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Abstract—Virtual machine (VM) migration is a key technique
for network resource optimization in modern data center net-
works (DCNs). Previous work generally focuses on how to place
the VMs efficiently in a static network topology by migrating
the VMs with large traffic demands to close servers. When the
VM demands change, however, a great cost will be paid on the
VM migration. With the advance of software-defined network
(SDN), recent studies have shown great potential to implement an
adaptive network topology at a low cost. Taking advantage of the
topology adaptability, in this paper, we propose a new paradigm
for VM migration by dynamically constructing a topology based
on the VM demands to lower the cost of both VM migration and
communication. We formulate the traffic-aware VM migration
problem in an adaptive topology and show its NP-hardness.
Then we develop a novel progressive-decompose-rounding (PDR)
algorithm to solve this problem in polynomial time with a proved
approximation ratio. Extensive trace-based simulations show that
PDR can achieve higher flow throughput among VMs with only a
quarter of the migration cost compared to other state-of-art VM
migration solutions. We finally implement an OpenvSwitch-based
testbed and demonstrate the efficiency of our solution.

I. INTRODUCTION

With the proliferation of cloud computing, virtualization

has become a popular practice in the design of data centers.

Without considering the specific running status of the user

applications, network operators can simply migrate the VMs

to achieve better resource utilization, failure tolerance, load

balance, energy efficiency, etc [1].

Intensive recent efforts have been made to minimize the cost

of migrating one or several VMs from an initial placement to

another given destination placement, namely the migration
phase. Clark et al. [2] first present a systematic live migration
mechanism with practically small service downtime for a

single VM migration. Recent work [3], [4] further proposes to

optimize the migration time and service downtime by proper

bandwidth allocation for the live migration. Benefited from

the advantage of high-performance live migration, there comes

another research theme to reduce the communication cost of

VMs under the optimized destination placement, which we

refer as the communication phase. With the increasing trend

of running communication-intensive applications in DCNs [5],

intuitively, the VMs with large traffic demands should be

migrated to servers in close proximity (in the topological

sense). The observation of the VM traffic stability at large

timescales in [5] confirms the feasibility of lowering the com-

munication cost by optimizing the VM placement based on

traffic statistics, i.e., the so-called traffic-aware VM placement.

Recent efforts in [6], [7] further take the routing options into

account and propose to jointly optimize the VM placement

and proper routing paths for the VM communication.

While great efforts have been made on minimizing the

cost of the migration phase or the communication phase,

few consider their joint optimization. However, there may be

a trade-off challenge between these two costs, e.g., a good
placement obtained by minimizing the communication cost

may be a bad option for the migration, due to the high cost

of reshuffling existing VMs [8]. To address this challenge,

our basic motivation is that, if the network topology can be

changed dynamically with reconfigurable links, the servers

who hold the VMs with large traffic demands can be bridged

together with direct short links. In this way, little migration is

needed while the communication cost is reduced efficiently.

Therefore, in this paper, we fully explore a novel paradigm,

called the topology-adaptive DCN, to lower the cost of both

the migration phase and communication phase easily. With

the advance of SDN technologies in DCN, recent studies

have shown the great potential to implement a reconfigurable

network topology [9]–[17]. Nowadays, there are mainly two

technologies to achieve this topology-adaptive objective. The

first is adding the 60GHz wireless radios or the Free-Space

Optics (FSO, which is another wireless technology that differs

from 60GHz) to build configurable wireless links [9], [10],

[12], [14], [15]. The second is adding the optical circuit

switches (OCS), which has the ability of fast circuit switching

to adapt the topology [11], [13], [16], [17]. The core of the

above technologies is to collect traffic information through the

OpenFlow protocol in the SDN platform and then build con-
figurable links on-demand by the SDN controller [12]. Since

the topology is only updated based on the traffic demands at

every period of large timescales (e.g., several hours [5]), the

relatively small delay on switching the topology (about several

microseconds [13], [15]) would have little impact on the total

performance gains [14], [15].

Recent studies on the topology-adaptive DCN [9]–[17]

generally focus on the basic network requirements, such as

the feasibility of new technology and architecture design. In

this work, we take the initiative to explore how much benefit

up-layer applications could gain with the topology-adaptive



paradigm. Without loss of generality, we take the wireless

mechanism as the main analysis reference in our paper. Then

we will show that adapting topology through OCS or FSO is

a special case of the wireless solution (see Section III-E).

Specifically, to minimize the total cost in the VM migration

and communication, we will jointly optimize three challenging

decisions in this work: (1) the migration decision, i.e., which

VMs should be migrated to which physical servers, with

respect to the server capacity; (2) the topology decision,

i.e., which configurable links should be built to implement a

suitable topology for the current VM demands; (3) the routing

decision, i.e., how should the VMs route their traffic demands

over the newly configured network topology, with respect to

the link capacity. In each period, our system takes the traffic

demands among VMs as the input and updates all the above

three decisions to minimize the total cost of VM migration

and communication.

To the best of our knowledge, this is the first work to study

the VM migration with a reconfigurable network topology.

Moreover, existing work on the joint optimization of the VM

placement with other metrics like routing, link utilization or

energy consumption [5]–[7], [18] are generally shown to be

NP-hard and only design heuristic algorithms. In this paper, we

will show how to address this general challenge with a proved

approximation ratio using an abstracted modeling solution.

The main contributions of our work are as follows:

• We jointly consider the costs of migration phase and

communication phase, and formulate the traffic-ware VM

migration problem in an adaptive topology, which is

shown to be NP-hard.

• We propose a novel progressive-decomposition-rounding

(PDR) algorithm to solve the migration problem and

prove its approximation ratio. We show that our technique

can be extended to solve the VM migration optimization

under different topology adaption technologies in DCNs

with proved approximation ratios.

• We conduct real-trace based evaluations to demonstrate

the efficiency of our solution under various scenarios,

and then validate its feasibility of improving the flow

performance with implementation over an OpenvSwitch-

based testbed.

