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Abstract— Traffic anomaly detection is critical for advanced
Internet management. Existing detection algorithms generally
convert the high-dimensional data to a long vector, which
compromises the detection accuracy due to the loss of spatial
information of data. Moreover, they are generally designed
based on the separation of normal and anomalous data in
a time period, which not only introduces high storage and
computation cost but also prevents timely detection of anom-
alies. Online and accurate traffic anomaly detection is critical
but difficult to support. To address the challenge, this paper
directly models the monitoring data in each time slot as a
2-D matrix, and detects anomalies in the new time slot based
on bilateral principal component analysis (B-PCA). We propose
several novel techniques in OnlineBPCA to support quick and
accurate anomaly detection in real time, including a novel B-
PCA-based anomaly detection principle that jointly considers
the variation of both row and column principal directions for
more accurate anomaly detection, an approximate algorithm
to avoid using iteration procedure to calculate the principal
directions in a close-form, and a sequential anomaly algorithm
to quickly update principal directions with low computation and
storage cost when receiving a new data matrix at a time slot.
To the best of our knowledge, this is the first work that exploits
2-D PCA for anomaly detection. We have conducted extensive
simulations to compare our OnlineBPCA with the state-of-art
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anomaly detection algorithms using real traffic traces Abilene
and GÈANT. Our simulation results demonstrate that, compared
with other algorithms, our OnlineBPCA can achieve significantly
better detection performance with low false positive rate, high
true positive rate, and low computation cost.

Index Terms— Anomaly detection, on-line algorithm, bilateral
PCA.

I. INTRODUCTION

TRAFFIC anomalies, caused by sources such as flash
crowds, denial-of-service attacks, port scans, and the

spreading of worms, can have detrimental effects on network
services. Detecting and diagnosing these anomalies are critical
to both network operators and end users.

Existing efforts [1]–[14] on anomaly detection usually
model the traffic monitoring data of a time slot as a vector
and use a traffic matrix to record the traffic monitoring data
of a period. In the example traffic matrix of Fig.1, each
row denotes an OD (origin-destination) pair and each column
denotes a time slot. As normal traffic data generally exhibit
strong spatio-temporal correlations [2], [8], [9], the normal
traffic matrix has low-rank. Moreover, as it is very costly for
an attacker to compromise a large number of OD pairs for
a long period of time, the anomalous data over time also
form a sparse matrix. Based on the observations, to detect
anomalies, existing studies usually separate the observed traffic
data into two parts, a low-rank normal data matrix and a sparse
outlier data matrix as shown in Fig.1. After the separation,
the anomalies are detected and located from the outlier part.

The techniques applied for anomaly detection based on
data separation include PCA [3], [5], [6], [8]–[12], Robust
PCA [14], [15], bilinear factor matrix norm minimization [16],
and recent Direct Robust Matrix Factorization (DRMF) [1],
[17]). Detecting anomalies generally based on off-line learn-
ing, these methods require storing all the monitoring data
within a period and operate on these data, which not only
introduces high storage and computation cost but also prevents
timely detection of anomalies.

It is essential to detect a sudden or unexpected change
of the traffic behavior as soon as possible. Although very
important, real-time anomaly detection is extremely difficult
to achieve. It requires a light-weight algorithm to accurately
and quickly identify whether the newly arriving data contain
anomalies or not. Different from data separation, there are very
limited studies on online anomaly detection. The work in [18]
attempts to check the variation of PCA transformation between
time slots to detect the anomaly. Although it is effective,
designed based on conventional PCA that only operates over a
vector of data, it still models the traffic data in each time slot
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Fig. 1. Traffic anomaly detection methods based data separation.

as a vector. For a network consisting of N nodes, there are
N×N OD pairs, which will form a very long vector of the size
N×N . This will in turn result in a large covariance matrix and
large computation cost in the process of PCA transformation.

Actually, traffic monitoring data captured in one time slot
can be naturally represented as an N × N matrix, with each
row denoting the transmission data from the same origin
node and each column denoting the transmission towards the
same destination. In existing anomaly detection approaches,
no matter through off-line data separation or online algorithm
of [18], the data from network measurements in one time slot
are usually modeled as a vector. The vector either directly
contains all OD pairs as in Fig.1, or is formed with the con-
catenation of rows or columns of an N×N source-destination
matrix through “matrix-to-vector alignment”. Besides the com-
putation complexity resulted from a long vector, the spatial
information hidden in the traffic data will get lost when
representing data in a vector form, which will compromise
the performance of anomaly detection.

Rather than converting data from the matrix form to vec-
tor, directly using the matrix to represent traffic data in a
time slot for anomaly detection can better capture the data
relationship between rows and columns, which may help
increase the detection accuracy. To understand the possibility
and benefit, in this work, we propose to directly apply bilateral
PCA (B-PCA) over the data points corresponding to
two-dimensional data matrices for on-line anomaly detection.
Although there are some recent studies [19]–[22] on the direct
use of two-dimensional PCA over image data for feature
extraction, these methods for feature extraction cannot be
directly used for anomaly detection. Applying B-PCA for on-
line anomaly detection faces three major challenges:

• There lacks a principle to exploit the data features from
both rows and columns for anomaly detection;

• Different from conventional PCA, B-PCA does not have
close-form solutions for finding the projection matrices,
which makes it even harder to quickly detect the anomaly;

• Performing B-PCA operation over a huge set of historical
data is computationally expensive and time consuming.

Different from conventional algorithms for anomaly detec-
tion, we model the network monitoring data in each time slot
as a 2D matrix, and propose an online anomaly detection
scheme based on B-PCA (termed OnlineBPCA) to detect
whether newly arriving data contain anomalies or not. In
addition, to enable online anomaly detection, we propose a
set of algorithms for quick data processing. Our OnlineBPCA
includes the following set of novel techniques to support quick

and accurate anomaly detection:

• We propose a novel two-directional-change-based anom-
aly detection principle to detect whether newly arriving
data contain anomalies, where we check the changes
of the principal directions from both row side and col-
umn side. This is the first anomaly detection principle
proposed that allows B-PCA to be applied for anomaly
detection. As these two principal directions can more
comprehensively and accurately extract the features hid-
den in the monitoring data, our OnlineBPCA can achieve
a higher accuracy in detecting the anomaly than conven-
tional anomaly detection algorithms.

• We propose an approximate algorithm to calculate the
principal directions in a close form without using the
iteration procedure, which in turn provides the possibility
of designing a sequential algorithm for quickly detecting
anomalies online. Our simulation results demonstrate that
such an approximation does not decrease the detection
accuracy while significantly reducing the computation
cost.

• To quickly detect anomalous data, principal directions
need to be updated to adapt to the network changes in
real time. Unlike the batch methods which process all the
data together, we propose a sequential anomaly detection
algorithm that does not require the storage of the past
data and can update the principal directions using the
most recent monitoring data. As a result, our method is
fast and preferred for streaming data and on-line anomaly
detection.

• To amplify the impact of newly arriving data on the prin-
cipal directions of the monitoring data set, we propose a
novel strength method to duplicate the newly arriving
data multiple times. This would make it easier to find
anomalies even for a large data set.

Using traffic trace data Abilene [23] and GÈANT [24],
we implement ten anomaly detection algorithms to evalu-
ate our OnlineBPCA. Compared with other peer algorithms,
OnlineBPCA can detect whether newly arriving data contain
anomalies with much lower False Positive Rate and higher
True Positive Rate. Specifically, benefiting from our approx-
imate algorithm and sequential algorithm, OnlineBPCA can
accurately detect the anomaly with very fast speed.

