
MultiLive: Adaptive Bitrate Control for Low-delay
Multi-party Interactive Live Streaming

Ziyi Wang∗, Yong Cui∗, Xiaoyu Hu∗, Xin Wang†, Wei Tsang Ooi‡, Yi Li§
∗Department of Computer Science and Technology, Tsinghua University, China

†Department of Electrical and Computer Engineering, State University of New York at Stony Brook, USA
‡School of Computing, National University of Singapore, Singapore

§PowerInfo Co., Ltd., China

Abstract—In multi-party interactive live streaming, each user
can act as both the sender and the receiver of a live video stream.
Designing adaptive bitrate (ABR) algorithm for such applications
poses three challenges: (i) due to the interaction requirement
among the users, the playback buffer has to be kept small to
reduce the end-to-end delay; (ii) the algorithm needs to decide
what is the bitrate to receive and what is the set of bitrates
to send; (iii) the delay and quality requirements between each
pair of users may differ, for instance, depending on whether
the pair is interacting directly with each other. To address these
challenges, we first develop a quality of experience (QoE) model
for multi-party live streaming applications. Based on this model,
we design MultiLive, an adaptive bitrate control algorithm for the
multi-party scenario. MultiLive models the many-to-many ABR
selection problem as a non-linear programming problem. Solving
the non-linear programming equation yields the target bitrate for
each pair of sender-receiver. To alleviate system errors during
the modeling and measurement process, we update the target
bitrate through the buffer feedback adjustment. To address the
throughput limitation of the uplink, we cluster the ideal streams
into a few groups, and aggregate these streams through scalable
video coding for transmissions. We conduct extensive trace-driven
simulations to evaluate the algorithm. The experimental results
show that MultiLive outperforms the fixed bitrate algorithm, with
2-5× improvement in average QoE. Furthermore, the end-to-end
delay is reduced to about 100 ms, much lower than the 400 ms
threshold recommended for video conferencing.

Index Terms—Multi-party interactive live streaming, Adaptive
bitrate control

I. INTRODUCTION

Live streaming platforms, such as YouTube Live and Twit-
ter’s Periscope, have attracted millions of daily active users [1],
[2], [3]. Since user engagement increases the revenue, these
platform providers are increasingly interested in supporting
interactive live streaming experience for their users, leading
to multi-party interactive live video streaming as an emerging
class of applications. In such an application, a user not only
acts as a source of video, but also receives one or more streams
from other users in the same session simultaneously. An exam-
ple is collaborative talent show, where various geographically
distributed online streamers perform the arts of singing, acting,
playing instruments, or other activities together and interact
with each other by exchanging streams [4], [5]. Platforms that
support such application (e.g., Inke.tv1 and Douyu.tv2) have

1https://www.inke.com
2https://www.douyu.com

attracted hundreds of millions of users in recent years.
Three challenges arise from this new class of applications.

First, applications such as collaborative talent show require
a much tighter synchronization among the users. Schuett [6]
reported a delay above 30ms would disrupt the tempo, but a
delay of up to 70ms can be tolerated. This delay requirement
is stricter than other multi-party live applications, such as
multi-party video conferencing, where some existing work has
achieved a tolerable delay of around 400 ms [7]. Such low
tolerance to end-to-end delay means that the buffer has to be
kept small at the sender, the server, and the receiver, increasing
the chances of buffer underflow and stalls in the presence of
network jitters and inaccurate throughput estimation.

Second, given the heterogeneity of the devices and the
network conditions of the users, it is important for a receiver
to receive a stream at a bitrate that is best suited for its
requirement to maximize its quality of experience (QoE).
There are many existing studies on receiver-driven adaptive
bitrate (ABR) algorithms [8], [9], [10], [11], [12], [13] that
address this question. Since each receiver is also a sender,
however, a new question that arises here is: at what bitrates
should each sender encode its video stream to meet the
requirement of the receivers? Many existing solutions, in the
context of multi-party video conferencing, call for the use of
a transcoding server (e.g., [14], [15], [16], [17]), in which
case the sender only needs to send a single stream at a
high-enough bitrate and the transcoding server transcodes the
stream to the required bitrate for the receiver. Such solution,
however, requires additional computation in the cloud and
increases the infrastructure cost. Furthermore, the transcoding
step introduces additional delay. We therefore consider the
scenario where the server only relays the stream without
transcoding and the sender encodes the video into multiple
streams at the bitrates required by the receivers. Since the
uplink of a sender is likely a bottleneck, a sender can only
generate a limited number of streams and may not meet the
needs of every receiver.

Third, for a receiver, the delay and quality requirements
may differ for each sender. For instance, in a collaborative
talent show, the end-to-end delay between a performer and
a spectator can be higher than between two performers; This
spectator may require higher video quality from the performers
than that of other spectators.

In this paper, we present a system for multi-party live
streaming to address the challenges above. Our system has
the following salient features. First, to minimize delay and
stall duration, the streamer can increase or decrease the
playback speed. Second, to more effectively utilize the uplink
bandwidth, we adopt scalable video coding (SVC) to aggregate
multi-rate streams sent from a sender. The server can then
distribute different layers to different receivers. Third, we
develop a QoE model integrates the different considerations of
multi-party interactive live streaming applications. By assign-
ing different weights to different terms, the system is able to
personalize the preferences between each pair of users. Finally,
we introduce the core component to this system, MultiLive,
which is an adaptive bitrate control algorithm that is run
centrally in the server, considering the various constraints in a
many-to-many scenario as a non-linear programming problem
that maximizes the overall QoE. MultiLive periodically solves
the non-linear programming problem to obtain the target
bitrate for each sender and each receiver and, in the interim,
uses a feedback control algorithm to adjust the target bitrate
to react to fluctuating throughput and variations in video
encoding rate. The target bitrates are clustered into what the
senders and the server actually send while minimizing QoE
loss. To the best of our knowledge, we are the first to design
and implement an adaptive bitrate control algorithm for multi-
party interactive live streaming that considers the many-to-
many ABR problem while maximizing the QoE considering
delay, smoothness, quality, and stall, holistically.

We conducted extensive trace-driven simulations to evaluate
the algorithm. We collected and released, as an open dataset,
more than 72 hours of uplink and downlink throughput mea-
surements from live streaming servers. In addition, Belgium
4G/LTE dataset [18] is used to test the performance. The
results show that MultiLive outperforms the fixed bitrate algo-
rithm, with 2-5× improvement in average QoE. Furthermore,
the delay has been reduced to about 100 ms.

