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AbstrAct
Recently, machine learning has been used 

in every possible field to leverage its amazing 
power. For a long time, the networking and dis-
tributed computing system is the key infrastruc-
ture to provide efficient computational resources 
for machine learning. Networking itself can also 
benefit from this promising technology. This arti-
cle focuses on the application of MLN, which 
can not only help solve the intractable old net-
work questions but also stimulate new network 
applications. In this article, we summarize the 
basic workflow to explain how to apply machine 
learning technology in the networking domain. 
Then we provide a selective survey of the lat-
est representative advances with explanations 
of their design principles and benefits. These 
advances are divided into several network design 
objectives and the detailed information of how 
they perform in each step of MLN workflow 
is presented. Finally, we shed light on the new 
opportunities in networking design and commu-
nity building of this new inter-discipline. Our goal 
is to provide a broad research guideline on net-
working with machine learning to help motivate 
researchers to develop innovative algorithms, 
standards and frameworks.

IntroductIon
With the prosperous development of the Internet, 
networking research has attracted a lot of atten-
tion in the past several decades both in academia 
and industry. Researchers and network operators 
can face various types of networks (e.g., wired or 
wireless) and applications (e.g., network securi-
ty and live streaming [1]). Each network applica-
tion also has its own features and performance 
requirements, which may change dynamically 
with time and space. Because of the diversity and 
complexity of networks, specific algorithms are 
often built for different network scenarios based 
on the network characteristics and user demands. 
Developing efficient algorithms and systems to 
deal with complex problems in different network 
scenarios is a challenging task.

Recently, machine learning (ML) techniques 
have made breakthroughs in a variety of applica-
tion areas, such as bioinformatics, speech recogni-
tion and computer vision. Machine learning tries 
to construct algorithms and models that can learn 
to make decisions directly from data without fol-
lowing pre-defined rules. Existing machine learn-
ing algorithms generally fall into three categories: 
supervised learning (SL), unsupervised learning 
(USL) and reinforcement learning (RL). More spe-
cifically, SL algorithms learn to conduct classifica-

tion or regression tasks from labeled data, while 
USL algorithms focus on classifying the sample 
sets into different groups (i.e., clusters) with unla-
beled data. In RL algorithms, agents learn to find 
the best action series to maximize the cumulat-
ed reward (i.e., objective function) by interacting 
with the environment. The latest breakthroughs, 
including deep learning (DL), transfer learning 
and generative adversarial networks (GAN), also 
provide potential research and application direc-
tions in an unimaginable fashion.

Dealing with complex problems is one of the 
most important advantages of machine learning. 
For some tasks requiring classification, regression 
and decision making, machine learning may per-
form close to or even better than human beings. 
Some examples are facial recognition and game 
artificial intelligence. Since the network field 
often sees complex problems that demand effi-
cient solutions, it is promising to bring machine 
learning algorithms into the network domain to 
leverage the powerful ML abilities for higher net-
work performance. The incorporation of machine 
learning into network design and management 
also provides the possibility of generating new 
network applications. Actually, ML techniques 
have been used in the network field for a long 
time. However, existing studies are limited to the 
use of traditional ML attributes, such as predic-
tion and classification. The recent development 
of infrastructures (e.g., computational devices 
like GPU and TPU, ML libraries like Tensorflow 
and Scikit-Learn) and distributed data processing 
frameworks (e.g., Hadoop and Spark) provides a 
good opportunity to unleash the magic power of 
machine learning for pursuing the new potential 
in network systems.

Specifically, machine learning for networking 
(MLN) is suitable and efficient for the following 
reasons. First, as the best known capabilities of 
ML, classification and prediction play basic but 
important roles in network problems such as intru-
sion detection and performance prediction [1]. In 
addition, machine learning can also help decision 
making, which will facilitate network scheduling 
[2] and parameter adaptation [3, 4], according 
to the current states of the environment. Sec-
ond, many network problems need to interact 
with complicated system environments. It is not 
easy to build accurate or analytic models to rep-
resent complex system behaviors such as load 
changing patterns of CDN [5] and throughput 
characteristics [1]. Machine learning can provide 
an estimated model of these systems with accept-
able accuracy. Finally, each network scenario may 
have different characteristic (e.g., traffic patterns 
and network states) and researchers often need to 
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solve the problem for each scenario independent-
ly. Machine learning may provide new possibilities 
to construct the generalized model via a uniform 
training method [3, 4]. Among efforts in MLN, 
deep learning has also been investigated and 
applied to provide end-to-end solutions. The latest 
work in [6] conducts a comprehensive survey on 
previous efforts that apply deep learning technol-
ogy in network related areas.

