight Virtual 
Machine [7] that partitions the name space of a single 
Windows OS to form a number of virtual machines. The 
implementation codes of VM commitment stay together 
with FVM virtualization layer that consists of a kernel 
driver and a user level DLL. Besides, the VM commitment 
mechanism has an extra VM committing module inside the 
FVM management tool at the user level. Figure 4 shows the 
general architecture. 

In the figure, the “Correlating” module is responsible 
for correlating suspicious objects into clusters. We intercept 
Windows system calls at the kernel level and Win32 API 
functions at the user level to attach a proper cluster label to 
each suspected object according to the tracing and labeling 
methods. Most of the interceptions are located in the kernel 
rather than the user level so that it is difficult to be 
bypassed. For the permanent objects, the labels of files and 
directories are stored in a specially created stream of each 
file or directory. The labels of registry keys are recorded in 
a file under the VM’s directory which holds all objects 
changed by FVM. However, for the volatile objects, e.g., 
processes, their labels are temporarily stored in memory. In 
addition, each cluster has a data structure to record 
whether it is malicious. 

The “Recognizing” module is responsible for 
monitoring raw behaviors and determining whether a 
cluster is malicious according to the decision logic of the 
detection engine. All raw behaviors are extracted by 
intercepting a single essential system call/API function 

Correlating Recognizing 

System Libraries (kernel32, user32, advapi32, ws2_32,…) 

FVM Virtualization 
Layer 

FVM Virtualization Layer 

FVM Tool 

Windows NT Executive (Ntoskrnl.exe) 

Committing 

VM 1 VM 2 VM 3 VM n 

User 
Level 

Kernel 
Level 

Fig. 4. General Architecture of Secom. The gray rectangles 
represent the modules of Secom 
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and analyzing the parameters. For example, monitoring 
NtCreateKey() for “Create Windows service”. Some 
malware behaviors consist of more than one system call or 
Win32 function, for instance, the behavior “Inject into other 
processes” consists of OpenProcess(), VirtualAllocEx(), 
WriteProcessMemory(), CreateRemoteThread(), etc. We 
only intercept the first essential function, i.e., 
OpenProcess(). Moreover, to prevent intended bypassing, 
we always intercept a function at the kernel level rather 
than the application level if possible. Thus, for the behavior 
“Inject into other processes”, we actually intercept 
NtOpenProcess() at the kernel level rather than 
OpenProcess() at the application level. 

The “Committing” modules in the kernel and the FVM 
management tool are responsible for committing virtual 
machines. The modules first scan the changed files, 
directories and registry keys that are stored under the 
directory of the VM to be committed, and then drop or 
merge the changed items into the host environment. The 
commitment modules are only called when a user requests 
to delete or commit a VM that has already been stopped. 

3.2 Self-replication 
Though most of the raw behaviors can be captured by 
monitoring a single system call, an exceptional behavior is 
self-replication that involves two system calls for reading 
and writing files respectively. As it is most frequently used 
by malware programs, a dedicated approach to capturing 
it is necessary. A natural algorithm might correlate the read 
and write operations to identify a self-replication behavior. 
This algorithm requires tracing data flow otherwise it 
would be trivially bypassed. However, tracing data flow 
often causes heavy overhead [22] and thus is not applicable 
to an online system. 

To address this issue, we design a novel mechanism that 
directly compares the executable files created by a cluster 
with the image files of the processes in the cluster. If the 
similarity exceeds a predefined threshold value, we 
identify that the cluster has a self-replication behavior. The 
mechanism consists of two parts. One part monitors the 
self-reading operations that a suspicious process reads its 
own image file. The other part compares the image file 
with the executable files that are created or modified by the 
cluster. The comparison is invoked when a suspicious 
process loads a suspicious executable file, changes a 
suspicious non-executable file to be executable or creates a 
suspicious executable file. Note that a self-reading 
operation and an operation that creates or modifies an 
executable file are the prerequisites of the comparison. The 
mechanism may impose a relatively high overhead only on 
the malware processes that frequently exhibit both self-
reading and executable file creation operations but not on 
benign processes, because benign processes rarely 
simultaneously exhibit these operations.  