The rest of this paper is organized as follows. Section II
presents the related work. We introduce the preliminary work
on B-PCA in Section III. We describe our anomaly detection
principle, approximate algorithm to find the projection matri-
ces, and sequential anomaly detection algorithm in Section IV,
Section V, and Section VI, respectively. Finally, we evaluate
the performance using real traffic trace data in Section VIII,
and conclude the work in Section IX.

II. RELATED WORK

Principal Component Analysis (PCA) [7] is perhaps the
best-known statistical analysis technique to achieve data sep-
aration for anomaly detection. PCA uses an orthogonal trans-
formation to convert possibly correlated observed variables
into a set of linearly uncorrelated variables (called principal
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components or principal directions). Some recent papers that
apply PCA to the traffic anomaly detection have shown some
promising initial results [3], [5], [6], [8]–[12]. The principal
components (PCs) are found and sorted in the order of
contribution to overall variance, with the PCs in the lower
dimensional and higher dimensional subspaces capturing the
dynamic properties of the system and noisy information,
respectively. As a result, to separate data, the PCs can be
divided into two sets. The traffic data mapped to principal
components (PCs) in the lower dimensional subspace are
normal, and the remaining data are the anomalies. For data
separation, all traffic data should be calculated and mapped
to the two subspaces, corresponding respectively to the two
types of PCs.

Although PCA-based data separation is effective when the
corruption is caused by small additive noise, recent study [13]
shows that traditional PCA-based approaches fail under the
large corruption, even if the corruption affects only very
few of the observations. To achieve better data separation,
recently, Candès et. al. [14] propose Robust PCA (RPCA)
which decomposes a given observation (noisy) matrix X into
a low-rank component X � and a sparse outlier component E.
To make the problem solvable, the work in [15] replaces
the matrix rank and the cardinality (��0) functions with their
convex surrogates, the nuclear norm ��∗ (i.e., the sum of its
singular values) and the L1 norm ��1, and solves the following
convex optimization problem

min
X�,E

{�X��∗ + λ�E�1}
st. X � + E = X (1)

where λ is a positive weighting parameter. To decompose
the data into low-rank component and sparse component,
these methods resort to some relaxation techniques which may
largely impact the accuracy of anomaly detection.

To conquer the challenge in RPCA, work in [17] proposes
Direct Robust Matrix Factorization (DRMF) which directly
formulates the problem in its original way using the matrix
rank to represent the low rank feature of normal data matrix
and the L0-norm to represent the sparse feature of the anomaly
data. However, the solution involves the iterative execution of
SVD decomposition, which will bring very high computation
cost and is not scalable for large traffic data.

Shang et al. [16] observe two other issues of RPCA, which
leads the solution to be biased. That is, the use of nuclear
norm over penalizes large singular values, and the use of L1

norm over penalizes large entries of the matrix. To address
the issues, the authors propose two bilinear factor matrix
norm minimization models for robust principal component
analysis. Specifically, the paper considers two specific lp-norm
minimization, with p = 1/2 and p = 2/3, respectively.

Although data separation is an effective way of detecting
anomalies appearing within a period, it is not suitable for
online detection. Data separation approaches usually work off-
line and require operating on the whole set of traffic data
captured in a period consisting of multiple time slots, which
consume a large amount of storage and long computation
time. Moreover, some data separation techniques such as

Fig. 2. Matrix-to-vector alignment.

RPCA and DRMF need a time-consuming iterative process to
separate the observed traffic data, which further increases the
computation cost. In contrast, our anomaly detection algorithm
aims to quickly and accurately detect whether traffic data
newly arriving in a time slot contain anomalies.

Very limited work [18] studies the on-line anomaly detec-
tion. Different from PCA-based algorithms [5], [6], [8]–[11]
[3], [12] that separate normal data and anomalous data by
mapping the traffic data into two types of PCs, [18] proposes
to detect whether the new data contain anomalies by checking
the impact on PCs from the newly arriving data. However,
as it is designed based on conventional PCA which can only
operate vector-form based data points, the traffic monitoring
data of each time slot in [18] is modeled as a vector like other
traffic anomaly detection algorithms, which suffer from the
loss of spatial data correlation and computation complexity.

As shown in Fig.2, the entries of first column denote the
traffic data from different source nodes to the same destination
node a, and are thus correlated. However, they are set far away
from each other in the vectorized representation. A column
anomaly can happen when a network of remotely controlled
and widely scattered Zombies or Botnet computers launch
DDoS attacks by simultaneously sending a large amount of
traffic and/or a large number of service requests to the target
system. Besides losing the spatial information and compro-
mising the anomaly detection, “matrix-to-vector alignment”
also leads the vector to be long, which will result in a
large size covariance matrix in [18]’s approach. Computing
the eigenvectors of a large covariance matrix is very time-
consuming.

Different from conventional PCA which can only deal with
vector data, a new technique called two-dimensional principal
component analysis (2DPCA) [19] was recently proposed in
the image field to handle 2D image, which directly computes
eigenvectors of the so-called covariance matrix without matrix-
to-vector conversion. Because the size of the covariance matrix
is equal to the width of images, which is quite small compared
with the size of a covariance matrix in PCA, 2DPCA evaluates
the image covariance matrix more accurately and computes the
corresponding eigenvectors more efficiently than PCA. Based
on tests over data from several databases [19], the accuracy
of face recognition using 2DPCA was found to be higher
than that using PCA, and the extraction of image features is
computationally more efficient.

However, studies in [26] show that 2DPCA is essentially
working in the row direction of images. If we apply 2DPCA
to anomaly detection, the information hidden in the data matrix
can not be fully utilized, so the detection accuracy will be still
low. To overcome the restrictions under 2DPCA, two linear
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Fig. 3. Illustration of B-PCA.

transforms can be applied to both the left and the right side of
the input image matrices. Recent studies [20], [22] propose to
apply B-PCA to perform projections in both row and column
modes for better dimensionality reduction.

Different from current traffic anomaly detection approaches,
we directly model the monitoring data in each time slot as
a 2D matrix and propose an anomaly detection algorithm
which allows the use of bilateral PCA (B-PCA) to preserve
the spatial correlations among data for more accurate anomaly
detection. Specially, we are the first to design the detection
principle that B-PCA can be exploited for anomaly detection.
Moreover, to support quick anomaly detection, we propose an
approximate algorithm to calculate the projection directions
in a close form and also an sequential anomaly detection
algorithm that does not require the storage of the past data
and can update the principal directions using the most recent
monitoring data.

III. PRELIMINARY WORK ON B-PCA

In this section, we firstly introduce the basic concept of B-
PCA, then the iteration algorithm to calculate the projection
matrices in B-PCA, and finally analyze the challenges in
applying B-PCA to on-line anomaly detection.

A. B-PCA

B-PCA transforms a high-dimensional M × N data to a
low dimensional r × l projected data with r < M, l < N to
abstract the hidden features of the data matrix. Fig.3 shows
an example of B-PCA. In this example, B-PCA transforms a
3×3 matrix to a 2×1 projected data matrix. To achieve such a
transformation, B-PCA applies two projection matrices, i.e., a
left (column) projection matrix U = {u1, · · · , ur} ∈ RM×r

and a right (row) projection matrix V = {v1, · · · , vl} ∈
RN×l. ui (1 ≤ i ≤ r) and vj (1 ≤ j ≤ l) are principal direc-
tions (components), which are orthogonal to each other. That
is, uT

i uj = 0 and vT
i vj = 0 if i �= j. As we will shown in

Section IV, for anomaly detection, only the direction of the
principal component is important, so we have �ui�2 = 1, and
�vi�2 = 1.

