
 1

Virtualizing System and Ordinary Services in
Windows-based OS-Level Virtual Machines

Zhiyong Shan§*

zshan@cs.sunysb.edu
Tzi-cker Chiueh*

chiueh@cs.sunysb.edu
Xin Wang*

xwang@ece.sunysb.edu

§Key Laboratory of Data Engineering and Knowledge Engineering, MOE, Renmin University of China
*Stony Brook University

ABSTRACT
OS-level virtualization incurs smaller start-up and run-time
overhead than HAL-based virtualization and thus forms an
important building block for developing fault-tolerant and
intrusion-tolerant applications. A complete implementation of
OS-level virtualization on the Windows platform requires
virtualization of Windows services, such as system services like
the Remote Procedure Call Server Service (RPCSS), because
they are essentially extensions of the kernel. As Windows
system services work very differently from their counterparts on
UNIX-style OS, i.e., daemons, and many of their
implementation details are proprietary, virtualizing Windows
system services turned out to be the most challenging technical
barrier for OS-level virtualization for the Windows platform. In
this paper, we describe a general technique to virtualize
Windows services, and demonstrate its effectiveness by
applying it to successfully virtualize a set of important Windows
system services and ordinary services on different versions of
Windows OS, including RPCSS, DcomLaunch, IIS service
group, Tlntsvr, MySQL, Apache2.2, CiSvc, ImapiService, etc.

Categories and Subject Descriptors D.4.5 [Operating
Systems]:Reliability; D.4.6 [Operating Systems]: Security and
Protection

General Terms Reliability, Security

Keywords virtual machine, service virtualization, Windows
service

1. INTRODUCTION

OS-level virtualization provides an excellent platform for the
development of fault-tolerant and intrusion-tolerant applications,
because, it incurs little or no overhead when creating, running,
and shutting down a virtual machine (VM). OS-level VMs (i.e.,
containers) are designed to share as many resources as they can
with other VMs or with the host environment. Moreover,
programs in an OS-level VM run as normal applications that
directly use the host operating system's system call interface and
do not need to run on top of an intermediate hypervisor, which
could be a specially crafted software (as in the case of VMware
ESX [1] and Xen [3]) or a standard operating system (as in the
case of Virtual PC [2] and UML [4]).

A standard implementation for OS-level virtualization is to
intercept the system call interface, and rename the system
resources being manipulated so that the system resources of
each virtual machine reside in a separate name space. A well-
known problem with OS-level virtualization is that all OS-level
virtual machines running on top of a kernel share the kernel’s
state, because OS-level virtualization does not virtualize the
kernel state. On the Windows platform, a set of user-level
system services, which behave like daemons in a Unix-style OS,
are used to augment the kernel and provide various critical
functionalities to other services and applications. For example,
Windows’s inter-process communication mechanisms such as
COM, DCOM and RPC, are supported by the RPCSS service.
How to virtualize these system services so that the large install
base of Windows applications can run correctly in different
VMs without interfering one another turns out to be a major
implementation challenge.

The goal of virtualizing Windows services is to duplicate a
separate instance of each Windows service in each VM.
However, it is non-trivial to completely achieve this goal for the
following reasons. First, because some Windows system
services, e.g., RPCSS, are really parts of the Windows OS, the
kernel does not allow them to be duplicated. That is, Windows is
designed to forbid users or applications to create, register and
run multiple instances of the same system service
simultaneously on a single OS. Second, to duplicate Windows
services, one needs to intercept and change inter-process
communications, inter-service co-operations, and registry
manipulations, etc. However, because the details of these
behaviors are largely proprietary, it is difficult to correctly
reverse-engineer all of them and make necessary modifications
to them. Third, in some cases, even correctly handling all
relevant behaviors is not sufficient because some Windows
services hard-code certain resource names in their binaries and
therefore may break when they run on top of an OS-level
virtualization layer that renames system resources.