The rest of the paper is structured as follows. Section
II presents the system architecture. Section III formulates
the problem. Section IV elaborates the details of MultiLive.
Simulation results are presented in Section V. Section VI
discusses the related work. Finally, we conclude the paper in
Section VII.

II. SYSTEM ARCHITECTURE

We first present the architecture of our system (See Fig. 1).
The three major logical entities are: the senders, the server,
and the receivers. We only focus on the senders and receivers
that participate in the same live streaming session here. In the
current multi-party interactive live streaming applications, the
number of streamers in a session is in the order of tens or less.
Note that, despite our distinction of senders and receivers, in
practice, the same streamer acts as both a sender and a receiver.

Each sender generates an SVC-coded, multi-rate, video
stream and transmits it to the server. We adopt a push-based
approach, where a frame is sent as soon as it is generated.
This approach avoids the request-response overhead used in

1

1

2

2

3

3

4

4

𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑
𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐

𝑢𝑢𝑢𝑢𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙
𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐

𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠:
𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚-𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠

𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑖𝑖𝑖𝑖𝑖𝑖

𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠:
𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎

𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐

𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟:
𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠
𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐

240𝐾𝐾𝐾𝐾𝐾𝐾𝐾𝐾 720𝐾𝐾𝐾𝐾𝐾𝐾𝐾𝐾

𝑄𝑄𝑄𝑄𝑄𝑄1 𝑄𝑄𝑄𝑄𝑄𝑄2 𝑄𝑄𝑄𝑄𝑄𝑄3 𝑄𝑄𝑄𝑄𝑄𝑄4

max
𝑅𝑅𝑤𝑤
𝑖𝑖𝑖𝑖
𝑄𝑄𝑄𝑄𝑄𝑄

𝜂𝜂1 𝜂𝜂4
𝜂𝜂2 𝜂𝜂3

Fig. 1. The architecture of multi-party interactive live streaming.

pull-based approach, commonly used in DASH-based video-
on-demand streaming.

Upon receiving a frame, the server buffers it and relays the
appropriate SVC layers of the frame to each receiver, also
using the push-based approach. The decisions of: (i) what is
the set of bitrates that each sender should produce, (ii) what is
the bitrate that each receiver should receive, are determined by
the server through an adaptive bitrate controller. The adaptive
bitrate controller takes, as inputs, the uplink throughput of each
sender, the downlink throughput of each receiver, the state of
buffer occupancy at each receiver, and makes these decisions
to maximize the total QoE of each receiver. The server also
additionally collects the state information (buffer occupancy,
downlink throughput, receiver’s preferences for each sender)
from each receiver and disseminates its decision (the set of
bitrates) to the corresponding sender.

The receiver maintains a playback buffer for each sender.
This partitioning of frames from each sender allows the
receiver to manage the priorities and preferences across the
senders (e.g., higher quality for a sender, lower delay for
another). During playback, the receiver may also adjust the
playback speed. When the buffer occupancy rises above a high
threshold, the receiver plays back the video at a faster rate
to “catch up” and reduce the end-to-end delay of subsequent
frames. When the buffer occupancy falls below a low thresh-
old, the receiver plays back the video at a slower rate, to delay
the onset of stalls and thus reducing the duration of stall.

As noted above, we adopt a frame-level granularity in
transmission. This approach is commonly used in DASH-
based live streaming system using chunk-encoding in Common
Media Application Format (CMAF). Transmitting, buffering,
and playing back at a frame-level granularity, instead of
segment-level granularity commonly used in video-on-demand
systems, keeps the end-to-end delay small.

To summarize our design decisions, our system architec-
ture supports the following objectives: First, by processing
at a frame-level granularity, adopting push-based transmis-
sion, increasing playback speed when needed, and avoiding
transcoding at the server, the delay is kept small. Second,
using SVC, the sender sends only a single stream to meet the

bandwidth requirements of multiple heterogeneous receivers.
Finally, by optimizing the QoE (through finding the best
bitrate configuration), we maintain a high quality of experience
for the users. This final component is the focus for the
rest of this paper. In the next section, we will first present
some preliminaries and state the optimization problem. This
presentation is followed by Section IV, where we will present
how the system optimizes the QoE.

III. PROBLEM FORMULATION

In this section, we present a model of the network constraint,
buffer occupancy, and QoE. We end this section with a
statement of the optimization problem to be solved at the
server to maximize the QoE. To facilitate our presentation,
the major notations are summarized in Table I.

A. Network Constraint

Let Cup(i)w denote the average uplink throughput when
sender i sends the w-th frame and Cdown(j)w denote the average
downlink throughput when receiver j receives the w-th frame.
Let Rijw denote the bitrate of the w-th frame from sender i to
receiver j.

Considering the uplink of the sender i, the total throughput
of the streams it generates must be less than the limit of the
uplink throughput after aggregating the streams with SVC.
Considering the characteristics of clustering and SVC, the
constraints of the uplink can be relaxed as:

max
j

{
Rijw
}
≤ Cup(i)w . (1)

Similarly, considering the downlink of the receiver j, the
sum of the bitrates of several streams it receives must be less
than the total downlink throughput:∑

i

Rijw ≤ Cdown(j)w . (2)

B. Buffer Model

The buffer in this paper refers to the queue of video frames
to be consumed, used mainly to cope with network jitters. The
senders, server, and receivers each have one or more buffers.
Among them, the receiver’s buffers are directly related to the
playback condition, and are more important for the QoE of the
receiver. So we focus on the receiver’s buffers in our model.

The receiver’s playback buffer contains video frames that
have been received but yet to be played back. We let Bdown(ij)w

be the receiver buffer occupancy (in unit of time) when
receiver j starts to receive the w-th frame of sender i. Let
C
down(ij)
w be the average uplink throughput when sender i

sends the w-th frame of i. Let Sijw be the size of the w-th frame
and Dij

w be the duration of the w-th frame. The time taken
to fully receive the w-th frame is Sijw /C

down(ij)
w . The buffer

occupancy increases by Dij
w seconds after the w-th frame is

received and decreases as the receiver plays back the video.

TABLE I
MAJOR NOTATIONS USED IN THIS PAPER.