In this article, we investigate how machine 
learning technology can benefit network design 
and optimization. Specifically, we summarize the 
typical workflows and requirements for apply-
ing machine learning techniques in the network 
domain, which could provide a basic but practi-
cal guideline for researchers to have a quick start 
in the area of MLN. Then we provide a selective 
survey of the important networking advances with 
the support of machine learning technology, most 
of which have been published in the last three 
years. We group these advances into several 
typical networking fields and explain how these 
prior efforts perform at each step of the MLN 
workflow. Then we discuss the opportunities of 
this emerging inter-discipline area. We hope our 
studies can serve as a guide for potential future 
research directions.

bAsIc WorkfloW for Mln
Figure 1 shows the baseline workflow for apply-
ing machine learning in the network field, 
including problem formulation, data collec-
tion, data analysis, model construction, model 
validation, deployment and inference. These 
stages are not independent but have inner 
relationships. This workflow is very similar to 
the traditional workflow for machine learning, 
as network problems are still applications that 
machine learning can play a role in. In this sec-
tion, we explain each step of the MLN work-
flow with representative cases.

Problem Formulation: Since the training pro-
cess of machine learning is often time consuming 
and involves high cost, it is important to correctly 
abstract and formulate the problem at the first 
step of MLN. A target problem can be classified 
into one of the machine learning categories, such 
as classification, clustering and decision making. 
This helps decide what kind of and the amount of 
data to collect and the learning model to select. 
An improper problem abstraction may provide 
an unsuitable learning model, which can result in 
unsatisfactory learning performance. For exam-
ple, it is better to cast the optimal quality of expe-

rience (QoE) for live streaming into a real-time 
exploration-exploitation process rather than as a 
prediction-based problem [7] to well match the 
application characteristics.

Data Collection: The goal of this step is to 
collect a large amount of representative network 
data without bias. The network data (e.g., traffic 
traces and session logs with performance met-
rics) are recorded from different network layers 
according to the application needs. For example, 
the traffic classification problem often requires 
datasets containing packet-level traces labeled 
with corresponding application classes [8]. In the 
context of MLN, data are often collected in two 
phases. In the offline phase, collecting enough 
high-quality historical data is important for data 
analysis and model training. In the online phase, 
real-time network state and performance informa-
tion are often used as inputs or feedback signals 
for the learning model. The newly collected data 
can also be stored to update the historical data 
pool for model adaption.

Data Analysis: Every network problem has its 
own characteristics and is impacted by many fac-
tors, but only several factors (i.e., feature) have the 
most effect on the target network performance 
metric. For instance, RTT and the inter-arrival time 
of ACK may be the critical features in choosing 
the best size of the TCP congestion window [3]. 
In the learning paradigm, finding proper features 
is the key to fully unleashing the potential of data. 
This step attempts to extract the effective features 
of a network problem by analyzing the historical 
data samples, which can be regarded as a feature 
engineering process in the machine learning com-
munity. Before feature extraction, it is important 
to preprocess and clean raw data, through pro-
cesses such as normalization, discretization, and 
missing value completion. Extracting features from 
cleaned data often needs domain-specific knowl-
edge and insights of the target network problem 
[5], which is not only difficult but time-consuming. 
Thus in some cases deep learning can be a good 
choice to help automate feature extractions [2, 6].

Model Construction: Model construction 
involves model selection, training and tuning. A 
suitable learning model or algorithm needs to be 

FIGURE 1.  The typical workflow of machine learning for networking.
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selected according to the size of the dataset, typi-
cal characteristics of a network scenario, the prob-
lem category, and so on. For example, accurate 
throughput prediction can improve the bitrate 
adaption of Internet video, and a Hidden-Mar-
kov model may be selected for prediction due 
to the dynamic patterns of stateful throughput 
[1]. Then the historical data will be used to train 
a model with hyper-parameter tuning, which will 
take a long period of time in the offline phase. 
The parameter tuning process still lacks enough 
theoretical guidance, and often involves a search 
in a large space to find acceptable parameters or 
to tune by personal experiences.

