
Minimum Cost Wireless Broadband Overlay Network Planning

Peng Lin, Hung Ngo, ChunMing Qiao
Department of Computer Science and Engineering

State University of New York at Buffalo
Buffalo, NY 14260

Email: {penglin,hungngo,qiao}@cse.buffalo.edu

Xin Wang
Dept. of Electrical and Computer Engineering
State University of New York at Stony Brook

Stony Brook, NY 11794
Email: xwang@ece.sunysb.edu

Ting Wang, DaYou Qian
NEC Laboratories America

Email: {ting,dqian}@nec-labs.com

Abstract

Wireless broadband networks, especially WiMAX net-
works, have emerged in the industry recently and many
challenging research issues arise. In this paper, we pro-
posed a heuristic clustering algorithm for minimum cost
wireless broadband overlay network deployment. More-
over, we also modified and implemented two heuristic al-
gorithms based on classic linear programming based ca-
pacitated facility location algorithms. We analyzed the the-
oretical worst-case performance ratio of our algorithm and
our numerical results showed that our algorithm performs
much better in practical network settings.

1 Introduction

Recently, wireless broadband access technology has

drawn intensive attention in both the academic and indus-

trial research institutes. The coverage of wireless high-

speed broadband service is expected to expand dramatically

in the near future [6]. One of the main technologies is the

fast-evolving IEEE 802.16 technology, which is synony-

mous with WiMAX (Worldwide Inter-operability for Mi-

crowave Access).

The IEEE 802.16d standard draft [13] has specified

air interfaces operating on both the licensed and licence-

exempt frequencies. The two main modes defined for the

MAC layers are the PMP(point-to-multipoint) mode and

the Mesh mode. The former provides a centralized up-

link/downlink wireless data service, similar to the cellular

system, while the latter allows for a better coverage, flex-

ibility and scalability. Due to the wireless broadcasting

nature of the 802.16 PHY/MAC protocols, there exists a

need to maintain a network hierarchy to maximize the net-

work efficiency and minimize co-channel interference. And

this wireless broadcast nature also distinguishes a wireless

broadband network design problem from a wireline broad-

band network design problem. In the paper, we consider the

network planning problem of the following network topol-

ogy: Traffic demands (routed via the 802.11 interface) are

aggregated at a set of Subscriber Station(SS) nodes which

are equipped with both 802.11 and 802.16 interfaces. Sub-

sequently, the traffic demands at SS nodes will be satisfied

by a set of Base Stations (BS) nodes which functions in the

PMP mode [13]. At the wireless backhaul network level,

these BS nodes and a set of intermediate WiMAX nodes

will form a meshed backhaul network which will connect

the BS nodes with IAP (Internet Access Point) nodes, one

for each backhaul subnet.

The rest of the paper is organized as follows. We for-

mally define our problem in Section 2. Existing related

works are reviewed in Section 3. In Section 4, we present a

heuristic algorithm for getting a near-optimal backhaul net-

work deployment solution. Two modified algorithms, based

on classic facility location algorithms are presented in Sec-

tion 5. Simulation results are presented in Section 6. Fi-

nally, we conclude our work in Section 7.

2 Problem Description

In this section, we give a general description of the prob-

lem that we are interested in. We need to derive a mini-

mum cost backhaul wireless network (BS nodes) deploy-



ment such that demands (from SS nodes) can be satisfied

without violating wireless capacity constraints.

Let BS represent the potential BS nodes, let SS repre-

sent the set of SS nodes and we are given a demand vector

dj , for j ∈ SS , which denotes the average bandwidth re-

quest at SS node j. Let bi denote the aggregate wireless

capacity of BS node i. Let N(i) denote the set of SS nodes

which are within communication range for BS node i. We

use ci(k) to represent the cost of picking subnet k type BS

at location i (i.e., BS nodes of different types incur different

costs). Note that for opening a BS at a specific location,

there may be different BS costs incurred when choosing

from different subnet types. The objective of the problem is

to minimize the total cost of opening BS nodes which cover

all traffic demands. The integral variable yi indicates if a

backhaul BS node i is chosen, 0 ≤ xij ≤ 1 is the fraction

of traffic from SS node j assigned to BS node i.

