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Abstract—End-to-end network monitoring is essential to en-
sure transmission quality for Internet applications. However, in
large-scale networks, full-mesh measurement of network perfor-
mance between all transmission pairs is infeasible. As a newly
emerging sparsity representation technique, matrix completion
allows the recovery of a low-rank matrix using only a small
number of random samples. Existing schemes often fix the
number of samples assuming the rank of the matrix is known,
while the data features thus the matrix rank vary over time.

In this paper, we propose to exploit the matrix completion
techniques to derive the end-to-end network performance among
all node pairs by only measuring a small subset of end-to-end
paths. To address the challenge of rank change in the practical
system, we propose a sequential and information-based adaptive
sampling scheme, along with a novel sampling stopping condition.
Our scheme is based only on the data observed without relying
on the reconstruction method or the knowledge on the sparsity
of unknown data. We have performed extensive simulations
based on real-world trace data, and the results demonstrate
that our scheme can significantly reduce the measurement cost
while ensuring high accuracy in obtaining the whole network
performance data.

Index Terms—Matrix Completion, Round-Trip Time Measure-
ment, Sampling Stopping Condition

I. INTRODUCTION

Network monitoring is a central activity in the design,
engineering, and operation of a network. To better understand
the behaviors of the network and its users, obtaining complete
monitoring data of the whole network is critical. However, it
is widely recognized that measuring the performance of all
nodes and paths in a large network is infeasible due to the
high cost involved in taking the measurements and transmitting
the monitoring data. In order to reduce the measurement
overhead, samples are often taken at a subset of nodes and
paths. Despite the lower cost, it is hard to learn the complete
network information with partial network measurements.

For natural signals, Nyquist sampling is followed as a
fundamental theory in the past several decades to determine
the number of samples, where it states that a band-limited
signal can be completely recovered if it is sampled at a rate
larger than two times its bandwidth. As a new sampling theory,

Compressive Sensing (CS) [1]–[4] has attracted a lot of recent
attention with its capability of reconstructing sparse signals
with the number of measurements much lower than that of
the Nyquist sampling rate. Compressive sensing (CS) also
serves as a new paradigm for data gathering in WSNs [2],
[5]–[9]. Although CS-based approaches can save energy and
reduce the sensing cost, they are originally designed to recover
the sparse information such as events in the sensor networks.
In many practical scenarios, applications do not have clear
sparsity features, and we need to get more complete data for
system management purpose rather than just detecting events.

With the rapid progress of sparse representation, matrix
completion [10], [11], a remarkable new field, has emerged
very recently. According to the matrix completion theory, a
low-rank matrix can be accurately reconstructed with a rela-
tively small number of entries in the matrix. Taking advantage
of the low-rank property of the monitoring matrices, matrix
completion brings the benefits of low cost monitoring with
a small set of samples and is shown to work in various
applications [12]–[17].

Existing work based on matrix completion has mostly been
focusing on recovering data in the sensor network environmen-
t. Specifically, a raw monitoring matrix can be reconstructed
with a small number of samples at a certain accuracy level. The
existing work often assumes the matrix rank is known so the
necessary number of samples can be determined accordingly.
However, it is difficult to know the matrix rank during the
on-line monitoring of a practical environment.

In this work, we exploit matrix completion technique to
design a sequential and adaptive sampling scheme which
enables low-cost and high-accuracy monitoring of the end-
to-end network performance. In our proposed scheme, mea-
surements are taken periodically. Within each period, only a
subset of end-to-end paths are measured, and the complete
path information of the whole network can be derived from
the measured data based on matrix completion. Different from
the existing work, we consider the practical case that the rank
of the monitoring matrix is not known. For each monitoring
period, rather than taking all samples together, we propose
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to take samples sequentially within a short duration of time
and we develop a novel sampling stopping condition. We
propose an adaptive sampling strategy based only on the
information derived from the measurements. Our scheme can
significantly reduce the traffic and measurement cost while
ensuring the high data reconstruction accuracy, without any a
priori assumption on the data sparsity and data distribution or
depending on the reconstruction algorithm. Our contributions
are summarized as follows:

• We first analyze large traces of monitoring data on the
Round-Trip Time (RTT), which reveals that there exists
the low-rank feature in the data. Taking advantage of
these structures, we formulate the on-line end-to-end RTT
measurement problem which can be addressed based on
matrix completion with a sequential sampling process.

• To minimize the measurement cost, we propose a stop-
ping condition for the sequential sampling, with which
the sampling process for a period can stop as soon as the
matrix reconstruction reaches a certain accuracy level.

• To increase the reconstruction accuracy while reducing
the total number of samples taken, we propose an adap-
tive sampling strategy to add samples with high informa-
tion gain based on the knowledge from past measurement
data.