In this paper, we propose a novel and general scheme to
virtualize Windows services that consists of four steps: logically
duplicating a Windows service in Service Control Manager
(SCM)’s internal database, physically duplicating a Windows
service by starting a new process and putting it into its
associated VM, picking out and changing inter-service co-
operations, identifying and modifying system resource names
that are hard-coded into service binaries. To test the
effectiveness of the proposed scheme, we applied it to

 2

successfully virtualize several important system services on
different versions of Windows OS, including the RPCSS service,
which plays a critical role in RPC/COM/DCOM functionalities.
We believe our technique is the first that successfully
demonstrates that multiple instances of the RPCSS service can
run concurrently on top of the Windows OS. In addition, our
technique allows multiple instances of the IIS or Apache web
server, or Mysql database server to run simultaneously on a
Windows machine.

The rest of this paper is organized as follows. We first
present the proposed technique for Windows service
virtualization in Section 2, and evaluate the functionality and
performance of the prototype in Section 3. In Section 4, we
compare this research with other similar efforts in the literature.
In Section 5, we summarize the main contributions of this work
and outline future research directions.

2. SOLUTION

We propose a generic scheme to virtualize Windows services.
As depicted in Figure 1, it consists of the following four steps:

(1) Logically duplicating a Windows service by creating a
separate entry in the SCM database with a new service
name.

(2) Physically duplicating a new instance of a service by
starting a service process and putting it in its corresponding
VM.

(3) Managing the inter-service interactions between virtualized
services and Windows core processes.

(4) Renaming hard-coded service names embedded in service
binaries.

In the rest of this section, we describe these four steps in
detail.

2.1 Creating a Virtualized Service

To create a new Windows service, the API function
CreateService() is a natural choice. This API function,
however, could not create a new instance of a DLL-based
service just like the original instance, because
CreateService() could neither set up a DLL-based
service name in the SCM database nor add a new service group
into a svchost.exe process. Another method is to modify
the SCM database directly in order to add a new DLL-based
service. However, this method could not start the new service
immediately after the SCM database modification, because SCM

cannot incorporate the SCM database modification until the
whole system is rebooted.

In the end, we choose to combine these two methods to
create a new Windows service as follows:

(1) Calling CreateService() with a virtualized service
name, like “ServiceName-vmX”, where ServiceName is the
original name of the service to be virtualized and X is the VM
ID of the VM initiating the service virtualization request, to
inform SCM the creation of a new service. This way we can
launch the newly created service without rebooting the entire
system.

(2) Making a copy of the SCM database entries associated
with the virtualized service, and modifying three places in the
copied SCM database entries. First, the original service name
should be changed to a virtualized service name, e.g., from
“ServiceName” to “ServiceName-vmX”. Second, the names of
the services on which the virtualized service depends should
also be changed from their original service names to virtualized
service names. For example, because the IISADMIN service
depends on RPCSS, when virtualizing the IISADMIN service,
the service name of RPCSS should be changed to RPCSS-vmX.
Last, the start type of the new virtualized service should be set to
manual start rather than automatic start, because a
virtualized service should be started after the boot-up of a VM.
All other SCM database entries should be left untouched. With
these SCM database entries, a virtualized service will behave
exactly the same as the original service from which it is cloned.

2.2 Starting a Virtualized Service Process

Calling the API function StartService() causes SCM to
launch a new service process. To determine which VM the
newly launched service process should be placed in, we need a
mechanism to determine to which VM the started service
belongs.

At the time when a VM creates a service, we record a FVM
flag and the VM’s ID in the SCM database entry that contains
the service’s binary path and start-up parameter. When the SCM
launches a service process, FVM’s in-kernel monitor moves the
service process into its corresponding VM according to the
FVM flag and VM ID in the process’ pathname and parameters.

Virtualized
Service A

Process of
Virtualized
Service A

Windows core
processes in

Host
Original

Service A

FVM architecture

Virtual Machines

SCM Database

(1) (2) (3)

(4)

Figure 1. Windows service virtualization scheme consisting of four-step

 3

For a DLL-based service, SCM starts it as a thread inside a
svchost.exe process. In this case we record a FVM flag
and a VM ID at the end of the service process’ parameter list in
the SCM database. For example, the original RPCSS service has
a parameter like “-k rpcss”, the virtualized RPCSS service will
have a parameter like “-k rpcss-vmX”, “X” again represents a
VM ID. When the new RPCSS service process is launched with
parameter “-k rpcss-vmX” and FVM’s in-kernel monitor sees a
process with a start-up parameter containing “-vmX”, it adds the
process into the VM whose VM ID is X.