3.3 Extensible Behavior Monitoring 
If the detection of malware is only based on their 
predefined behaviors, the identification of malicious 
clusters cannot be dynamic over time. That is, a detection 
tool cannot recognize the new malware characteristics and 
behaviors that newly emerge. To address this issue, Secom 

is novelly implemented as an extensible mechanism for 
dynamically adding in new behaviors to be monitored. A 
behavior can be defined as follows: 

behavior :: = (operation, object, parameters, type) 
An operation is a generalization of one or several system 

calls that have similar functions. For example, the 
operation create_file corresponds to two system calls: 

Algorithm 1. Loading the hash tables 
INPUT: Configuration file 
 

1: Load the configuration file into ConfigTable; 
2: FOR each behavior X in the ConfigTable 
3:     SN = HashFunc(X.object,ConfigTable); 
4:     IF(HashTable1(SN).B = true) 
5:         IF(HashTable1(SN).C = false) 
6:             Record the behavior X and the behavior corresponding  

to HashTable1(SN) into ConflictTable1; 
7:              HashTable1(SN).C = true; 
8:         ELSE 
9:              Record the behavior X into the ConflictTable1; 

10:          END 
11:    ELSE 
12:         HashTable1(SN).T = X.type; 
13:         HashTable1(SN).B = true; 
14:    END 
15: END 
16: FOR each behavior Y in the ConflictTable1 
17:     SN = HashFunc(Y.parameter,ConflictTable1); 
18:     IF(HashTable2(SN).B = true) 
19:         IF(HashTable2(SN).C = false) 
20:       Record the behavior Y and the behavior corresponding to 

HashTable2(SN) into ConflictTable2; 
21:              HashTable2(SN).C = true; 
22:         ELSE 
23:              Record the behavior Y into the ConflictTable2; 
24:          END 
25:    ELSE 
26:        HashTable2(SN).T = Y.type; 
27:        HashTable2(SN).B = true; 
28:    END 
29: END 
30: FOR each behavior Z in the ConflictTable2 
31:     SN = HashFunc(Z.operation,ConflictTable2); 
32:     IF(HashTable3(SN).B = true) 
33:         IF(HashTable3(SN).C = false) 
34:       Record the behavior Z and the behavior corresponding to 

HashTable3(SN) into OverTable; 
35:              HashTable3(SN).C = true; 
36:         ELSE 
37:              Record the behavior Z into the OverTable; 
38:          END 
39:    ELSE 
40:        HashTable3(SN).T = Z.type; 
41:        HashTable3(SN).B = true; 
42:    END 
43: END 

 
Algorithm 2. Finding the type of a behavior 
INPUT: behavior X 
 

1: SN = HashFunc(X.object,HashTable1); 
2: IF(HashTable1(SN).B = false) 
3:      RETURN no behavior; 
4: END 
5: IF(HashTable1(SN).C = false) 
6:      RETURN HashTable1(SN).T; 
7: END 
8: SN = HashFunc(X.parameter,HashTable2); 
9: IF(HashTable2(SN).C = false) 

10:      RETURN HashTable2(SN).T; 
11: END 
12: SN = HashFunc(X.operation,HashTable3); 
13: IF(HashTable3(SN).C = false) 
14:      RETURN HashTable3(SN).T; 
15: END 
16: FOR each behavior Y in the OverTable 
17:     IF((Y.object=X.object) AND  

(Y.parameter=X.parameter) AND (Y.operation=X.operation)) 
18:         RETURN Y.type; 
19:     END 
20: END 



 

 

NtOpenFile and NtCreateFile. In contrast, a single system 
call may contain more than one operation. For example, 
NtOpenFile contains four operations: read_file, write_file, 
create_file, and delete_file. The object and parameters of a 
behavior are extracted from a related system call. A 
behavior belongs to one of four types: making resident in 
the host, propagating malware, hiding malware and 
bypassing Secom. 

In each concerned system call, we use the operation, 
object and parameters to determine whether the current 
access forms a malware behavior and the type of the 
behavior by searching through a carefully designed 
behavior table in the memory. The behavior table is read 
from a modifiable configuration file when FVM boots up.  