Given the data set Xt = {X1,X2, · · · ,Xt} with Xi ∈
RM×N , 1 ≤ i ≤ t, we have the data set

Yt =
�
X1 − X̄t,X2 − X̄t, · · · ,Xt − X̄t

�

= {Y1,Y2, · · · ,Yt} (2)

after data centering, where Yi = Xi−X̄t and the global mean

of this data set X̄t = 1
t

t�

i=1

Xi. The projected data point of

Yi is Zi = UT YiV. On the other hand, with Zi, the data
point in the original high dimensional space can be found as
UZiVT. As r < M and l < N , the data information may be
lost during the projections. To obtain the optimal projection

matrices, B-PCA tries to minimize the information loss from
the projections:

min
U,V

t�

i=1

��Yi − UZiVT
��2

F
(3)

where t is the number of data points and �•�F is the Frobenius
norm of a matrix.

B. Iteration Algorithm to Calculate the Projection Matrices

Obtaining the projection matrices U and V by directly
solving the problem in Eq. (3) is difficult. According to [20,
Th. 2], problem defined in Eq.(3) is equivalent to the following
problem

max
U,V

t�

i=1

�
�UT YiV

�
�2

F
(4)

However, there is no close-form solution for problem in (4).
Reference [20] provides iterative solution to solve the problem.
Given a data set Yt = {Y1,Y2, · · · ,Yt} and the column
projection matrix Uopt, the problem (4) can be further written
as max

V

�t
i=1

��UT
optYiV

��2

F
. As

��UT
optYiV

��2

F
= tr

��
UT

optYiV
	T �

UT
optYiV

	


= tr
�
VT

�
UT

optYi

	T �
UT

optYi

	
V



, (5)

if we denote the covariance matrix

Cv
t =

t�

i=1

�
UT

optYi

	T �
UT

optYi

	
, (6)

the problem in (4) can be further written as
max
V

tr
�
VT Cv

t V
	
. To solve this problem, the row projection

matrix V can be formed by the first l eigenvectors
corresponding to the first l largest eigenvalues of Cv

t .
Similarly, given the row projection matrix Vopt, the column
projection matrix U can be formed by the first r eigenvectors
corresponding to the first r largest eigenvalues of the

covariance matrix Cu
t =

t�

i=1

(YiVopt)(YiVopt)
T .

According to the above process, Algorithm 1 [20] is pro-
posed to calculate the projection matrices U and V iteratively
until the changes of U and V between two consecutive steps
are very small.

C. Challenges in Applying B-PCA to Anomaly Detection

It is more efficient to perform B-PCA over the matrix than
conventional PCA over a long vector. However, there are
two major challenges to apply B-PCA for on-line anomaly
detection:

• How to apply B-PCA for anomaly detection? All existing
2-dimensional PCA approaches are proposed and imple-
mented to extract image features. It is unclear how the
data should be processed and what principles to follow
for B-PCA to determine the existence of anomalies.

• How to enable on-line anomaly detection? Unlike
conventional PCA, there is no close-form equation to
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Algorithm 1 Finding the Projection Matrices Iteratively

Input: X = {X1,X2, · · · ,Xt}
Output: column projection matrix U, row projection matrix

V
1: Data centering: Yt =

�
X1−X̄t,X2−X̄t, · · · ,Xt−X̄t

�
=

{Y1,Y2, · · · ,Yt} where X̄t is the global mean of data
set X .

2: Initialize k = 0, (V)k = I
3: while not converged do
4: k = k + 1
5:

(Cu)k =
t�

i=1

(Yi(V)k−1)
�
Yi(V)k−1

	T
(7)

6: Set (U)k as the matrix formed by the first r eigenvectors
corresponding to the first r largest eigenvalues of the
covariance matrix (Cu)k.

7:

(Cv)k =
t�

i=1

��
UT

	
k
Yi

	T ��
UT

	
k
Yi

	
(8)

8: Set (V)k as the matrix formed by the first l eigenvectors
corresponding to the first l largest eigenvalues of the
covariance matrix (Cv)k.

9: end while
10: U = (U)k, V = (V)k, return U and V

calculate the projection matrices in current B-PCA stud-
ies. Using an iterative procedure in Algorithm 1 for
matrix projection would incur a large computation cost.
Moreover, iterative methods are difficult to apply for
processing data sequentially. These prevent B-PCA from
being directly used for online anomaly detection.

IV. ANOMALY DETECTION PRINCIPLE BASED ON B-PCA

For a network consisting of N nodes, we define a mon-
itoring data matrix, Xt ∈ RN×N , to hold the end-to-end
monitoring data at time slot t, with the (ij)-th entry, Xt(ij),
representing the monitoring data from node i to node j
captured in time slot t. As shown in Fig. 4, the monitoring
data set {X1,X2, · · · ,Xk, · · · ,Xt} forms a tensor with each
slice Xk ∈ RN×N , 1 ≤ k ≤ t being the monitoring data
of one time slot. Given the set of monitoring data already
collected up to the time slot t, X1,X2, · · · ,Xt, our goal is to
quickly and accurately detect whether the newly coming data
Xt+1 is anomalous or not.

We apply B-PCA to transform the high-dimensional N ×N
monitoring data to low dimensional r × l projected data with
r < N, l < N . Specially, according to B-PCA data transfor-
mation in Eq.(3), the low dimensional principal space (defined
by the projection matrices U and V) should be found to
minimize the information loss between the data points and
their projections. If there are anomalies added to a data set,
the principal subspace found by B-PCA will be remarkably
affected, with the principal directions significantly changed.

Fig. 4. Illustration of the online anomaly detection problem.

Fig. 5. Anomaly detection using B-PCA. (a) Left Subspace (add normal
sample). (b) Right Subspace (add normal sample). (c) Left Subspace (add
anomalous sample). (d) Right Subspace (add anomalous sample).

Following the example in Fig.3, B-PCA transforms 3 × 3
data points to 2× 1 projected data points. As shown in Fig.5,
the left projection matrix U has 2 principal components u1, u2

while the right projection matrix V has only 1 principal
component v1. The clustered gray circles represent normal data
points, and the blue square denotes an outlier. In this example,
when an outlier point is added, the principal directions (both
the row principal directions Fig.5(c) and the column principal
directions Fig.5(d)) should deviate toward the outlier. This
is because the subspaces are found through the minimization
of the information loss between all the data points and their
corresponding projections. More specifically, the presence of
such an outlier data point produces a large angle between the
resulting and the original principal directions. On the other
hand, this angle will be small when a normal data point is
added (Fig.5(a) and Fig.5(b)).

Therefore, we propose an anomaly detection principle: To
detect if the data point collected at time t + 1 is anomalous,
there is a need to check if the row and column princi-
pals have big direction changes. To exploit both directional
changes, we propose to use the joint projection matrices
from consecutive time slots t and t + 1: Mt = [Ut,Vt],
Mt+1 = [Ut+1,Vt+1], where Ut and Vt are the projection
matrices before getting the data Xt+1, Ut+1 and Vt+1 are the
projection matrices after obtaining Xt+1. We define a metric

Cosine =
�
�
�
�
�V ec (Mt) , V ec (Mt+1)�
�V ec (Mt)� �V ec (Mt+1)�

�
�
�
� (9)

to capture the influence of the newly added monitoring data
on the principal directions. In (9), V ec(A) is the vectorization
operation of a matrix A. A smaller Cosine corresponds to
larger direction changes.
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Accordingly, if Cosine is less than a threshold, we will
identify that the newly added monitoring data Xt+1 is an
anomaly. In the simulation, we will use the trace data to train
the threshold.