For an EXE-based service, SCM starts it as an independent
process. We first copy the EXE file into the VM’s workspace
and then record its pathname in the SCM database. Because the
pathname is in a VM, it will naturally contain a FVM flag and a
VM ID. For example, W3SVC is a Windows service for web
service, the pathname of the original W3SVC service’s image is
“c:\WINNT\system32\inetsrv\inetinfo.exe”, and
the pathname of its virtualized version becomes “c:\fvms\VM
-X\C\WINNT\system32\inetsrv\inetinfo.exe”,
where ”X” represents the ID of the VM in which the virtualized
service is to be placed. When FVM’s in-kernel monitor sees a
process with such an image pathname, it will put the process in
the corresponding VM.

2.3 Maintaining Existing Inter-Service
Interactions

Most inter-service dependencies can be derived from SCM
database entries, i.e. the DependOnService and
DependOnGroup entries under a service’s registry key.
However, some inter-service dependencies are not explicitly
recorded in the SCM database, and can only be identified
through reverse engineering. For example, on the Windows XP
platform the RPCSS service depends on the DcomLaunch
service, because starting RPCSS requires a shared global data
structure RotHintTable which is created by DcomLaunch.
Once these inter-service dependencies are identified, we follow

a simple principle to ensure these dependencies are observed in
the service virtualization process:

The starting order of the virtualized services in a VM
should be the same as that of their original services in the host.

The Windows core processes, e.g. SCM, Lsass and
WinLogon, are closely related to the Windows kernel itself and
therefore cannot be duplicated or virtualized, i.e., running a new
instance in each VM. These core processes therefore run in the
host and virtualized services interact with them through IPC
objects. Under FVM, when a process in a VM interacts with
other processes in the same VM using IPC, FVM’s in-kernel
monitor intercepts the IPC requests and renames the resources
referred to in the parameters of the requests. However, for the
IPC requests used by a virtualized service running in a VM to
interact with the core processes which run in the host, the
arguments used in the IPC requests should not be transformed.
For instance, Windows services often connect to the SCM
process through a named pipe called NtControlPipe during
start-up by calling the API function CreateFile() with the
file name NtControlPipe. When a virtualized service
running in a VM tries to open the named pipe by calling the API
function CreateFile(), if the file name argument were
changed to NtControlPipe-vmX by FVM, the virtualized
service would not be able to interact with SCM because SCM
runs in the host and still uses the original pipe name
NtControlPipe.

One way to fix this problem is to identify all IPCs used by
virtualized services to interact with the core Windows processes
and avoid renaming the resource arguments used in these IPC
calls. However, it is very challenging to identify all such IPC
calls, because the implementation details of Windows core
processes are mostly undocumented. To identify long-term IPC
objects and IPC objects used after process start-up, we statically
analyze the shared IPC objects between Windows core processes
and virtualized services using the tool ProcessExplorer. To
pinpoint short-term IPC objects and IPC objects used during
process start-up, we logged IPC-related system calls and certain
Win32 API function calls during a service’s execution in a VM
and compared the resulting log with that associated with the
same service’s execution in the host. Eventually, we were able
to figure out all the IPC objects used by Windows core
processes on the Windows 2K and XP platforms, and list them
in Table 1. With this IPC object list, when a Windows service
running in a VM utilizes an IPC object, FVM will not rename
the IPC objects involved if it is in the list, thus enabling the
service to seamlessly interact with the core processes running in
the host.

2.4 Renaming Hard-Coded Service Names

After the above three steps, FVM can correctly virtualize many
Windows services. However, some services, after being
virtualized, could not complete its start-up procedure, for
instance, the RPCSS service. By disassembling these services’
binary files, we found the root cause is the “hard-coded service
name” problem. Figure 2 shows the disassembly result of
several code fragments of the Windows XP version of
rpcss.dll. In these code fragments two hard-coded RPCSS
service name strings are used as input arguments to the string
manipulation function RtlInitUnicodeString() and to