However, when there are thousands of behaviors in the 
table, the searching procedure will be very slow. To 
address this issue, we devise a hash algorithm using four 
hash tables: HashTable1, HashTable2, HashTable3 and 
OverTable, and a hash function: 
HashFunc(String,Table) = (ASCII(String)+StrLen)%TableLen 

Each element of the former three tables has merely four 
bits. The first bit named “B” records whether there is a 
corresponding behavior, the second bit named “C” 
indicates whether there is a conflict, and the last two bits 
named “T” record the type of the corresponding behavior. 
The OverTable stores the behaviors that conflict with each 
other in the former three hash tables. Each element of the 
OverTable records the complete information of a behavior 
including its operation, object, parameters and type. The 
hash function is used to find the type of a given behavior 
from a given hash table. The ASCII() function calculates the 
total ASCII value of a give string, StrLen is the length of the 
given string and TableLen is the total number of the 
behaviors in the table. 

Algorithm 1 presents how to load the four tables from 
the configuration file. For a given behavior, we fill it in a 
table according to the priority sequence: HashTable1 
HashTable2HashTable3OverTable. Specifically, we first 
try to fill it into HashTable1. If a conflict occurs, we then try 
to fill the behavior into HashTable2, and so on. Algorithm 2 
presents how to find the type of a given behavior from the 
hash tables. We also follow the priority sequence to find the 
type of the behavior. The algorithms are efficient for an 
online application as we do not need to perform string 
searching and only require four bits for a behavior. 

4. EVALUATIONS 
In this section, we present details on the experimental 
evaluation of our proposed Secom mechanism. The 
evaluation consists of three parts. First, we investigate the 
effectiveness of our secure virtual machine commitment 
approach using a group of real-world malware programs. 
Then, we compare Secom with commercial anti-malware 
tools. Finally, we perform tests to evaluate the performance 
overhead of our prototype. 

4.1 Secure Commitment 
To verify the capability of Secom to filter out malware 
objects when committing a VM, we collected 60 real-world 
malware samples. We intentionally did not select the 

samples that were used by our preliminary study of 
malware behaviors. We also prepared 50 benign samples 
from trustworthy websites. To further facilitate the 
experiments, we prepare a set of monitoring tools to help 
check experimental results, which include ApiMonitor to 
record system call and Win32 API, ProcessExplorer to 
analyze processes, Regmon to trace registry activities, and 
Filemon to monitor file operations. Meanwhile, we set up a 
local network consisting of two servers and two hosts as a 
testing environment. Server A mainly stores malware 
samples, and runs IIS web server, ftp server and EZ-IRC 
server. Server B mainly stores benign samples, and runs IIS 
web server as a reputable website. The host machines 
installed with Windows XP run the client programs that 
are often the attacking vectors for malware programs. On 
one host, Firefox is installed as a RAP program to 
download samples from the server B. To emulate the real-
world usage scenarios, we login into the hosts and perform 
tasks including browsing the malicious website and ftp 
server in the local network and downloading samples, 
sending and receiving adverse instant messages and emails, 
accessing P2P shared folders or removable drives that 
contain samples, etc. Thus, the samples are introduced into 
a host through various channels. With this testing 
environment, the capability of Secom to securely commit a 
VM can be thoroughly evaluated.  

 To recognize malicious clusters, we configured 
following raw behaviors into the detection engine: Type Ⅰ: 
Modifying registry for auto-startup, Creating or modifying 
Windows services, Installing or modifying Windows drivers. 
Type Ⅱ : Self-replication, Injecting into other processes, 
Creating processes abnormally. Type Ⅲ: Modifying registry to 
hide its presence, Lowering security settings, Disabling the host 
firewall, Killing anti-malware processes, Compromising anti-
malware files or settings, Closing system restoring mechanism. 
Type Ⅳ: Stealing confidential information. 

For every malware sample, we perform a three-step 
experiment. First we run the malware sample in a newly 
created VM without turning on the Secom and record what 
objects it creates or modifies. Then, we enable the Secom, 
run the same malware sample and other arbitrary benign 
applications together in a new VM, and eventually commit 
the VM. When performing the commitment, we make the 
VM committing module to print out the names of 
discarded objects. Lastly, we run the benign applications 
committed in the host environment in order to check 
whether the commitment process damages the internal 
consistency of the benign applications.  

