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Abstract—Phasor Measurement Units (PMUs) provide high
precision data at high sampling rates to support Smart Grid ap-
plications. Power Line Outage detection mechanisms can enhance
the grid reliability by assisting power operators in taking proper
control actions. Despite the potential provided by PMUs, there are
very limited efforts on exploiting data available to more effectively
detect outages. Conventional outage detection schemes are mostly
designed based on simplified power models, and the limited work
on detection with data either assume all the measurement samples
are available or ignore the missing entries. Their performance
suffers in the complex grid conditions in the presence of missing
data. In this paper, we design a detection mechanism considering
unreliable data, in the form of missing data samples. Detection is
performed through the grouping of nodes according to their data
availability and their learned detection capabilities. To enable
the robust detection of power line outages, we propose learning
outage characteristics for each individual node instead of specific
single line outage scenarios. Our results show that the outages
detected are highly consistent with the evaluated failures under
different scenarios, with high accuracy and low false positive
rates. Moreover, the detection application is resilient to unreliable
data, and can properly differentiate data problems from physical
power line failures.

I. INTRODUCTION

The installation of modern sensors with high reporting rates
is arguably the most important update power grids can imple-
ment within the Smart Grid framework. Phasor Measurement
Units (PMUs) are increasingly deployed to drastically enhance
the grid monitoring capabilities for Smart Grid applications.
PMUs measure the grid at the rate of 30-60 samples per
second, much higher than legacy devices which provide input
data for applications at the rate of seconds to minutes [1].
Thus, PMUs introduce massive high precision data, which calls
for the revisions and updates of traditional grid management
applications, as well as the introduction of new ones.

The newly available data can be used to update the power
models needed for model-based applications. For viable ap-
plications, a model is often simplified based on assumptions,
albeit this may compromise the accuracy. While the infor-
mation from newly available data can help to refine power
applications, it may also increase their complexity. Moreover,
the reporting rate of PMU data is much faster than the rate
complex model-based applications are executed. Thus PMU
data may have to be processed in an offline fashion to prepare
them for applications. On the other hand, data-based (model-
less) applications attempt to enable grid monitoring by extract-
ing information directly from the data, taking advantage of the
high reporting rate of PMU without relying on the accuracy of

a power model. They can be designed for online monitoring
based on the most updated PMU data without preprocessing
through complex models.

In this paper, we focus on the design of a data-based
method for the effective detection of power-line outage in the
presence of missing PMU measurement data. A power-line
outage refers to the temporal or permanent disconnection of
both ends of a line. This type of power event can drastically
affect the power system. The incurred topology change, due
to even a few line failures, may lead the power grid to reach
an unplanned operational state that develops into a cascade
failure [2], [3]. Discovering power-line outages, not captured
by an outdated model, helps to make system-wide decisions
and prevent the propagation of failures. Despite its importance,
timely outage detection has received much less attention in
PMU research [1]. We take advantage of the information
extracted from the high-rate PMU data for outage detection
without relying on model-based assumptions.

While the introduction of PMUs has attracted a lot of
attentions from the power community to the design of different
applications, either model-based or data-based, much less
attention has been paid to problems introduced when grid
applications increase their dependability on data networks.
In a Smart Grid, the control center collects data and runs
energy management applications. Data packets not received
on time or lost represent missing entries in the data input
to grid applications. A temporal malfunction of a PMU or
high noise in the communication channel used to transmit
the measurements will cause time-correlated missing entries,
while space-correlated missing entries can be observed when
data from different channels of the same PMU device are
compromised by its malfunctioning or transmissions from
PMUs at different locations are affected by intentional physical
or cyber attacks to the network. Also, the impact of a power
failure over a certain region of the grid can cause temporal
or permanent malfunction of PMU devices. Various sources
of unreliability in PMU data can affect the performance of
time-sensitive applications such as outage detection, outage
location identification and control, which in turn compromises
the power grid reliability.