Notation Description

C
up(i)
w Average uplink throughput when i sends the w-th frame

C
down(j)
w Average downlink throughput when j receives the w-th frame

C
down(ij)
w Average downlink throughput when j receives the w-th frame

of i

B
down(ij)
w Current receiver buffer occupancy when j starts to receive

the w-th frame of i

B̂
down(ij)
w Target receiver buffer occupancy when j starts to receive the

w-th frame of i

B
down(ij)
fast Buffer occupancy threshold of fast playback from i to j

B
down(ij)
slow Buffer occupancy threshold of slow playback from i to j

T
up(i)
w System time when i starts to generate the w-th frame

T
down(ij)
w System time when j starts to receive the w-th frame of i

Rij
w The real bitrate of the w-th frame from i to j

R̂ij
w The target bitrate of the w-th frame from i to j

Sij
w The size of the w-th frame from i to j

Dij
w The duration of the w-th frame from i to j

P ij The playback scaling factor from i to j

Qij
K Cumulative video quality of K frames from i to j

V ij
K Cumulative video quality variations of K frames from i to j

Eij
K Cumulative rebuffer duration of K frames from i to j

Lij
K Delay of K frames from i to j

So the evolution of the receiver buffer occupancy level can be
derived as:

B̂
down(ij)
w+1 =

(
Bdown(ij)w − Sijw

C
down(ij)
w

)
+

+Dij
w , (3)

where B̂down(ij)w+1 is the target buffer occupancy when receiver j
starts to receive the next frame and (x)+ = max{x, 0}. Note
that if Bdown(ij)w < Sijw /C

down(ij)
w , the buffer will become

empty while the receiver is still receiving the w-th frame,
leading to stalls (i.e., the receiver’s playback buffer does not
have frames to render). So the first term in the equation above
cannot be negative.

In addition, we consider adjusting the playback speed to
achieve fine-grained delay control, according to the current
buffer occupancy Bdown(ij)w and two thresholds: Bdown(ij)fast and
B
down(ij)
slow . When the buffer occupancy is more than the fast

playback threshold, Bdown(ij)w > B
down(ij)
fast , the receiver plays

back faster to reduce the delay; When the buffer occupancy is

less than the slow playback threshold, Bdown(ij)w < B
down(ij)
slow ,

the receiver slows down the playback to alleviate stall. Let P ij

be the scaling factor that controls the video playing speed from
the sender i to the receiver j, with P ij = 1 means normal
playback. Then the actual duration of video to playback
per second is P ij . The duration of video received from the
downlink per second is Cdown(ij)w /Rijw . The net consumption
rate of video duration is the difference between the two values.
After fast/slow playback, the video delay changes from Lijw to
Lijw′ . The catch-up time we need is (Lijw − L

ij
w′)/(P ij − 1).

Multiplying the catch-up time by the net consumption rate is
the amount of change in the buffer. So the evolution of the
receiver buffer occupancy level considering playback speed
adjustment (P ij 6= 1) can be derived as:

B̂
down(ij)
w′ = Bdown(ij)w −

(
P ij − C

down(ij)
w

Rijw

)
·
Lijw − L

ij
w′

P ij − 1
.

(4)
Eq. (4) is used to predict the buffer occupancy only if the

fast/slow playback occurs. The playback scaling factor P ij

can be flexibly selected according to actual conditions. In the
case of normal playback, Eq. (3) is used.

C. QoE Model

In multi-party interactive live streaming, the overall session
QoE should be considered at two different levels: (i) the
session QoE should be the weighted sum of each receiver’s
QoE, and (ii) a receiver’s QoE then depends on the factors in
which it receives data from others. We mainly refer to the QoE
defined by Yin et al. [12] and Ahmed et al. [19]. Specifically,
each receiver’s QoE includes the following four aspects:

(1) Cumulative video quality QijK : Let q(·) be a non-
decreasing function that maps bitrate Rijw to the perceived
video quality q(Rijw). Then the cumulative video quality of
K consecutive frames from sender i to receiver j is:

QijK =

K∑
w=1

q(Rijw). (5)

(2) Cumulative video quality variations V ijK : From the re-
ceiver’s perspective, frequent bitrate switching is undesirable.
Therefore, the QoE model should add video quality variations
as penalty. The cumulative video quality variations of K
consecutive frames sent from sender i to receiver j is:

V ijK =

K−1∑
w=1

|q(Rijw+1)− q(Rijw)|. (6)

(3) Cumulative stall duration EijK : When the buffer is
drained out, a stall occurs and deteriorates the receiver’s QoE.
Therefore, the stall duration should also be a penalty in the
QoE model. The cumulative stall duration of K consecutive
frames sent from sender i to receiver j is:

EijK =

K∑
w=1

(
Sijw

C
down(ij)
w

−Bdown(ij)w

)
+

. (7)

(4) Delay LijK : Video-on-demand (VoD) streaming has a
more relaxed requirement of delay and can use a large
playback buffer, whereas live streaming cannot. To maintain
interactivity, the most important requirement is low delay [20].
Therefore, the QoE model should also add delay as penalty.
Let Tup(i)w denote the system time when sender i starts to
generate the w-th frame and T down(ij)w denote the system time
when receiver j starts to receive the w-th frame of sender i.
Then the delay of after sending K consecutive frames from
sender i to receiver j is:

LijK = T
down(ij)
K − Tup(i)K +B

down(ij)
K . (8)

Since receivers have different preferences for the above four
aspects, we define the receiver j’s QoE as the weighted sum
of the above four aspects, namely:

QoEj =
∑
i

(
αijQ

ij
K − βijV

ij
K − γijE

ij
K − δijL

ij
K

)
, (9)

where αij , βij , γij , and δij are the weights of the different
QoE terms between sender i and receiver j. Note that these
weights are per sender-receiver pair, allowing each receiver to
personalize its QoE preference to different senders depending
on the amount of interaction needed and the context of the
application. Finally, the overall session QoE is the weighted
sum of all receivers’ QoE:

QoE =
∑
j

ηjQoEj , (10)

where ηj is the weight of the j-th receiver.
The server obtains global state information and calculates

the bitrates that each sender should produce. Then it informs
senders of these information. Senders generate the streams as
required. So the problem is, to maximize the global QoE, how
to design this adaptive bitrate control algorithm running on
the server? That is, given the current buffer occupancy and
uplink/downlink throughput prediction, how many streams are
generated by each sender and what are their real bitrates Rijw ?
The problem can be formulated as:

max
Rij

w

QoE

s.t. (1) (2) (3) (4)
(11)

IV. ALGORITHM DESIGN

In this section, we first give an overview of the algorithm,
namely MultiLive. Then we elaborate the solution in three sub-
sections, including non-linear programming solution, buffer
feedback adjustment, and bitrate clustering.