The testing results are reported in Table 1. For each type 
of samples, the table shows the total number of tested 
sample programs, FNs (false negatives) and FPs (false 
positives). We can see that Secom was able to correctly 
discard all malware samples on two servers, but falsely 
determine two benign samples to be malicious. Hence, the 
FN rate and FP rate of Secom are 0% and 4% respectively. 
Moreover, all of the benign applications which were mixed 
together with the malware samples can work smoothly 
after being committed into the host environment. In other 
words, the commitment process does not have impact on 
the internal consistency of the benign changes that coexist 



 

 

with malicious ones in the same VM. 
The false positives occur when we download and install 

certain benign programs without using the RAP program 
from server B. The benign programs are a personal firewall 
program and a file system tool. By analyzing the logs, we 
observed that a few behaviors of these benign programs 
closely resemble those of malware, for example, “Creating 
or modifying Windows services”, “Installing or modifying 
Windows drivers”, “Modify registry for auto-startup”, etc. 
As Secom relies on the source and behaviors of a program 
to identify malware, the benign programs that are not 
downloaded by the RAP program and exhibit malware like 
behaviors are wrongly treated as malicious ones.  

To further illustrate the working procedure of our 
approach, we present four tested samples in details. 
“Worm.Win32.Lovesan.a” is a variant of the well-known 
network worm “Blast”. Figure 5(a) illustrates its 
dependency graph resulted from the analysis of FVM logs 
printed out by FVM virtualization layer. The graph stems 
from a compromised svchost.exe process and is divided 
into three clusters according to the tracing and labeling 
methods. The Branch-Cluster A contains the Wmiprvse.exe 
process and its descendents, which is known as Windows 
Management Instrumentation and thus benign. However, 
the Branch-Cluster B was recognized as malicious because 
it showed two malicious behaviors: abnormally creating 
the process cmd.exe and modifying registry for auto-
startup. The cluster includes all of the changes the malware 
sample made inside a VM. Consequently, Secom 
successfully discarded all negative changes made by the 
malware sample after committing the VM by not merging 
the Branch-Cluster B into the host.  

“Backdoor.Win32.Ghost.24.a” is a Trojan facilitating a 
hacker to gain full control over the system, which is depicted 
in Figure 5(b). Secom identifies Branch-Cluster C as 
malicious because the Branch-Cluster C abnormally created 
the process Run_cd.exe and modified the registry for auto-
startup. As all changes made by the malware sample are 
collected in the Branch-Cluster C, Secom successfully 
eliminated all of them when committing the VM.  

“Win32.Worm.P2P.Puce.G” spreads across eMule file-
sharing networks by alluring eMule users to download and 
run the program. Figure 5(c) illustrates its dependency 
graph that is composed of two clusters. The Branch Cluster 
O is identified as malicious because it copied itself as 

svchost.exe and created the registry entry WindowsSe- 
rvicesStartup to automatically invocate itself. Since all 
changes are included in the Branch-Cluster O, the 
malicious modifications of the malware sample can then be 
easily cleaned up.  

“Virus.Win32.AutoRun.p.bak” spreads through 
removable storage devices and is depicted in Figure 5 (d). 
Drive-Cluster A is identified as malicious because it copied 
itself as romdrivers.bak and added the registry entry 
romdrivers.dll to restart itself. Secom successfully discarded 
all of its changes by not committing the Drive-Cluster A.  

4.2 Comparison with Commercial Tools 
To further evaluate Secom, we performed another 
experiment using two popular commercial anti-malware 
tools: Kaspersky and VIPRE.  

First, we use both commercial tools to scan the 
commitment results of Secom in the host environment after 
running a malware sample. For each sample, neither 
commercial tool could detect the malware in the host 
environment. Thus, we conclude that Secom has removed 
the malware to the satisfaction of the commercial tools.  

Second, we test all of the samples in Table 1 using the 
signature-based module and behavior-based module of 
every anti-malware tool. Figure 6 shows the FP rates 
obtained from running five categories of benign samples. S 
and B represent signature-based module and behavior-
based module respectively. From the figure, FP rate of 
Secom is slightly higher than that of signature-based 
modules while much lower than that of behavior-based 
modules. The reason is that, behavior-based technique 
often causes a higher FP rate than signature-based scheme 
(which can not detect unknown malware programs), but 
considering double behaviors and the originators of the 
processes exhibiting the behaviors will dramatically reduce 
FPs. Figure 7 shows the FN rates of detecting five 
categories of malicious samples. In the figure, both 
commercial tools only detect 50~75% of malicious changes 
regardless of what techniques they use. However, Secom 
identifies all of the changes imposed by different categories 
of malicious samples. In other words, Secom successfully 
clears all malicious changes when committing a VM. 