Algorithm 2 Anomaly Detection Based on B-PCA
Input: The newly arriving monitoring data Xt+1

The history data set X = {X1,X2, · · · ,Xt}
The projection matrices of history data Ut,Vt

Output: The projection matrices of current data Ut+1,Vt+1;
Identify whether Xt+1 is anomalous data or not

1: Add Xt+1 to the data set and obtain the update data set
X = {X1,X2, · · · ,Xt,Xt+1}, calculate the average of
the update data set, denoted as X̄t+1

2: Data centering:
Yt+1 = {X1−X̄t+1,X2−X̄t+1, · · · ,Xt −X̄t+1,Xt+1 −
X̄t+1} = {Y1,Y2, · · · ,Yt,Yt+1}.

3: Apply the iterative algorithm in Algorithm 1 to the center-
ing data set Yt+1 to calculate Vt+1 and Ut+1.

4: Build the combination projection matrices Mt = [Ut,Vt],
Mt+1 = [Ut+1,Vt+1]

Cosine =
��
�
�
�V ec (Mt) , V ec (Mt+1)�
�V ec (Mt)� �V ec (Mt+1)�

��
�
� (10)

5: if Cosine ≥ score then
6: Xt+1 is not anomaly data
7: else
8: Xt+1 is anomaly data
9: Ut+1 = Ut,Vt+1 = Vt

10: end if

V. APPROXIMATE ALGORITHM TO FIND THE TWO

PROJECTION MATRICES

Although anomaly detection can be performed based on
B-PCA following Algorithm 2, it involves a computation
intensive and time-consuming iterative process in Algorithm 1
to find the projection matrices using all the traffic data. Thus
Algorithm 2 is not applicable for on-line processing, or oper-
ating over a big data set. In this work, we propose an approx-
imate algorithm to quickly calculate the projection matrices.

In Algorithm 1, the two projection matrices Uk and Vk (on
lines 6, 8 of the algorithm) are determined based on the
covariance matrices

(Cu)k =
t�

i=1

(Yi(V)k−1)
�
Yi(V)k−1

	T
(11)

(Cv)k =
t�

i=1

��
UT

	
k
Yi

	T ��
UT

	
k
Yi

	
(12)

which further depend on the (V)k−1 and (U)k obtained
from the previous (k − 1)th and current (k)th iteration steps.
Thus Algorithm 1 has to be run iteratively.

To investigate the convergence behavior of Algorithm 1,
we run Algorithm 1 over the public traffic traces Abilene [23]
and GÈANT [24]. In Fig.6, y axis shows the gaps Ugap

and Vgap of projection matrices calculated between two
consecutive steps, where Ugap = �Uk−Uk−1�F

�Uk�F
and Vgap =

Fig. 6. Convergence behavior of Algorithm 1.

�Vk−Vk−1�F

�Vk�F
. We can see Algorithm 1 converges at the

iteration step 10 for both two traffic traces. As each itera-
tion in Algorithm 1 requires performing eigen decomposition
twice (corresponding to steps 6 and 8), the overall computation
cost is even higher.

Following, we first derive the approximate covariance matri-
ces, and then propose our approximate algorithm to calculate
projection matrices directly in a close form without involving
iteration.

Approximate Covariance Matrix Cu
t : In (11), as (V)k−1

is the matrix formed by the first l eigenvectors corresponding
to the first l largest eigenvalues of the covariance matrix
(Cv)k−1, if l = N , we have (V)k−1

�
VT

	
k−1

= I .

In this case, (Cu)k =
t�

i=1

�
Yi(V)k−1

	 �
Yi(V)k−1

	T =
t�

i=1

Yi

�
(V)k−1

�
VT

	
k−1



YT

i =
t�

i=1

YiYT
i . As l is set

to keep as much original information as possible, the
data loss during the data transformation from Yi to
Yi(V)k−1

�
VT

	
k−1

is very small. Thus we have Yi ≈
Yi(V)k−1

�
VT

	
k−1

, based on which, we can further deduce
that

(Cu)k =
t�

i=1

(Yi(V)k−1)
�
Yi(V)k−1

	T ≈
t�

i=1

YiYT
i (13)

Approximate Covariance Matrix Cv
t : Similarly, in (12), (U)k

is the matrix formed by the first r eigenvectors corre-
sponding to the first r largest eigenvalues of the covariance
matrix (Cu)k. As r is set to keep as much original information
as possible, the data loss during the data transformation from
YT

i to YT
i (U)k

�
UT

	
k

is very small. Thus we have YT
i ≈

YT
i (U)k

�
UT

	
k
, based on which, we can deduce that

(Cv)k =
t�

i=1

��
UT

	
k
Yi

	T ��
UT

	
k
Yi

	 ≈
t�

i=1

YT
i Yi (14)

We denote Cu
t =

�t
i=1 YiYT

i and Cv
t =

�t
i=1 YT

i Yi.
Fortunately, covariance matrices Cu

t and Cv
t only depend on

the centralized data Yi and YT
i , which provides the possibility

to derive close form projection matrices.
Approximate Algorithm: Although we can derive projection

matrices Ut and Vt directly using Cu
t and Cv

t through eigen
decomposition, to facilitate designing a sequential algorithm
in Section VI-C, we propose to derive Ut and Vt without
calculating the summation of

�t
i=1 YiYT

i and
�t

i=1 YT
i Yi

in Cu
t and Cv

t .
Let Yv

t = ((X1 − X̄t)
T
, · · · ,(Xt − X̄t)

T ) ∈ RN×tN , and
Yu

t = ((X1 − X̄t), · · · ,(Xt − X̄t)) ∈ RN×tN . Obviously, Yv
t

and Yu
t are large matrices formed with the concatenation of
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data points from different time slots. We have

Cv
t =

t�

i=1

YT
i Yi=

t�

i=1

�
Xi − X̄t

	T �
Xi − X̄t

	
=Yv

t (Yv
t )T

,

Cu
t =

t�

i=1

YiYT
i =

t�

i=1

�
Xi − X̄t

	 �
Xi − X̄t

	T =Yu
t (Yu

t )T
.

(15)

Denoting the singular value decomposition of Yu
t as

Uu
t Σ

u
t (Vu

t )T , for the covariance matrix Cu
t = Yu

t (Yu
t )T ,

we have

Cu
t = Yu

t (Yu
t )T =

�
Uu

t Σ
u
t (Vu

t )T

�

Uu
t Σ

u
t (Vu

t )T

T

= Uu
t Σ

u
t (Vu

t )T Vu
t Σu

t U
u
t = Uu

t (Σu
t )2(Uu

t )T
. (16)

The last item Uu
t (Σu

t )2(Uu
t )T is written in the format of

eigenvalue decomposition of Cu
t , that is Uu

t (Σu
t )2(Uu

t )T =
eig (Cu

t ). Thus, the eigenvalue decomposition of Cu
t is equiv-

alent to the multiplication of the SVD of Yu
t . The eigen-vector

of Cu
t is the left singular vector of Yu

t , with the eigen-values
corresponding to the first r singular values of Yu

t . Similarly,
the eigen-vector of Cv

t is the left singular vector of Yv
t , with

the eigen-values corresponding to the first l singular values
of Yv

t .
Therefore, the column projection matrix Ut can be calcu-

lated as the matrix formed by the first r left singular vectors
corresponding to the first r singular values of the Yu

t ; the row
projection matrix Vt can be approximately calculated as the
matrix formed by the first l left singular vectors corresponding
to the first l largest eigenvalues of Yv

t .