A. Design Overview

The MultiLive algorithm workflow is shown in Fig. 2. To
find the number of streams and the bitrate of each stream
Rijw a sender i can transmit to the receiver j, we split the
solution into two steps. First, we calculate the target bitrate
R̂ijw for each pair of sender-receiver. Both the receivers and
senders have to jointly decide which bitrate to produce and
which bitrate to receive. Specifically, we build a non-linear

MultiLive
Adaptive Bitrate Controller

Non-linear
Programming

Buffer Feedback
Adjustment

Bitrate Clustering

Calculate Update

Streamers’
Buffer Occupancy

Uplink and Downlink
Throughput Prediction

The Number and Bitrate
Value of Streams that Each

Streamer Generates

Target Bitrate �𝑅𝑅𝑤𝑤
𝑖𝑖𝑖𝑖

Real Bitrate 𝑅𝑅𝑤𝑤
𝑖𝑖𝑖𝑖

Fig. 2. The algorithm workflow of adaptive bitrate controller.

programming solution to get the target bitrate R̂ijw . It is also
updated through the buffer feedback adjustment to alleviate
system errors. Second, we cluster and aggregate the target
bitrate R̂ijw to the real bitrate Rijw to transmit according to
the SVC requirements.

B. Non-linear Programming (NLP)

In a multi-party scenario, finding the target bitrate is an op-
timization problem that takes into account various constraints
from a global perspective, as we have formulated in Eq. (11).
Previous studies [21], [22] show that as the bitrate increases,
the rate of increase in video quality score decreases. In other
words, there is no linear correlation between the bitrate of a
video stream and its perceptual quality. Guo et al. [16] used
logarithmic function to characterize the relationship between
video quality and video bitrate. Based on these studies, the
video quality in our QoE objective function is set to be loga-
rithmic. Also, the target bitrate is calculated on a continuous
domain rather than discrete.

For a constrained non-linear programming problem, the
constraints can be converted to penalty to turn the problem
into an unconstrained one, which is then solved by the
gradient descent method. Using this approach, we build a non-
linear programming (NLP) solution to solve Eq. (11) and get
preliminary result (target bitrate R̂ijw). Although the problem
can be solved in polynomial time complexity, it is not fast
enough for a real-time update. So we need a complementary
approach to calculate the target bitrate faster. Furthermore, the
input parameters are not always accurate due to factors, such
as inaccurate throughput estimates and fluctuations in video
encoding rate. Therefore, we introduce an additional step,
buffer feedback adjustment, which updates the target bitrate
based on the buffer state to alleviate the input errors. We will
introduce it in the next section.

C. Buffer Feedback Adjustment (BFA)

Since the change of buffer occupancy reflects the change of
throughput, we can make some feedback adjustments to the
target bitrate R̂ijw . In this way, we may reduce the through-
put prediction errors and make target bitrate more accurate.

In Eq. (3), given the buffer and throughput when the receiver
starts to receive the w-th frame, we can estimate that the
buffer occupancy of the (w+1)-th frame when the throughput is
unchanged. However, at the moment when the receiver actually
starts to receive the (w+1)-th frame, we can get the actual
buffer occupancy. The difference between the target value and
the real value reflects the change rate of the throughput. It
determines the range of target bitrate adjustment.

To perform the adjustment, we refer to the PID con-
troller [23], a widely used feedback control technique. It
includes proportional controller, integral controller and deriva-
tive controller. It monitors the error value et, which is the
difference between the target value and the real value. Then
it can output the control signal ut:

ut = Kpet +Ki

∫ t

0

eτdτ +Kd
det
dt
, (12)

where the three parameters Kp, Ki, and Kd represent the
coefficients for the proportional, integral, and derivative terms
respectively. The derivative term is sensitive to the measure-
ment noise [24]. So we make some modifications to suit our
specific scenario. In our control policy, the parameter for the
derivative control Kd equals zero. So strictly speaking, our
controller is a PI controller. The remaining two terms are as
follows:

(1) Proportional controller calculates the difference between
the real buffer and the target buffer to alleviate the prediction
errors. We use Zp to represent this term:

Zp = Kp

(
B
down(ij)
w+1 − B̂down(ij)w+1

)
. (13)

(2) Integral controller integrates the difference between the
real buffer and the target buffer to alleviate cumulative system
errors. We use Zi to represent this term:

Zi = Ki

∫ w+1

0

(
B
down(ij)
t − B̂down(ij)t

)
dt. (14)

Therefore, we obtain the updated target bitrate value based
on the following buffer feedback adjustment (BFA):

R̂ijw+1 = R̂ijw + Zp + Zi. (15)

D. Bitrate Clustering

Through the non-linear programming solution and the buffer
feedback adjustment, we can get the target bitrate R̂ijw for
each pair of sender-receiver. The sender, however, may not
have the encoding capacity or uplink bandwidth to encode
and transmit at each of these target bitrates. To alleviate the
problem, the server clusters the target bitrates R̂ijw to obtain
the actual bitrates Rijw , according to which the sender produces
the sub-streams and uses the SVC to aggregate them into one
stream. This approach reduces the overhead of encoding and
transmission.

In the process of clustering, we define QoE loss as the
difference between the QoE value of the target bitrate and
the QoE value of the cluster centroid bitrate. The ideal
situation is that each sender produces an SVC stream that

Algorithm 1 Bitrate Clustering
Input: N : the number of senders;

R̂ijw : the target bitrate of the w-th frame from i to j;
mi: the number of streams generated by sender i

Output: µi1, µi2 · · · µimi
: the cluster centroids of sender i

1: Initialize cluster centroids µi1, µ
i
2 · · · µimi

randomly
2: for i = 1 to N do
3: repeat
4: for j = 1 to N and j 6= i do
5: class(R̂ijw)← argmin

k
|QoE(R̂ijw)−QoE(µik)|

6: end for
7: for k = 1 to mi do

8: µik ←
∑
j

1(class(R̂ij
w)=k)R̂

ij
w∑

j
1(class(R̂ij

w)=k)

9: end for
10: until convergence
11: end for
12: return µi1, µ

i
2 · · · µimi

minimizes overall QoE loss of receivers. We use the K-means
clustering algorithm for clustering. The details are shown in
Algorithm 1. Ideally, if the cluster centroids in the last two
consecutive iterations are the same, the algorithm is said to
have converged. But in practice, we use a less strict criteria for
convergence: Given a threshold σ, for the cluster centroid µik in
an iterative process, if the (µik)

′ produced by the next iteration
satisfies σ < (µi

k)
′

µi
k

< 1
σ , then we consider the algorithm to be

converged. The returned µi1, µ
i
2 ···µimi

(the cluster centroids of
sender i) are the actual bitrates that sender i needs to encode
the video into. The server notifies senders of these information.
Then the senders generate streams as required.