4.3 Overhead 
In the following experiments, we evaluate the additional 
overhead imposed by Secom from three perspectives: 
interception overhead of individual system calls, overall 
execution overhead of independent applications, and 
performance degradation of network-facing server 
applications. The test-bed used in the evaluation consists of 
two machines. Machine A contains a Pentium-4 2.8GHz 
CPU with 512MB memory and runs applications including 
WinZip32, xCopy, BCC32 and WebBench, etc. Machine B 
contains an Intel Core 2 Duo 2GHz CPU with 2GB memory, 
and runs web server and Telnet server. We installed 
Windows XP and FVM on both machines. 

Since the performance overhead of Secom comes from 
the overhead of executing additional instructions 
associated with every intercepted system calls, we carry 
out an experiment to measure the overhead of system call 
interception. The average CPU cycles of every system call 

Samples Total FNs FPs 
Worm 20 0 - 

Trojan 19 0 - 

Backdoor 17 0 - 

Script Virus 2 0 - 

Rootkit 2 0 - 

 malware 
programs 

Sum 60 0 - 

Security utilities 10 - 1 

System utilities 9 - 1 

Games 5 - 0 

Multi-media 5 - 0 

Web Pages (ActiveX, Script) 21 - 0 

Benign 
programs 

Sum 50 - 2 

TABLE 1  
COMMITTING RESULTS OF THE TESTED SAMPLES
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Fig. 5. Dependency graph examples of four tested malware samples 
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or API function is calculated from 100 invokes. Figure 8 
shows a set of intercepted system calls and their average 
CPU cycles, including file, process, registry and IPC related 
system calls. The FVM which is enforced with Secom takes 
1.9%~11.3% more CPU cycles than the original FVM. As 
Secom only intercepts a small part of the whole system 
calls and API functions on Windows OS, the performance 
degradation of independent applications will be smaller 
than that of system calls. 

To evaluate an application’s overall performance loss 
under Secom, we further measure the execution time of a 
set of programs. The execution time is the average elapsed 
time from the start of a program to its termination. The 
results are listed in Figure 9. We can see that Secom 
imposes only 0.8%~8.7% more overhead on the system 
when running these programs compared to that of FVM. 

To assess the performance impact of Secom on network-
facing server applications, we measured the throughput of 
the IIS web server. Figure 10 shows the performance when 
three web server instances are running on the original FVM 
and the Secom-enforced FVM, respectively. We measured 
the performance using WebBench [23], a licensed PC 
Magazine benchmark program, and each reported 
measurement is an average of results from ten runs. In 
every testing session, each web server had one to twenty 
clients concurrently sending requests to it, and each client 
had only one outstanding request at a time. The results are 
depicted in Figure 10. The aggregate throughput of three 

web server instances when running on the Secom-enforced 
FVM is about 95% of that when their running on the 
original FVM. This indicates that Secom has little impact on 
the performance of the network-facing servers. 

In summary, all the experimental results demonstrate 
that enforcing Secom incurs a tolerable performance 
overhead on Windows OS. It slows down the running 
speed of independent applications 0.8%~8.7% and reduces 
the performance of network-facing server applications 
about 5%. 

5. RELATED WORK 
There is no such a project that can securely commit VM on 
an OS-level virtual machine platform in the literature. 
Popular OS-level VM technologies, e.g., FreeBSD Jail [10], 
Linux-VServer [3], Solaris Zones [4], OpenVZ [5] and 
Virtuozzo [6], do not provide the functionality to securely 
commit VM. Feather-weight Virtual Machine (FVM) [7] only 
checks and abandons the resource updates under the 
security-related file directory and registry entry within a VM 
to eliminate side effects left by malicious programs before 
VM commitment. However, simply examining special 
resource updates confined inside a VM is not sufficient to 
detect all the suspicious behaviors or to recognize the exact 
scope of the attack due to malware execution. Sun et al. [1] 
present an approach for realizing a safe execution 
environment (SEE) that enables users to “try out” new 



 

 

software without the fear of damaging the system in any 
manner. It implemented a commitment approach to ensure 
semantic consistency of the committed results. Before 
commitment, user needs to make his own decision on 
whether the running results contained in a SEE are safe to 
commit. Secom, however, aims at automatically identifying 
unsafe results inside a VM before commitment. Hence, 

Secom differs from paper [1] and can be a complementary 
technology to [1] to help recognize unsafe results. 