• Through comprehensive simulations with real data traces,
we demonstrate that our sequential and adaptive sampling
scheme can accurately acquire end-to-end performance
data with very low cost, which significantly outperforms
the competing methods.

To the best of our knowledge, we are the first to study the
sampling stopping condition in the area of matrix completion.
Based only on the measurement data, this condition is general
and does not depend on the reconstruction method or the
knowledge of the sparsity of the unknown data matrix. We
expect that this stop condition will help for applying the matrix
completion to various on-line monitoring.

The rest of this paper is organized as follows. We introduce
the related work in Section II. The fundamental of matrix
completion is presented in Section III. We present our ob-
servations on the features of end-to-end monitoring with real
RTT trace data and our problem formulation in Section IV.
The proposed sequential and adaptive sampling scheme is
presented in Section V. Finally, we evaluate the performance
of the proposed scheme through extensive simulations in
Section VI, and conclude the work in Section VII.

II. RELATED WORK
Structure and redundancy in data are often synonymous

with sparsity. Sparsity and redundancy make ”sample a few
and infer many” a possible approach to obtain the complete
information in the network monitoring system. There exist two
typical sparsity representation techniques, compressive sensing
and matrix completion. In this section, we review related work
and identify the differences of our work from existing work.

Compressive Sensing (CS) is a technique that can accurately
recover a vector from a subset of samples given that the

vector is sparse [1], [2] with only a few nonzero elements.
Compressive sensing has two features, universal sampling and
decentralized simple encoding, which makes it a new paradigm
for data gathering in sensor networks [2], [5], [6], [18].
Moreover, as a powerful and generic technique for recovering
complete information with a subset of data, CS has been
applied to estimate the lost data [4], reconstruct network traffic
[19], refine localization [20] and improve urban traffic sensing
[21], [22]. The majority of works on CS consider vectors of
data. A naive approach to deal with matrices by using CS
might be to transform these matrices into vectors first and
then apply CS to these vectors. However, some matrices have
some inherent structure (i.e. the RTT matrix in this paper), low
cost data gathering in network monitoring systems has lots of
space to improve.

As a newly emerging technique, matrix completion [10],
[11] concerns the recovery of a low-rank matrix from incom-
plete samples of its entries. Candès et al. [10] show that most
n1×n2 matrices of rank r (r ≪ min {n1, n2}) can be perfectly
recovered with very high probability by solving a simple
convex optimization program provided that the number of
samples is sufficient. New results show that matrix completion
is provably accurate even when the few observed entries are
corrupted with noises [23]. Almost all current techniques as-
sume that the sampled data obey uniform distribution to satisfy
the incoherence requirement in matrix completion, except the
recent work on coherent matrix completion [24], in which
Chen et al shows that the incoherence requirement in matrix
completion can be eliminated, and propose a sampling strategy
according to the local coherence structure of matrix (called
coherence sampling in this paper) to further reduce the sam-
pling cost. The progress of matrix completion techniques bring
new opportunities for data reconstruction by fully exploiting
the low-rank property of the monitoring matrices associated
with various applications [12]–[17]. However, existing matrix
completion solutions often assume that the data matrix has a
known low-rank, and therefore the number of measurements
to take is fixed and determined by the rank of the matrix r.
However, in the case of on-line monitoring, the rank level is
often not known a priori, which makes it difficult to ensure
low cost and accurate monitoring using the matrix completion
techniques.

Despite the recent interests and progress of sparse sensing
techniques, they are mostly applied in the general sensor
networks, and there are very limited efforts to apply the sparse
sensing in network monitoring. The work in [16] applied
matrix-factorization along with Singular Value Decomposition
(SVD) and Non-negative Matrix Factorization(NMF) to net-
work latency prediction. Relying heavily on landmark nodes,
the proposed schemes depend on a strong assumption that
all pairwise measurements among the landmarks and between
the hosts and the landmark node are available. In contrast,
our measurement scheme is more flexible and can be applied
in any sparse monitoring matrices, instead of relying on the
measurements associated with fixed pairs of landmark nodes.

Recently, Liao et.al built an inference model to predict the
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network distance based on distributed Matrix Factorization
by Stochastic Gradient Descent (DMFSGD) [12]. The same
DMFSGD algorithm was adapted in [15] to classify network
performance into binary classes, either ”good” or ”bad”.
Matrix Factorization in DMFSGD depends on the rank of the
monitoring matrices, and the fix rank applied in DMFSGD
makes it not suitable for a practical system with the rank of
the monitoring matrix varying over time.