V. EVALUATION

We conducted extensive trace-driven simulations to evaluate
our method. To obtain the throughput traces from an actual
deployed live streaming service, we collected the uplink
and downlink data from three geographically distributed live
streaming servers for more than 72 hours3. We refer to this
as the Commercial Dataset. We also use the Belgium 4G/LTE
dataset [18] in the evaluation. This dataset consists of through-
put measurements in 4G networks along several paths in and
around the city of Ghent, Belgium. We distributed the two
types of traces to five streamers in the simulator respectively
and generated a frame sequence at a rate of 30 frames per
second. Since developing a good throughput predictor is not
the focus of this paper, we use the harmonic mean of the
observed throughput of the last 100 frames to predict the next
throughput value, following a previous study [24].

The parameters we used in our experiments are as follows.
We set the buffer thresholds for faster and slower playback,
B
down(ij)
fast and B

down(ij)
slow to 90 ms and 30 ms uniformly for

each sender i and each receiver j. When adjusting the playback

3https://github.com/wzywzy/dataset

scaling factor P ij , we either play at 2× (for faster) or 0.5×
(for slower) the normal playback speed. In addition, we set
the number of clusters used in K-means algorithms to 2,
considering there are only five streamers in our settings. For
the QoE model, we set αij = 1, βij = 1, γij = 1, and δij = 20
(strict requirement for delay term), for all i and j, except for
α0,2 = 0.6 and δ0,2 = 28 (prefers lower quality but lower
delay); α1,3 = 1.2 and δ1,3 = 16 (prefers higher quality but
higher delay) to illustrate the different preferences for receivers
2 and 3.

A. Parameter Choice of PI Controller

In our first experiment, we study the sensitivity of the
method to the parameters Kp and Ki of the PI controller.
Since the PI controller is used to adjust the buffer feedback
thus the target bitrate, if parameters Kp and Ki are sensitive
to the network environment, tuning them will require more
efforts. So we want to explore whether there exist a set of
Kp and Ki values that work well in a wide range of network
conditions. We consider the network throughput from the 72
hours traces separately. For the k-th hour network trace, we
vary the values of Kp and Ki in a large range to obtain the
corresponding QoE values. Then we consider all the network
traces and accumulate the QoE values. Fig. 3 shows the heat
map with the heat for each pair of Kp and Ki values as the
average QoE value. A larger heat value means that it leads
to good performance for more traces of network throughput.
For different Kp and Ki pairs, the heat value varies. The
white region represents the highest values, indicating that the
corresponding Kp and Ki pairs provide good performance
across almost all network traces. The recommended ranges
for the proportional controller coefficient Kp and integral
controller coefficient Ki are:

Kp ∈ [1.2× 10−4, 2.0× 10−4]

Ki ∈ [0.2× 10−5, 1.0× 10−5]
(16)

Considering that the network traces are collected from a real
live streaming server and that they exhibit different temporal
and spatial characteristics, the results show that Kp and Ki can
be tuned to accommodate the large variations among different
traces. It means that we can find a range of Kp and Ki values
to make the PI controller practical. We use Kp = 1.2× 10−4

and Ki = 1.0× 10−5 as our default settings.

B. Interval Choice of NLP and BFA

The two major steps in calculating the target bitrate are non-
linear programming (NLP) and buffer feedback adjustment
(BFA). The importance of NLP is to provide the consideration
of global constraints and resource competition among stream-
ers. It relies on the throughput estimation. In the meantime,
BFA is used to alleviate system errors during the modeling
and measurement process. They can be executed at different
intervals (INLP , IBFA), resulting in different QoE effects. We
want to explore whether there exist a set of INLP and IBFA
values that work well in a wide range of network environment.
We also consider 72 hours of network throughput traces

0 1 3 4 5
0

1

2

3

4
10-5

Kp

K i

960

966

972

978

984

990

10-4

Fig. 3. Heat map for the proportional
controller coefficient Kp and integral
controller coefficient Ki.

200 1700 3200 4700 6200
100

400

700

1000

1300

1600

NLP Interval (ms)

BF
A

In
te

rv
al

 (m
s)

940

960

980

1000

1020

1040

Fig. 4. Heat map for non-linear pro-
gramming (NLP) and buffer feedback
adjustment (BFA) interval.

separately. For the k-th hour network trace, we vary the values
of INLP and IBFA in a large range to obtain the corresponding
QoE values. Then we consider all the network traces and get
the average QoE values. Fig. 4 shows the heat map. A larger
heat value means that it leads to good performance for more
traces of network throughput. The recommended ranges for
NLP and BFA interval are:

INLP ∈[1400ms, 2300ms]

IBFA ∈ [50ms, 400ms]
(17)

If the time interval of NLP is short, NLP will frequently
generate target bitrates with measurement errors, leaving BFA
little time to adjust the bitrate based on feedback, resulting in a
low QoE value. On the other hand, if the time interval of NLP
is long, the server cannot response to changes quick enough.
While in live streaming, BFA is a relatively conservative
strategy. It is hard to increase the bitrate once it is lack of
global information, which leads to a low QoE value too. In
the mean time, QoE value falls as the interval of BFA grows
because a long interval of BFA leads to the insensitivity to
buffer changes. We use INLP = 2000 ms and IBFA = 200 ms
as our default settings.

C. Preferences of Multiple Streamers

To illustrate how effective we can adjust to different pref-
erences of steamers, we consider the scenario with three
streamers i, j, and k. Streamer i and j are singing together in
a chorus; Streamer k is dancing for them. Streamer i hopes the
stream delay of j who sings with him is low. So i can increase
the delay penalty weight in the QoE model. Streamer i also
wants to see the dancing posture of k clearly. So i can increase
the video quality weight of k in the QoE model. Dynamically
setting the weights of different aspects in the QoE model for
different streamers can effectively satisfy user preferences.