Our problem, named as PMP-Association Problem, can

then be formulated as an mixed integer programming (MIP)

problem:

minimize
∑

i∈BS

ci(k)yi (1)

subject to
∑

i∈BS

xij ≥ 1, j ∈ SS

xij ≤ yi, i ∈ BS, j ∈ N(i)

biyi −
∑

j∈N(i)

djxij ≥ 0, i ∈ BS

yi = {0, 1}, i ∈ BS

0 ≤ xij ≤ 1 i ∈ BS, j ∈ SS

It should be noted that the formulation does not assume

triangle inequality. Triangle inequality means that for a

complete undirected graph, and for any three vetices u, v

and w, it satisfies that cost(u, v) ≤ cost(u, w)+cost(v, w).
Therefore, existing approximation algorithms for facility lo-

cations problems which assumes triangle inequality can not

be directly applied here.

The PMP-Association problem we address in this paper

is NP-hard. This can be easily seen since when ignoring

capacity and assuming uniform cost function, we obtain

a reduction from the weighted set cover problem [3, 14],

which has been known to be NP-hard for a long time. Given

this fact, we are interested in finding an efficient algorithm

which gives a near-optimal solution in the worst case, and

is computationally efficient. More specifically, we attempt

to design a combinatorial algorithm which can be imple-

mented efficiently. The advantage of such algorithm is that

it can be potentially implemented as an online algorithm for

incremental optimization in a dynamic traffic request situa-

tion.

3 Existing Literature

In essence, the proposed work is related to those on

multi-homing and smart routing techniques [7, 12]. Nev-

ertheless, it also introduces different features from existing

models used in the other studies in that our focus is on the

offline optimal cost network design algorithm in a static

wireless network topology while the focus of the existing

works are on adaptive routing algorithms.

In wireless ad-hoc networks, there have also been re-

search done in clustering relaying networks to minimize the

access points to wireline backbones [4, 5]. In [4], the au-

thor proposed a set of cluster algorithms by exploiting the

properties of a unit disk graph [2], i.e., uniform transmis-

sion range for all network nodes, to decide the minimum

set of connected subtrees while satisfying traffic demands

and relay constraints. Our problem differs in that we do not

assume uniform transmission range in our problem and the

transmission range and capacity between any SS-BS node

pair can be location dependent. In [5], authors addressed

the design of a multi-hop ad-hoc network, which would be

useful if we were to design the first tier network and de-

termine how the traffic from houses can be routed and how

many SS nodes are needed.

Another related problem is a weighted version Euclidean
capacitated covering by Disks problem (or tagged as “L-

balanced ρ-dominating Sets Problem”) which was shown to

be NP-hard [3,10,11]. Both are similar to the general frame-

work of set cover problems. Judit Bar-Ilan et al. has given a

best-known lnn-approximation ratio algorithm which runs

in polynomial time for the graph version of the problem

in [3], while a heuristic algorithm is used in [10] to ad-

dress the problem under the L2 metric. A sub-exponential

algorithm was proposed in [1] for near-optimal approxima-

tion. Our problem differs in that we consider a broadband

access network problem where demands/capacity are loca-

tion dependent and the deployment cost is subnet depen-

dent, whereas in the other works, general uniform demand

and server capacity were considered.

4 Our Proposed Methodology

In this section, we propose an algorithm to decide how

to choose the minimum cost BS node set such that all de-

mands from the SS nodes can be satisfied without violating

the capacity constraints associated.

In this paper, we assume that the flow assignment can be

fractional, in the sense that the traffic demand from an SS

node can be divided into smaller demands and assigned to

various BS nodes.

Since there does not exist an efficient approximation al-

gorithm for the above capacitated set cover with demands,

the following heuristic solution is proposed:
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Figure 1. Illustrations for the PMP problem

First, we use a greedy approximation algorithm to de-

termine the minimum number of locations, then at the cho-

sen locations, find the corresponding subnet with minimum

cost.

Before we describe the approximation algorithm, we no-

tice that in practical settings, there may be cases where the

actual number of BS nodes and possible cost can be further

decreased using a heuristic approach without affecting the

cost performance.

Below, we present two scenarios to show the possible

reduction in the number of BS nodes chosen. For simplicity,

we assume unit demand at each SS node. The same idea

applies to general cases as well.

• Case 1: In Figure 1(b), all three nodes in the candidate

BS nodes are having the same degree, it is not specified

how such cases can be handled in [3], it is normally

up to the maximum flow algorithm to pick arbitrarily

a feasible solution. However, we notice that there is

certain interesting property here: Picking node A or C

first will lead to the optimal solution of two BS nodes

in the greedy approach, while picking node B first will

lead to a solution of three BS nodes. The intuition here

is that node A and C have covered node 1 and 4 which

has a degree 1, therefore, A and C have to appear in the

optimal set whatsoever. If we include A and C as early

as possible in the greedy approach, it will lead to a BS

set which is no larger than another feasible solution

using the same greedy approach.