In this work, we propose to apply matrix completion for
efficient monitoring of end-to-end network performance. To
conquer the challenge of not knowing the rank of the moni-
toring matrix, we propose a sequential and adaptive sampling
scheme which takes measurements in a sequential set of steps
until a stopping condition we propose is reached. Rather
than taking random samples, our information-based adaptive
sampling strategy chooses the paths which can provide higher
information gain to take samples in each subsequent step. Our
performance studies demonstrate that the proposed sampling
strategy significantly outperforms current coherence sampling
strategy.

III. FUNDAMENTALS OF MATRIX COMPLETION

Matrix completion (MC) is a new technique which can be
applied to recover a low-rank matrix from a subset of the
matrix entries [10], [11]. That is, MC can recover an unknown
matrix M ∈ Rn1×n2 with rank r << min {n1, n2} while only
a subset of its entries Mij , (i, j) ∈ Ω are known. The general
form of the MC problem is:

min rank(X)
subject to PΩ (X) = PΩ (M)

(1)

where the sampling operator PΩ : Rn1×n2 → Rn1×n2 is
defined by:

PΩ (X)ij =

{
Xij (i, j) ∈ Ω
0 otherwise (2)

In (1), rank(X) is defined as the number of nonzero singular
values of X , and X is the variable matrix.

However, solving this rank minimization problem in (1)
is often numerically expensive because it is NP-hard. Hence
people tend to consider its relaxation:

min ∥X∥∗
subject to PΩ (X) = PΩ (M)

(3)

where ∥X∥∗ stands for the nuclear norm of the matrix X ,
which is the sum of its singular values δk (X). That is ∥X∥∗ =∑r

i=1 σi(X) , where r = rank(X). It has been shown in
[10], [11], [25], [26] that, under certain reasonable conditions,
(1) and (3) share the same solution given that the number of
samples obeys the following condition:

m ≥ C n6/5rlog n, (4)
where C is a numerical constant and n = max {n1, n2}

Different types of algorithms have been proposed to solve
(3), such as linearized Bregman method [27], fixed point and
Bregman iterative methods [28], and Singular Value Thresh-
olding algorithm (SVT) [27]. Our proposed sequential and
adaptive sampling scheme does not depend on the underlying
reconstruction algorithm. In this paper, we choose the singular
value SVT approach to reconstruct the matrix.

IV. PROBLEM DESCRIPTION

In the networking field, it is important to monitor the
performance of an end-to-end path between two end nodes,
and the monitoring is essential to ensure the performance
expected by Internet applications.

Network paths starting from nearby end nodes often have
overlapping path segments or go through some common
network nodes. This is especially the case in the Internet core
that has simple topology. As a result, data from network mea-
surements often have correlations. For example, the congestion
at a certain link would cause higher delay for all paths that
traverse this link. These correlations also make the rank of
the corresponding monitoring matrix to be low, which in turn
enables the use of matrix completion for low cost network
monitoring.

To present our proposed sequential and adaptive sampling
scheme, we use Round-Trip Time (RTT) monitoring as an
example.

In this section, we first analyze a large set of trace data to
better understand the structure and characteristics of end-to-
end RTT data, and then present our problem formulation and
challenges.
A. Low-Rank Monitoring Data Matrix

For a network consisting of N nodes, we define a monitor-
ing matrix, XN×N , to hold the end-to-end RTT data, with the
(ij)-th entry, Xij , representing the RTT data from node i to
node j. In the matrix, a row corresponds to a source node and
a column corresponds to a destination node.

As discussed earlier, end-to-end performance data of dif-
ferent node pairs normally have strong correlation due to the
sharing of links or nodes among their paths. We first apply
singular value decomposition (SVD) to examine whether the
monitoring matrix has a good low-rank structure. A monitoring
matrix XN×N can be decomposed as:

X = UΣV T (5)
where U is an N ×N unitary matrix, V is an N ×N unitary
matrix, and Σ is an N ×N diagonal matrix with the diagonal
elements (i.e. the singular values) organized in the decreasing
order (i.e. Σ = diag(σ1, σ2, · · · , σr, 0, · · · , 0)). The rank of a
matrix X , denoted by r, is equal to the number of its non-zero
singular values. A matrix is low-rank if its r ≪ N .

If a matrix has low-rank, its top K singular values occupy
the total or near-total energy

∑K
i=1 σ

2
i ≈

∑r
i=1 σ

2
i .

To determine whether X has a good low-rank approxima-
tion, we define a metric as

g (K) =

∑K
i=1 σ

2
i∑r

i=1 σ
2
i

(6)

Although there are several publicly available RTT datasets
[29]–[31], P2PSim [30] and Meridian [31] only contain static
RTT measurements taken between Internet DNS servers and
between network nodes. The only data set that contains
dynamic data is Harvard226, which takes measurements of
application-level RTTs between 226 Azureus clients [29] and
the measurements are taken every five minutes in 4 hours. To
reconstruct the matrix in the presence of rank variation in a
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dynamic environment, this paper chooses Harvard226 as the
data set.