We simulate the above scenario in the simulator. Streamer i
increases the delay penalty weight of j and the video qual-
ity weight of k. We measure i’s receiver buffer occupancy,
which stores frames sent from j and k respectively. We
also measure bitrates from these two streamers. The result,
shown in Fig. 5, shows that after the weight setting, the
receiver buffer occupancy levels from two streamers have a
great gap. The buffer storing j’s data is obviously lower to
maintain a lower delay while the buffer storing k’s data is

0 100 200 300 400 500
0

150

300

450

600

Bu
ffe

r O
cc

up
an

cy
 (m

s)

Time (s)

 Singing Streamer
 Dancing Streamer

0 100 200 300 400 500
0

500

1000

1500

2000

2500

3000

Bi
tra

te
 (k

bp
s)

Time (s)

 Singing Streamer
 Dancing Streamer

Fig. 5. Receiver buffer occupancy and bitrate from singing and dancing
streamers respectively.

obviously higher to maintain a higher bitrate. Setting different
weights for QoE model changes the receiver buffer occupancy.
On the other hand, bitrates from two streamers also show
differences. The bitrate from k is relatively high to ensure
high video quality, and the bitrate from j is lower to ensure
the smoothness and low delay. In fact, each streamer can set
different priority for each stream he receives, including high
bitrate, low bitrate switching, low stall duration, low delay and
balanced. Personalized requirements can be well satisfied.

D. QoE Performance

We now evaluate the performance of MultiLive in terms of
QoE and its four components, using the following methods as
baselines:
• NLP: A simpler version of MultiLive where BFA is not

performed.
• BFA: Another simpler version of MultiLive where NLP is

not performed.
• Single: A simpler version of MultiLive where only a

single bitrate is generated by each sender.
• Fixed: Computes the bitrates using initial network con-

ditions, then continues to send at these bitrates without
adapting to changing network conditions.

• Janus4: A bitrate control algorithm in an open-source
video conferencing server based on WebRTC. It com-
prehensively considers sender-side bandwidth estimation
and receiver-side RTCP REMB feedback message [25].

Fig. 6 and Fig. 7 present the performance of average bitrate,
average bitrate variation, stall ratio (stall time/total time) and
delay in the form of CDF for each dataset.

(i) NLP: With the estimation of global throughput and
consideration of QoE weights, NLP takes more advantage
of the network transmission capacity to achieve high bitrate.
However, the adjacent two bitrate decisions use separate
throughput data, resulting in large bitrate jitter. In addition,
it is called at a larger interval because of its overhead on
communication and computation. So it cannot provide a fine-
grained adjustment. On the other hand, there exist system
errors during the modeling and measurement process. For both
reasons, stall happens frequently, resulting in high delay.

(ii) BFA: An essential difference between live streaming
and VoD streaming is that the contents of live streaming is

4https://github.com/meetecho/janus-gateway

0 400 800 1200 1600 2000
0.0

0.2

0.4

0.6

0.8

1.0
C

D
F

Average Bitrate (kbps)

 MultiLive
 NLP
 BFA
 Single
 Fixed
 Janus

0 4 8 12 16 20 24
0.0

0.2

0.4

0.6

0.8

1.0

C
D

F

Average Bitrate Variation (kbps/change)

 MultiLive
 NLP
 BFA
 Single
 Fixed
 Janus

0 2 4 6 8 10
0.0

0.2

0.4

0.6

0.8

1.0

C
D

F

Rebuffer Ratio (%)

 MultiLive
 NLP
 BFA
 Single
 Fixed
 Janus

0 400 800 1200 1600
0.0

0.2

0.4

0.6

0.8

1.0

C
D

F

Delay (ms)

 MultiLive
 NLP
 BFA
 Single
 Fixed
 Janus

Fig. 6. Detailed performance using the Commercial Dataset.

0 600 1200 1800 2400 3000
0.0

0.2

0.4

0.6

0.8

1.0

C
D

F

Average Bitrate (kbps)

 MultiLive
 NLP
 BFA
 Single
 Fixed
 Janus

0 5 10 15 20
0.0

0.2

0.4

0.6

0.8

1.0

C
D

F

Average Bitrate Variation (kbps/change)

 MultiLive
 NLP
 BFA
 Single
 Fixed
 Janus

0 1 2 3 4
0.0

0.2

0.4

0.6

0.8

1.0

C
D

F

Rebuffer Ratio (%)

 MultiLive
 NLP
 BFA
 Single
 Fixed
 Janus

0 400 800 1200 1600 2000 2400
0.0

0.2

0.4

0.6

0.8

1.0

C
D

F

Delay (ms)

 MultiLive
 NLP
 BFA
 Single
 Fixed
 Janus

Fig. 7. Detailed performance using the Belgium 4G/LTE Dataset.

-200 100 400 700 1000 1300 1600
0.0

0.2

0.4

0.6

0.8

1.0

C
D

F

QoE

 MultiLive
 NLP
 BFA
 Single
 Fixed
 Janus

MultiLive NLP BFA Single Fixed Janus0

200

400

600

800

1000

1200

1400

Av
er

ag
e

Q
oE

 S
co

re

Algorithm

Fig. 8. QoE performance using the Commercial Dataset.

0 600 1200 1800 2400
0.0

0.2

0.4

0.6

0.8

1.0

C
D

F

QoE

 MultiLive
 NLP
 BFA
 Single
 Fixed
 Janus

MultiLive NLP BFA Single Fixed Janus0

400

800

1200

1600

2000

2400

Av
er

ag
e

Q
oE

 S
co

re

Algorithm

Fig. 9. QoE performance using the Belgium 4G/LTE Dataset.

produced just before it is played. So even if the stream bitrate
in live streaming is far below the network throughput, the
buffer occupancy cannot accumulate quickly as data that have
not been generated cannot be buffered. The weak accumulation
of buffer leads to a low bitrate. Due to this phenomenon, BFA
results in low delay but poor video quality.

(iii) Single: It has to choose a single target bitrate that is
the lowest common denominator among all the receivers, and
thus the target bitrate is lower compared to other schemes,
leading to lower quality. Due to the lower bitrate, however,
the delay and the stall duration are smaller for receivers with
higher uplink throughput.

(iv) Fixed: It ignores the receiver state and network fluctu-
ation, which leads to high bitrate and severe stalling.

(v) Janus: It considers the uplink bandwidth of the sender
and selects the highest bitrate allowed for the downlink band-
width of all receivers. To ensure the smooth playback of users
under low throughput condition, it conservatively chooses a
lower bitrate, resulting in lower latency and fewer stalls.

(vi) Our algorithm Multilive combines the advantage of NLP
and BFA. On the premise of guaranteeing fluency, it elevates
users’ video quality under the limited throughput to maximize
the personalized QoE. As shown in the figure, it performs well
on both datasets.

