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ABSTRACT 
OS-level virtualization incurs smaller start-up and run-time 
overhead than HAL-based virtualization and thus forms an 
important building block for developing fault-tolerant and 
intrusion-tolerant applications. A complete implementation of 
OS-level virtualization on the Windows platform requires 
virtualization of Windows services, such as system services like 
the Remote Procedure Call Server Service (RPCSS), because 
they are essentially extensions of the kernel. As Windows 
system services work very differently from their counterparts on 
UNIX-style OS, i.e., daemons, and many of their 
implementation details are proprietary, virtualizing Windows 
system services turned out to be the most challenging technical 
barrier for OS-level virtualization for the Windows platform. In 
this paper, we describe a general technique to virtualize 
Windows services, and demonstrate its effectiveness by 
applying it to successfully virtualize a set of important Windows 
system services and ordinary services on different versions of 
Windows OS, including RPCSS, DcomLaunch, IIS service 
group, Tlntsvr, MySQL, Apache2.2, CiSvc, ImapiService, etc.  

Categories and Subject Descriptors D.4.5 [Operating 
Systems]:Reliability; D.4.6 [Operating Systems]: Security and 
Protection 

General Terms Reliability, Security 

Keywords virtual machine, service virtualization, Windows 
service 

1. INTRODUCTION 

OS-level virtualization provides an excellent platform for the 
development of fault-tolerant and intrusion-tolerant applications, 
because, it incurs little or no overhead when creating, running, 
and shutting down a virtual machine (VM). OS-level VMs (i.e., 
containers) are designed to share as many resources as they can 
with other VMs or with the host environment. Moreover, 
programs in an OS-level VM run as normal applications that 
directly use the host operating system's system call interface and 
do not need to run on top of an intermediate hypervisor, which 
could be a specially crafted software (as in the case of VMware 
ESX [1] and Xen [3]) or a standard operating system (as in the 
case of Virtual PC [2] and UML [4]).  

A standard implementation for OS-level virtualization is to 
intercept the system call interface, and rename the system 
resources being manipulated so that the system resources of 
each virtual machine reside in a separate name space. A well-
known problem with OS-level virtualization is that all OS-level 
virtual machines running on top of a kernel share the kernel’s 
state, because OS-level virtualization does not virtualize the 
kernel state. On the Windows platform, a set of user-level 
system services, which behave like daemons in a Unix-style OS, 
are used to augment the kernel and provide various critical 
functionalities to other services and applications. For example, 
Windows’s inter-process communication mechanisms such as 
COM, DCOM and RPC, are supported by the RPCSS service. 
How to virtualize these system services so that the large install 
base of Windows applications can run correctly in different 
VMs without interfering one another turns out to be a major 
implementation challenge.  

The goal of virtualizing Windows services is to duplicate a 
separate instance of each Windows service in each VM. 
However, it is non-trivial to completely achieve this goal for the 
following reasons. First, because some Windows system 
services, e.g., RPCSS, are really parts of the Windows OS, the 
kernel does not allow them to be duplicated. That is, Windows is 
designed to forbid users or applications to create, register and 
run multiple instances of the same system service 
simultaneously on a single OS. Second, to duplicate Windows 
services, one needs to intercept and change inter-process 
communications, inter-service co-operations, and registry 
manipulations, etc. However, because the details of these 
behaviors are largely proprietary, it is difficult to correctly 
reverse-engineer all of them and make necessary modifications 
to them. Third, in some cases, even correctly handling all 
relevant behaviors is not sufficient because some Windows 
services hard-code certain resource names in their binaries and 
therefore may break when they run on top of an OS-level 
virtualization layer that renames system resources. 