The remainder of this paper is organized as follows. Sec-

tion II introduces our problem formulation. In Section III, we

provide scheduling analysis and algorithm design. We evaluate

the performance of our scheduling algorithm in Section IV,

and finally conclude our work in Section V.

II. PROBLEM FORMULATION

In this section, we introduce the motivation of our work

as well as the basic system model, and then formulate the

migration problem.

A. Motivating example

To begin with, we introduce an example to illustrate how

we can address the performance bottleneck of VM migration

using the topology adaption. In Fig. 1, we compare the two
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Fig. 1. Cost comparison of different VM migration solutions

costs for different migration solutions. There are two VMs,

A and B with a memory size of 100 MBytes each, while the

communication traffic between them is 400 MBytes. Suppose

the servers are so busy that each server can only accommodate

at most one VM. For simplicity, one unit of network cost is

defined as routing one MByte of the traffic over one hop. In

Fig. 1, if VM A and B communicate without any migration,

the migration cost is zero and the communication cost is

400MB×6 hops=2400. With an optimal migration performed

over a static wired topology, as shown in Fig. 1(a), a lower

communication cost 1600 is achieved at the cost of a higher

migration cost at 600, which reduces the total cost by only

8%. However, a simple topology-adaptive solution in Fig. 1(b)

achieves both a lower migration cost and communication cost,

with the total cost reduced by 33% to gain the performance

breakthrough. Finally, the optimal topology-adaptive solution

in Fig. 1(b) is to build a direct wireless link between the

ToR (Top-of-Rack) switches of A and B, which makes the

communication cost the lowest and migration cost zero, i.e.,

reducing the total cost by 50%. We can see that a single link

adaptation can achieve a high performance benefit for VM

migration and communication. We note that a more flexible

strategy that mixes multiple wireless links and wired links to

construct hybrid paths for VM migration and communication

is possible to gain higher benefits. We will formulate the

flexible optimization problem formally in the following and

show its non-triviality.

B. VM placement

Motivated by the above example, the objective of our

system is to reduce the total cost of VM migration and

communication. We take the VM demands in one period as

an input matrix D for our system. Each element in the matrix

denotes a VM-level flow fij ∈ F from the VM Mi to Mj with

a traffic demand dij (F is the flow set).

At a high level, each period consists of two phases: (1) the

migration phase to transform the initial VM placement A to a

new placement B; (2) the communication phase that the VMs

communicate with each other under the new placement B. At

the beginning of each period, our system uses an input demand

matrix D to compute a new VM placement B, a new network

topology and also the routing plan. The placement B is used

as the migration objective in the migration phase, while the



new topology and routing plan are deployed at the head of

communication phase to facilitate the VM communications.

We assume existing capacity tools (CPU/memory based) has

determined the number of VMs that a server can host [5].

Hence we use one CPU/memory allocation on a server as

the basic unit for VM placement and denote it as a slot.
We denote the active VMs in one period as a VM set

M = {M1,M2, ...,Mn} and the available slot set as L =
{L1, L2, ..., Lm}, n ≤ m. Then a VM placement can be

denoted as a one-to-one mapping from a VM set to a slot set.

Without loss of generality, we index the slots by their VM

index in the initial placement A, i.e., the VM Mi is located

at slot Li under the placement A. For the new placement B,

we use a binary variable yij ∈ {0, 1} to denote whether VM

Mi is placed in the slot Lj under the placement B.

C. Adaptive topology

We denote the topology of DCN as a graph G(V,E), where

V denotes all the switches and servers, and E denotes all

the links connecting them including the configurable wireless

links. Let S denote all the servers, then the set V \S denotes

all the switches. The main challenge of routing in an adaptive

topology is to describe the flow conservation constraint when

the new VM placement B is not decided yet. In the following,

we present a novel linear formulation to address this issue.

Let a binary variable xpq
ij denote whether a flow fpq routes

through the link eij , and bij is the link capacity of link

eij ∈ E. The flow conservation constraints under the new

VM placement B = {yij} can be equally translated to the

following linear equations:

∀vi ∈ S, fpq ∈ F :∑
eij∈E

xpq
ij −

∑
eji∈E

xpq
ji =

∑
k∈̂L(i)

ypk −
∑

k∈̂L(i)

yqk (1)

∀vi ∈ V \ S, fpq ∈ F :∑
eij∈E

xpq
ij −

∑
eji∈E

xpq
ji = 0 (2)

where L̂(i) denotes all the slots in server i.
The constraint of the equation (1) applies when a node i

in the server set S is the source or destination sever. The

right-hand side (RHS) of the equation equals 1 or −1, so that

the traffic out of the source server and the traffic into the

destination server equals the flow demand. Otherwise, if node

i in S is not the source or destination server, the RHS equals

0. Similarly, when the node i is an intermediate switch, the

flows are constrained by the equation (2) according to the flow

conservation rule.

D. Wireless interference

Although building more configurable links would allow for

more flexibility to find a better solution, in a topology-adaptive

DCN, configurable links are not created without constraints.

For example, there exists interference among the wireless

links, while for the OCSs and FSOs, there are conflicts for

creating links at the same port because each port can only

support at most one link. In the following, we take the

configurable links as the wireless links and discuss issues to

consider for other mechanisms in Section III-E.

Without loss of generality, we construct a conflict graph
Gc(Vc, Ec) to describe the conflict relations among all the

configurable wireless links. In the following, we simplify

the analysis by assuming the binary interference model [19],

and we will show how to extend our solution to the SINR

interference model in Section III-E. In the binary interference

model, two wireless links e1 and e2 are said to have conflicts

if either e1 is in the interference range of e2 or vice versa. Let

each wireless link e be a vertex in Gc, and add an edge (e1, e2)
between any two vertices e1 and e2 if and only if they conflict

with each other. Finally, we also add all the fixed wired links

into the conflict graph, i.e., each wired link is a vertex in Gc

but has no edges with other vertices.