Fig. 8 and Fig. 9 present the QoE performance for both
datasets. We can see that: (i) The overall QoE value of NLP
is relatively low due to the low accuracy of prediction; (ii)
Due to the lower bitrates and the hysteresis of feedback, BFA
does not perform well either; (iii) Due to the worse overall
network condition in the Commercial Dataset, compared to
the Belgium 4G/LTE Dataset, the score of video quality falls
quickly in the Commercial Dataset, according to the logarith-
mic characteristic of video quality function q(·), leading to a
lower QoE for BFA; (iv) Single selects only one bitrate and
the QoE effect is slightly worse; (v) Fixed selects the bitrate
using initial network conditions, which change greatly during
different time. So the QoE value is relatively unstable; (vi)
Since Janus has lower bitrate, which causes poor video quality,
it has a lower QoE score. Compared with Fixed, our proposed
MultiLive algorithm improves QoE by 2-5×.

VI. RELATED WORK

Previous ABR algorithms: The previous ABR algorithms
can be primarily grouped into four classes: rate-based, buffer-
based, hybrid, and learning-based. (i) Rate-based methods
estimate the available network throughput and request the next
chunk at the highest bitrate that the network is predicted to
support. For example, Akhtar et al. [8] proposed a system
for automatically tuning ABR algorithm configurations in real

time to match the current network state. (ii) Buffer-based
methods solely consider the client’s buffer occupancy when
deciding the bitrates for future chunks. For example, Spiteri
et al. [11] devised a buffer-based online control algorithm us-
ing Lyapunov optimization techniques to minimize rebuffering
and maximize video quality. (iii) Hybrid methods use both
throughput prediction and buffer occupancy to select bitrates
that are expected to maximize QoE over several future chunks.
For example, Yin et al. [12] proposed a novel model predictive
control algorithm that can optimally combine throughput and
buffer occupancy information. (iv) Learning-based methods
use reinforcement learning to adaptively select bitrate. For
example, Mao et al. [9] trained a neural network model
selecting bitrates for future video chunks based on obser-
vations collected by client video players. In addition, Yadav
et al. [10] proposed a bitrate adaptation algorithm by modeling
a client as an M/D/1/K queue. Lai et al. proposed a FoV-based
bitrate adaptation algorithm for mobile virtual reality system to
improve the QoE [26], [27]. However, all these methods only
consider one streaming source and its delivery to a number
of viewers in VoD streaming scenarios, rather than many-to-
many in interactive live streaming scenarios. In addition, these
methods select from discrete bitrate gears instead of adjusting
on continuous bitrate domain.

Live streaming: Some previous studies provide architectures
for live streaming delivery, mainly including two categories.
The first category is the centralized architecture. For example,
Mukerjee et al. [28] provided real-time control over individual
streams from the CDN side and employed centralized quality
optimization for responsiveness. The second category is dis-
tributed architecture. For example, Liu et al. [29] designed an
open P2P live video streaming system which can accommodate
a variety of video coding schemes. However, they mainly con-
sider one media source and its delivery to a number of viewers,
which is quite different from us. There are also some studies
that focus on crowdsourced live streaming, which generalizes
the single-source streaming. Chen et al. [30] explored the
emerging crowdsourced live streaming systems and designed
cloud leasing strategy to optimize the cloud site allocation.
They, however, do not account for real-time interaction, where
the delay requirement is very harsh. In addition, He et al.
[31] proposed a novel framework for crowdsourced livecast
systems offloading the transcoding assignment to the massive
viewers. Pang et al. [32] observed unique characteristics
related to viewers (proactive and passive) and designed a deep
neural network model to capture the viewer interaction pattern.
Huang et al. [21] proposed a deep-learning based rate control
algorithm in the real-time video streaming.

Multi-party video conferencing: Some previous studies have
put forward multi-party cloud video conferencing architec-
ture. Hu et al. [14] studied the server selection problem to
reduce end-to-end delay. Wu et al. [15] designed a fully
decentralized algorithm to decide the best paths of streams
and the most suitable surrogates along the paths. Hajiesmaili
et al. [7] cast a joint problem of user-to-agent assignment
and transcoding-agent selection, and proposed an adaptive

parallel algorithm. Ooi et al. [33] divided up the in-network
merging and transcoding process, and identified suitable cloud
servers to run them, with the goal of minimizing the overall
network cost. These studies, however, generally focus on the
selection of transcoding server to minimize the cost of the
service provider and the delay, and cannot meet the need of
multi-party interactive live streaming where different online
streamers may have different QoE preferences. Multi-party
live streaming pays more attention to the user’s experience and
aims to improve the global QoE. Similar to our work, Amir
et al. [34] proposed SCUBA, using scalable video coding and
allowed the receiver to adjust the quality for different senders.
But they do not consider global optimization that takes into
consideration of QoE factors such as delay and smoothness.
Small delay consideration is particular important for multi-
party interactive live applications, where the tolerable delay
is less than 100 ms [6], while for video conference, where
participants take turns to talk, the tolerable delay is around
400 ms [35].

VII. CONCLUSION

In this paper, we propose an architecture for multi-party
interactive live streaming. We build a QoE model and propose
MultiLive, an adaptive bitrate control algorithm. Specifically,
we apply non-linear programming to get the target bitrate for
each pair of online streamers, and adjust the bitrate according
to the buffer feedback to avoid the accumulation of system
errors. To alleviate the problem of limited uplink transmission
rate, we use bitrate clustering to reduce the number of streams
to transmit from a streamer. Our results from extensive trace-
driven simulations demonstrate that MultiLive outperforms the
fixed bitrate algorithm, with 2-5× improvement of the average
QoE. Furthermore, the end-to-end delay has been reduced to
about 100 ms, which is much lower than 400 ms used as the
delay threshold in existing schemes for video conferencing. As
for future work, we will deploy the algorithm in a large-scale
multi-party live streaming platform to verify performance. In
addition, we plan to incorporate more accurate throughput
prediction algorithm to improve the QoE.

ACKNOWLEDGMENT

This work was supported by NExT++ research established
by the National Research Foundation, Prime Minister’s Office,
Singapore under its IRC@SG Funding Initiative.

REFERENCES

[1] Z. Lu, H. Xia, S. Heo, and D. Wigdor, “You watch, you give, and you
engage: a study of live streaming practices in china,” in ACM CHI, 2018.

[2] O. L. Haimson and J. C. Tang, “What makes live events engaging on
Facebook Live, Periscope, and Snapchat,” in ACM CHI, 2017.

[3] J. C. Tang, G. Venolia, and K. M. Inkpen, “Meerkat and Periscope: I
stream, you stream, apps stream for live streams,” in ACM CHI, 2016.