IPC Type IPC Objects

Port \RPC Control\DNSResolver
\RPC Control\ntsvcs

Named
Pipe

\Device\NamedPipe\net\NtControlPipe* (* represents an
arbitrary number)
\Device\NamedPipe\svcctl (only on Windows 2k)
\Device\NamedPipe\ntsvcs
\Device\NamedPipe\EVENTLOG
\Device\NamedPipe\samr

Mutex
\BaseNamedObjects\DBWinMutex
\BaseNamedObjects\RasPbFile
\BaseNamedObjects\SHIMLIB_LOG_MUTEX
\BaseNamedObjects\ShimCacheMutex

Section
\BaseNamedObjects__R_ 0000000000da_SMem__
\BaseNamedObjects\DBWIN_BUFFER
\BaseNamedObjects\ShimSharedMemory

Event

\BaseNamedObjects\ScmCreatedEvent
\BaseNamedObjects\SvcctrlStartEvent_A3752DX
\BaseNamedObjects\crypt32LogoffEvent
\BaseNamedObjects\userenv: User Profile setup event
\BaseNamedObjects\DINPUTWINMM
\SECURITY\LSA_AUTHENTICATION_INITIALIZED

Table 1. IPC objects facilitating interactions between
virtualized services and Windows core processes

 4

Figure 2. Code fragments of anti-compiled rpcss.dll. Two hard-
coded RPCSS service name strings are used as input arguments
to functions RtlInitUnicodeString() and OpenServiceW().

76A9752F push esi
76A97530 push 00000004h
76A97532 push SWC76A975C4_RpcSS
76A97537 push [L76ABE8B4]
76A9753D call [ADVAPI32.dll!OpenServiceW]
……
76A975C4 SWC76A975C4_RpcSS:
76A975C4 unicode 'RpcSS',0000h
……
76A97C0C SWC76A97C0C_RPCSS:
76A97C0C Unicode 'RPCSS',0000h
……
76A989FF mov edi,[ebp+0Ch]
76A98A02 mov [L76ABE390],esi
76A98A08 push [edi]
76A98A0A mov esi,[ntdll.dll!RtlInitUnicodeString]
76A98A10 lea eax,[ebp-18h]
76A98A13 push eax
76A98A14 mov [ebp-08h],ebx
76A98A17 call esi
76A98A19 push SWC76A97C0C_RPCSS
76A98A1E lea eax,[ebp-10h]
76A98A21 push eax
76A98A22 call esi
76A98A24 push 00000001h
76A98A26 lea eax,[ebp-10h]
76A98A29 push eax
76A98A2A lea eax,[ebp-18h]
76A98A2D push eax
76A98A2E call [ntdll.dll!RtlEqualUnicodeString]
……
76AA8EC4 call [ADVAPI32.dll!OpenSCManagerW]
76AA8ECA cmp eax,edi
76AA8ECC mov [ebp-04h],eax
76AA8ECF jz L76AA8F16
76AA8ED1 push ebx
76AA8ED2 push esi
76AA8ED3 push 000F01FFh
76AA8ED8 push SWC76A97C0C_RPCSS
76AA8EDD push eax
76AA8EDE call [ADVAPI32.dll!OpenServiceW]

the service management function OpenServiceW(). When
the rpcss.dll is invoked in a VM with service name RPCSS–
vmX, the hard-coded name will be sent to SCM by the function
OpenServiceW(). If at the time another RPCSS service is
running in a different VM, SCM will refuse the
OpenServiceW() function since both services use the hard-
coded name RPCSS. Eventually, the service RPCSS-vmX fails
to complete its start-up procedure.

After analyzing a bunch of Windows service binaries, we
found there are two types of API functions that use hard-coded
service name as input arguments. The first type is service-related
API functions and the other type is string manipulation-related
API functions. Accordingly, we solve the “hard-coded service
name” problem by intercepting these two types of API functions
issued by a virtualized service, and checking if the associated
argument is a virtualized service name or an unmodified service
name. If it is an original service name, we change it to the
corresponding virtualized service name, because functions in
virtualized service processes should only use virtualized service
names.

3. PROTOTYPE

To demonstrate the effectiveness of the proposed service
virtualization scheme, we developed a prototype based on FVM
on Windows 2K and XP. Although XP and 2K are not new, they
are enough for verifying the approach of service virtualization
since both versions of Windows OS have very similar system calls,
Win32 API functions and service mechanisms, based on which
the virtualization layer works.