Despite the significant impact of unreliability of PMU data,
the limited existing data-based studies generally ignore this
problem. In this paper, we propose the design of a robust online
power-line outage detection mechanism which is resilient to
missing data. Power line outages may occur all over the grid
and there may exist multiple outages. Our goal is to find a set
of outage locations based on the available PMU data. Rather
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than learning the characteristics of specific outage scenarios,
whose number could be extremely large with different outage
combination formats, we propose to learn the detection capa-
bilities of every power node. To protect against the impact due
to data missing from specific PMUs, we propose a subspace-
based method to properly create detection groups to assist the
detection of failures around different nodes. Our scheme will
not need the reconstruction of missing samples, which will
help avoid the time and computation costs as well as avoid
the potential compromise of online characteristic due to the
inaccuracy in the missing data recovery.

The rest of the paper is organized as follows. Section
II reviews the related work on outage detection, particularly
data-based approaches. Section III describes the data models
used by our proposed detection mechanism. In Section IV,
we present the proposed methodology for learning appropriate
node-based subspaces and forming the detection groups for
outage identification. Section V describes the test cases and
metrics of interest, and presents results for different scenarios.
Particularly, different missing data scenarios are discussed and
evaluated. Finally, Section VI concludes the work.

II. RELATED WORK

The problem of failure detection in power grids has been
studied for a long period of time, however, it is only in the
recent years attentions are attracted to data-driven mechanisms.
In a model-based design, PMU measurements only constitute
the input for the model used. Constrained by specific models
assumed, these schemes can not take full advantage of the
data available with the fast PMU rate to well capture the
grid characteristics in failure detection. On the other hand,
model-free applications attempt to process the data directly
and extract the information that may not be captured in
a model. Hence, detection mechanisms may have different
levels of PMU data integration. In this section we review
some detection mechanisms with high level of PMU data
integration, and discuss their limitations when unreliable (i.e.
with measurement missing) synchrophasors are encountered.

For a comprehensive review of PMU related research,
including fault/event detection, the reader can refer to [1].
Existing studies of power line events can be broadly classified
according to whether they address fault or outage detection.
The majority of studies discussed in [1] correspond to the
model-based methods to detect faulted sections of a power
line. In such studies, current synchrophasors are assumed to
be available at least at one end of every power line and used
to estimate and/or extract parameters of power models that
describe the faults.

Despite the large amount of effort on fault detection, as
reported in [1], much less work addresses the issue of outage
discovery. An outage is considered to happen if there exists a
complete disconnection/fault of the line, which can be caused
by reasons such as natural disasters, intentional attacks, infras-
tructure aging, and accidents. The occurrence of power line
outages is one of the most important vulnerabilities of power
grids. Undiscovered outages of a relatively small number of
power lines have been reported as the source of large system-
wide blackouts, i.e. cascading failures [2], [3]. Our proposed
design addresses this type of power line events, and we will

use the terms event, failure, and outage interchangeably. More
specifically, we aim to detect and localize an outage in the
presence of missing PMU data due to the unreliability of
PMUs or communication network. The following discussions
review some related data-based outage detection algorithms,
while they generally overlook or ignore the PMU reliability
problem.

In [4], the authors use a multinomial regression classifica-
tion method to learn a classifier that can determine if the PMU
samples taken can be classified as one of the outage scenarios
learned during the training stage. The results presented show
that the trained classifier can accurately identify most of the
failures. However, the possible data missing has been ignored
and the performance for this scenario cannot be guaranteed.
The work in [5] uses an SVM to learn and classify single
line outages. Similarly, it is not specified how PMU data with
missing entries will be considered by the learned classifier.
A Decision Tree (DT) event classifier with a transformed
feature space is proposed in [6]. While promising results
are shown, authors explicitly decide to leave out testing and
training measurement instances that contain missing entries.
This constrains the proposed classification technique to not
being used for outage detection.