• Case 2: In Figure 1(c), we consider an example of an

optimal solution of two BS nodes. Choosing nodes B

or D will lead to a better solution than any solution

choosing A, as the SS nodes covered by node A can be

dominated by nodes {B ⋃
D}. It is not obvious that

B or D should be selected first, the general observation

is that among the three candidates A,B and D, which

are the maximum flow solutions, B (or D) covers the

nodes, e.g., nodes 7 − 10, whose degree is 2. while

the minimum degree of the nodes covered by A is 3.

Generally, since we have to cover all nodes eventually,

B and D are more likely to be included in the final as-

signment. Therefore, we include them in our solution

in preference to A.

In our network models, most SS nodes to be covered

should have a relatively low degree number, which indicates

the possible subnets an SS node has subscribed service to

(as there is no relay among SS nodes). In fact, some of the

SS nodes such as the boundary nodes and nodes which have

subscribed to only one contiguous subnet due to policy is-

sues have a degree of one. Therefore, it is more likely that

the heuristic which picks BS nodes covering a lower degree

SS node first will be able to reduce the size of the BS set.

Algorithms 1-3 describe the proposed iterative covering

heuristic algorithm based on the greedy approach proposed

in [3]. We extend the original algorithm by adding the fil-

tering process and allowing the maximum flow algorithm to

taking care of non-uniform demands and fractional assign-

ments. The performance of our algorithm is given in the

following theorem. The detailed proof can be found in [9].

input : Facility Set BS, Demand Set SS,

Associated Cost

output: Chosen facilities, An assignment of the

demands xij ,

U ← SS ;1

SB ← ∅;2

while U �= ∅ do44

Construct a bipartite graph G′ = (BS, U, E),5

with E = {(x, y)|x ∈ BS, y ∈ U} ;

Add two vertices S and T, connect S to every6

node in BS, connect every node in U to T;

Define capacities c on the graph:7

c(S, x)← bx, c(x, y)←∞, c(y, T )← dy;

Run procedure MaxIF (BS);8

end9

for i← 1 to |SB | do10

Pick the index of a subnet such that the cost11

incurred when opening a BS node at location i
is minimized;

end12

Algorithm 1: Iterative Covering

Theorem 1. Given a candidate location set obtained
above, our algorithm gives a minimum cost of no

3



Iterate through all nodes v in BS \ {SB}, and1

construct a subgraph G′ from the original graph G;

During each iteration, denote its corresponding2

maximum flow value as Mv;

Further Refine();3

Find v̂ such that γ(SB ∪ {v̂}) = maxv(Mv),4

∀v ∈ BS \ {SB};
SB ← SB ∪ {v̂};5

Algorithm 2: MaxIF(BS)

if γ(SB ∪ {v̂1}) == γ(SB ∪ {v̂2}) then1

pick vi such that vi covers a node with the2

minimum degree in the assignment, for any

i ∈ {1, 2};
end3

Algorithm 3: Further Refine()

more than �(ln n+ln m)�Cmax

Cmin
of the optimal cost of

the PMP-Association problem, where the total traf-
fic demands is denoted as n ∗ m and we de-
fine cmax = maxj∈BS,k∈SubnetSet cj(k), cmin =
minj∈BS,k∈SubnetSet cj(k), where SubnetSet is the set of
all subnets in the network.

The theoretical bound of the worst-case performance ra-

tio is not practical enough from the application’s point of

view, due to the general hardness of the capacitated non-

metric space nature. However, for general network settings,

our simulation results produced good average-case perfor-

mance, with respect to the optimal solutions.

5 Extended Capacitated Facility Location
Algorithms

In [8], R. Levi et al. proposed a hard1 capacity facility

location algorithm. As discussed above, facility location-

based algorithms do not apply directly to our network plan

problem, since it assumes that the bipartite graph of the BS

station set and the demand SS station set is fully connected

and the cost of connecting any two stations satisfies metric

space properties, such as triangle inequalities. Therefore,

it is not suitable for general wireless networks with limited

communication range. For instance, for a traditional facil-

ity location algorithm, an SS node may be connected to an

BS node which is far beyond the communication range in

practice.