To verify the functionality of our prototype, we
successfully virtualized several important Windows services
using the prototype. On Windows 2k, we virtualized RPCSS and
IIS service groups. On Windows XP, we virtualized RPCSS
service group, MySQL service for Mysql database, Apache2.2
service for Apache web server, Tlntsvr service for telnet server,
CiSvc service for indexing files, ImapiService server for
managing CD recording, etc. The virtualized services work
smoothly inside VMs.

For example, the virtualization steps finished by the
prototype for the RPCSS service are as follows (suppose the VM
ID of the VM that requests a new instance of RPCSS is Z):

(1) Create the registry key
HKLM\SYSTEM\CurrentControlSet\Services\RpcSs
-vmZ and the registry value RpcSs-vmZ under
HKLM\SOFTWARE\Microsoft\WindowsNT\CurrentVer
sion\SvcHost.

(2) Start RPCSS service and recognize its process by the parameter “-
k rpcss-vmZ”, then move the process into VM Z.

(3) Enable the interaction between RPCSS and the core processes
running in the host by disabling resource renaming for accessing
IPC objects listed in Table 1.

(4) The hard-coded service name rpcss in the service binary
rpcss.dll is used by a service-related API function
RegisterServiceCtrlHandlerEx() as an argument. We
rename it to rpcss-vmZ.

Because the success of RPCSS virtualization, we now can
run several applications that need the services provided by

RPCSS, including Microsoft Office Assistant, Excel COM
server, which is launched when users try to edit an Excel object
inside a Word document, Adobe installation program, etc.

.As the performance overhead of service virtualization is
mainly resulted from executing additional instructions when
intercepting system calls and API functions, we measure
specifically the interception overhead of the corresponding
system calls and API functions. The per-system-call or per-API-
function-call overhead of the proposed service virtualization
scheme is small to negligible when compared with the baseline
Windows OS, and its penalty on the startup time and the run-
time performance of virtualized services is much smaller than
those when the same service is virtualized on top of VMware
Workstation. This performance difference mainly comes from
the fact that FVM is designed to enforce inter-VM isolation
through logical name renaming, whereas VMware Workstation
is designed to enforce inter-VM isolation through physical
resource separation.

4. RELATED WORK

As far as we know, there is no such a project successfully
virtualized both ordinary service and system service on
Windows OS in literature. There are two projects more closely
related to our work. One is Feather-weight Virtual Machine
(FVM) [5] that enables multiple isolated execution
environments to run on a single Windows kernel. It is able to
virtualize a limited number of ordinary services, whereas, it can

 5

not virtualize system services such as RPCSS and ordinary
services that require complex inter-service interactions, e.g. IIS
service group. The other project is Virtuozzo [8] that provides
isolated environments called Virtual Dedicated Server or Virtual
Private Server (VPS) on Windows platform, but we could not
find any description about Windows service virtualization,
especially system service virtualization from its public
document.

The original version of FVM can only virtualize a limited
number of Windows services by intercepting service-related API
functions and attaching FVM flags and VM identification
numbers to service names. However, as explained in Section 3.1,
this method is not only limited but also incorrect in some cases
because not all Windows services can be duplicated. For
instance, the RPCSS service runs as a thread inside a
svchost.exe process and therefore cannot be duplicated by just
calling the standard service API function. Furthermore, because
the original version of FVM did not recognize let alone address
the “hard-coded service name” problem, it can not handle
services whose binary contains hard-coded service names.

Other commercial products on Windows also include
similar OS-level virtualization techniques, including Softricity
Desktop [9], AppStream [10] and Thinstall [11]. In particular,
Softricity Desktop [9] implements comprehensive virtualization
to execute virtualized applications without requiring any pre-
installation. Specifically it enables each virtualized application
to execute against its own set of registries and configuration files
within a virtual machine on any machine to which the
virtualized application is deployed. However, Softricity Desktop
can only provide isolated runtime environments for applications
but not for Windows services.