Our algorithm is proposed for efficient online network
monitoring. Ideally, we would like to have complete data
measurements as reference to evaluate the performance of our
scheme. In Harvard226, data measurements are supposed to
be taken every 5 minutes, however we find that there are
many missing data points in a time duration. To mitigate the
problem, we take the average of the RTT values measured
within every period of 30 minutes to build the new data trace,
so the original four-hour Harvard226 data set can be used to
build 8 peer-to-peer RTT measurement matrices.

Fig.1 plots the fraction of the total variance captured by the
top K singular values for the first data matrix of Harvard226
[29].

The X-axis presents the top K singular values. The Y-axis
presents the total variance captured by the top K singular
values, and the variance is calculated by Eq.(6). We find that
the top 10% singular values capture 99% variance in the real
traces. These results indicate that the end-to-end monitoring
matrix X has a good low-rank approximation in the scenario
under investigation.
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Fig. 1. Fraction captured by the top K singular values

To further investigate the characteristics of rank, we plot the
rank of the consecutive eight RTT matrices of Harvard226 in
Fig.2. The X-axis represents the sequence number of each RTT
matrix, and the Y-axis represents the rank of the corresponding
RTT matrix. Obviously, the RTT matrix does not have a
constant rank over time, so the number of samples that needs
to take should adapt accordingly.
B. Problem Formulation

The low-rank feature satisfies the prerequisite for using
matrix completion. For low cost network monitoring, we
propose an sequential and adaptive sampling scheme based
on Matrix Completion to monitor End-to-End performance,
named MC-E2E. In MC-E2E, only a small set of source and
destination pairs are sampled (measured) and other items can
be accurately inferred through the matrix completion. The
monitoring process can be illustrated using Fig.3, where the
diagonal entries of the monitoring matrix are empty as the
performance of a node to itself is of no interest. We apply the
proposed scheme to monitor the RTT of paths.
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Fig. 2. Rank feature of dynamic RTT data
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Fig. 3. Sample a few and infer many. Only a small set of source and
destination pairs are sampled (measured) and others can be accurately inferred
through matrix completion.

We use a Binary Sample Matrix, BN×N , to indicate that
whether an end-to-end measurement is taken at the corre-
sponding node pair, a B is defined as

B = (Bij)N×N =

{
1 if a node pair is measured.
0 otherwise.

(7)
We define a measurement matrix, MN×N , to record the raw

measurement data. Because only a small set of paths (a path
corresponds to a node pair) are measured, obviously, MN×N

is an incomplete monitoring matrix and can be represented as
MN×N = XN×N •BN×N , (8)

where • represents a scalar product (or dot product) of two
matrices, Mij = Xij × Bij . If there is no RTT measurement
made between a particular pair of nodes, of course, it leaves
the corresponding entry in M to be empty. In our study, we
use zero as a placeholder to replace the empty entry.

According to the matrix completion technique introduced
in Section III, when the number of samples is sufficient,
the monitoring matrix XN×N can be recovered from the
measurement matrix MN×N by solving the following problem

min ∥X∥∗
subject to MN×N = XN×N •BN×N

(9)

We denote the reconstruction matrix from (9) as X̂N×N .
Obviously, the sampling matrix BN×N indicates which

node pairs need to take samples. To minimize the measurement
cost while satisfying the matrix reconstruction requirement, the
key problem in our MC-E2E scheme is to identify the optimal
BN×N to schedule the measurement.
C. Challenges

Although the literature work on matrix completion provide
some solutions to recovering data from a subset of samples,
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existing schemes mostly assume the rank of the data matrix
is known. However, without obtaining the actual monitoring
data, the sparsity level (rank-level) of the monitoring matrix is
impossible to know a priori. It is thus very challenging to apply
matrix completion theory in the practical monitoring system
to obtain the complete performance data. Some practical
challenges are as follows.

• To achieve low cost measurement, redundant samples
should be minimized. However, according to Eq.(4), it is
very hard to identify how many samples are sufficient to
recover the complete performance data without knowing
the rank level of the monitoring matrix in on-line network
monitoring.

• To increase the recovery accuracy, instead of random
sampling, we want to design more intelligent sampling
strategy to choose the sample node pairs. However, with-
out a prior knowledge of the matrix structure, designing
such a sampling strategy is very difficult.