VI. SEQUENTIAL ANOMALY DETECTION

Although our approximation algorithm can calculate the
projection matrices without involving iterations, it operates on
Yv

t and Yu
t over a large amount of historical data, which is

still time consuming and not scalable. To timely detect the
anomaly, we propose a sequential detection algorithm based
only on the statistic values from the history data and the data
samples taken in the new time slot. In this section, before
we present the algorithm, we first investigate the relationship
between covariance matrices obtained in two sequential mon-
itoring steps.

A. Relationship Between Covariance Matrices Obtained in
Two Sequential Monitoring Steps

When new monitoring data Xnew = Xt+1 is com-
ing, the monitoring data set is updated to be X t+1 =
{X1, · · · ,Xt,Xt+1}.

Theorem 1: The global mean of the update data set X t+1

is X̄t+1 = 1
t+1

�
tX̄t + Xt+1

	
, the covariance matrix of the

update data set are

Cu
t+1 = Cu

t +
t

(t + 1)
�
X̄t − Xt+1

	 �
X̄t − Xt+1

	T
(17)

and

Cv
t+1 = Cv

t +
t

(t + 1)
�
X̄t − Xt+1

	T �
X̄t − Xt+1

	
(18)

Proof: Due to the limited space, the proof is omitted.

Fig. 7. Illustration of Strengthen method.

From Theorem 1, the covariance matrix (i.e.,Cu
t+1 or Cv

t+1)
of the current updated data set can be calculated directly using
the covariance matrix (i.e.,Cu

t or Cv
t ) of history data and the

newly arriving data Xt+1 through (17) and (18). Thus we do
not need to store the history data and perform computation
over the whole data set, and the space and computation cost
can be largely reduced.

B. Strengthening Method

For practical anomaly detection, the size of the data set is
typically large, and thus it might not be easy to observe the
variation of principal directions caused by the presence of a
single outlier. In this section, we introduce a strengthening
method, and discuss how and why we are able to detect the
existence of abnormal data instances according to the changes
of principal directions, even in the presence of a large amount
of data.

To amplify the impact of newly collected data point on
the principal directions of the monitoring data set, we can
duplicate the new data point multiple times in the data set,
as shown in Fig.7.

Next, we will show that the strengthening method can
effectively amplify the effect of outlier data compared to that
of the normal data. Given the monitoring data set Xt =
{X1, · · · ,Xi, · · · ,Xt} with Xi ∈ RN×N , when a new data
point (i.e., Xnew = Xt+1) arrives, after repeatedly adding this
data point k times into the dataset, the dataset becomes

Xt+1 =

⎧
⎨

⎩
X1, · · · ,Xt� �� �

t

,Xt+1, · · · ,Xt+1� �� �
k

⎫
⎬

⎭
. (19)

According to the global mean and the covariance matrix
definition, we have

X̄t+1 =
1

t + k

t+k�

i=1

Xi =
1

t + k

�
t�

i=1

Xi+
t+k�

i=t+1

Xi

�

=
1

t + k

�
tX̄t + kXt+1

	
(20)

and

Cu
t+1 = Cu

t +
tk

(t + k)
�
X̄t − Xt+1

	 �
X̄t − Xt+1

	T
(21)

and

Cv
t+1 = Cv

t +
tk

(t + k)
�
X̄t − Xt+1

	T �
X̄t − Xt+1

	
(22)
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There is a tradeoff to set the parameter k. A large k can
increase the accuracy in detecting the outlier data by enlarging
the gaps between Cu

t+1 and Cu
t , Cv

t+1 and Cv
t , respectively,

but it also increases the chance of falsely detecting a normal
data point as the outlier. On the other hand, a small k will
make it difficult to detect the newly added outlier if the set
of history data is large. Instead of setting k as a constant,
we set k as k = α · t, where t is the number of history data
points, α is the over-sampling ratio. We will investigate how
the parameter α impacts the detection performance through
simulations in Section VIII-C.3, and set the parameter α to an
empirical value.

To increase the effectiveness of data amplification, we only
duplicate the new data point when it just arrives in the data set,
but will only keep one copy of this data point when checking
the next arrival one.

C. A Complete Algorithm With Further Speedup

It is clear that, when a new monitoring data matrix is
duplicately added into the monitoring data set, we have
Cu

t+1 = Cu
t + tk

(t+k)

�
X̄t − Xt+1

	 �
X̄t − Xt+1

	T
in (21) and

Cv
t+1 = Cv

t + tk
(t+k)

�
X̄t − Xt+1

	T �
X̄t − Xt+1

	
in (22).

In Section V, we observe Cv
t = Yv

t (Yv
t )T and Cu

t =
Yu

t (Yu
t )T , which provides a solution to derive the projection

matrices Ut and Vt through the decomposition of matrices
Yv

t and Yu
t instead of covariance matrices Cu

t and Cv
t .

To further reduce the computation cost, we would like to to
reuse the decomposition results of Yv

t and Yu
t to deduce the

decomposition results of Yv
t+1 and Yu

t+1 so that we can make
quick sequential processing for fast anomaly detection.

As Cv
t = Yv

t (Yv
t )T and Cu

t = Yu
t (Yu

t )T , to make
Cu

t+1 = Yu
t+1

�
Yu

t+1

	T
and Cv

t+1 =
�
Yv

t+1

	T
Yv

t+1, we have

Yu
t+1 =

�
Yu

t ,
�

tk/ (t + k)
�
Xt − Xt+1

	�
(23)

and

Yv
t+1 =

�
Yv

t ,
�

tk/ (t + k)
�
X

T

t − XT
t+1


�
. (24)

where Yu
t+1 is a matrix by matrices Yu

t and�
tk/ (t + k)

�
Xt − Xt+1

	
, Yv

t+1 is a matrix by

concatenating matrices Yv
t and

�
tk/ (t + k)

�
X

T

t − XT
t+1



.

Equations (23) and (24) provides a way of quickly deduc-
ing projection matrices Ut+1 and Vt+1. Taking Ut+1 for
example, instead of directly calculating the eigenvalue decom-
position of Yu

t+1 to find Ut+1, we can apply the incre-
mental SVD algorithms [27], [28] to calculate Ut+1 by
operating on Ut and

�
tk/ (t + k)

�
Xt − Xt+1

	
with Ut

obtained from the eigenvalue decomposition of Yu
t . Sim-

ilarly, Vt+1 can be deduced by operating on Vt and�
tk/ (t + k)

�
X

T

t − XT
t+1



.

Algorithm 3 shows the complete algorithm of our sequential
anomaly detection. The quick deduction to calculate the pro-
jection matrices Ut+1 and Vt+1 is shown from line 2 to line
4 in Algorithm 3. On Eq.(31), Ut+1 for Yu

t+1 is derived by
reusing Ut. As a result, compared with the direct method that
finds Ut+1 through the eigenvalue decomposition of Yu

t+1,

the computation cost of our approach can be largely reduced.
Similarly, we can determine Vt+1.

With Mt = [Ut,Vt], Mt+1 = [Ut+1,Vt+1], we can
quickly detect the anomaly based on the metric in Eq. (9). As
projection matrices should capture the basic features of the
traffic data, in our sequential anomaly detection algorithm,
we only update the projection matrices utilized for the next
time slot when we detect the newly arriving data point is
normal (line 9 - line 11).