Model Validation: Offline validation is an 
indispensable step in the MLN workflow to eval-
uate whether the learning algorithm works well 
enough. During this step, cross validation is usual-

ly used to test the overall accuracy of the model 
in order to show if the model is overfitting or 
under-fitting. This provides good guidance on how 
to optimize the model, e.g., increasing the data vol-
ume and reducing model complexity when there 
exists overfitting. Analyzing wrong samples helps 
find the reasons for errors to determine whether 
the model and the features are proper or the data 
are representative enough for a problem [5, 8]. 
The procedures in the previous steps may need to 
be re-taken based on the error sources.

Deployment and Inference: When implement-
ing the learning model in an operational network 
environment, some practical issues should be 
considered. Since there are often limitations on 
computation or energy resources and require-
ments on the response time, the tradeoff between 
accuracy and the overhead is important for the 

TABLE 1. Relationships between latest advances and MLN workflow.

Networking  
application

Steps of MLN workflow

Objectives Specific works Problem  
formulation

Data collection

Data analysis Offline model construction Deployment and online  
inference

Offline collection Online  
measurement

Infor-
mation 
cognition

Sibyl [11]: route 
measurement

SL: prediction with 
RuleFit

Combine data of platforms 
with a few powerful VPs in 
homogeneous deployment and 
with many limited VPs around 
the world

Take users’ 
queries as input 
round by round

/
Construct RuleFit model to 
assign confidence to each 
predicted path

Optimize measurement budget 
in each round to get the best 
query coverage

Traffic 
prediction

Ref [9]: traffic 
volume  
prediction

SL: prediction with 
Hidden-Markov 
Model (HMM)

Synthetic and real traffic traces 
with flow statistics

Only observe the 
flow statistics

The flow count and the traffic 
volume have significant 
correlation

Training HMM model with 
Kernel Bayes Rule and Recurrent 
Neural Network with Long Short 
Term Memory unit

Take flow statistics as input and 
obtain the output of the traffic 
volume

Traffic 
classifica-
tion

RTC [8]: traffic 
classification

SL and USL: 
clustering and 
classification

Labeled and unlabeled traffic 
traces

Flow statistical 
features extracted 
from traffic flows

Zero-day-application exists 
and may degrade the  
classification accuracy

Find the Zero-day-application 
class and training the classifier

Inference with the trained model 
to output the classification results

Resource 
manage-
ment

DeepRM [13]: 
job scheduling

RL: decision  
making with 
deep RL

Synthetic workload with 
different patterns is used for 
training

The real time 
resource demand 
of the arrival job

Action space is too large and 
may has conflicts between 
actions

Offline training to update the 
policy network

Directly schedule the arrival jobs 
with the trained model

Network 
adaption

Ref [2]: routing 
strategy

SL: decision 
making with Deep 
Belief Architectures 
(DBA)

Traffic patterns labeling with 
routing paths computed by 
OSPF protocol

Online traffic 
patterns in each 
router

It is difficult to characterize 
the input and output patterns 
to reflect the dynamic nature 
of large-scale heterogeneous 
networks

Take the Layer-Wise training  
to initialize and the  
backpropagation process to  
fine-tune the DBA structure

Record and collect the traffic 
patterns in each router  
periodically and obtain the next 
routing nodes from the DBAs

Pytheas [7]: 
general QoE 
optimization

RL: decision  
making with a 
variant of UCB 
algorithm

Session quality information with 
features in large time scale

Session quality 
information in 
small time scale

Application sessions sharing 
the same features can be 
grouped

Backend cluster determines the 
session groups using CFA [5] 
with a long time scale

Frontend performs the group-
based exploration-exploitation 
strategy in real time

Remy [3]: TCP 
congestion 
control

RL: decision  
making with a 
tabular method

Collect experience from 
network simulator

Calculate network 
state variables 
with ACK

Select the most influential 
metrics as state variables

Given network assumption the 
generated algorithm interact with 
simulator to learn best actions 
according to states

Directly implement the  
Remy-generated algorithm to  
corresponding network  
environment

PCC [4]: TCP 
congestion 
control

RL: decision 
making with online 
learning

/

Calculate the 
utility function 
according the 
received SACK

TCP assumptions are often 
violated. The direct  
performance is a better 
signal

/

Take trials with different sending 
rates and find the best rate 
according to the feedback utility 
function

Perfor-
mance 
prediction

CFA [5]:  
video QoE  
optimization

USL: clustering 
with self-designed 
algorithm

Datasets consisting of quality 
measurements are collected 
from public CDNs

Take session 
features as input, 
such as Bitrate, 
CDN, Player, etc.