V. MC-E2E MEASUREMENT SCHEME

Generally, the end-to-end performance does not vary sig-
nificantly within a short time period, so measurements are
often taken periodically in the network. Rather than taking
measurements from each path in a period, we propose to
randomly sample a subset of paths, and infer other data
based on the matrix completion theory. As the rank of the
measurement matrix is not known and may vary over time,
it is difficult to know how many samples are enough. In this
work, we propose to adaptively sample the network in each
period. We set the initial sampling number to a smaller value
based on the measurement performance of the last period, and
then determine whether more samples need to be taken based
on the recovered data matrix.

In this section, we first present the proposed sampling stop-
ping condition for on-line measurement, and then introduce
our adaptive sampling strategy and the complete MC-E2E
measurement scheme.
A. Sampling Stopping Condition for On-line Measurement

Without the knowledge of the original data, it is hard to
determine whether enough samples have been obtained during
the sequential sampling process. For practical on-line monitor-
ing, it is desirable to have a computationally efficient approach
to make this decision. To gain an insight on possible ways
of finding the sample numbers, we first perform simulations
on the real trace data to learn the relationship between the
sample number and the reconstruction performance. We define
the following metric to measure the error of reconstruction
performance.

Definition 1. Error Ratio: a metric for measuring the recon-
struction error of all entries in the matrix after the interpola-
tion, which can be calculated as∑∣∣∣Xij − X̂ij

∣∣∣∑
|Xij |

(10)

where 1 ≤ i ≤ N and 1 ≤ j ≤ N . Xij and X̂ij in (10) denote
the raw data and the recovered data at (i, j)-th element of X ,

respectively.

In the simulation, we increase the sample number by adding
more random samples sequentially. After we have the mea-
surement data in each sampling step, we then apply the matrix
completion to the measurement data to obtain the recovery
data. Finally, we calculate the error rate by comparing the
recovered data with the raw data trace.
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Fig. 4. The reconstruction error and sample number

From Fig.4, we observe when the sample number becomes
large, the reconstruction error converges to a small value.
Therefore, we have a conclusion that the monitoring matrix
can be accurately recovered from the measurement matrix
when the sample number is large enough, beyond which
adding extra samples will not significantly increase the re-
construction accuracy.

Before we introduce our sampling stopping condition for
sequential sampling in matrix completion, the following theo-
rem presents the relationship between the recovered data and
the sample number.

Theorem 1. For a low rank matrix X , given two sequential
sampling steps t and t + 1 with m samples taken at step t
while additional C random samples taken at step t + 1, the
recovered matrices obtained in these sequential sampling steps
are denoted as X̂(t) and X̂(t+ 1), respectively. If it holds that
X̂(t) = X̂(t+ 1), then the recovered matrix X̂(t) is exactly
equal to the low-rank matrix X .

Proof: We define LM as low sampling bound for the
low rank matrix to be correctly recovered. We will prove
that X̂(t) = X̂(t+ 1) holds only under the condition of
m+ C > m > LM . Our proof includes three parts.

Part 1) When m + C > m ≥ LM , it is easy to know that
X̂(t) = X̂(t+ 1) = X .

Part 2) When m+ C ≥ LM > m, obviously, we have that
X̂(t+ 1) = X and X̂(t) ̸= X . Therefore, X̂(t+ 1) ̸= X̂(t).

Part 3) When LM > m+C > m, by way of contradiction,
suppose that X̂(t) = X̂(t+ 1). Given that X̂(t) = X̂(t+ 1),
the C additional random samples taken at step t + 1 can
be exactly recovered from m samples. We define a recovery
function f (Sm) → f (Sm ∪ SC) to denote that m samples
can exactly recover additional C entries (where |Sm| = m
and |SC | = C).
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Let ℜ be the whole sampling set that covers all entries
in X . Given different random sample sets with C samples
(c0, c1, · · · , cL) and c1 ∪ c2 ∪ · · · ∪ cL = ℜ − Sm, as
X̂(t) = X̂(t+ 1), we have f (Sm) → f (Sm ∪ c0), f (Sm) →
f (Sm ∪ c1), · · · , f (Sm) → f (Sm ∪ cL).