In this paper, we propose a novel and general scheme to 
virtualize Windows services that consists of four steps: logically 
duplicating a Windows service in Service Control Manager 
(SCM)’s internal database, physically duplicating a Windows 
service by starting a new process and putting it into its 
associated VM, picking out and changing inter-service co-
operations, identifying and modifying system resource names 
that are hard-coded into service binaries. To test the 
effectiveness of the proposed scheme, we applied it to 
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successfully virtualize several important system services on 
different versions of Windows OS, including the RPCSS service, 
which plays a critical role in RPC/COM/DCOM functionalities. 
We believe our technique is the first that successfully 
demonstrates that multiple instances of the RPCSS service can 
run concurrently on top of the Windows OS. In addition, our 
technique allows multiple instances of the IIS or Apache web 
server, or Mysql database server to run simultaneously on a 
Windows machine.  

The rest of this paper is organized as follows. We first 
present the proposed technique for Windows service 
virtualization in Section 2, and evaluate the functionality and 
performance of the prototype in Section 3. In Section 4, we 
compare this research with other similar efforts in the literature. 
In Section 5, we summarize the main contributions of this work 
and outline future research directions. 

2. SOLUTION 

We propose a generic scheme to virtualize Windows services. 
As depicted in Figure 1, it consists of the following four steps: 

(1) Logically duplicating a Windows service by creating a 
separate entry in the SCM database with a new service 
name. 

(2) Physically duplicating a new instance of a service by 
starting a service process and putting it in its corresponding 
VM. 

(3) Managing the inter-service interactions between virtualized 
services and Windows core processes. 

(4) Renaming hard-coded service names embedded in service 
binaries. 

In the rest of this section, we describe these four steps in 
detail. 

2.1 Creating a Virtualized Service  

To create a new Windows service, the API function 
CreateService() is a natural choice. This API function, 
however, could not create a new instance of a DLL-based 
service just like the original instance, because 
CreateService() could neither set up a DLL-based 
service name in the SCM database nor add a new service group 
into a svchost.exe process. Another method is to modify 
the SCM database directly in order to add a new DLL-based 
service. However, this method could not start the new service 
immediately after the SCM database modification, because SCM 

cannot incorporate the SCM database modification until the 
whole system is rebooted.  

In the end, we choose to combine these two methods to 
create a new Windows service as follows: 

(1) Calling CreateService() with a virtualized service 
name, like “ServiceName-vmX”, where ServiceName is the 
original name of the service to be virtualized and X is the VM 
ID of the VM initiating the service virtualization request, to 
inform SCM the creation of a new service. This way we can 
launch the newly created service without rebooting the entire 
system. 

(2) Making a copy of the SCM database entries associated 
with the virtualized service, and modifying three places in the 
copied SCM database entries. First, the original service name 
should be changed to a virtualized service name, e.g., from 
“ServiceName” to “ServiceName-vmX”. Second, the names of 
the services on which the virtualized service depends should 
also be changed from their original service names to virtualized 
service names. For example, because the IISADMIN service 
depends on RPCSS, when virtualizing the IISADMIN service, 
the service name of RPCSS should be changed to RPCSS-vmX. 
Last, the start type of the new virtualized service should be set to 
manual start rather than automatic start, because a 
virtualized service should be started after the boot-up of a VM. 
All other SCM database entries should be left untouched. With 
these SCM database entries, a virtualized service will behave 
exactly the same as the original service from which it is cloned. 

2.2 Starting a Virtualized Service Process 

Calling the API function StartService() causes SCM to 
launch a new service process. To determine which VM the 
newly launched service process should be placed in, we need a 
mechanism to determine to which VM the started service 
belongs.  

At the time when a VM creates a service, we record a FVM 
flag and the VM’s ID in the SCM database entry that contains 
the service’s binary path and start-up parameter. When the SCM 
launches a service process, FVM’s in-kernel monitor moves the 
service process into its corresponding VM according to the 
FVM flag and VM ID in the process’ pathname and parameters.  