Similar sessions are with 
similar quality determined by 
critical features

Critical feature learning in  
minutes scale and quality 
estimation in tens of seconds

Look up feature-quality table to 
respond to real-time query

CS2P [1]: 
throughput 
prediction

SL: prediction with 
HMM

Datasets of HTTP throughput 
measurement from iQIYI

Take users’ s 
session features 
as input

Sessions with similar features 
tend to behave in related 
pattern

Find set of critical feature and 
learn a HMM for each cluster of 
similar sessions

A new session is mapped to the 
most similar session cluster and 
corresponding HMM are used to 
predict throughput

Config-
uration 
extrapola-
tion

cherryPick 
[15]: cloud 
configurations 
extrapolation

SL: parameter 
searching with 
Bayesian  
optimization

Take performance under 
current configuration as model 
input

/
Large configuration space 
and heterogeneous  
applications

Take trials with different 
configurations and decide the 
next trial direction by Bayesian 
Optimization model

/
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performance of the practical network system [7]. 
In addition, machine learning often works in a 
best-effort way and does not provide any perfor-
mance guarantee, which requires system design-
ers to consider fault tolerance. Finally, practical 
applications often require the learning system to 
take real-time input, and obtain the inference and 
output the corresponding policy online.

overvIeW of recent AdvAnces
Recent breakthroughs of deep learning and other 
promising machine learning techniques have a 
non-ignorable influence on new attempts of the 
network community. Existing efforts have led to 
several considerable advances in different sub-
fields of networking. To illustrate the relationship 
between these up-to-date advances and the MLN 
workflow, in Table 1 we divide literature studies 
into several application scenarios and show how 
they perform at each step of the MLN workflow. 
Without ML techniques, the typical solutions 
for these advances are involved with time-se-
ries analytics [1, 9], statistical methods [1, 5, 7, 
8] and rule-based heuristic algorithms [2–5, 10], 
which are often more interpretable and easier to 
implement. However, ML-based methods have a 
stronger ability to provide a fine-grained strategy 
and can achieve higher prediction accuracy by 
extracting hidden information from historical data. 
As a big challenge of ML-based solutions, the fea-
sibility problem is also discussed in this section.

InforMAtIon cognItIon
Since data are the fundamental resource for MLN, 
information (data) cognition with high efficiency is 
critical to capture the network characteristics and 
monitor network performance. However, due to 
the complex nature of existing networks and the 
limitations of measurement tools and architec-
tures, it is still not easy to access some types of 
data (e.g., trace route and traffic matrix) within 
acceptable granularity and cost. With its capa-
bility for prediction, machine learning can help 
evaluate network reliability or the probability of a 
certain network state. As the first example, Inter-
net route measurements help monitor network 
running states and troubleshoot performance 
problems. However, due to insufficient usable 
vantage points (VP) and a limited probing bud-
get, it is impossible to execute each route query 
because the query may not match any previously 
measured path or the path may have changed. 
Sibyl [11] attempts to predict the unseen paths 
and assign confidence to them by using a super-
vised machine learning technique called RuleFit.

The learning relies on data acquisition, and 
MLN also requires a new scheme of data cog-
nition. In MLN, it often needs to maintain an 
up-to-date global network state and perform real-
time responses to client demands, which needs 
to measure and collect the information in the 
core network. In order to enable the network to 
perform diagnostics and make decisions by itself 
with the help of machine learning or cognitive 
algorithms, a different network architecture, the 
Knowledge Plane [12], was presented that can 
achieve automatic information cognition, which 
has inspired the following efforts that leverage 
ML or data-driven methods to enhance network 
performance.

trAffIc PredIctIon And clAssIfIcAtIon
Traffic prediction and classification are two of 
the earliest machine learning applications in the 
networking field. Because of the well formulated 
question descriptions and demands from various 
subfields of networking, studies of the two topics 
always maintain a certain degree of popularity.