5. CONCLUSION

OS-level virtualization virtualizes the system resource at the
system call interface, and relies on a single kernel to provide
system resources to multiple virtual machines running on an OS-
level virtualization layer. On the Windows platform, parts of the
kernel’s functionalities are actually embodied in some user-level
services. As a result, these services are tightly integrated with
the kernel and therefore cannot be duplicated or virtualized in
each VM. However, it is still essential to virtualize as many
Windows services as possible so that OS-level virtualization can
become a viable virtualization technology on Windows.
Unfortunately, none of the publicly available documents on OS-
level virtualization technologies ever mention the service
virtualization problems, not to mention addressing them. We
thus believe this paper is the first to describe a generic Windows
service virtualization scheme that can virtualize not only
ordinary services, but also important system services such as
RPCSS. Applying this scheme, we successfully virtualized
RPCSS, DcomLaunch and IIS service group including
IISADMIN, W3SVC, MSFTPSVC, SMTPSVC and NNTPSVC
on both Windows 2K and XP, as well as MySQL, Apache2.2,
CiSvc, ImapiService and Tlntsvr on Windows XP. As a result,
we can successfully run multiple instances of the IIS web server,
Apache web server or MySQL database server simultaneously
on a single Windows machine. Empirical performance
measurements on the prototype implementation of the proposed
service virtualization scheme show that the additional

performance overhead introduced by service virtualization is
rather minor when compared with the overhead introduced by
the original version of FVM. Moreover, the startup time and
run-time performance of virtualized services of FVM with
service virtualization are about two to three times better than the
same set-ups running on VMware Workstation. These results
demonstrate the potential performance advantage and thus
importance of the proposed service virtualization technique.

6. ACKNOWLEDGMENTS

This work has been supported by the National Science
Foundation of China (NSFC) under grants 60703103
and 60833005.

7. REFERENCES
[1] VMware. Vmware products. http://www.vmware.com/products/home.html.
[2] Microsoft. Microsoft virtual pc 2007. http://www.microsoft.com/windows/products/winfamily/virtualpc/default.mspx.
[3] Paul Barham, Boris Dragovic, Keir Fraser, Steven Hand, Tim Harris, Alex Ho, Rolf Neugebauer, Ian Pratt, and Andrew

Warfield. Xen and the art of virtualization. In Proceedings of the 19th ACM SOSP, pages 164–177. ACM Press, 2003.
[4] Jeff Dike. A user-mode port of the linux kernel. In Proceedings of the 4th Annual Linux Showcase and Conference, 2001.
[5] Yang Yu, Fanglu Guo, Susanta Nanda, Lap-chung Lam, Tzi-cker Chiueh, ̀ `A Feather-weight Virtual Machine for Windows

Applications'', in Proceedings of the 2nd ACM/USENIX Conference on Virtual Execution Environments (VEE'06), June 2006.
[6] Yang Yu, Hariharan Kolam Govindarajan, Lap-chung Lam, Tzi-cker Chiueh "Applications of Feather-Weight Virtual

Machine" , Proceedings of the 2008 ACM VEE, Seattle WA, March 2008.
[7] Microsoft. Process Explorer. http://technet.microsoft.com/en-us/sysinternals/bb896653.aspx
[8] SWsoft, “Virtuozzo for windows & linux server virtualizat-ion,” http://www.virtuozzo.com/en/products/virtuozzo/.
[9] Softricity, “Application virtualization technology,” http://www.softricity.com/products/virtualization.asp.
[10] AppStream, “Appstream technology overview,” http://www.appstream.com/products-technology.html.
[11] Thinstall, “Application virtualization: A technical overview of the thinstall application virtualization platform,”

https://thinstall.com/products/documents/ThinstallTechnicalOverview V1Feb06.pdf.
[12] PC Magazine, PC Magazine benchmarks, http://www.pcmg.com/encyclopedia_term/0,2542,t=WebBench&i=48947,00.asp
[13] Zhiyong Shan, Tanzirul Azim, Iulian Neamtiu. Finding Resume and Restart Errors in Android Applications. ACM

Conference on Object-Oriented Programming, Systems, Languages & Applications (OOPSLA’16), November 2016.
[14] Zhiyong Shan, I. Neamtiu, Z. Qian and D. Torrieri, "Proactive restart as cyber maneuver for Android," Military

Communications Conference, MILCOM 2015 - 2015 IEEE, Tampa, FL, 2015, pp. 19-24.
[15] Jin, Xinxin, Soyeon Park, Tianwei Sheng, Rishan Chen, Zhiyong Shan, and Yuanyuan Zhou. "FTXen: Making hypervisor

resilient to hardware faults on relaxed cores." In 2015 IEEE HPCA’15, pp. 451-462. IEEE, 2015.
[16] Zhiyong Shan, Xin Wang, Tzi-cker Chiueh: Shuttle: Facilitating Inter-Application Interactions for OS-Level Virtualization.