In [7] the authors propose a disturbance triggering approach
based on the threshold of variability of singular values, em-
pirically set through visual observation of certain historical
disturbances. The performance of singular value decompo-
sition is greatly undermined by the occurrence of missing
data, which in turn compromises the functionality of this
solution. The authors later in [8] consider recovering missing
samples for correlated data erasures using the recovery error
as a disturbance indicator, while it does not provide a way
to discover the outage location. Similarly, the work in [9]
presents a PCA-based detection mechanism to identify the
buses with “dominant variance” as the line outages, where the
variance threshold is set manually based on existing data which
is not scalable. Furthermore, traditional PCA-based methods
depend on singular value decomposition, which carries over
the vulnerability to missing data entries. The work in [10]
propose an event indicator based on the selection of “pilot”
PMUs with a dimensionality reduction criteria, and with a
small number of PMUs selected, the scheme may fail to
function when data from one of such pilots are missing.
These schemes are generally designed to detect events without
providing their locations. In addition, these techniques assume
the full availability of data, and/or unreliable data should be
ignored [7]. They may fail to function or suffer from significant
performance degradation upon data missing, while waiting for
missing data would make them not applicable for online grid
applications.

Despite the significant impact of unreliability of PMU data,
the limited existing data-based studies generally ignore this
problem. The problem of unreliable synchrophasor measure-
ments has only started to be analyzed and exposed in [11], and
considered for (offline) State Estimation [1].

Different from the literature works, we design an outage
detection mechanism considering the occurrence of data unre-
liability in the form of missing data samples. Detection is per-
formed through the grouping of nodes according to their data
availability and their learned detection capabilities. Instead of
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leaning based on a specific single line outage scenario, our
proposed mechanism learns the outage characteristics of each
individual node, which helps to enable robust outage detection
against unreliable PMU data.

III. PMU DATA AND MONITORING

In this section, we present the PMU data model used
in our design of the robust power-line outage identification
mechanism. We are interested in completing the detection
task using data gathered by PMU sensors without relying on
power models. We briefly present a general layout of a PMU
network to identify the source of data, and then introduce the
data characteristics and structures that will be processed in
the detection mechanism. Finally, we describe how missing
data occurs in PMU networks, and how it is modeled in the
detection application.

A. Phasor Measurement Units and Data

The physical infrastructure of a power grid along with
its communication network, used for monitoring and control,
constitute a high-level view of a Smart Grid. The most com-
monly deployed monitoring networks consist of Phasor Mea-
suremnet Units (PMUs). PMUs provide high data sampling
rates compared to their legacy counterpart Remote Terminal
Units (RTU) sensors used in the Supervisory Control and
Data Acquistion (SCADA) system. Measurements gathered
by PMUs are commonly referred as synchrophasors due to
their GPS-synchronized sampling. The costs of PMU devices
and communications have limited an extensive deployment of
PMUs. We will not consider the optimal PMU deployment, but
rather focus on the analysis of PMU data for more efficient
failure detection in the presence of data missing.

The transmission level of the power grid can be modeled
by a graph P(N , E), where nodes in N are power generators,
consumer loads, and substations, among other power grid
elements. We refer to any power grid element being monitored
as a power node. The set of edges E represents all the physical
power lines existing in the grid. An outage of line ei,j ∈ E
represents the removal of its corresponding edge from the
graph, P(N , E\{ei,j}). The data gathered from the PMUs
at the control center are represented by a matrix X, whose
rows represent different sensors and columns different time
instants. The vector Xi ∈ R

T contains the PMU measurements
of power node i in the time window T , and the entry xi,t is its
measurement at the instant t. The input of an online Smart Grid
(SG) application at time t is a data sample with measurements
from all observable power nodes, represented by X:,t ∈ R

N ,
for a grid with N = |N | nodes.

As phasors help describe the state of the grid, we consider
phasor monitoring and X corresponds to either voltage mag-
nitude or phase measurements. We will extract information
from historical data of both normal operations and power
line outages to assist the detection of future outages. Normal
operation data refer to the expected steady states of voltage
phasor measurements when no failures occur in a time pe-
riod. In case historical data are not available for a period,
simulations can be carried out to obtain the estimates of the
expected synchrophasors. Normally, such simulations use a
day-ahead forecast of load distribution, and the forecasted
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Fig. 1: PMU Data Network example

measurements are used for several other SG applications as
well, e.g. generation dispatch. Similarly, an outage detection
application can use these synthetic data to learn the phasor
values during normal operations and data deviations due to
outages. Thus, either historical or forecasted power-line outage
data logs can be used to identify such deviations.