Traffic Prediction: As an important research 
problem, the accurate estimation of traffic volume 
(e.g., the traffic matrix) is beneficial to congestion 
control, resource allocation, network routing, and 
even high-level live streaming applications. There 
are mainly two directions of research, time series 
analysis and network tomography, which can be 
simply distinguished depending on if it conducts 
traffic prediction with direct observations or not. 
However, it is expensive to directly measure traf-
fic volume, especially in a large-scale high speed 
network environment.

Many existing studies focus on reducing the 
measurement cost by using indirect metrics rather 
than only trying different ML algorithms. There 
are two methods to handle this problem. One 
is to take more human effort to develop sophis-
ticated algorithms by exploring domain-specific 
knowledge and undiscovered data patterns. As 
an example, the work in [9] attempts to predict 
traffic volume according to the dependence 
between flow counts and flow volume. Another 
method is inspired by the end-to-end deep learn-
ing approach. It takes some easily obtained infor-
mation (e.g., bits of a header in the first few flow 
packets) as direct input and extract features auto-
matically with the help of the learning model [10].

Traffic Classification: As a fundamental 
function component in network management 
and security systems, traffic classification match-
es network applications and protocols with the 
corresponding traffic flows. The traditional traf-
fic classification methods include the port-based 
approach and the payload-based approach. The 
port-based approach has been proved to be 
ineffective due to unfixed or reused port assign-
ments, while the payload-based approach suffers 
from privacy problems caused by deep packet 
inspection, which can even fail in the presence 
of encrypted traffic. As a result, machine learn-
ing approaches based on statistical features have 
been extensively studied in recent years, espe-
cially in the network security domain. However, 
it is not easy to consider machine learning as an 
omnipotent solution and deploy it into a real-
world operational environment. For instance, 
unlike the traditional machine learning application 
to identify if a figure is a cat or not, it will create a 
big cost with a misclassification in the context of 
network security. Generally, these studies range 
from all-known classification scenarios to a more 
realistic situation with unknown traffic (e.g., zero-
day application traffic [8]). This research roadmap 
is very similar to the machine learning technology 
that evolves from supervised learning to unsuper-
vised and semi-supervised learning, which can be 

Traffic prediction and classification are two of the earliest machine learning applications in the net-
working field. Because of the well formulated question descriptions and demands from various  

subfields of networking, studies of the two topics always maintain a certain degree of popularity.
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treated as a pioneer paradigm to import machine 
learning into networking fields.

resource MAnAgeMent And netWork AdAPtIon
Efficient resource management and network adap-
tion are the keys to improving network system 
performance. Some example issues to address are 
traffic scheduling, routing [2], and TCP congestion 
control [3, 4]. All these issues can be formulated 
as a decision-making problem [13]. However, it is 
challenging to solve these problems with a rule-
based heuristic algorithm due to the complexity of 
diverse system environments, noisy inputs and diffi-
culty in optimizing the tail performance [13]. Spe-
cifically, arbitrary parameter assignments based on 
experiences and action taken following predeter-
mined rules often result in a scheduling algorithm 
that is understood by people but far from optimal.

Deep learning is a promising solution due to 
its ability to characterize the inherent relation-
ships between the inputs and outputs of network 
systems without human involvement. In order 
to meet the requirements of changing network 
environments, previous efforts in [2, 14] design 
a traffic control system with the support of deep 
learning techniques. Reconsidering backbone 
router architectures and strategies, it takes the 
traffic pattern in each router as input and outputs 
the next nodes in the routing path with Deep 
Belief Architectures. These advancements unleash 
the potential of the DL-based strategy in network 
routing and scheduling. Harnessing the powerful 
representational ability of deep neural networks, 
deep reinforcement learning achieves great 
results in many AI problems.

DeepRM [13] is the first work that applies a 
deep RL algorithm for cluster resource scheduling. 
Its performance is comparable to state-of-the-art 
heuristic algorithms but with less cost. The QoE 
optimization problem can also benefit from the 
RL learning methodology. Unlike previous efforts, 
Pytheas [7] regards this problem as an explora-
tion-exploitation-based problem rather than a 
prediction-based problem. As a result, Pytheas 
outperforms state-of-the-art prediction-based sys-
tems by lessening the prediction bias and delayed 
response. From this perspective, machine learning 
may help achieve the close-loop of “sensing-anal-
ysis-decision,” especially in wireless sensor net-
works, where the three actions are separated 
from each other at present.