IEEE Trans. Computers 63(5): 1220-1233 (2014)
[17] Zhiyong Shan, Xin Wang: Growing Grapes in Your Computer to Defend Against Malware. IEEE Transactions on

Information Forensics and Security 9(2): 196-207 (2014)
[18] Zhiyong Shan, Xin Wang, Tzi-cker Chiueh: Malware Clearance for Secure Commitment of OS-Level Virtual Machines.

IEEE Transactions on Dependable and Secure Computing. 10(2): 70-83 (2013)
[19] Zhiyong Shan, Xin Wang, Tzi-cker Chiueh: Enforcing Mandatory Access Control in Commodity OS to Disable Malware.

IEEE Transactions on Dependable and Secure Computing 9(4): 541-555 (2012)
[20] Zhiyong Shan, Xin Wang, Tzi-cker Chiueh, Xiaofeng Meng: Facilitating inter-application interactions for OS-level

virtualization. In Proceedings of the 8th ACM Annual International Conference on Virtual Execution Environments (VEE’12), 75-86
[21] Zhiyong Shan, Xin Wang, Tzi-cker Chiueh, and Xiaofeng Meng. "Safe side effects commitment for OS-level virtualization."

In Proceedings of the 8th ACM international conference on Autonomic computing (ICAC’11), pp. 111-120. ACM, 2011.
[22] Zhiyong Shan, Xin Wang, and Tzi-cker Chiueh. 2011. Tracer: enforcing mandatory access control in commodity OS with the

support of light-weight intrusion detection and tracing. In Proceedings of the 6th ACM Symposium on Information, Computer and
Communications Security (ASIACCS '11). ACM, New York, NY, USA, 135-144. (full paper acceptance rate 16%)

[23] Shan, Zhiyong, Tzi-cker Chiueh, and Xin Wang. "Virtualizing system and ordinary services in Windows-based OS-level
virtual machines." In Proceedings of the 2011 ACM Symposium on Applied Computing, pp. 579-583. ACM, 2011.

[24] Shan, Zhiyong, Yang Yu, and Tzi-cker Chiueh. "Confining windows inter-process communications for OS-level virtual
machine." In Proceedings of the 1st EuroSys Workshop on Virtualization Technology for Dependable Systems, pp. 30-35. ACM, 2009.

[25] Shan, Zhiyong. "Compatible and Usable Mandatory Access Control for Good-enough OS Security." In Electronic
Commerce and Security, 2009. ISECS'09. Second International Symposium on, vol. 1, pp. 246-250. IEEE, 2009.

[26] Xiao Li, Wenchang Shi, Zhaohui Liang, Bin Liang, Zhiyong Shan. Operating System Mechanisms for TPM-Based Lifetime
Measurement of Process Integrity. Proceedings of the IEEE 6th International Conference on Mobile Adhoc and Sensor Systems
(MASS 2009), Oct., 2009, Macau SAR, P.R.China, IEEE Computer Society. pp. 783--789.

[27] Xiao Li, Wenchang Shi, Zhaohui Liang, Bin Liang, Zhiyong Shan. Design of an Architecture for Process Runtime Integrity
Measurement. Microelectronics & Computer, Vol.26, No.9, Sep 2009:183~186. (in Chinese)

[28] Zhiyong Shan, Wenchang Shi. “STBAC: A New Access Control Model for Operating System”. Journal of Computer
Research and Development, Vol.45, No.5, 2008: 758~764.(in Chinese)

[29] Liang Wang, Yuepeng Li, Zhiyong Shan, Xiaoping Yang. Dependency Graph based Intrusion Detection. National Computer
Security Conference, 2008. (in Chinese)

[30] Zhiyong Shan, Wenchang Shi. “An Access Control Model for Enhancing Survivability”. Computer Engineering and
Applications, 2008.12. (in Chinese)

[31] Shi Wen Chang, Shan Zhi-Yong. “A Method for Studying Fine Grained Trust Chain on Operating System”, Computer
Science, Vol.35, No.9, 2008, 35(9):1-4. (in Chinese)

[32] Liang B, Liu H, Shi W, Shan Z. Automatic detection of integer sign vulnerabilities. In International Conference on
Information and Automation, ICIA 2008. (pp. 1204-1209). IEEE.