[4] L. Provensi, A. Singh, F. Eliassen, and R. Vitenberg, “Maelstream: Self-
organizing media streaming for many-to-many interaction,” IEEE TPDS,
2018.

[5] F. Wang, J. Liu, M. Chen, and H. Wang, “Migration towards cloud-
assisted live media streaming,” IEEE/ACM TON, 2014.

[6] N. Schuett, “The effects of latency on ensemble performance,” Bachelor
Thesis, CCRMA Department of Music, Stanford University, 2002.

[7] M. H. Hajiesmaili, L. T. Mak, Z. Wang, C. Wu, M. Chen, and
A. Khonsari, “Cost-effective low-delay design for multiparty cloud video
conferencing,” IEEE TMM, 2017.

[8] Z. Akhtar, Y. S. Nam, R. Govindan, S. Rao, J. Chen, E. Katz-Bassett,
B. Ribeiro, J. Zhan, and H. Zhang, “Oboe: auto-tuning video ABR
algorithms to network conditions,” in ACM SIGCOMM, 2018.

[9] H. Mao, R. Netravali, and M. Alizadeh, “Neural adaptive video stream-
ing with Pensieve,” in ACM SIGCOMM, 2017.

[10] P. K. Yadav, A. Shafiei, and W. T. Ooi, “QUETRA: a queuing theory
approach to dash rate adaptation,” in ACM MM, 2017.

[11] K. Spiteri, R. Urgaonkar, and R. K. Sitaraman, “BOLA: Near-optimal
bitrate adaptation for online videos,” in IEEE INFOCOM, 2016.

[12] X. Yin, A. Jindal, V. Sekar, and B. Sinopoli, “A control-theoretic
approach for dynamic adaptive video streaming over HTTP,” in ACM
SIGCOMM, 2015.

[13] S. Sengupta, N. Ganguly, S. Chakraborty, and P. De, “HotDASH:
Hotspot aware adaptive video streaming using deep reinforcement
learning,” in IEEE ICNP, 2018.

[14] Y. Hu, D. Niu, and Z. Li, “A geometric approach to server selection for
interactive video streaming,” IEEE TMM, 2016.

[15] Y. Wu, C. Wu, B. Li, and F. Lau, “vSkyConf: Cloud-assisted multi-party
mobile video conferencing,” in ACM SIGCOMM workshop, 2013.

[16] Y. Guo, Q. Yang, J. Liu, and K. S. Kwak, “Quality-aware streaming in
heterogeneous wireless networks,” IEEE TWC, 2017.

[17] C. Dong, W. Wen, T. Xu, and X. Yang, “Joint optimization of data-
center selection and video-streaming distribution for crowdsourced live
streaming in a geo-distributed cloud platform,” IEEE TNSM, 2019.

[18] J. Van Der Hooft, S. Petrangeli, T. Wauters, R. Huysegems, P. R. Alface,
T. Bostoen, and F. De Turck, “HTTP/2-based adaptive streaming of
HEVC video over 4G/LTE networks,” IEEE Communications Letters,
2016.

[19] A. Ahmed, Z. Shafiq, H. Bedi, and A. Khakpour, “Suffering from
buffering? detecting QoE impairments in live video streams,” in IEEE
ICNP, 2017.

[20] X. Zuo, Y. Cui, M. Wang, T. Xiao, and X. Wang, “Low-latency
networking: Architecture, techniques, and opportunities,” IEEE Internet
Computing, 2018.

[21] T. Huang, R.-X. Zhang, C. Zhou, and L. Sun, “Qarc: Video quality aware
rate control for real-time video streaming based on deep reinforcement
learning,” in ACM MM, 2018.

[22] M. Mu, M. Broadbent, A. Farshad, N. Hart, D. Hutchison, Q. Ni, and
N. Race, “A scalable user fairness model for adaptive video streaming
over SDN-assisted future networks,” IEEE JSAC, 2016.

[23] W. Huang, Y. Zhou, X. Xie, D. Wu, M. Chen, and E. Ngai, “Buffer
state is enough: Simplifying the design of QoE-aware HTTP adaptive
video streaming,” IEEE TBC, 2018.

[24] Y. Qin, R. Jin, S. Hao, K. R. Pattipati, F. Qian, S. Sen, C. Yue, and
B. Wang, “A control theoretic approach to ABR video streaming: A
fresh look at PID-based rate adaptation,” IEEE TMC, 2019.

[25] A. Amirante, T. Castaldi, L. Miniero, and S. P. Romano, “Janus: a
general purpose WebRTC gateway,” in ACM IPTComm, 2014.

[26] Z. Lai, Y. C. Hu, Y. Cui, L. Sun, N. Dai, and H.-S. Lee, “Furion:
Engineering high-quality immersive virtual reality on today’s mobile
devices,” IEEE TMC, 2019.

[27] Z. Lai, Y. Cui, Z. Wang, and X. Hu, “Immersion on the edge: A
cooperative framework for mobile immersive computing,” in ACM
SIGCOMM Posters and Demos, 2018.

[28] M. K. Mukerjee, D. Naylor, J. Jiang, D. Han, S. Seshan, and H. Zhang,
“Practical, real-time centralized control for CDN-based live video de-
livery,” in ACM SIGCOMM, 2015.

[29] Z. Liu, Y. Shen, K. W. Ross, S. S. Panwar, and Y. Wang, “Substream
trading: Towards an open P2P live streaming system,” in IEEE ICNP,
2008.

[30] F. Chen, C. Zhang, F. Wang, and J. Liu, “Crowdsourced live streaming
over the cloud,” in IEEE INFOCOM, 2015.

[31] Q. He, C. Zhang, and J. Liu, “Crowdtranscoding: Online video transcod-
ing with massive viewers,” IEEE TMM, 2017.

[32] H. Pang, C. Zhang, F. Wang, H. Hu, Z. Wang, J. Liu, and L. Sun,
“Optimizing personalized interaction experience in crowd-interactive
livecast: A cloud-edge approach,” in ACM MM, 2018.

[33] W. T. Ooi and R. Van Renesse, “Distributing media transformation over
multiple media gateways,” in ACM MM, 2001.

[34] E. Amir, S. McCanne, and R. Katz, “Receiver-driven bandwidth adap-
tation for light-weight sessions,” in ACM MM, 1997.

[35] ITU-T, “Recommendation G. 114, one-way transmission time,” Series
G: Transmission Systems and Media, Digital Systems and Networks,
Telecommunication Standardization Sector of ITU, 2000.