In the conflict graph, two vertices are said to be independent
if there is no direct edge connecting them. An independent set
(IS) in a conflict graph Gc(Vc, Ec) is defined as a vertex subset

of Vc where any two vertices are independent. Hence a feasible

solution for setting up wireless links in G is to select an IS in

the conflict graph Gc, i.e., we have

zij ∈ {0, 1}, ∀eij ∈ E (3)

zij + zuv ≤ 1, ∀(eij , euv) ∈ Ec (4)

where zij denotes whether the link eij is selected to build1,

and constraint (4) ensures the independence among links.

In the following, we give the relationship between the flow

variable xpq
ij and link variable zij . Since a link is considered

to be built only if there exists flow routing over it, we have

the link existence constraint: xpq
ij ≤ zij , ∀fpq ∈ F , eij ∈ E.

Further, we have the link capacity constraint for routing:∑
fpq∈F dpqx

pq
ij ≤ bij , ∀eij ∈ E, which means the total traffic

demand of all the flows which route over the link eij is within

the link capacity bij . Benefited from the binary property of

xpq
ij ∈ {0, 1} and zij ∈ {0, 1}, the above two constraints can

be combined and equally translated in a simplified way:∑
fpq∈F

dpqx
pq
ij /bij ≤ zij , ∀eij ∈ E (5)

E. Migration and communication cost

Migration cost. To evaluate the cost of migration phase, we

use aij as a fixed value to denote the general migration cost

by migrating the VM Mi from its previous slot Li to a new

slot Lj . When applying our model into practice, the network

operators are free to use specific cost metrics they prefer in the

migration phase to set aij , such as the total migration time, the

service downtime or the migration traffic size, etc. Generally,

the migration cost aij can be easily obtained based on the

measured metrics in data centers by the SDN platform, e.g.,

the migration time and service downtime can be estimated

by the VM memory sizes, the allocated bandwidth and the

measured dirty page rates of the VMs [4].

1For a wired/wireless link, zij = 0 means no flow is allowed to route over
this link; and zij = 1 means flows can route over this link.



Therefore, the total network cost of the migration phase

from placement A to a new placement B can be computed as

CAB =
∑

Mi∈M

∑
Lj∈L

aijyij (6)

Communication cost. To evaluate the communication cost

among VMs, the communication distance between server i and

j can be modeled with the routing hops between them [5].

Then the cost of VM communication can be described by the

product of the traffic demand and communication distance.

For a flow fpq ∈ F , the communication distance is then

calculated as
∑

eij∈E xpq
ij . Hence we have the total cost of

VM communications:

TB =
∑

fpq∈F
{dpq

∑
eij∈E

xpq
ij } =

∑
fpq∈F

∑
eij∈E

dpqx
pq
ij (7)

F. Problem formulation

The objective of our system is to minimize the sum of the

migration cost and communication cost during each scheduling

period. We use a weight parameter β to show the trade-off

between these two costs, which can be adjusted according to

the network operators’ preference on the two costs. Specially,

the model still applies if only one cost is considered by setting

β to zero or a large number. The controller input is n VMs and

each VM-level flow fpq ∈ F is attached with a flow demand

dpq . Therefore, we generate the following joint optimization

problem P0:

min CAB + β × TB
subject to ∑

vj∈L
yij = 1, ∀Mi ∈ M (8)

∑
Mi∈M

yij ≤ 1, ∀Lj ∈ L (9)

xpq
ij ∈ {0, 1}, yij ∈ {0, 1} (10)

Constraints (1), (2), (3), (4), (5) (11)

where constraint (8)(9) are the VM placement constraints that

each VM must be hosted by only one slot while one slot

can host at most one VM. Constraint (1)(2) are the flow

conservation constraints. Constraint (3)(4)(5) are appended to

take into account the wireless interference and link capacity.

By solving this optimization problem, the controller outputs

three sets of decisions: (1) the new VM placement B = {yij};

(2) the wireless links {zij} selected to build; (3) the routing

paths selected for VM-level flows {xpq
ij } under the placement

B. The related notations and definitions are listed in Table I.

Since the general binary integer problem is NP-hard [20], there

are three sets of 0-1 integer variables in the problem P0 to

construct its difficulty. The first is the unsplittable property of

VMs indicated by yij ∈ {0, 1}, i.e., one VM can be migrated

to only one slot. The second is the unsplittable property of

wireless links indicated by zij ∈ {0, 1}, i.e., only one IS is

selected to build. The third is the unsplittable flow property

indicated by xpq
ij ∈ {0, 1}, which is required by the high

performance of flows in DCNs [21].

By constructing an instance of problem P0 with no wireless

and VM migration, we generate the following theorem:

Theorem 1. (NP-Hardness) The joint optimization problem
P0 is NP-hard.

Proof: See detailed proof in our technical report [22].

III. SCHEDULING ANALYSIS AND DESIGN

A. Design overview

Since the original problem P0 is NP-hard, the natural

question is: can we develop a polynomial-time algorithm to
solve it with proved approximation ratio? The key challenge

comes from the binary nature of the three sets of variables

(xpq
ij , yij , zij), which are coupled with each other. Specifical-

ly, the flow conservation constraint (1) closely couples the

flow variable xpq
ij to the placement variable yij while the

link capacity constraint (5) couples the flow variable xpq
ij to

the link variable zij . Conventional techniques using relax-
and-rounding have the potential to solve the binary integer

problems (BIP) with a single set of 0-1 variables, however,

they are not suitable for the joint BIP as P0. There are

several challenges to ensure the performance guarantee when

considering multiple sets of 0-1 variables. First, since the

three sets of binary variables have quite different properties

and constraints, a simple relaxation that equally relaxes each

binary variable to a linear variable in [0, 1] can not give the

performance guarantee during the relaxation. Second, since

the three sets of variables are closely coupled with each

other in the constraints, it is difficult to round all of them

directly without any conflicts on the constraints, not to mention

guaranteeing any approximation ratio.