Virtualized 
Service A 

Process of 
Virtualized 
Service A 

 
Windows core 
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Figure 1. Windows service virtualization scheme consisting of four-step 
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For a DLL-based service, SCM starts it as a thread inside a 
svchost.exe process. In this case we record a FVM flag 
and a VM ID at the end of the service process’ parameter list in 
the SCM database. For example, the original RPCSS service has 
a parameter like “-k rpcss”, the virtualized RPCSS service will 
have a parameter like “-k rpcss-vmX”, “X” again represents a 
VM ID. When the new RPCSS service process is launched with 
parameter “-k rpcss-vmX” and FVM’s in-kernel monitor sees a 
process with a start-up parameter containing “-vmX”, it adds the 
process into the VM whose VM ID is X. 

For an EXE-based service, SCM starts it as an independent 
process. We first copy the EXE file into the VM’s workspace 
and then record its pathname in the SCM database. Because the 
pathname is in a VM, it will naturally contain a FVM flag and a 
VM ID. For example, W3SVC is a Windows service for web 
service, the pathname of the original W3SVC service’s image is 
“c:\WINNT\system32\inetsrv\inetinfo.exe”, and 
the pathname of its virtualized version becomes “c:\fvms\VM 
-X\C\WINNT\system32\inetsrv\inetinfo.exe”, 
where ”X” represents the ID of the VM in which the virtualized 
service is to be placed. When FVM’s in-kernel monitor sees a 
process with such an image pathname, it will put the process in 
the corresponding VM. 

2.3 Maintaining Existing Inter-Service 
Interactions 

Most inter-service dependencies can be derived from SCM 
database entries, i.e. the DependOnService and 
DependOnGroup entries under a service’s registry key. 
However, some inter-service dependencies are not explicitly 
recorded in the SCM database, and can only be identified 
through reverse engineering. For example, on the Windows XP 
platform the RPCSS service depends on the DcomLaunch 
service, because starting RPCSS requires a shared global data 
structure RotHintTable which is created by DcomLaunch. 
Once these inter-service dependencies are identified, we follow 

a simple principle to ensure these dependencies are observed in 
the service virtualization process:  

The starting order of the virtualized services in a VM 
should be the same as that of their original services in the host. 

The Windows core processes, e.g. SCM, Lsass and 
WinLogon, are closely related to the Windows kernel itself and 
therefore cannot be duplicated or virtualized, i.e., running a new 
instance in each VM. These core processes therefore run in the 
host and virtualized services interact with them through IPC 
objects. Under FVM, when a process in a VM interacts with 
other processes in the same VM using IPC, FVM’s in-kernel 
monitor intercepts the IPC requests and renames the resources 
referred to in the parameters of the requests. However, for the 
IPC requests used by a virtualized service running in a VM to 
interact with the core processes which run in the host, the 
arguments used in the IPC requests should not be transformed. 
For instance, Windows services often connect to the SCM 
process through a named pipe called NtControlPipe during 
start-up by calling the API function CreateFile() with the 
file name NtControlPipe. When a virtualized service 
running in a VM tries to open the named pipe by calling the API 
function CreateFile(), if the file name argument were 
changed to NtControlPipe-vmX by FVM, the virtualized 
service would not be able to interact with SCM because SCM 
runs in the host and still uses the original pipe name 
NtControlPipe. 

One way to fix this problem is to identify all IPCs used by 
virtualized services to interact with the core Windows processes 
and avoid renaming the resource arguments used in these IPC 
calls. However, it is very challenging to identify all such IPC 
calls, because the implementation details of Windows core 
processes are mostly undocumented. To identify long-term IPC 
objects and IPC objects used after process start-up, we statically 
analyze the shared IPC objects between Windows core processes 
and virtualized services using the tool ProcessExplorer. To 
pinpoint short-term IPC objects and IPC objects used during 
process start-up, we logged IPC-related system calls and certain 
Win32 API function calls during a service’s execution in a VM 
and compared the resulting log with that associated with the 
same service’s execution in the host. Eventually, we were able 
to figure out all the IPC objects used by Windows core 
processes on the Windows 2K and XP platforms, and list them 
in Table 1. With this IPC object list, when a Windows service 
running in a VM utilizes an IPC object, FVM will not rename 
the IPC objects involved if it is in the list, thus enabling the 
service to seamlessly interact with the core processes running in 
the host. 