We can easily obtain that f (Sm) → f

(
Sm

L∪
i=0

ci

)
. Be-

cause Sm

L∪
i=0

ci = ℜ, we have f (Sm) → f (ℜ), that is, m

samples can recovered all entries in matrix X , which contra-
dicts that LM > m. Therefore, when LM > m + C > m,
X̂(t) ̸= X̂(t+ 1). (See Fig.5 for an illustration)

Therefore, combining Part 1, Part 2, and Part 3, we can
conclude that X̂(t) = X̂(t+ 1) holds only under the condition
of m+ c > m > LM , which completes the proof.

c4

c2

c3

c1

m

(a) (b) (c)

(d) (e) (f)

Fig. 5. Illustration of the proof by utilizing the recovery function. Fig.5(a) is
the measurement matrix with m samples. Fig.5(b), Fig.5(c), Fig.5(d), Fig.5(e)
are the measurement matrices with m + C samples, the size of sample set
c1, c2, c3, and c4 are the same and equal to C. If X̂(t) = X̂(t+ 1) when
LM > m + C > m, then we have f (Sm) → f (Sm ∪ c1), f (Sm) →
f (Sm ∪ c2), f (Sm) → f (Sm ∪ c3), and f (Sm) → f (Sm ∪ c4).
Because Sm ∪ c1 ∪ c2 ∪ c3 ∪ c4 = ℜ , we have f (Sm) → f (ℜ), that
is, m sample can recovered all entries in matrix X , which contradicts that
LM > m. Therefore, when LM > m+ C > m, X̂(t) ̸= X̂(t+ 1).

According to Theorem 1, we propose our sampling stopping
condition for practical systems though some relaxations.

Definition 2. Given two matrices AN×N and BN×N , we
define A

∆
= B if these two matrices satisfy√∑

(Aij −Bij)
2√∑(

1
2
(Aij +Bij)

)2 ≤ ε (11)

where ε is a small constant.

Definition 3. Sampling Stopping Condition. We denote the
recovered matrices obtained in sequential sampling steps
t and t + 1 as X̂(t) and X̂(t+ 1), respectively. If these
recovered matrices satisfy X̂(t)

∆
= X̂(t+ 1), we declare that

the monitoring matrix is correctly recovered at step t, and we
stop sampling at step t + 1. (See Fig.6 for an illustration of
the proposed sampling stopping condition).
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(c) Measurement Matrix with +  samplesm C
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Fig. 6. The illustration of the sampling stopping condition. Fig.6(a) and
Fig.6(c) are the measurement matrices at step t and step t+ 1, respectively.
Fig.6(b) and Fig.6(d) are the recovered matrices at step t and step t + 1,
respectively. If the recovered matrices satisfy X̂(t)

∆
= X̂(t+ 1), stop

sampling at step t+1; else add more samples in the next sampling step t+2.

B. Information Based Adaptive Sampling Strategy
In a practical on-line monitoring system, it is difficult to

know the features and the rank of the underlying matrix.
Rather than taking random samples, to increase the recovery
accuracy while reducing the total number of samples, we pro-
pose an information-based adaptive sampling strategy where
additional samples are taken based on the learning from the
past measurement data. We would like to start with a small
number of random samples.

Considering two sequential sampling steps t and t + 1,
let S(t) and S(t + 1) be the corresponding sets of samples
taken in the two steps. Obviously, we have S(t) ∈ S(t + 1).
The recovered monitoring matrices are denoted as X̂(t) and
X̂(t+ 1), respectively.

If X̂ij(t) are close to X̂ij(t+ 1) and (i, j) /∈ S(t + 1),
i.e., the item at (i, j) is inferred data not sampling data, we
can conclude that entry (i, j) has been recovered with almost
full information. On the other hand, if X̂ij(t) are far from
X̂ij(t+ 1), it indicates that the entry (i, j) is far from being
accurately recovered, and it would gain more information by
taking a sample at (i, j).

Based on the above analysis, we propose the following
information-based metric, INFO, to quantitatively evaluate
whether an entry is informative:

INFO(i, j) =

∣∣∣X̂ij(t+ 1)− X̂ij(t)
∣∣∣

1
2

∣∣∣X̂ij(t+ 1)+X̂ij(t)
∣∣∣ (12)

If an entry (i, j) has larger INFO(i, j), this entry is more
informative and should be sampled in the next step. Therefore,
our adaptive sampling strategy is designed as follows: taking
samples from the paths corresponding to most-informative
entries in the next step. Fig.7 illustrates our adaptive sampling
strategy.
C. Complete MC-E2E scheme

The complete MC-E2E scheme is shown in Algorithm 1.
Initially, to obtain the basic information of the whole network,
the measurements are taken uniformly at random among all
node pairs. On line 2, the initial number of uniform samples
is determined based on the value of β. If β is too small,
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(e) INFOmatrix (f) ( +2)M t ˆ(g) ( +2)X t

Fig. 7. Illustration of the adaptive sampling strategy. Fig.7(a), Fig.7(c) are the
measurement matrices at step t and step t+1, respectively. The numbers on
the sampled locations are the real measurement values. Fig.7(b), Fig.7(d) are
the recovered matrices at step t and step t+ 1, respectively. The data shown
on the inferred locations are the inferred values. After computing every entry’s
INFO metric according to Eq(12), we have an INFO matrix in Fig.7(e) and
we find entries (3,2) and (5,6) are the most-informative. According to our
sampling strategy, we add samples (3,2) and (5,6) at step t+ 2, as shown in
Fig.7(f).

it would require too many additional samples later; while if
it is too large, it may take unnecessary measurements and
waste network resources. In practice, we can utilize the history
RTT data to investigate the impact of β on the sampling
cost and identify a β in the future sampling period. In the
simulation part, we will investigate the relationship between
β and the sampling cost and set an optimal β according to the
relationship.