B. PMU Monitoring and Data Reliability

As illustrated in Figure 1, generally, PMU networks are
highly hierarchical. The group of PMUs monitoring a region
of the power grid share a common data collection point, the
Phasor Data Concentrator (PDC). PDCs are commonly directly
connected to the Control Center (CC) where data are stored and
processed. With this monitoring infrastructure, data are readily
accessible to the grid operator at the control center, and can be
used as input for a variety of applications. As an example ap-
plication, data can be used in the Energy Management System
(EMS) for failure and outage detection. In the case of PDC
malfunctioning, the whole data cluster would be compromised.
With more dependability on data, Smart Grids are becoming
more vulnerable to planned cyber attacks to their measurement
units and communication networks. A planned simultaneous
packet drop attack to several geographically correlated PMUs
could cause missing entries spatially and temporally correlated.
For example, a PDC constitutes an attractive target for cyber
attacks.

Therefore, on the data packet level, PMU measurements
can suffer from problems such as delay, loss, false data
injections. Cyber attacks to the communication network can
also compromise the availability of PMU data. There exist
some works on estimation/imputation of missing PMU mea-
surements in order to prepare the data for an application.
For example, there is an extensive body of work on updating
State Estimators (SE) where the power grid state variables, i.e.
voltage phasors, can be directly obtained from PMU measure-
ments. SE is commonly regarded as an application that does
not need to be executed at the fast rate of data collection. Thus,
it can tolerate the time consumption in processing backlogged
measurements to reconstruct the missing data. This might not
be the case for delay-sensitive applications, such as outage
detection.

Timely detection of power outage is of critical importance,
and the delay in control and restriction of the failure effect may
lead to cascading failure. Although the correct reconstruction
of missing data may help for detection, the inaccuracy and
delay in the reconstruction process and/or the waiting for
data with no missing samples will compromise the process
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of outage detection. Despite the possibly large negative effect,
missing data in failure detection applications have been partic-
ularly overlooked. It is common to find mechanisms that either
assume PMU data with no erasures are available at the control
center, or ignore the missing samples.

Problems with the communication channel used to transmit
PMU data may cause temporary unavailability of some mea-
surements, which leads to temporally correlated missing entries
along the rows of X. On the other hand, spatially correlated
missing entries along the columns of X may be observed when
a power line outage impacts PMUs in a neighborhood or there
is a planned infrastructure attack to the grid.

As a missing data pattern of particular interest, the set
of data measurements from PMUs near an outage location
are all not available. In this case, the control center neither
receives samples from the devices at the failure location
nor from its immediate neighborhood, for the duration of
the line outage. Online outage detection is made extremely
challenging in this case. The outage detection should be able to
differentiate between data problems and physical failures, and
its performance should not be compromised by data problems.

IV. ROBUST OUTAGE DETECTION RESILIENT TO MISSING

DATA SAMPLES

In order to perform timely identification of power line
outages, we will leverage the node-level information of the
power system to identify the nodes affected by the outages(s).
Moreover, the performance of the outage identification mech-
anism should not be affected by the occurrence of any pattern
or number of missing data points. The extracted node-level
information will provide robustness against missing data.

We introduce our scheme in three steps. We first present
how to learn from the data appropriate subspace information
to identify outages. Then, we describe how to enhance the
subspace method in order to provide robustness against miss-
ing data. Finally, we describe the proposed mechanism that
identifies line outages by properly processing data that may
contain missing measurements.