To address the above challenges, we develop a novel

progressive-decomposition-rounding (PDR) algorithm to solve

P0. The overview of PDR is presented in Algorithm 1.

First, we develop techniques to relax the three sets of 0-1

variables based on their different constraints so that a constant

approximation ratio is guaranteed during the relaxation (Sec-

tion III-B). Next, rather than rounding the LP solution directly

as a whole, we propose to decompose and round the three sets

of variables one by one with the performance guarantee based

on their specific properties (Section III-C). Finally, we address

the challenge on combining the above progressive approxima-

tion results together to achieve the complete approximation to

the original problem P0 (Section III-D). In the following, we

will introduce the technical details of each step in the PDR.

TABLE I. Notations and Definitions

Notations Definitions

M the VM set {M1,M2, ...,Mn}
L the slot set {L1, L2, ..., Lm}
xpq
ij {0,1}: whether flow fpq routes through link eij
yij {0,1}: whether VM Mi is placed in slot Lj

zij {0,1}: whether link eij is selected to build

fpq A flow from source VM Mp to destination VM Mq

dpq Flow demand of flow fpq
bij Link capacity of link eij



Algorithm 1 PDR: Progressive-Decomposition-Rounding

1: Relax three sets of 0-1 variables: {xpq
ij }, {yij}, {zij}

2: Solve the relaxed LP problem to get the fractional solution

3: Decompose and round an VM placement

4: Solve the LP with fixed VM placement, then decompose

and round an IS

5: Solve the LP with fixed VM placement and fixed IS, then

decompose and round the routing paths

B. Relaxation of integer variables

In this section, we will show how to relax the 0-1 integer

variables in the problem P0. To begin with, we show the

motivation of our technique with a basic problem analysis. In

problem P0, we can see that the variable yij has its individual
constraints (8)(9) that define a valid VM placement, and also a

combined constraint (1) that is coupled with the variable xpq
ij to

ensure the flow conservation. Hence a simple linear relaxation

of variable yij to [0, 1] means that a VM is allowed to be split

and migrated to multiple slots. Based on equation (1), this

relaxation operation will drive the variable xpq
ij to be relaxed

in the same way, which means a flow is allowed to be split

over multiple routing paths. For xpq
ij , the main concern raised

to this linear relaxation is that it is coupled with the variable

zij in the constraint (5) to ensure that the flow routes over a

valid link within its capacity. When looking into the inequation

(5), we can see that the expression of xpq
ij is limited by an

upper bound as zij . On the other hand, zij is characterized

by its individual constraints (3)(4) to define a valid wireless

link setup. Hence, we can address the concern of relaxation

impact of xpq
ij in constraint (5) by characterizing the solution

space of xpq
ij with that of zij .

Following the above analysis, we first relax the 0-1 variables

xpq
ij and yij by the linear constraints xpq

ij ∈ [0, 1], yij ∈ [0, 1].
Constraints (3)(4) define the 0-1 variable zij as an IS. We use

the incidence vector to represent an IS, i.e., a vector whose

jth element is 1 if and only if the vertex vj is an element

of the IS. Since each incidence vector represents an integer

point in the vector space of {zij}, all the incidence vectors of

ISs in Gc denote an integer point set P . Thus the constraints

(3)(4)(5) can be equally translated as
∑

fpq∈F dpqx
pq
ij /bij ≤

zij and {zij} ∈ P , i.e., in a simplified way it can be written

as {∑fpq∈F dpqx
pq
ij /bij} ∈ H , where H denotes the polytope

defined by constraints (3)(4)(5).

Intuitively, we can relax the point set P as an independence
set polytope P , i.e., the convex hull of all the integer points

in P . Hence we have H ⊆ P and the ideal relaxation

that {∑fpq∈F dpqx
pq
ij /bij} ∈ P . However, the polytope P

is generally not polynomial-representable for an arbitrary

conflict graph Gc. In the following, we will show that if

we can approximate P with another polynomial-representable

polytope Q within a constant ratio μ, i.e., Q ⊆ P ⊆ μQ, then

we are able to obtain an μ-approximation relaxation of the

original problem P0.

Following the above relaxation procedures, the formulation

of the relaxed LP problem P̃0 can be abstracted as follows:

min O(X,Y )

subject to X ∈ Q (12)

Y ∈ U (13)

W (X,Y ) = 0 (14)

where X denotes the vector of variables {xpq
ij }, and Y denotes

the vector of variables {yij}. The polytope Q denotes the

μ-approximation of polytope P that is described by original

constraints (3)(4)(5) with respect to xpq
ij . The polytope U is

defined by the original constraints (8)(9) and yij ∈ [0, 1] with

respect to yij . The original constraints (1)(2) are abstracted

by a linearly-weighted sum of vector X and Y as described

by W (X,Y ), and the optimization objective is abstracted by

another linearly-weighted sum of vector X and Y as O(X,Y ).

Theorem 2. (Relaxation Guarantee) The optimal solution of
the relaxed LP problem P̃0 is μ-approximation of the optimal
solution of the target original problem P0, i.e., λ̃0 ≤ μλ0

(μ ≥ 1), where λ̃0 is the optimal objective value of P̃0 and
λ0 is the optimal objective value of P0.

Proof: Following the above abstraction principle, we

construct another problem P̃ ′
0 that formulated as below: min-

imizing O(X,Y ) and subject to X ∈ μQ, Y ∈ μU and

W (X,Y ) = 0. The optimal solution of P̃ ′
0 is denoted as

(X∗, Y ∗) with the objective value λ̃
′
0. First, we will show

that (μX∗, μY ∗) is a solution of P̃0. Comparing P̃0 and

P̃ ′
0, the polytope of X and Y in P̃ ′

0 is μ times that in P̃0.