After the uniform sampling, adaptive samples are taken in
sequence. By comparing the recovered data matrices obtained
in two consecutive steps, the most-informative locations are
chosen to sample in the next sampling steps. According to
our sampling stopping condition, adaptive measurements will
continue until the difference between the recovered matrices
X̂(t) and X̂(t+1) is smaller than a threshold ε, i.e., X̂(t)

∆
=

X̂(t+ 1).
On line 12, α is a parameter which has an impact on the

number of samples added in each sampling step. To help the
sampling algorithm to quickly reach the desired value, α is
set as in Eq.(13). Obviously, we have 0 ≤ α ≤ 1. If the
monitoring matrix is far from being accurately recovered, α is
large, more samples are added in one sampling step; otherwise,
fewer samples are added in one sampling step to help the
algorithm to converge. In this paper, we set µ = 0.01 in
Eq.(13). Our adaption design helps to quickly find the desired
sample number while reducing the measurement cost.

VI. PERFORMANCE EVALUATIONS

In this section, we utilize Error Ratio (defined in Eq.(10))
to evaluate the performance of proposal scheme over public
RTT data set Harvard226 [29].

Algorithm 1 Matrix Completion Based Network Monitoring
1: Initialize t = 0.
2: Apply the uniform sampling to obtain the initial measure-

ment matrix M(t), and the current sample set is denoted
by Ω with |Ω| = β×N ×N where β ∈ [0, 1] and N ×N
is the total entries in the monitoring matrix.

3: Apply matrix completion to M(t) and obtain the recov-
ered matrix X̂(t).

4: Initialize an extra sample set Ω′ with |Ω′| = 0.5N logN .
5: Add extra Ω′ samples to the current sample set Ω, that is

Ω = Ω∪Ω′, then obtain the measurement matrix M(t+1)
at time t+ 1

6: Apply matrix completion to M(t + 1) and obtain the
recovered matrix X̂(t+ 1).

7: if X̂(t)
∆
= X̂(t+ 1) then

8: According to the Sampling Stopping Condition, stop
sampling.

9: Return X̂(t+ 1) as the correctly recovered matrix.
10: else
11: For entries not sampled before, that is, (i, j) /∈ Ω,

calculate the entries’ INFO according to Eq(12)
12: Sort INFO(i, j) in the descending order, and select

the first αN logN entries into Ω′, where α can be
calculated as α =

∑
ij θij

N×N where

θij =

{
1

|X̂ij(t+1)−X̂ij(t)|
1
2 |X̂ij(t+1)+X̂ij(t)|

> µ, (i, j) /∈ Ω

0 otherwise
(13)

where µ is a small constant.
13: t = t+ 1, goto step 5.
14: end if

Fig. 8. Impact of ε

A. Parameter study
1) Impact of ε

According to our sampling stopping condition, adaptive
measurements will stop when the difference between the
recovered matrices X̂(t) and X̂(t + 1) is smaller than a
threshold ε, i.e., X̂(t)

∆
= X̂(t + 1). To investigate how ε

impacts on the reconstruction accuracy, we vary ε and run
Algorithm 1 for Harvard226. By comparing the recovered data
with the raw data trace, we calculate the error ratio. As shown
in Fig.8, as expected, the construction error increases as ε
increases. Moreover, we observe that when ε = 0.03, the
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construction error can be controlled to 0.1, a very low value.
Therefore, in our following simulations, we set ε = 0.03.
2) Impact of β

Fig. 9. Impact of β.

In Algorithm 1, β is the fraction of the number of uniform
samples. To investigate how β impacts the sampling cost (the
number of samples), we vary β and run Algorithm 1 for trace
data Harvard226.

Fig.9 plots the number of samples required for successful
recovery (y-axis) as β (x-axis) varies. For small values of β,
the basic information obtained in the unform sampling phase
will be far from reflecting the real information of the data
matrix, which makes the sampling cost high. On the other
hand, too large a β also leads to a high sampling cost, as
some samples are taken unnecessarily. We set β = 12.5%
in the following simulations, which allows us to achieve the
lowest sampling cost.