A. Node-based Subspace Learning

The mechanism we present in this section is based on
learning node information that can help identify outages. Given
that a power line outage occurs at the line ei,j and time
t0, any column t > t0 of the data matrix X (represented
as X:,t) contains a “signature” of the outage that may be
exploited for identification. Based on the learning principle, if
there are enough training samples, important signatures can be
identified to determine if a power-line is at fault according to
the similarity of new samples to past signatures. For an outage
at line ei,j , nodes i and j are directly affected, and intuitively
they are good candidates to identify the failure as along as
their PMU data (i.e. voltage phasors) are available at the time
of classification. In other words, certain node measurements
in X:,t contain enough information to characterize an outage
signature. This motivates us to design a node-based failure
identification methodology. We consider a linear approxima-
tion of the power model:

X:,t = Y+P:,t, (1)

where P:,t ∈ R
N corresponds to the amount of power supplied

and consumed by different power nodes of the grid and
determines the grid behavior. Y is the admittance matrix which
contains the topology information (i.e. line status) of the grid
along with electrical parameters, and the “+” represents its
pseudo-inverse. Thus, Y is a weighted laplacian of the power
grid topology graph. From Equ. (1), the synchrophasor data
collected in X contain enough information that characterizes
the behavior and topology of the grid, i.e. the connection
status of all power lines. Denoting X0 as the matrix containing
samples of the normal operation case, and X\ei,j the one that
contains samples with the outage line ei,j , we would like to
investigate if it is possible to exact the features from these
matrices to identify if a power-line experiences an outage. The
singular value decomposition of a collection of measurements
X in a time duration is

X = UΣVT. (2)

As shown in [12], the vectors of U corresponding to the
lowest singular values in Σ can represent the subspace that
describes the line status thus the grid topology. We let S0 to
represent the subspace of normal operations. We can similarly
find a subspace S\ei,j for each outage matrix available X\ei,j .

These learned subspaces provide outage-based information,
thus can be used to define node-based subspaces for outage
identification. We define a node-based subspace for each node
i ∈ N as:

S∪i =
⋃

k∈Ni

S\ei,k ,

S∩i =
⋂

k∈Ni

S\ei,k
(3)

S∪i , and S∩i correspond to the “union” and “intersection”
subspaces of power node i, each is carried out over the
subspaces corresponding to the failure of each line of i.

At a time t, we exploit the relative proximity of a sample
X:,t to the subspaces S0, S∪i , and S∩i to identify the outage
lines, as will be described below.

B. Robust Subspace Method for Outage Identification

To determine the proximity from a sample to a subspace,
we can use the projection of the sample to the subspace.
This requires that the sample X:,t be complete. To account
for possible missing of measurement xi,t in the sample, we
define a group of nodes to be the detecting nodes. To detect
the proximity from xi,t to a subspace, only the measurements
from these nodes need to be present in the sample set. Thus,
a “detection group” for a node i consists of nodes that can be
used to approximate the distance of a sample to a subspace, in
case that measurements from node i are missing. Out of the
nodes that can provide xi,t measurements for X:,t, a detection
group should satisfy two conditions: 1) Their measurements
should capture approximately the same data variation as the
one experienced by i when it is under the outage but without
missing data, and 2) These measurements should be highly
available in different missing data scenarios, as defined by the
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PMU network. For example, given the possibility of missing
data from sensors at an outage location, the nodes in the
detection group need to be relatively far away from the affected
location so that their data have higher availability than sensor
nodes nearby.

It is simple to see that we can capture the contributions
of different nodes to the variability induced by failures of i
by means of PCA. The detection group can be formed by
finding the most orthogonal nodes according to their data
projections onto the PCA space. This naive choice of detection
group members ideally should provide a basis for the subspace
of interest. However, the number of orthogonal nodes found
is usually small, and can be different for each node-based
subspace. We consider an enhanced method. We will search
through the past training data, and augment the detection group
with nodes that have a high probability of detecting the events
occurring at the node i. With this procedure, we would like
that each detection group contains a sufficient number of nodes
from separated sensing regions (i.e. data clusters defined by
PDCs in Figure 1), as the chance of simultaneous data missing
from all regions will be very small.

The past phasor data to be used, as described in Section
III, present variability in both normal operations and during
a power-line outage. During the normal operation of the grid,
such data behaviors can be modeled by fitting expected phasors
to normal operation ellipse. Then, an outage represents a
deviation from the normal operation ellipse, such a deviation
can be permanent or temporal. Our goal is to properly identify
such deviations.