Algorithm 3 Sequential anomaly detection algorithm
Input: The new sampling data matrix Xt+1

The projection matrices of history data Ut,Vt

Eigen-values of history data Σu
t ,Σv

t

Output: Ut+1,Vt+1

Σu
t+1,Σv

t+1

identify Xt+1 is anomaly data
1: Bu =

�
tk/ (t + k)

�
Xt − Xt+1

	
, Bv =

�
tk/ (t + k)

�
X

T

t − XT
t+1




2: Processing QR decomposition for the following equation:

QuRu =
�
I − Ut(Ut)

T



Bu (25)

QvRv =
�
I − Vt(Vt)

T


Bv (26)

3: Processing SVD decomposition for the following equation

SV D

� �
Σu

t (Ut)
T Bu

0 Ru

�
= ŨuΣ̃u

�
Ṽu


T

(27)

SV D

� �
Σv

t (Vt)
T Bv

0 Rv

�
= ŨvΣ̃v

�
Ṽv


T

(28)

Σu
t+1 = Σ̃u (29)

Σv
t+1 = Σ̃v (30)

4: The updated projection matrices are computed as follows:

Ut+1 = [Ut,Qu] Ũu (31)

Vt+1 = [Vt,Qv] Ũv (32)

5: Build the combination projection matrices Mt = [Ut,Vt],
Mt+1 = [Ut+1,Vt+1]

Cosine =
�
��
�
�V ec (Mt) , V ec (Mt+1)�
�V ec (Mt)� �V ec (Mt+1)�

�
��
� (33)

6: if Cosine ≥ score then
7: Xt+1 is not anomaly data
8: else
9: Xt+1 contains anomalous data

10: Ut+1 = Ut,Vt+1 = Vt

11: Σu
t+1 = Σu

t ,Σv
t+1 = Σv

t

12: end if

VII. COMPUTATION COMPLEXITY ANALYSIS

Based on B-PCA, three anomaly detection algorithms can
be implemented. The first is our basic anomaly detection
algorithm B-PCA (Algorithm 2), termed IterBPCA. When
new data arrive, the monitoring data set is updated and
then the iterative B-PCA is applied to calculate the principle
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directions. The second is ABPCA. Different from IterBPCA,
the principle directions are calculated using the approximate
covariance matrices Cu

t and Cv
t in Section V. The third is

our OnlineBPCA (Algorithm 3). Different from ABPCA,
Algorithm 3 updates the principal directions based on the
newly added monitoring data and the principal directions of
history data. In the remaining of this section, we provide
analyses on the computation cost of these three algorithms.

Let N be the number of nodes in the network and t be
the total time slots monitored. IterBPCA involves multiple
iterations. In each iteration, the projection matrix U is cal-
culated and updated by first computing the covariance matrix
and then the eigenvalue decomposition, which incurs the time
complexity at O

�
N3t2

	
and O

�
N3

	
respectively. Therefore,

the time complexity of calculating the matrix U is O
�
N3t2

	
+

O
�
N3

	
. Similarly, we can derive that the time complexity of

calculating the matrix V is also O
�
N3t2

	
+O

�
N3

	
. With the

total number of iteration rounds in IterBPCA denoted as L,
the overall time complexity of IterBPCA can be expressed as
L × (O

�
N3t2

	
+ O

�
N3

	
).

ABPCA can directly calculate the projection matrices
U,V through one time of covariance matrix computation
and one time of eigenvalue decomposition, therefore the time
complexity is O

�
N3t2

	
+ O

�
N3

	
.

OnlineBPCA is an incremental algorithm in which the
projection matrices are updated with newly added data.
To calculate the matrix U, a QR decomposition (in (25))
and an eigenvalue decomposition (in (27)) are required,
which involves the complexity of O

�
N3

	
, O

�
(N + r)3



,

respectively. Similarly, the time complexity of calculating the
matrix V is O

�
N3

	
+ O

�
(N + l)3



.

As t is the total number of time slots monitored, generally
we have N3t2 > (N + r)3 and N3t2 > (N + l)3. There-
fore, we have Cost (IterBPCA) > Cost (ABPCA) >
Cost (OnlineBPCA). In the simulation part, we also validate
these results.

VIII. PERFORMANCE EVALUATIONS

Before we present the performance results, we first intro-
duce our simulation setup.

A. Generation of Corrupted Synthesized Data

We synthetically generate anomalies by adding data outliers
into the public traffic traces Abilene [23] and GÈANT [24].
As Abilene and GÈANT traffic traces record the volume of
traffic flows between all source and destination pairs, they
allow us to form a network-wide traffic matrix. Abilene
and GÈANT collect monitoring data every 5 minutes and
15 minutes respectively, so the duration of a time slot for
these two traces are different.

Following [29]–[31], we generate the corrupted data by
selecting a set of OD flows from the raw data trace and setting
them to be anomalous with the following strategies:

Step 1 (Data Normalization): For more efficient data
processing, data normalization is often applied in the
data preprocessing step to scale the variables or features
of data.

We denote the raw trace data as X = {X1,X2,
· · · ,Xk, · · · ,Xt} with Xk ∈ RN×N , where N is the number
of nodes in the network and t is the total number of time slots
monitored. Given Xk(i, j), we adopt the following equation
to normalize the data:

Xk (i, j) =
Xk (i, j) − min

k,i,j
(Xk (i, j))

max
k,i,j

(Xk (i, j)) − min
k,i,j

(Xk (i, j))
(34)

where max
k,i,j

(Xk (i, j)) and min
k,i,j

(Xk (i, j)) are respectively the

maximum value and minimum value of all the traffic data.
Step 2 (Anomaly Injection): As mentioned in Section I,

traffic measurement data generally come in sequence. In the
simulation, in each sequential step, we add into the data set
the measurement sample from one more time slot. Then we
apply our OnlineBPCA to the measurement data to detect
whether this newly arriving data matrix contains anomalous
samples or not.

We set the measurement data of the first week as training
data, which are utilized in our model to capture the basic
information of the traffic data. After the first week, we inject
the outliers to the normalized traffic data to generate the
corrupted data.

We randomly select γ×T time slots to inject the outlier data
where T is the total time slots monitored except the first week.
For each selected time slot, we randomly select β× (N × N)
positions to inject the anomalous data. We set β = 0.1 and
γ = 0.1 as the default setting.

Outlier data are injected following the Gaussian distribution
N �

μ, σ2
	

with the mean μ and the variance σ2. In this paper,
we set μ = 0.01, σ = 0.01 (Abilene) and μ = 0.0001, σ =
0.0001 (GÈANT) as the default setting. To investigate how
anomaly intensity impacts the detection performance, we vary
σ2, mean μ, and β of the injected outliers in Section VIII-D.

B. Performance Metric

We use the following three metrics to evaluate the perfor-
mance of the implemented anomaly detection algorithms.

False Positive Rate (FPR): It measures the proportion of
non-outliers that are wrongly identified as outliers.

True Positive Rate (TPR): It measures the proportion of
outliers that are correctly identified.

In some literature studies, FPR and TPR are also called the
false alarm rate and the detection accuracy, respectively. From
the definitions, we can see that a smaller FPR or larger TPR
value means a better performance.

Computation Time: It measures the average number of sec-
onds taken to complete one sequence of anomaly detection
steps.

All simulations are run on a Microstar workstation, which
is equipped with two Intel (R) Xeon (R) E5-2620 CPUs with
2GHz processor, 24 Cores and 32 GB RAM. To evaluate the
recovery computation time, we insert a timer to all approaches.

C. Parameter Setting and Impact

We first investigate the parameters used in the OnlineBPCA,
based on which, we provide proper parameter setting for
performance studies of OnlineBPCA in our simulations.
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Fig. 8. Score with different λ. (a) Abilene. (b) GÈANT.