Several attempts have been made to optimize 
the TCP congestion control algorithm using the 
reinforcement learning approach due to the dif-
ficulty of designing a congestion control algo-
rithm that can fit all network states. To make 
the algorithm self-adaptive, Remy [3] takes the 
target network assumptions and traffic model as 
prior knowledge to automatically generate the 
specific algorithm, which achieves an amazing 
performance gain in many circumstances. In the 
offline phase, Remy tries to learn a mapping, i.e., 
RemyCC, between the network state and the cor-
responding parameters of the congestion window 
(cwnd) by interacting with the network simulator. 
In the online phase, whenever an ACK is received, 
RemyCC looks up its mapping table and changes 
its cwnd behavior according to the current net-
work state. The mechanism of Remy is illustrated 
in Fig. 2. Without the specific network assump-
tions, a performance-oriented attempt, PCC 
[4], can benefit from its online-learning nature. 
Although these TCP-related efforts still focus on 
decision making, they take the first important step 
toward automated protocol design.

netWork PerforMAnce 
PredIctIon And confIgurAtIon extrAPolAtIon

Performance prediction can guide decision mak-
ing. Some example applications are video QoE 
prediction, CDN location selection, best wireless 
channel selection, and performance extrapolation 
under different configurations. Machine learning 
is a natural approach to predict system states for 
better decision making.

Typically, there are two general prediction sce-
narios. First, the system owner has the ability to 
get various and enough historical data, but it is 
non-trivial to build a complex prediction model 
and update it in real time, which requires a new 
approach exploiting domain-specific knowledge 
to simplify the problem (e.g., CFA [5] for video 
QoE optimization). In prior work, CS2P [1] wants 
to improve video bitrate selection with accu-
rate prediction. It finds that sessions with similar 
key features may have more related throughput 
behavior from data analysis. CS2P learns to clus-
ter similar sessions offline and trains different Hid-
den-Markov Models for each cluster to predict 
the corresponding throughput given the current 
session information. CS2P reinforces the correla-
tion of similar sessions in the training process, 

FIGURE 2. Remy’s mechanism illustration [3].
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which outperforms approaches with one single 
model. This is very similar to the above mentioned 
traffic prediction problem, since they both pas-
sively fit the runtime ground-truth with a certain 
metric. As another prediction scenario, little his-
torical data exist and it is infeasible to obtain rep-
resentative data by conducting performance tests 
due to high trial costs in real network systems. To 
deal with this dilemma, cherrypick [15] leverages 
the Bayesian Optimization algorithm to minimize 
pre-run rounds with a directional guidance to 
collect representative runtime data of workloads 
under different configurations.

feAsIbIlIty dIscussIon
One big challenge faced by ML-based methods 
is their feasibility. Since many networking applica-
tions are delay-sensitive, it is non-trivial to design 
a real-time system with heavy computation loads. 
To make it practical, a common solution is to train 
the model with global information for a long peri-
od of time and incrementally update the model 
with local information in a small time scale [5, 
7], which trades off between the computation 
overhead and information staleness. In the online 
phase, the common case is to look up the result 
table or draw the inference with a trained model 
to make real-time decisions. The processing time 
in the above advances are selectively listed in 
Table 2, which shows that ML has practical values 
with the system well-designed. In addition, the 
robustness and generalization of a design are also 
important for feasibility and are discussed later.

From these perspectives, ML in its current state 
is not suitable for all networking problems. The 
network problems solved with ML techniques so 
far are more or less related to prediction, classi-
fication and decision-making, while it is difficult 
to apply machine learning to other types of prob-

lems. Other reasons that prevent the application 
of ML techniques include the lack of labeled data, 
high system dynamics and high cost brought by 
learning errors.

oPPortunItIes for Mln
The prior efforts mostly focus on the generalized 
concepts of prediction and classification and 
few can get out of this scope to explore other 
possible applications. However, with the latest 
breakthroughs in machine learning and its infra-
structures, new potential demands may appear in 
network disciplines. Some opportunities are intro-
duced as follows.

oPen dAtAsets for the netWorkIng coMMunIty
Collecting a large amount of high quality data that 
contain both network profiles and performance 
metrics is one of the most critical issues for MLN. 
However, acquiring enough labeled data is still 
expensive and labor intensive even in today’s 
machine learning community. For many reasons, 
it is not easy for researchers to acquire enough 
real trace data even if there are many existing 
open datasets in the networking domain.