Since the problem is the minimization problem, (μX∗, μY ∗)
is in the polytope of P̃0 with respect to X and Y . Further,

the linear constraint W (X,Y ) = 0 is still satisfied when

the vector X and Y are all scaled with a constant factor

μ. Hence (μX∗, μY ∗) is a solution of P̃0. Finally, since

P̃0 and P̃ ′
0 have the same linearly-weighted objective that

O(μX∗, μY ∗) = μO(X∗, Y ∗), we have λ̃0 = μλ̃
′
0.

Let all the incidence vectors2 of the variables {yij} denote

an integer point set U , which is defined by the constraints

(8)(9) and yij ∈ {0, 1}. Because U forms a matching polytope

of yij in the bipartite graph of mapping the VMs to slots, the

matching polytope U is exactly the convex hull of all the

integer points in U [23]. Then the original problem P0 can be

formulated as: minimizing O(X,Y ) and subject to X ∈ H ,

Y ∈ U and W (X,Y ) = 0. Let Conv(P ) denote the convex

hull of point set P , since H ⊆ Conv(P ) = P ⊆ μQ and

U ⊆ Conv(U) = U ⊆ μU (μ ≥ 1), we have that any solution

of problem P0 is the solution of problem P̃ ′
0. Then let λ0 be

the objective value of the optimal solution of problem P0, we

have λ̃
′
0 ≤ λ0. Therefore, we have λ̃0 = μλ̃

′
0 ≤ μλ0. This

completes the proof.

There is a group of research efforts on how to construct

the approximation polytope Q [19], [24]. Here we adopt the

2The constraints (8)(9) and yij ∈ {0, 1} define {yij} as an IS, where two
variables yij and ypq have a conflict if the constraints (8)(9) are not satisfied.
Thus we can use the incidence vector to represent an IS of {yij}.



simple μ-approximation representation in [19] as Q =
{
δ ∈

Rm
+ : maxeij∈E{δ(eij) +

∑
euv∈Ω(euv)

δ(euv)} ≤ 1
}

, where

Ω(euv) denotes a specific set of links with respect to euv (see

more details in [19]), and δ(eij) =
∑

fpq∈F dpqx
pq
ij /bij . In

this way, the LP-relaxed problem P̃0 is presented as follows:

min CAB + β × TB
subject to xpq

ij ∈ [0, 1], yij ∈ [0, 1] (15)

δ(eij) +
∑

euv∈Ω(eij)

δ(euv) ≤ 1, ∀eij ∈ E (16)

Constraints (1), (2), (8), (9) (17)

where constraint (15) is the relaxtion of 0-1 variables yij and

xpq
ij , and constraint (16) is the relaxtion of IS selection.

C. Decomposition and rounding

After getting the optimal fractional solution of P̃0, we will

decompose and round the fractional solution to 0-1 integer

solutions one by one.

First, we will decompose and round the fractional VM

placement. The main challenge is how to characterize the VM

placement efficiently for approximation. The motivation of our

technique is modeling a valid VM placement as a constraint
bipartite graph. After getting the optimal fractional placement

Y = {yij : yij ∈ [0, 1]} by solving P̃0, we use the CCD

algorithm (Algorithm 2) to perform its convex combination

decomposition3 as follows. Considering an VM or slot as a

vertex and the matchings as edges, we can model the one-

to-one matching from the VM set to slot set as a bipartite

graph Gb. The conflict relationship among the matching edges

is defined by constraints (8)(9), and thus we can construct

the corresponding conflict graph Ĝb, in which each matching

edge that places one VM to one slot is taken as a vertex, and

there is an edge between two vertices in Ĝb if they have a

conflict. An IS in Ĝb exactly denotes an one-to-one matching

from VMs to slots, i.e., an VM placement. By calling CCD

algorithm with Ĝb and Y as the input conflict graph and

weight vector respectively, we can obtain the output of several

VM placements {Ii} with corresponding weights {wi}.

As Algorithm 2 shows, CCD greedily selects an IS and sets

its weight as the minimum weight of links in the IS (line

3-7). Then the link weights are updated and the links with

the zero weight is removed (line 9-10). The procedure repeats

until no link is left to select. Since the weight of IS is the

minimum weight of links in the IS, there is at least one link

to be removed from the set Φ at each repetition. Hence the

CCD at most performs m loops and the total time complexity

is O(m2), where m is the number of network links.

If the vertex v is selected in Φ with a specific order for line

4 in Algorithm 2, the CCD solves the conventional fractional

coloring problem with a total weight
∑

i wi ≤ 1 [19]. Finally,

we select one VM placement Ii with a probability as its

3There are many other ways to do the convex combination decomposition
of a fractional solution in polynomial time, e.g., the well-known method of
solving a linear programming problem in [25]. Here we present an easier one.

Algorithm 2 CCD: Convex Combination Decomposition

Input: A conflict graph G(V,E) and a weight vector {x(v) :
v ∈ V } where x(v) ∈ [0, 1]

Output: The decomposed ISs {I} with weights {w}
1: Γ ← ∅, Φ ← {v ∈ V : x(v) > 0}
2: while Φ 	= ∅ do
3: I ← ∅
4: for v ∈ Φ do
5: if v does not conflict with nodes in I , add v to I
6: end for
7: w ← minv∈Ix(v), and add (I, w) to Γ
8: for v ∈ I do
9: x(v) ← x(v)− w

10: if x(v) = 0, remove v from Φ
11: end for
12: end while

corresponding weight wi to be the output4, which we refer

to as the rounding step.

An algorithm is defined to be ρ-relaxed if it can achieve a

solution within ρ (ρ≥1) times the optimal solution of the LP

relaxation of the integer programming problem. In the follow-

ing, we show that the above decompose-and-rounding proce-

dure for VM placement selection is a ρ-relaxed algorithm.