1In the context of facility location problems, hard capacity means that

only one facility with a fixed capacity is allowed at any specific location,

in contrary to the soft capacity version in which an arbitrary number of

facilities are allowed at any location, equivalently increasing the facility

capacity.

In order to study the impact introduced by the violation

of the metric property, we examine two extended capaci-

tated facility location algorithms based on the approxima-

tion algorithm proposed in [8] which has an approximation

ratio of 5 under the metric space assumption. We give next

a brief outline of the algorithm developed using the tech-

nique of capacitated facility location algorithms. Interested

readers may refer to [8] for more thorough description and

analysis.

input : Facility Set BS, Demand Set SS, Capacity

Set {ui}
output: Chosen facilities, An assignment of the

demands xij ,

Solve the optimal primal and dual LP-relaxations1

and denote the solutions as (x, y) and (α, β, γ, z)
respectively;

Fj = {i : xij > 0, i ∈ BS, j ∈ SS};2

S ← SS ;3

C ← ∅;4

fij = 1,∀i, j in range;5

fij =∞,∀i, j out of range;6

while S �= ∅ do88

Pick j ∈ S such that j = arg min{αk|k ∈ S};9

Bj = {i ∈ Fj : i /∈k∈C Nk and fij ≤10

mink∈Cfik};
C = C ∪ {j};11

S = {j /∈ C :
∑

i∈Bj
xij ≥ 0.5};12

Form cluster Bj ;13

end14

Assign any remaining BS to the nearest cluster and15

also the fractional demand served by the node;

Move all fractionally assigned demands to the16

corresponding cluster centers and create a

single-node instance;

Solve the single-node instance using greedy17

packing algorithm in increasing order of
fij

bi
, open

all fractionally opened or fully opened BS nodes;

Run the maximum flow algorithm to satisfy as18

many demands as possible;

Algorithm 4: Modified Capacitated Facility Loca-

tion Algorithm

The traditional capacitated facility location algorithm

tries to first cluster BS nodes around a subset of SS nodes

and concentrates traffic demands to the center SS nodes to

form single node instances which are then solved by greed-

ily packing low cost facilities. It is easy to see that the orig-

inal algorithm does not ensure feasibility for single node in-

stances when demands associated with the cluster are con-

centrated at a cluster center because there may exist BS/SS

pairs that are not connected in the same cluster. Moreover,
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input : Facility Set BS, Demand Set SS,

Associated Cost

output: Chosen facilities, An assignment of the

demands xij ,

Solve the optimal primal capacitated facility1

location LP-relaxation and denote the solutions as

(x, y);
Pick randomly the BS node with probability yi, for2

any i ∈ BS;

Run the maximum flow algorithm to serve as3

many demands as possible;

Algorithm 5: Randomized Capacitated Facility

Location Algorithm

there is no polynomial algorithm to convert a solution to the

facility location instance to a solution to our problem, oth-

erwise, the minimum set cover problem would be able to

be approximated with constant factor2. Hence, we modified

the algorithm mainly in the following aspects:

• The solution of the facility location based algorithm

may lead to demands left unsatisfied.

• When solving the linear programming formulation, we

let the facility cost be infinite for connecting out-of-

reach demand nodes.

• After deciding the set of facilities, we compute the

minimum cost assignment of demands to open BS

nodes based on the actual connectivity graph, namely,

the assignment only happens if the SS node and the

targeted BS node are within communication range.

We also consider an intuitive randomized algorithm

which solves the LP-relaxation of the primal facility lo-

cation problem and randomly chooses BS nodes with the

probability of the corresponding fractional solution of the

linear program relaxation.

We will compare in the following section the perfor-

mance of these LP-based capacitated facility location algo-

rithm variants and the tradeoffs incurred.

6 Performance Evaluation

Extensive simulation results have been done to compare

the performance of each algorithm for different scenarios.

Due to space constraints, more results appeared in [9]. In

the following, we compared the performance results be-

tween our max-flow based algorithm and the exact MIP so-

lution using various network topologies, demands matrices.

2The minimum set cover problem has been known to be not approx-

imable within (1−ε) ln n for any ε > 0 unless NP ⊂ DTIME (nlog log n).