As an alternative technology, system call log analysis is 
able to detect compromised system resources and prevent 
them from being committed. Research efforts demonstrate 
the potential capability of log analysis to securely commit 
VM since log analysis can identify compromised files or 
derive malicious process behaviors [2][15][16][17][18]. 
However, the enforcement of log recording and analysis 
often significantly slows down the system which makes it 
very inefficient and possibly unusable. Our former work 
[39] also traces OS-level information flow, but it aims to 
block critical malware behaviors instead of committing safe 
changes in a VM back to the host. It also does not further 
correlate objects into clusters which will facilitate the fast 
commitment. 

Secom is also different from other candidate 
technologies, such as host-based intrusion detection 
[19][20] and anti-malware [21][22], though all of them are 
able to recognize malicious objects. Secom aims to 
recognize all side effects of a malware program imposed 
on a system while intrusion detection and anti-malware 
technologies typically are interested in determining 
whether a single file or process is adverse. A recent 
approach proposed in [14] can remove all effects of a 
malware program, but requires a training stage to 
generate a remediation program for cleaning the impacts 
of a specific malware. Therefore, Secom meets the 
requirement of secure commitment better than these 
candidate technologies. 

The limitation of Secom is that it can only commit VM 
states when VM is stopped. Hence, it can not be applied to 
synchronize states of fault tolerant applications because it 
is unrealistic for the primary VM to do so before 
synchronizing the backup VM each time. 

6. SUMMARY 
In this paper, we propose Secom, a scheme towards 
securely committing OS-level virtual machines, which is 
required by intrusion-tolerant applications and system 
administrations to save benign changes within a VM to the 
host environment. So far, none of the publicly available 
documents on OS-level virtualization technologies ever 
provides a feasible scheme to securely commit VM. We thus 
believe that Secom is the first secure commitment scheme. 
The critical challenge behind securely committing VM is to 
identify compromised objects thoroughly and lightly. To 
address the challenge, we propose Secom that consists of 
three steps. First, it correlates suspicious OS objects within a 
VM together by tracking OS-level information flows and 
grouping them into clusters by intelligently attaching 
different labels to objects. Then, it recognizes a malicious 
cluster by a behavior-based malware detection engine. Last, 
it commits VM while discarding malicious clusters. Secom 
has three novel features. First, Secom can lightly commit 
VM using OS-level information flows and malware 
behaviors. Second, Secom detects and discards malicious 
changes in a cluster fashion to clean up malware impacts 
quickly and thoroughly. Finally, to reduce the false positive 

Fig. 6. Detecting results of the benign samples using 
commercial tools and Secom 

Fig. 7. Detecting results of the changes made by malware 
samples using commercial tools and Secom 

Fig. 8. System call interception overhead. Secom imposes 
1.9%~11.1% additional overhead on individual system calls. 

Fig. 9. Applications’ overall performance. Secom only imposes 
0.8%~8.3% additional overhead on independent applications. 
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Fig. 10. IIS throughput on the original FVM and the Secom-enforced 
FVM. Secom causes about 5% of performance degradation on FVM.
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rate, Secom considers two malware behaviors which are of 
different types and the originator of the processes which 
exhibit the behaviors when identifying a malicious cluster. 
We implemented Secom under the framework of FVM and 
conducted experiments concerning the performance of 
commitment and overhead. The experiment results 
demonstrate that Secom can effectively clean up malware 
impacts when performing commitment and only causes 
0.8% to 8.7% additional performance overhead on system. 
Moreover, compared with commercial anti-malware tools, 
it can erase malware more thoroughly and produce a lower 
false positive rate. Hence, it fits the task of VM commitment 
better.  
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