First, we illustrate the feasibility of transforming the de-

composition of fractional placement to that of its objective

value of problem P̃0. This is non-trivial to achieve because

the placement variable yij is coupled with another two sets

of variables in the constraints, i.e., the routing variable xpq
ij

and link variable zij . Since P̃0 can be solved as a LP problem

when given an arbitrary VM placement as its input, we denote

the optimal objective value of P̃0 as Ô(M) with an input

placement M . Then we have:

Lemma 1. (Decomposition Feasibility) Let Mf denote the
optimal fractional placement by solving P̃0, where Mf can
be decomposed as Mf =

∑
i wiMi. We have that: (a) the

integer placement Mi with the same flow routing paths but
1/wi times flow demands that in Mf is a feasible solution
of problem P̃0 (denote the corresponding objective value as
Ô′(Mi)); (b) Ô(Mf ) =

∑
i wiÔ

′(Mi).

Proof: See detailed proof in our technical report [22].

Based on the above Lemma, suppose there are totally n
nodes in the network, we can generate the following theorem

for rounding the decomposed placements:

Theorem 3. (Placement Rounding Guarantee) Assume the
optimal objective value of P̃0 is λ̃0. The output objective value
is denoted as λ∗

1 after rounding the VM placement in P̃0 by
the CCD algorithm. Then we have λ∗

1 ≤ ρ1λ̃0 with a high
probability, where ρ1 is O( logn

log logn ).

Proof: See detailed proof in our technical report [22].

Next, we fix the VM placement in P0 and solve the remain-

ing LP problem. Then we decompose and round the fractional

4If
∑

i wi < 1, we add an empty placement with the weight 1−∑
i wi to

ensure
∑

i wi = 1. If the empty placement is selected, no migration happens.



wireless solution {xpq
ij } to one integer IS. Again, we apply the

CCD algorithm to perform the convex combination decompo-

sition, with the wireless conflict graph Gc (Section II-D) and

the demand-bandwidth ratio x(eij) =
∑

fpq∈F dpqx
pq
ij /bij as

the input respectively. Then we select one IS with a probability

of its corresponding weight. Now we show that the above

decompose-and-rounding procedure for IS selection is a ρ2-

relaxed algorithm:

Theorem 4. (IS Rounding Guarantee) Assume the optimal
objective value of the LP problem P̃2 generalized by fixing the
VM placement in P̃0 is denoted as λ̃2. The output objective
value after rounding the fractional IS in P̃2 is denoted as λ∗

2.
Then we have λ∗

2 ≤ ρ2λ̃2 with a high probability, where ρ2 is
O( logn

log logn ).

Proof: See detailed proof in our technical report [22].

Finally, we fix the VM placement and selected IS and solve

the remaining LP problem. We then decompose and round the

fractional flows to the single-path integer flows. We apply the

path stripping method in [26] to decompose the fractional flow

{xpq
ij } to multiple routing paths. The output is the path sets

where each routing path is attached with a weight. Similarly,

the rounding algorithm for path choice using the path weight as

the probability is a ρ3-relaxed algorithm and ρ3 is O( logn
log logn ).

D. Combination of PDR

In this section, we will show how to combine all the

approximation ratios that obtained above by PDR together,

as one final approximation ratio to the original problem P0.

We first give the lemma of the combination rule as below:

Lemma 2. (Combination Guarantee) Suppose there exists
a ρ1-relaxed, ρ2-relaxed, ρ3-relaxed algorithm for the three
rounding steps respectively. Then there exists a (ρ1ρ2ρ3)-
approximation algorithm for P̃0.

Proof: We construct the approximation algorithm for P0

as follows. First, by rounding the VM placement from P̃0, we

have the problem P1. We use the ρ1-relaxed algorithm to solve

P1. Denote the output as VM placement {y∗} and the output

objective as λ∗
1. Since λ̃0 denote the optimal objective value of

P̃0, we have λ∗
1 ≤ ρ1λ̃0. By setting the VM placement in P1

as {y∗}, we have the LP problem P̃2. Let λ̃2 as the optimal

solution of P̃2, then we have λ̃2 ≤ λ∗
1.

Second, by rounding the IS from P̃2, we have the problem

P2. We use the ρ2-relaxed algorithm to solve P2. The output

IS and objective are respectively denoted as {e∗ij} and λ∗
2.

Hence we have λ∗
2 ≤ ρ2λ̃2. By setting the IS in P2 as {e∗ij},

we have the LP problem P̃3. Let λ̃3 as the optimal solution

of P̃3, then we have λ̃3 ≤ λ∗
2.

Third, by rounding the splittable flow path, we have the

problem P3. We use the ρ3-relaxed algorithm to solve P3.

Hence we have λ∗
3 ≤ ρ3λ̃3. Therefore, λ∗

3 ≤ ρ3λ̃3 ≤ ρ3λ
∗
2 ≤

ρ3ρ2λ̃2 ≤ ρ3ρ2λ
∗
1 ≤ ρ3ρ2ρ1λ̃0. This completes the proof.

Therefore, we finally generate the following theorem to give

the approximation ratio of PDR to the problem P0:

Theorem 5. Algorithm 1 gives an approximation ratio of
O(μ( logn

log logn )
3) for problem P0 with a high probability.

Proof: Let λ∗
3 denote the output objective value of P0 af-

ter executing Algorithm 1 and λ0 denote the optimal objective

value of P0. Our goal is to prove that λ∗
3 ≤ O(μ( logn

log logn )
3)λ0.

According to Theorem 2, we have λ̃0 ≤ μλ0. With lemma 2,

we have λ∗
3 ≤ ρ3ρ2ρ1λ̃0. Hence we have λ∗

3 ≤ μρ3ρ2ρ1λ0 =
O(μ( logn

log logn )
3)λ0. This completes the proof.