2.4 Renaming Hard-Coded Service Names 

After the above three steps, FVM can correctly virtualize many 
Windows services. However, some services, after being 
virtualized, could not complete its start-up procedure, for 
instance, the RPCSS service. By disassembling these services’ 
binary files, we found the root cause is the “hard-coded service 
name” problem. Figure 2 shows the disassembly result of 
several code fragments of the Windows XP version of 
rpcss.dll. In these code fragments two hard-coded RPCSS 
service name strings are used as input arguments to the string 
manipulation function RtlInitUnicodeString() and to 

IPC Type IPC Objects 

Port \RPC Control\DNSResolver 
\RPC Control\ntsvcs 

Named 
Pipe 

\Device\NamedPipe\net\NtControlPipe* (* represents an 
arbitrary number) 
\Device\NamedPipe\svcctl (only on Windows 2k) 
\Device\NamedPipe\ntsvcs 
\Device\NamedPipe\EVENTLOG 
\Device\NamedPipe\samr 

Mutex 
\BaseNamedObjects\DBWinMutex 
\BaseNamedObjects\RasPbFile 
\BaseNamedObjects\SHIMLIB_LOG_MUTEX 
\BaseNamedObjects\ShimCacheMutex 

Section 
\BaseNamedObjects\__R_ 0000000000da_SMem__ 
\BaseNamedObjects\DBWIN_BUFFER 
\BaseNamedObjects\ShimSharedMemory 

Event 

\BaseNamedObjects\ScmCreatedEvent 
\BaseNamedObjects\SvcctrlStartEvent_A3752DX 
\BaseNamedObjects\crypt32LogoffEvent 
\BaseNamedObjects\userenv: User Profile setup event 
\BaseNamedObjects\DINPUTWINMM 
\SECURITY\LSA_AUTHENTICATION_INITIALIZED 

Table 1. IPC objects facilitating interactions between 
virtualized services and Windows core processes 
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Figure 2. Code fragments of anti-compiled rpcss.dll. Two hard-
coded RPCSS service name strings are used as input arguments 
to functions RtlInitUnicodeString() and OpenServiceW(). 

76A9752F  push esi 
76A97530  push 00000004h 
76A97532  push SWC76A975C4_RpcSS 
76A97537  push [L76ABE8B4] 
76A9753D call [ADVAPI32.dll!OpenServiceW] 
…… 
76A975C4  SWC76A975C4_RpcSS: 
76A975C4  unicode 'RpcSS',0000h 
…… 
76A97C0C  SWC76A97C0C_RPCSS: 
76A97C0C  Unicode 'RPCSS',0000h 
…… 
76A989FF  mov edi,[ebp+0Ch] 
76A98A02  mov [L76ABE390],esi 
76A98A08  push [edi] 
76A98A0A  mov esi,[ntdll.dll!RtlInitUnicodeString] 
76A98A10  lea eax,[ebp-18h] 
76A98A13  push eax 
76A98A14  mov [ebp-08h],ebx 
76A98A17  call esi 
76A98A19  push SWC76A97C0C_RPCSS 
76A98A1E  lea eax,[ebp-10h] 
76A98A21  push eax 
76A98A22  call esi 
76A98A24  push 00000001h 
76A98A26  lea eax,[ebp-10h] 
76A98A29  push eax 
76A98A2A  lea eax,[ebp-18h] 
76A98A2D  push eax 
76A98A2E  call [ntdll.dll!RtlEqualUnicodeString] 
…… 
76AA8EC4  call [ADVAPI32.dll!OpenSCManagerW] 
76AA8ECA  cmp eax,edi 
76AA8ECC  mov [ebp-04h],eax 
76AA8ECF  jz  L76AA8F16 
76AA8ED1  push ebx 
76AA8ED2  push esi 
76AA8ED3  push 000F01FFh 
76AA8ED8  push SWC76A97C0C_RPCSS 
76AA8EDD  push eax 
76AA8EDE  call [ADVAPI32.dll!OpenServiceW] 