Fig. 9. The weight of different rank.

1) Score: According to our B-PCA based algorithm, if the
projections of newly added data result in a large principal
direction change and thus the Cosine is lower than the pre-
defined score, we will claim that the data contain anomalous
values. We set the score value empirically. Specifically, we cal-
culate Cosine of each time step of the first week. From the
probability theory and statistics, we know that the cumulative
distribution function (CDF) describes the probability that a real
random variable X ≤ x. That is F (x) = p (X ≤ x). Fig. 8
shows the CDF results of Cosine in the first week. We do
not inject anomalies into the traffic data of the first week to
obtain the baseline traffic data without outliers. As nearly all
the Cosine is larger than 0.98 (Abilene) and 0.99(GÈANT),
we set score=0.98 and score=0.99 for trace data Abilene and
GÈANT in the remaining tests. For other peer algorithms,
we follow the same method to choose their threshold scores.

2) Rank: To detect anomaly, B-PCA transforms an N ×N
monitoring matrix to r×l projection matrix using left (column)
projection matrix U ∈ RN×r and right (row) projection
matrix V ∈ RN×l. According to our approximate algorithm,
U ∈ RN×r can be obtained by applying an eigenvalue
decomposition of the covariance data matrix Cu

t , i.e.

Cu
t = QΛQT (35)

where each column of Q represents an eigenvector of Cu
t , and

the corresponding diagonal entry in Λ= diag(λ1,λ2, · · · ,λn)
is the associated eigenvalue. For the purpose of dimension
reduction, U = Qr, where Qr denotes the columns of Q asso-
ciated with the largest r eigenvalues of Cu

t . In order to keep as
much original information as possible, the dimensionality of
the subspace r is determined in terms of

�r
i=1 λi�n
i=1 λi

≥ θ (where
θ is the ratio of variation in the sub-space to the total variation
in the original space, in general, θ = 98%). Similarly, we can
also set l to preserve most variation of Cv

t .
Fig.9 shows

�r
i=1 λi�n
i=1 λi

of covariance data matrices of the

whole data in Abilene [23] and GÈANT [24]. According to
the result, we set r = 10, l = 11 for the trace Abilene, r = 20,
l = 20 for trace GÈANT, respectively.

3) Oversampling ratio: In Section VI-B, we propose a
strengthening method to amplify the impact of newly arriving
monitoring data on the principal directions of the monitoring
data set. We duplicate the newly arriving data point k times

Fig. 10. The impact of sampling strengthen. (a) Abilene. (b) GÈANT.

while not changing the set of history data. In this paper, we set
k as k = α·t, where t is the number of history data points and
α is the oversampling ratio. We vary the oversampling ratio
α to investigate how k impacts the performance of anomaly
detection.

In Fig.10, the true positive rate(TPR) increases before α
reaches α = 0.1, beyond which the true positive rate is 1.
Therefore, no more data duplication is needed after α = 0.1.
On the other hand, we notice that the false positive rate(FPR)
also increases as α becomes larger, which is consistent with
the tradeoff analysis on the impact of k in Section VI-B.
Fortunately, the highest false positive rate is less than 0.6% for
Abilene and 0.4% for GÈANT. Therefore, the oversampling
ratio α impacts the FPR(false positive rate) very slightly.
Accordingly, we set α = 0.1 for both traffic traces.

For fairly comparing with other peer algorithms, we also
apply the sample strengthening with α set following the above
procedure to choose the smallest value that achieves the best
anomaly detection performance.

D. Comparison with peer algorithms

As introduced in Section I, current traffic anomaly detection
algorithms can be classified into two types. The first checks
the variations of the statistical information to identify whether
newly data contain anomalies. In the second type, anomalies
in a period are detected through data separation. According to
the two types, we have done two groups of simulations.

1) Detecting Anomaly Through Checking Variations: In
the first group of simulations, by checking the variations of
statistical information, we implement seven anomaly detection
algorithms for performance comparison.

The first two are vector-based anomaly detection algorithms
in [18], denoted as VecPCA and IVecPCA. Both algorithms
model the monitoring data in a time slot as a vector and
apply vector-based PCA to detect whether the newly arriving
data point is an anomaly. Different from VecPCA, IVecPCA
is an incremental algorithm which updates the first principal
component with new data using a least squares approximation.

As introduced in Section I, the monitoring data in each time
slot can be naturally modeled as a 2D matrix. To capture more
features in the traffic data for more accurate anomaly detection,
we propose to detect anomaly based on B-PCA, where the
2D data matrices are applied to construct the corresponding
covariance matrix and the principal directions are calculated
from both the column mode and the row mode. As we
are not aware that any existing anomaly detection algorithm
is designed based on 2D matrix model, for performance
comparison, we implement five anomaly detection algorithms
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Fig. 11. Performance comparison with random anomalies (first group of
simulations). (a) Abilene: random anomaly with different σ. (b) GÈANT:
random anomaly with different σ. (c) Abilene: random anomaly with differ-
ent μ. (d) GÈANT: random anomaly with different μ. (e) Abilene: random
anomaly with different β. (f) GÈANT: random anomaly with different β.

based on PCA using 2D matrix model. The first three are based
on B-PCA: IterBPCA, ABPCA, and OnlineBPCA (described
in Section VII).

Besides B-PCA, there exists another PCA algorithm (2D-
PCA [19]) that can deal with 2D matrix while only the
principal direction of the column mode is derived. Although
2D-PCA is designed originally for image, for performance
comparison, we also implement two anomaly detection algo-
rithms TPCA and ITPCA based on 2D-PCA. TPCA directly
applies 2D-PCA to calculate the principal directions for anom-
aly detection. Different from TPCA, in ITPCA, we apply the
method proposed in Section VI-C to incrementally update the
principal directions of 2D-PCA.

• Accuracy Comparison

To compare the detection accuracy of different anomaly
detection algorithms, with other parameters fixed, we vary the
variance σ2, the average value μ, the outlier ratio β. Fig.11
shows the performance results under the random anomaly
attack.

Among all the algorithms, our OnlineBPCA, ABPCA,
IterBPCA achieve the best detection performance with the
lowest false positive rate(FPR) and the highest true posi-
tive rate(TPR) under all simulation scenarios. For example,
in Fig. 11(a), the false positive rates under our OnlineBPCA,
ABPCA, IterBPCA are less than 1/3 that under VecPCA and
IVecPCA, and less than 2/3 that under TPCA and ITPCA.
These results demonstrate that our OnlineBPCA, ABPCA,
IterBPCA can fully utilize the hidden features in the traffic
data to accurately detect the anomaly and are robust to
different kinds of anomalies.

As expected, TPCA and ITPCA achieve a better per-
formance than VecPCA and IVecPCA because TPCA and
ITPCA are designed based on 2D matrix data to capture
more features for anomaly detection while VecPCA and
IVecPCA are designed based-on vector data. Compared with
our OnlineBPCA, ABPCA, IterBPCA, the performance under
TPCA and ITPCA is worse as B-PCA can extract the infor-
mation from both row side and column side to better detect
anomalous data while 2D-PCA can only utilize information
from one dimension.

Moreover, the similar performance under OnlineBPCA,
ABPCA, IterBPCA demonstrates that our proposed approx-
imation algorithm is very effective in approaching the per-
formance of the sequential algorithm but at much lower
computation complexity.

In the next section, we will further show that although
OnlineBPCA, ABPCA, IterBPCA achieve similar detection
accuracy, the computation time under OnlineBPCA is much
smaller than that under ABPCA and IterBPCA even when the
data set becomes larger with more monitoring data in the set.