With three LPs solved in Algorithm 1, its time complexity

is polynomial. The VM traffic measurements in real DCNs [5]

report that the traffic demands for a large proportion of

VMs are relatively stable at large time intervals of sever-

al hours. This demonstrates the feasibility of applying our

algorithm to achieving a long-term performance benefit on

VM communication with infrequent LP solving and topology

changes. The VM traffic stability in large time intervals and

the polynomial-time complexity of Algorithm 1 allow its good

scalability along with the performance guarantee, which avoids

the challenge of solving the original integer programming

problem at the unscalable exponential time complexity. Recent

advances in robust distributed LP solving [27] further show

the potential of taking full advantage of the rich distributed

computation power in DCNs to run our algorithm efficiently

with increasing network scales.

E. Other important generalized applications
Benefited from the high-level abstract nature of our PDR

solution, we will show its important generalized applications.
Application of OCSs and FSOs. First, we show how to

extend our model to the case of using OCSs [11], [17] or

FSOs [9], [12] in DCNs. The OCS changes the topology by

solving a bipartite matching from its input ports to the output

ports [17]. In this way, the OCS links are built with respect

to the bipartite matching polytope, which is known to have an

exact relaxation as its convex hull [23]. Therefore, the PDR

solves it with an approximation ratio improved by a constant

μ compared to the wireless mechanism. The FSO is a special

case of wireless radio that has little interference footprint, but

has a link conflict that each FSO port can build at most one

link [12]. Hence it can also be modeled as the independent set

and the PDR solves it with the same approximation ratio.
Application of SINR model. Second, we show that al-

though we use an binary interference model for a general opti-

mization purpose of the topology-adaptive DCN, our solution

can also be easily extended to solve the SINR interference

model. Actually, the work in [24] proves that the inductive

independence number μ is bounded by log(n) for the edge-

weighted conflict graph described by the SINR interference

model, where our PDR solution solves it with an approxima-

tion ratio O(log4 n/ log log3 n).

IV. EVALUATION

In this section, we present the evaluation of our solution

against other state-of-art VM migration algorithms through

simulations and also validate the performance gains of our

solution by testbed experiments.



A. Simulation setup

For simulations, we use the public traffic trace from two

university data centers provided by [28]. We implement a

flow-level simulator using the TCP setting in [29]. We use

a 3-layer fat-tree [30] with 8-port switches as the simulated

network topology. To embed realistic wireless settings, we use

the 60GHz rectangular waveguide hardware of AINFO Incs

horn antenna to build our 60GHz wireless antenna pairs for

testing the wireless parameters. The measured 60GHz wireless

bandwidth at 10 meters is 2.5Gbps and the interference angle

of the antenna is 20◦. The Rayleigh fading model is applied

to simulate the wireless channel dynamics. The physical

placement of racks (one wireless radio per rack) follows the

previous work [14], i.e., using 24x48 inch rack, 6 feet between

two cluster rows and 10 feet between two cluster columns.

During the simulations, we select 100 flows from each trace

file (there are totally 29 trace files and each file contains

about 1 million flow entries in ten minutes) and assigned their

sources and destinations to different VMs randomly.

We study the performance of our PDR algorithm on three

aspects: the VM placement, the adaptive topology and the

routing strategy. The details of compared strategies are pre-

sented in Table II. There are two typical types of algorithm

design for VM placement in the literature: (1) the greedy

placement that places each VM to a slot to minimize the

increment of the current objective cost [8], [31]; (2) the

clustering-and-matching strategy that groups VMs and slots

into several VM clusters (based on the traffic demand) and

slot clusters (based on the communication distance), and then

matches the clusters one by one [5], [18]. To compare with

our algorithm, without loss of generality, we use the greedy-

fill algorithm (named Greedy) in [31] and the clustering-and-

matching (named Cluster) algorithm in [18] to represent the

above two typical types of placement algorithms. We utilize

the random placement (named Random) that randomly maps

the VMs to slots to serve as the basicline for VM placement.

For the wireless setup, we compare our wireless solution

with the greedy scheme (named Flyway) proposed in [15],

which builds wireless links between close-by racks that have

high capacity. For the routing strategy, we use the most popular

DCN routing scheme ECMP (Equal-Cost Multi-Path) [32] to

serve as the baseline strategy. For all the comparisons, we

equally scale up the flow traffic size of the flow traces to

simulate the changes of network loads.

B. Simulation results

1) Trade-off performance: As Fig. 2 shows, we evaluate

the migration and communication performance by changing

the trade-off weight β between the two costs. To evaluate

the wireless effects, we compare two versions of PDR: the

TABLE II. Algorithm Comparison on Different Aspects

Algorithm Range
Placement Random, Greedy, Cluster, PDR
Topology Flyway, PDR
Routing ECMP, PDR

(a) Migration phase (b) Communication phase

Fig. 2. Performance over different trade-off weights
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Fig. 3. Performance of different VM placement strategies

normal PDR (PDR-Hybrid), and the restricted PDR using only

the wired links (PDR-Wired). In Fig. 2a, we can see that the

migration cost for both cases is almost zero when β is smaller

than 0.1, but increases when β becomes larger. This is because

when the weighted communication cost is too small compared

to the migration cost, PDR would ignore the objective of

minimizing communication cost. When β is larger than 0.1,

the cost of the PDR-Wired increases quickly to a large value,

which is more than 1.5 times that of the PDR-Hybrid. The

migration cost of PDR-Hybrid, on the other hand, increases

very slowly with the weight parameter. The wireless links are

utilized by PDR to construct a proper topology to reduce the

migration cost, which at the same time, achieves the smaller

flow completion time in the communication phase as Fig. 2(b)

shows. Since the communication performance is similar for

PDR with different weights, without loss of generality, we use

β = 0.1 as the default weight value of PDR in the following.

2) Performance of VM placement: In Fig. 3, we evalu-

ate four different VM placement solutions. To make a fair

comparison, all the compared solutions use exactly the same

wireless setup as PDR, and also compute their routing paths

by solving the remaining flow routing LP problem as that

done by PDR. In Fig. 3a and Fig. 3b, the PDR achieves the

lowest completion time and the highest throughput for all the

network loads, while its performance gain compared to others

becomes larger with a higher load. This demonstrates that the

placement of PDR works the best with the underlying adaptive

topology to handle the congested flows. For both figures, the

Random solution performs the worst as it is not aware of

any resource usage. The Cluster and Greedy perform very

similarly when the network load is light, while the Cluster

outperforms Greedy when the load turns heavy. This indicates
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Fig. 4. Flow performance of different wireless setup and

routing strategies

that the greedy placement algorithm works more effectively in

a non-congested network.