[33] Zhiyong Shan, Qiuyue Wang, Xiaofeng Meng. “An OS Security Protection Model for Defeating Attacks from Network”, the
Third International Conference on Information Systems Security (ICISS 2007), 25-36.

[34] Zhiyong Shan, “A Security Administration Framework for Security OS Following CC”, Computer Engineering, 2007.5,
33(09):151-163. (in Chinese)

[35] Shan Zhiyong, “Research on Framework for Multi-policy”, Computer Engineering, 2007.5, 33(09):148-160. (in Chinese)
[36] Zhiyong Shan, Shi Wenchang, Liao Bin. “Research on the Hierarchical and Distributed Network Security Management

System”. Computer Engineering and Applications, 2007.3, 43(2):20-24. (in Chinese)
[37] Zhiyong Shan, “An Architecture for the Hierarchical and Distributed Network Security Management System”, Computer

Engineering and Designing, 2007.7, 28(14):3316-3320. (in Chinese)
[38] Shan Zhi Yong, Sun Yu Fang, “Study and Implementation of Double-Levels-Cache GFAC”, Chinese Journal of Computers,

Nov, 2004, 27(11):1576-1584. (in Chinese)
[39] Zhiyong Shan, Yufang Sun, “An Operating System Oriented RBAC Model and Its Implementation”, Journal of Computer

Research and Development, Feb, 2004, 41(2):287-298. (in Chinese)
[40] Zhiyong Shan, Yufang Sun, “A Study of Extending Generalized Framework for Access Control”, Journal of Computer

Research and Development, Feb, 2003, 40(2):228-234. (in Chinese)
[41] Shan Zhi Yong, Sun Yu Fang, “A Study of Generalized Environment-Adaptable Multi-Policies Supporting Framework”,

Journal of Computer Research and Development, Feb, 2003, 40(2):235-244. (in Chinese)
[42] Shan Zhiyong, Research on the Framework for Multi-Policies and Practice in Secure Operation System. Phd Thesis, Institute

of Software, Chinese Academy of Science 2003. (in Chinese)
[43] Shan Zhi Yong, Sun Yu Fang, “A Study of Security Attributes Immediate Revocation in Secure OS”, Journal of Computer

Research and Development, Dec, 2002, 39(12):1681-1688. (in Chinese)
[44] Shi Wen Chang, Sun Yu Fang, Liang Hong Liang, Zhang Xiang Feng, Zhao Qing Song, Shan Zhi Yong. Design and

Implementation of Secure Linux Kernel Security Functions. Journal of Computer Research and Development, 2001, 38(10), 1255-1261.
[45] Zhiyong Shan, Tzi-cker Chiueh, Xin Wang. Duplication of Windows Services. CoRR, 2016.
[46] Zhiyong Shan. Suspicious-Taint-Based Access Control for Protecting OS from Network Attacks. Technical Report, 2014.
[47] Zhiyong Shan, Bin Liao. Design and Implementation of A Network Security Management System. Technical Report, 2014.
[48] Zhiyong Shan. A Study on Altering PostgreSQL From Multi-Processes Structure to Multi-Threads Structure. Technical

Report, 2014.
[49] Zhiyong Shan. Implementing RBAC model in An Operating System Kernel. Technical Report, 2015.
[50] Zhiyong Shan. A Hierarchical and Distributed System for Handling Urgent Security Events. Technical Report, 2014.
[51] Zhiyong Shan. An Review On Thirty Years of Study On Secure Database and It̀ s Architectures. Technical Report, 2014.
[52] Zhiyong Shan. An Review on Behavior-Based Malware Detection Technologies on Operating System. Technical Report, 2014.