This reality drives us to learn from the machine 
learning community to put much more effort into 
constructing open datasets like ImageNet. With 
unified open datasets, performance benchmarks 
are an inevitable outcome to provide a standard 
platform for researchers to compare their new 
algorithms or architectures with state-of-the-
art ones. This can reduce the unrepresentative 
repeated experiments and have a positive effect 
on academic loyalty. In addition, it has been 
proved in the machine learning domain that learn-
ing with a simulator rather than in a real environ-
ment is more effective and with lower cost in 
RL scenarios [3]. In the networking domain, due 

TABLE 2. Processing time of selective advances.

Networking application Computation speed

Objectives Specific works Offline time cost Online time cost Device information

Network adaption

Ref [2]: routing strategy

Training 100,000 samples with 
1000 routers:

When <400 routers: /

~100,000 s >100 ms Intel i7-6900 K

~1,000 s <1 ms The Nvidia Titan X Pascal

Pytheas [7]: general QoE 
optimization

Session-grouping: find 200 
groups per minute with 8.5 
million sessions

Not mentioned
2.4 GHz, 8 cores and 64 GB 
RAM

Remy [3]: TCP congestion 
control

A few hours Not mentioned
Amazaon EC2 and 80-core and 
48-core server

Performance prediction

CFA [5]: video QoE optimization
Critical feature learning:  
~30.1 min every 30–60 min

Quality estimation: ~30.7 s 
every 1–5 min

Two clusters of 32 cores
Query response: – 0.66 ms 
every 1 ms

CS2P [1]: throughput prediction Not mentioned

Server side: ~150 predictions 
per second

Intel i7-2.2 GHz, 16 GB RAM, 
Mac OS X 10.11

Client side: <10 ms per 
prediction

Intel i7-2.8 GHz, 8 GB RAM, 
Mac OS X 10.9



IEEE Network • Accepted for publication7

to the limited accessibility and high test cost of 
large-scale network systems, simulators with suf-
ficient fidelity, scalability and high running speed 
are also required. These items contribute to both 
MLN and further development of the networking 
domain, and public resources also make it possi-
ble for the community to conduct research.

AutoMAted netWork Protocol And ArchItecture desIgn
With a deeper understanding of the network, 
researchers gradually find that the existing net-
work has many limitations. The network system is 
totally created by human beings. The current net-
work components are likely to be added based 
on people’s understanding at a time instant rath-
er than a paragon of engineering. There is still 
enough room for us to improve network perfor-
mance and efficiency by redesigning the network 
protocol and architecture.

It is still quite difficult to design a protocol or 
architecture automatically today. However, the 
machine learning community has made some of 
the simplest attempts in this direction and has 
achieved some amazing results, such as letting 
agents communicate with others to finish a task 
cooperatively. Other new achievements, e.g., 
GAN, have also shown that the machine learning 
model has the ability to generate elements exist-
ing in the real world and create strategies people 
do not discover (e.g., AlphaGo). However, these 
generated results are still far from the possibility of 
protocol design. There is great potential and the 
possibility to create new feasible network com-
ponents without human involvement, which may 
refresh human’s understanding of network sys-
tems and propose some currently unacceptable 
destructive-reconstruction frameworks.

AutoMAted netWork resource schedulIng And 
decIsIon MAkIng

It is hard to conduct online scheduling with a 
principle-based heuristic algorithm due to the 
uncertainty and dynamics of network conditions. 
In the machine learning community, it has been 
proved that reinforcement learning has strong 
capability to deal with decision making problems. 
The recent breakthrough of Go also proves that 
ML can make not only coarse but precise deci-
sion, which is beyond people’s common sense. 
Although it is not easy to directly apply an explo-
ration-exploitation strategy in highly-varying net-
work environments, reinforcement learning can 
be a candidate to replace adaptive algorithms 
of the present network system. Related efforts 
can refer to [3, 4, 7, 13]. In addition, reinforce-
ment learning is highly suitable for problems 
where several undetermined parameters need to 
be assigned adaptively according to the network 
state. However, these methods introduce new 
complexity and uncertainty into the network sys-
tem itself while the stability, reliability and repeat-
ability are always the goals of network design.