the service management function OpenServiceW(). When 
the rpcss.dll is invoked in a VM with service name RPCSS–
vmX, the hard-coded name will be sent to SCM by the function 
OpenServiceW(). If at the time another RPCSS service is 
running in a different VM, SCM will refuse the 
OpenServiceW() function since both services use the hard-
coded name RPCSS. Eventually, the service RPCSS-vmX fails 
to complete its start-up procedure.  

After analyzing a bunch of Windows service binaries, we 
found there are two types of API functions that use hard-coded 
service name as input arguments. The first type is service-related 
API functions and the other type is string manipulation-related 
API functions. Accordingly, we solve the “hard-coded service 
name” problem by intercepting these two types of API functions 
issued by a virtualized service, and checking if the associated 
argument is a virtualized service name or an unmodified service 
name. If it is an original service name, we change it to the 
corresponding virtualized service name, because functions in 
virtualized service processes should only use virtualized service 
names. 

3. PROTOTYPE 

To demonstrate the effectiveness of the proposed service 
virtualization scheme, we developed a prototype based on FVM 
on Windows 2K and XP. Although XP and 2K are not new, they 
are enough for verifying the approach of service virtualization 
since both versions of Windows OS have very similar system calls, 
Win32 API functions and service mechanisms, based on which 
the virtualization layer works.  

To verify the functionality of our prototype, we 
successfully virtualized several important Windows services 
using the prototype. On Windows 2k, we virtualized RPCSS and 
IIS service groups. On Windows XP, we virtualized RPCSS 
service group, MySQL service for Mysql database, Apache2.2 
service for Apache web server, Tlntsvr service for telnet server, 
CiSvc service for indexing files, ImapiService server for 
managing CD recording, etc. The virtualized services work 
smoothly inside VMs.  

For example, the virtualization steps finished by the 
prototype for the RPCSS service are as follows (suppose the VM 
ID of the VM that requests a new instance of RPCSS is Z): 

(1) Create the registry key 
HKLM\SYSTEM\CurrentControlSet\Services\RpcSs
-vmZ and the registry value RpcSs-vmZ under 
HKLM\SOFTWARE\Microsoft\WindowsNT\CurrentVer
sion\SvcHost. 

(2) Start RPCSS service and recognize its process by the parameter “-
k rpcss-vmZ”, then move the process into VM Z. 

(3) Enable the interaction between RPCSS and the core processes 
running in the host by disabling resource renaming for accessing 
IPC objects listed in Table 1. 

(4) The hard-coded service name rpcss in the service binary 
rpcss.dll is used by a service-related API function 
RegisterServiceCtrlHandlerEx() as an argument. We 
rename it to rpcss-vmZ. 

Because the success of RPCSS virtualization, we now can 
run several applications that need the services provided by 

RPCSS, including Microsoft Office Assistant, Excel COM 
server, which is launched when users try to edit an Excel object 
inside a Word document, Adobe installation program, etc. 

.As the performance overhead of service virtualization is 
mainly resulted from executing additional instructions when 
intercepting system calls and API functions, we measure 
specifically the interception overhead of the corresponding 
system calls and API functions. The per-system-call or per-API-
function-call overhead of the proposed service virtualization 
scheme is small to negligible when compared with the baseline 
Windows OS, and its penalty on the startup time and the run-
time performance of virtualized services is much smaller than 
those when the same service is virtualized on top of VMware 
Workstation. This performance difference mainly comes from 
the fact that FVM is designed to enforce inter-VM isolation 
through logical name renaming, whereas VMware Workstation 
is designed to enforce inter-VM isolation through physical 
resource separation. 