As shown in Fig.11, with the increase of variance σ2 and
mean μ of the outliers, the True Positive Rate increases while
the False Positive Rate almost do no change under all algo-
rithms implemented, which implies that False Positive Rate is
not sensitive to variance σ2 and mean μ. Obviously, when the
variance and mean of outliers are smaller, synthesized outlier
data have closer and smaller values, and are more difficult to be
differentiated from the normal data. Therefore, when variance
σ2 and mean μ are small, the True Positive Rate is small.
As expected, in Fig.11(e) and Fig.11(f), with the increase of
outlier injection ratio β thus the number of outliers, the True
Positive Rate becomes larger under all algorithms.

• The Computation Time

In order to test the scalability of the proposed algorithm in
handling the data set with the size increased over time, Table.II
and Table.III shows the computation time required in one
sequential anomaly detection for the time duration of 100 time
slots after the first week.

Obviously, the history data set becomes larger as time slot
number increases. The three incremental algorithms IVecPCA,
ITPCA, OnlineBPCA achieve the stable and smallest computa-
tion cost over the time, while the computation cost under other
algorithms (VecPCA, TPCA, ABPCA, InterBPCA) increases
over the time. These performance results demonstrate that
our incremental algorithms have good scalability. Compared
with IterBPCA, the computation time under ABPCA is largely
reduced as ABPCA calculates principal directions through
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TABLE I

COMPUTATION TIME OF DETECT ALGORITHMS WHEN DATA SET BECOMES LARGE AT THE 5000TH TIME SLOT

TABLE II

COMPUTATION TIME COMPARISON UNDER Abilene

TABLE III

COMPUTATION TIME COMPARISON UNDER GEANT

the approximation while IterBPCA calculates the directions
through costly iterations. Rather than processing all the past
data together, our proposed OnlineBPCA performs online
anomaly detection within each time slot, and the detection
time does not increase as time slot number increases.

Table I further shows the computation time for one sequen-
tial anomaly detection when the history data set becomes very
large at the 5000th time slot. Among IterBPCA, ABPCA, and
OnlineBPCA that achieve similar detection accuracy as shown
in Fig.11, our OnlineBPCA requires the least time 2.0E − 4
seconds, while the computation time under IterBPCA and
ABPCA increases and reaches 2.0E + 4 seconds and 178.31
seconds, respectively. This demonstrates that our approxima-
tion algorithm and sequential update of the principal direction
can bring in a significant computation cost reduction. Com-
pared with IterBPCA, the computation time under ABPCA
is largely reduced as ABPCA calculates principal directions
through the approximation while IterBPCA calculates the
directions through costly iterations.

Although IVecPCA and ITPCA achieve the similar com-
putation cost as our OnlineBPCA, from Fig.11, we can find
that the detection accuracy of these two algorithms are much
worse than our OnlineBPCA.

All the simulation results demonstrate that our OnlineBPCA
is a robust anomaly detection algorithm with good scalability,
and can quickly and accurately detect the anomaly data even
when the history data set is very large.

2) Identifying anomaly through data separation: Besides
our OnlineBPCA, we implement four data separation based
anomaly detection algorithms (DRMF [17], RPCA [14],
PCA [6], and Bilinear Factor Matrix Norm Minimiza-
tion (BFMNM) [16]) for performance comparison. The work

Fig. 12. Performance comparison with random anomalies (second group of
simulations). Abilene: random anomaly with different σ. (b) GÈANT: random
anomaly with different σ. (c) Abilene: random anomaly with different μ.
(d) GÈANT: random anomaly with different μ. (e) Abilene: random anomaly
with different β. (f) GÈANT: random anomaly with different β.

in [16] proposes two BFMNM models, using lp-norm mini-
mization with p = 1/2 and p = 2/3 respectively. Experimental
results show that the two models behave similarly, and the
model using p = 2/3 performs slightly better. Thus we imple-
ment BFMNM with p = 2/3 in this paper as performance
reference.

Following most of traffic anomaly detection algorithms,
these four algorithms use the traffic matrix model in Fig.1.
As DRMF, RPCA, PCA, and BFMNM aim to find the anom-
alies in a period rather than only in the new data, to fairly com-
pare with these algorithms, we adopt the following detection
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TABLE IV

COMPUTATION TIME COMPARISON UNDER Abilene

TABLE V

COMPUTATION TIME COMPARISON UNDER GEANT

principle: among all the candidate anomaly locations, return
the η locations with the largest η absolute values where η is
the number of anomalies injected. If the newly arriving data
contain anomalies in any locations, the newly arriving data is
identified to be anomalous; otherwise, the newly arriving data
is considered normal.

• Accuracy Comparison
We plot the simulation results under random anomalies in

Fig.12. As expected, compared with DRMF, RPCA, PCA, and
BFMNM, our OnlineBPCA achieves the best performance
with the lowest False Positive Rate and the highest True
Positive Rate under all the simulation scenarios. Although
DRMF, RPCA, PCA, and BFMNM are effective in separating
normal and anomalous data, they are not good at identifying
whether newly data contain anomalies for on-line anomaly
detection as any false data separation in the history will
impact the detection performance for the new data.

Moreover, consistent with the literature studies [1], [17],
among DRMF, RPCA, PCA, and BFMNM, the best perfor-
mance is achieved under DRMF as it formulates the problem
directly using the matrix rank to represent the low rank
feature and the L0-norm to represent the sparse feature of
the anomalous data.

• The Computation Time
Obviously, the history data set becomes larger as time

slot number increases. In Tables IV and V, our algorithm
OnlineBPCA achieves the stable and smallest computation
cost throughout the test time, while the computation cost
under other algorithms (DRMF, RPCA, PCA, and BFMNM)
increases over the time.

As DRMF, RPCA, and BFMNM separate the observed
traffic matrix through costly iterations, their computation time
is very large. Compared with DRMF, RPCA, and BFMNM,
the computation time under PCA is much lower, and the time
of our OnlineBPCA is several orders lower than all schemes
studied. Consistent with the literature study [16], compared
with RPCA, BFMNM achieves higher anomaly detection
accuracy with much smaller computation time. Although both
PCA and OnlineBPCA require SVD operations, PCA operates
on the whole traffic data of a period, while OnlineBPCA can
reuse the matrix decomposition of the previous step to deduce

the decomposition of current data. Thus computation cost can
be largely reduced, and we can conclude that our OnlineBPCA
can be applied to quickly identify sudden anomalies in real
time.

IX. CONCLUSION

We propose a novel anomaly detection algorithm,
OnlineBPCA, the first anomaly detection algorithm based on
two-dimensional PCA. We propose several novel techniques
in OnlineBPCA to support quick and accurate anomaly detec-
tions, which include 1) a novel anomaly detection principle
which enables the application of B-PCA for anomaly detec-
tion, 2) an approximate algorithm to avoid using the iteration
procedure to calculate the principal directions, 3) a sequential
anomaly detection algorithm that does not require the storage
of the past data and can update the principal directions using
the current monitoring data, and 4) a strengthening method
to amplify the impact of newly arriving monitoring data for
more accurately detecting anomalies in the new data when the
historical data become large. Using real traffic traces, we have
done extensive simulations to compare our OnlineBPCA with
the state of art anomaly detection algorithms. Our simulation
results demonstrate that, compared with other algorithms,
our OnlineBPCA can achieve significantly better detection
performance with low False Positive Rate, high True Positive
Rate, and very low computational cost.
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