10 15 20 25 30 35 40

145

150

155

160

165

communication radius

nu
m

be
r 

of
 B

S
 n

od
es

Our algorithm
Optimal solution

Figure 2. Total number of BS nodes chosen
with varying communication radius

We also studied the tradeoffs obtained by facility location

based algorithms. In the legendaries of the following fig-

ures, we named the exact solution to the MIP problem as

optimal solution, which we computed with CPLEX pack-

age. We implemented all algorithms using LEDA packages.

For most simulations, we generated a random network

topology by placing NBS BS nodes in a square of 400x400

units. The communication connectivity graph model we

used assumed that any BS-SS pair could communicate iff

their Euclidean distance was within a communication ra-

dius, R. In the following simulations, unless specified oth-

erwise, we adopted a network of 200 BS nodes and 800 SS

nodes.

We also investigated the effects of varying communica-

tion ranges for individual wireless links. Figure 2 demon-

strated that the optimal solution of the PMP-Association

problem (200 BS nodes with capacity 10 Mbps and 800

SS nodes with maximum feasible demands) decreased with

the increase of communication ranges. As the communi-

cation range increased, the effective area covered by a BS

node was extended, and thus the number of BS nodes was

reduced for the optimal solution. On the other hand, the

performance of our algorithm remained almost the same

with changing radius, mostly due to the fact that the in-

creasing communication radius led to a closer-to-complete

graph, therefore, optimality became harder to achieve, as

the relationship between BS and SS sets became more com-

plicated. Moreover, unlike the case in the varying demands

simulation (in which BS nodes can potentially cover more

SS nodes, but not the other way around), SS nodes in the

optimal solution would now have more BS nodes in range,

and thus had more options when deciding what BS nodes to

choose to further reduce the number of BS nodes needed.

This property introduces more difficulties in designing the

approximation algorithm.
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6.1 Effects of Heterogeneous BS Node
Costs

In this section, we examined how the BS node cost would

affect the final solution. As discussed above, we defined the

BS node cost to be the distance between the BS and the

nearest IAP node. In this simulation, we choosed different

IAP numbers (i.e., different number of subnets) and stud-

ied how the total cost of all chosen BS nodes changed. The

result shown in Figure 3 indicated that the total costs for

both our solution and the optimal value decreased with more

IAPs, this was because more IAPs in the network poten-

tially allowed that a selected BS be connected to a “closer”

IAP and thus decreased its cost.

6.2 Extended Facility Location Algo-
rithms

In this section, we compared the performances between

tradeoffs among various algorithms with respect to the com-

munication radius. As discussed above, the modified facil-

ity location algorithm and randomized capacitated facility

location algorithm could not guarantee all demands satis-

fied. In Figure 5, We compared the amount of satisfied de-

mands of the three algorithms. The iterative covering algo-

rithm (Algorithm 1) selected base stations till all demands

were satisfied. The randomized capacitated facility location

algorithm used the linear programming-rounding technique

and supported a reasonable amount of demands, though a

fraction of the total demands were not supported. More de-

mand requirements were violated for modified facility loca-

tion algorithm. Moreover, when the communication radius

increases, the difference becomes more significant, due to

the fact that reducing the original problem to sub-problems

in clusters would cause more infeasible assignment subject

to the communication range constraints. Figure 4 illustrated

the number of base stations needed for these algorithms.

Among all three algorithms, the modified capacitated facil-

ity location algorithm used the least number of base stations

at a cost of most unsatisfied demands, and the number of

base stations needed by the other two algorithms are com-

parable.

Another notable observation from the figures indicated

that although the modified capacitated facility location al-

gorithm could not guarantee satisfying all user demands,

it presented the best cost-effectiveness (defined as the ra-

tio of satisfied demands and the number of deployed BS

nodes) among the three candidates. When other wireless

networks were available, such algorithm could be combined

with other relaying techniques to provide overall coverage.

7 Conclusion

With the emerging of wireless broadband networks,

many challenging issues have arisen in the area of network

planning. For large scale wireless networks, maintaining

cost-effectiveness is critical in improving the popularity of

new technologies. In this paper, we studied and presented

algorithms which attempt to find a minimum cost subset of

base stations for WiMAX networks, named as the PMP-

association Problem, which is shown to be NP-hard. The al-

gorithms we proposed are based on techniques derived from

set cover, capacitated facility location and LP-rounding al-

gorithms. We analyzed the performance of our algorithms

and compared them, as well as the optimal solution, in dif-

ferent network topologies with various demand densities,

transmission ranges, capacities. The numerical results ver-

ified that our algorithms could be applied efficiently in de-
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signing WiMAX access network deployment problems.
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