4. RELATED WORK 

As far as we know, there is no such a project successfully 
virtualized both ordinary service and system service on 
Windows OS in literature. There are two projects more closely 
related to our work. One is Feather-weight Virtual Machine 
(FVM) [5] that enables multiple isolated execution 
environments to run on a single Windows kernel. It is able to 
virtualize a limited number of ordinary services, whereas, it can 
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not virtualize system services such as RPCSS and ordinary 
services that require complex inter-service interactions, e.g. IIS 
service group. The other project is Virtuozzo [8] that provides 
isolated environments called Virtual Dedicated Server or Virtual 
Private Server (VPS) on Windows platform, but we could not 
find any description about Windows service virtualization, 
especially system service virtualization from its public 
document. 

The original version of FVM can only virtualize a limited 
number of Windows services by intercepting service-related API 
functions and attaching FVM flags and VM identification 
numbers to service names. However, as explained in Section 3.1, 
this method is not only limited but also incorrect in some cases 
because not all Windows services can be duplicated. For 
instance, the RPCSS service runs as a thread inside a 
svchost.exe process and therefore cannot be duplicated by just 
calling the standard service API function. Furthermore, because 
the original version of FVM did not recognize let alone address 
the “hard-coded service name” problem, it can not handle 
services whose binary contains hard-coded service names. 

Other commercial products on Windows also include 
similar OS-level virtualization techniques, including Softricity 
Desktop [9], AppStream [10] and Thinstall [11]. In particular, 
Softricity Desktop [9] implements comprehensive virtualization 
to execute virtualized applications without requiring any pre-
installation. Specifically it enables each virtualized application 
to execute against its own set of registries and configuration files 
within a virtual machine on any machine to which the 
virtualized application is deployed. However, Softricity Desktop 
can only provide isolated runtime environments for applications 
but not for Windows services.  

5. CONCLUSION 

OS-level virtualization virtualizes the system resource at the 
system call interface, and relies on a single kernel to provide 
system resources to multiple virtual machines running on an OS-
level virtualization layer. On the Windows platform, parts of the 
kernel’s functionalities are actually embodied in some user-level 
services. As a result, these services are tightly integrated with 
the kernel and therefore cannot be duplicated or virtualized in 
each VM. However, it is still essential to virtualize as many 
Windows services as possible so that OS-level virtualization can 
become a viable virtualization technology on Windows. 
Unfortunately, none of the publicly available documents on OS-
level virtualization technologies ever mention the service 
virtualization problems, not to mention addressing them. We 
thus believe this paper is the first to describe a generic Windows 
service virtualization scheme that can virtualize not only 
ordinary services, but also important system services such as 
RPCSS. Applying this scheme, we successfully virtualized 
RPCSS, DcomLaunch and IIS service group including 
IISADMIN, W3SVC, MSFTPSVC, SMTPSVC and NNTPSVC 
on both Windows 2K and XP, as well as MySQL, Apache2.2, 
CiSvc, ImapiService and Tlntsvr on Windows XP. As a result, 
we can successfully run multiple instances of the IIS web server, 
Apache web server or MySQL database server simultaneously 
on a single Windows machine. Empirical performance 
measurements on the prototype implementation of the proposed 
service virtualization scheme show that the additional 

performance overhead introduced by service virtualization is 
rather minor when compared with the overhead introduced by 
the original version of FVM. Moreover, the startup time and 
run-time performance of virtualized services of FVM with 
service virtualization are about two to three times better than the 
same set-ups running on VMware Workstation. These results 
demonstrate the potential performance advantage and thus 
importance of the proposed service virtualization technique. 
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