B. Performance Comparison
To evaluate the performance of our proposed scheme, we

implement two adynamic sampling schemes (MC-E2E and
STOP-Coherence) and four static sampling schemes (Uniform-
0.1, Uniform-0.2, Uniform-0.3, and Uniform-0.4) which take
a fixed percentage of samples in each case. STOP-Coherence
is implemented by replacing the information-based sampling
strategy of our MC-E2E (in the line 11-12 in Algorithm 1)
with the coherence sampling strategy [24].

MC-E2E and STOP-Coherence start with a uniform sam-
pling phase to randomly measure a subset of paths with the
sample ratio β = 12.5%. Beyond the initiation period, the
proposed adaptive sampling strategy in MC-E2E is applied
to select the most-informative node pairs in the following
sampling steps; In STOP-Coherence, the coherence sampling
strategy proposed in [24] is taken to select a fix number
of samples in following sampling steps. Sample numbers in
both dynamic schemes are added sequentially to better meet
the implementation requirement of the practical system. Our
proposed stopping condition is applied to end the sampling
process as soon as the difference between two consequently
recovered data matrices is very small.

Uniform-0.1, Uniform-0.2, Uniform-0.3, and Uniform-0.4
are four static sampling schemes where uniform sampling
strategies are applied to satisfy the fix sampling ratios (0.1,
0.2, 0.3, and 0.4).
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Fig. 10. Error ratio under the proposed matrix completion based scheme

1) Error Ratio
In Fig.10, we compare the reconstruction errors of the six

schemes. The reconstruction errors of Uniform-0.1, Uniform-
0.2, Uniform-0.3, and Uniform-0.4 fluctuate over the time
period simulated, while the errors of STOP-Coherence and
our MC-E2E remain low and stable. As the rank of the RTT
trace data varies with time, simply sampling with a fixed ratio
cannot capture the data changes in a dynamic network.

If the samples are simply taken randomly as done in the
literature work with a fixed ratio, even with a high sampling
rate 0.4, the corresponding error rate under Uniform-0.4 can
still reach 13%. In contrast, the error rate of STOP-Coherence
and our MC-E2E can be well controlled to be around 0.1
during the whole testing period.

Although different sampling strategies are adopted in STOP-
Coherence and our MC-E2E, the reconstruction errors under
different schemes are all close to 0.1. These results demon-
strate that, our proposed stopping condition is very effective in
determining the number of samples needed for accurate matrix
recovery and the stopping condition does not depend on the
sampling strategies.
2) Total Sample Number

Fig.11 shows the sampling number under different sampling
schemes. In consistence with the results shown in Fig.10, the
curves in all the schemes are parallel to the X-axis except
STOP-Coherence and our MC-E2E. This is because the other
schemes utilize a fixed sampling ratio while STOP-Coherence
and our MC-E2E can adjust the sampling ratio according the
rank variation to accurately recover the data matrix while
reducing the sampling cost.

Although both MC-E2E and STOP-Coherence use our
proposed sampling stopping condition, the difference in their
sampling strategies result in different sampling cost. Compared
with the coherence sampling strategy, our information-based
adaptive strategy can further reduce the sampling cost signifi-
cantly. This demonstrates the effectiveness of our information-
based sampling strategy in choosing new samples.

All these results demonstrate that our scheme provides
a practical way to apply matrix completion technique in
monitoring systems to obtain the whole network performance
data with low measurement cost .

2015 IEEE Conference on Computer Communications (INFOCOM)

2450



1 2 3 4 5 6 7 8

0.5

1

1.5

2

2.5
x 10

4

Sequence number of each RTT matrix

T
o

ta
l 

sa
m

p
le

 n
u

m
b

er

 

 

Uniform-0.1 Uniform-0.2 Uniform-0.3 Uniform-0.4 MC-E2E STOP-Coherence

Fig. 11. Total sample number.

VII. CONCLUSION

For low cost network monitoring, this paper proposes to
apply matrix completion for high-accuracy monitoring of the
end-to-end network performance. To conquer the challenge of
not knowing the rank of the monitoring matrix, we propose
to take samples sequentially within a short duration of time
and develop a novel sampling stopping condition. In addition,
we propose an information-based adaptive sampling strategy
to determine where to take additional samples. The sam-
pling stopping condition and the adaptive sampling strategy
are based only on the measurement observed, which makes
our scheme suitable for on-line monitoring. We demonstrate
through real-world trace data that our stopping condition and
information-based adaptive sampling scheme are very effective
in ensuring accurate and low cost network monitoring.

Although this paper focuses on RTT measurement, our
scheme is flexible to apply in various networked monitoring
systems including the monitoring of smart grid and other
infrastructure.
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