The Fig. 3c and Fig. 3d show the detailed performance. In

Fig. 3c, we can see that the total migration costs of Cluster,

Greedy and Random are similar, which is about 4 times that

of PDR. At the same time, the communication cost of all

the solutions are similar while the communication cost of

Cluster is a little smaller than that of PDR. This is because

the Cluster optimizes the communication cost only without the

consideration of the migration cost, while the PDR sacrifices

some communication cost to gain a much lower migration

cost. As Fig. 3d shows, the maximum flow completion time

of PDR is about 20% less than that of others. This should be

attributed to the topology-aware VM placement in PDR, while

other placements fail to exploit the adaptive topology.

3) Performance of wireless setup and routing: In Fig. 4,

we evaluate two wireless setups (PDR and Flyway) and two

routing strategies (PDR and ECMP) together. For example, we

denote the solution using the wireless setup of PDR and the

ECMP routing as PDR+ECMP. To make a fair comparison, all

the solutions use the same VM placement as PDR. In Fig. 4a

and Fig. 4b, we can see that PDR performs the best on both

the flow completion time and throughput over various network

loads, with its concurrent consideration of the placement

and routing in forming the topology. The Flyway solution,

however, adapts the topology based on the placement only,

without considering the flow routing paths. This difference

in wireless setup brings PDR a 25% higher throughput than

Flyway when the network load is high.

Another interesting finding is that PDR+ECMP outperforms

Flyway+ECMP on both the flow completion time and through-

put. It indicates that even though using the same ECMP

routing, the topology built by the PDR cooperates better

with the VM placement than the topology built by a greedy

algorithm. This difference in adapting the topology brings

PDR+ECMP a 28% throughput improvement compared to

Flyway+ECMP. The flow details in Fig. 4c and Fig. 4d show

that the maximum completion time of 90% flows in PDR is

about 30% less than that of other solutions. Moreover, in PDR

Fig. 5. Topology of testbed Fig. 6. Average packet delay

there are only 20% slow flows that have throughputs less than

25MBps, while there are at least 40% such flows in the others.

C. Experiment results

In this section, we present a hardware testbed to validate the

performance gains of our PDR solution. Our testbed consists

of three hosts with the 4-core Intel Xeon CPU and 8GB RAM.

Two hosts (called client) are used for the virtualization of

the hosts and switches, while the left host is running as the

SDN controller implemented by Floodlight v1.1 [33]. We use

VirtualBox v4.1.12 [34] to implement the virtual servers and

use OpenvSwitch v1.4.6 [35] to implement the virtual switches.

The clients send flow statistics to the controller and also

receive the commands from it to deploy the routing entries

at the virtual switches. We build a partial 3-layer fat-tree

topology using 4-port virtual switches (see Fig. 5).

Since current OpenvSwitch does not support wireless trans-

mission, we use wired link to simulate the wireless link and

set the wireless rate based on the transmission distance and

the Rayleigh-fading effect following our measurements using

60GHz wireless antennas introduced in the simulation setup.

Since our algorithm only builds the non-interfered wireless

links, this approximation is acceptable as the bandwidth

changes due to interference can be ignored. In the experi-

ment, we find that the OpenvSwitch can only achieve full

transmission rate up to 100MBps. Without loss of generality,

we equally scale down the bandwidth setting of wired links

and wireless links to tens of MBps in our testbed based

on the link bandwidths in a DCN [14]. For each round of

experiment, we randomly derive four flows from a different

trace file (totally six files from Trace1 to Trace6) which

contains about one million flow entries. The VM size to

migrate is set as 100MBytes. The controller records the flow

rates and completion time, and we also monitor the average

packet delay on the clients.

As Fig. 6 shows, for all the traces, the flows in PDR have

a much lower average packet delay than Random, and the

difference is about 48.5% on the average. This is because

the PDR generates a better VM placement that can cooperate

well with the adapted topology to cut short the routing paths,

which helps avoid going through the congestion nodes and

thus reduce the communication delay. The Random solution,

however, generalizes a random VM placement which pays

a high cost on the communication. We present the detailed

flow performance in Fig. 7. In Fig. 7a, we can see that the

total migration time of PDR is smaller than that of Random

(improved by about 53.5% on average and up to only one

sixth of that of Random). Besides this low migration cost,



(a) Total migration time (b) Flow completion time

Fig. 7. Flow performance in the testbed

as Fig. 7b shows, for all the traces, the flows in PDR still

achieve a smaller completion time compared to that of Random

(improved by about 30.4% on average). This demonstrates

the effectiveness of our PDR solution to ensure the high

performance of all the flows in a real testbed.

V. CONCLUSION

In this paper, we propose a novel paradigm of topology-

adaptive DCN to facilitate more efficient VM migration.

We show that the ability of flexibly reconfiguring the DCN

topology can be exploited to breakthrough the performance

bottleneck due to the previous difficulty in trading-off the

migration cost and communication cost. We formulate the

problem of jointly minimizing the migration cost and com-

munication cost in an adaptive network topology, and show

its NP-hardness. Then we develop a powerful PDR algorithm

to solve the optimization problem in polynomial time with a

proved approximation ratio. Further, we show that our PDR

solution can be extended to solve the VM migration opti-

mization under different topology adaption technologies with

proved approximation ratios. The real-trace based simulations

demonstrate the advantage of our solution in achieving a

smaller flow completion time while at same time ensuring a

much lower cost for VM migration compared to other state-of-

art VM migration solutions. Finally, we validate the feasibility

of our solution to improve the flow performance in a testbed.
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