Moreover, network scheduling with RL also 

provides a new opportunity to support flexible 
objective function and cross-layer optimization. 
It is very convenient to change the optimization 
goal just by changing the reward function in the 
learning model, which is impossible with a tradi-
tional heuristic algorithm. Also, the system may 
perceive high-level application behaviors or QoE 
metrics as a reward, which may enable adap-
tive cross-layer optimization without the network 
model. In practice, it is nontrivial to design an 
effective reward function. The simplest reward 
design principle is to set the direct goal that needs 
to be maximized as the reward. However, it is 
often difficult to capture the exact optimization 
objective, and as a result we end up with an 
imperfect but easily obtained metric instead. In 
most cases it works well, but sometimes it leads 
to faulty reward functions that may result in unde-
sired or even dangerous behavior.

IMProvIng the coMPrehensIon of netWork systeMs
Network behavior is quite complex due to the 
end-to-end network design principle, which gen-
erates various protocols that have simple actions 
in the end system but causes nontrivial in-network 
behavior. From this perspective, it is not easy to 
figure out what factors can directly affect a certain 
network metric and can be simplified during an 
algorithm design process even in a mature net-
work research domain like TCP congestion con-
trol. However, with the help of machine learning 
methods, people can analyze the output of learn-
ing algorithms through a posterior approach to 
find useful insights for us to understand how the 
network behaves and how to design a high per-
formance algorithm.

For a detailed explanation, DeepRM [13], 
a resource management framework, is a good 
example. To understand why DeepRM performs 
better, the authors find that DeepRM is not 
work-conserving but decides to reserve room 
for those yet-to-arrive small jobs, which eventu-
ally contributes to reducing job waiting time. For 
other evidence, refer to CFA [5] and Remy [3] 
and their following works, which provide insights 
for key influence factors in video QoE optimiza-
tion and TCP congestion control, respectively.

ProMotIng the develoPMent of MAchIne leArnIng
When applying machine learning into networking 
fields, due to specific requirements of network 
systems and practical implementation problems, 
some inherent limitations and other emerging 
problems of machine learning can be pushed for-
ward to a new understanding stage with the joint 
efforts of two research communities.

Typically, there are several problems that are 
expected to be resolved. First, the robustness 
of machine learning algorithms is a key chal-
lenge for applications (e.g., self-driving cars and 
network operation) in real-world environments 
where learning errors could lead to high costs. 
The networking situation often requires hard con-
straints on the algorithm output and the worst 
performance guarantee. Second, a model with 
high generalization ability that can adapt in the 
high-variance and dynamic traffic circumstances 
is needed, since it is unacceptable to retrain the 
model every time the characteristics of network 
traffic change. Although some of the experiments 

The current network components are likely to be added based on people’s understanding at a time 
instant rather than a paragon of engineering. There is still enough room for us to improve network 

performance and efficiency by redesigning the network protocol and architecture.
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show that the model trained under a specific net-
work environment can, to some degree, achieve 
good performance in other environments [3], it 
is still not easy because most machine learning 
algorithms assume that the data follow the same 
distribution, which is not practical in networking 
environments. In addition, the accountability and 
interpretability [3] of machine learning algorithms 
create big obstacles in practical implementations, 
since many learning models, especially for deep 
learning, are still black box. People do not know 
why and how it behaves, hence people cannot 
interfere with the policy.

conclusIons
Due to the heterogeneity of networking systems, 
it is imperative to embrace machine learning tech-
niques in the networking domain for potential 
breakthroughs. However, it is not easy for net-
working researchers to take it into practice due to 
the lack of machine learning related experiences 
and insufficient directions. In this article, we pres-
ent a basic workflow to provide researchers with a 
practical guideline to explore new machine learn-
ing paradigms for future networking research. For 
a deeper comprehension, we summarize the lat-
est advances in machine learning for networking, 
which covers multiple important network tech-
niques, including measurement, prediction and 
scheduling. Moreover, numerous issues are still 
open and we shed light on the opportunities that 
need further research effort from both the net-
working and machine learning perspectives.
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