Each node i defines a normal operation ellipse:

Ωi = {xi,t ∈ R
2 | (xi,t − ci)

TAi(xi,t − ci) ≤ 1}, (4)

where all PMU voltage phasor data are inside the ellipse,
i.e., xi,t ∈ Ωi, ∀t > t0, during the normal operations of
node i. Measurements received during a failure at line ei,j
may fall outside, that is xi,t /∈ Ωi. Intuitively, any point
xi and xj should fall sufficiently outside their ellipses, Ωi

and Ωj respectively. Hence, the membership of a point to its
corresponding ellipse can be used as a failure detection criteria.

For a case (e.g., the failure of line {ei,j}) of the set of
past outage data, the recorded capability of a node k to detect
failure F = {ei,j} is defined as:

pk(F = {ei,j} | X\ei,jk ) =

∑T
t=1 I(xi,t /∈ Ωk)∑T
t=1 I(x

0
i,t ∈ Ωk)

, (5)

where X
\ei,j
k = [xk,1 . . . xk,T ] contains the set of samples from

historical data when there exist failure at the line ei,j , and x0
k,t

corresponds to a sample of normal operation at time t.

Then, for each available outage training case F , the de-
tection capability of any k ∈ N can be calculated using (5).
We can have a node-based vector of detection capabilities,
pi ∈ R

N , to represent how accurate each k ∈ N can detect
an outage of any line of another node i:

pi = [pi,1, . . . , pi,k, . . . pi,N ], (6)

pi,k = p(∪F∈Fi
{F}) =

|Fi|∑
l=1

⎛
⎝(−1)l−1

∑
Fl⊂{Fi}|l=|Fl|

∏
F ′∈Fl

pk(F
′|XF ′

k )

⎞
⎠ ,

(7)

where Fi is a super set that contains all cases F in the training
data set that involve node i. Fl is a super set that contains a
combination of l cases of Fi, where each F ′ is an outage case
involving node i. That is, every F ′ contains failed lines in Ei
and Ei ⊆ E contains all the power lines of node i.

Each pi,k evaluates the detection capability of node k to
identify any failure case involving node i based on the available
training data. Using pi, the control center can determine which
nodes are useful to identify the outages of any power lines
attached to the node i, and these nodes are candidates to
form the detection group for the node i. Intuitively node i
and its immediate neighbors should have the highest detection
accuracy in pi. Hence, nodes in the same region (or cluster)
will have similar detection groups. Instead of forming one
detection group for each node, these detection groups may
be consolidated to assist the outage detection in a grid region.

The measurements of nodes that belong to the detection
group for a node i can be used for identifying outages
occurring at lines connected to the node i. Some of these
candidate detection nodes could also suffer from data missing.
To make a detection group robust to data missing, the group
should have alternative members.

In Figure 1, each PMU cluster C collects data of the
geographical region it covers. Measurements from PMUs in
the same cluster can exhibit temporal and spatial correlations.
Then, in a detection group D, the set of members from cluster
C can be considered as one possible source of missing data,
and we only need to provide an alternative detection group for
each data cluster defined in the PMU network.

Hence, to build a detection group for the cluster C, some
nodes in the detection group should be members of the cluster
which should provide high detection capabilities for every k ∈
C. In case of data missing from nodes in a cluster, to ensure
reliable detection, we consider including in the detection group
the members not belonging to the cluster. Both categories of
members can be found with the corresponding vectors formed
in (6):

DC(C) =
⋂
k∈C
{i ∈ C | pk,i ≈ 1}

DC(C) =
⋂
k∈C
{i /∈ C | pk,i ≈ 1}

(8)

where the detection group provided by cluster C when data
are available is denoted as DC(C), and DC(C) when there exist
missing data. That is, when there is data missing from a cluster,
we use nodes from other clusters for detection.

Figure 2 illustrates the case of selecting the appropriate
detecting subspace for a sample at time t which contains the
missing data. In the figure, the information of cluster C is miss-
ing, highlighted in grey color, and an outage has occurred near
the cluster C, highlighted in red. Hence, outage information
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Fig. 2: Detection group formation and selection.

coming directly from the outage location is not available at the
control center. As described before, the definition of a detection
group anticipates the possible case of unreliable measurements
and DC can use data from nodes inside and outside the missing
data cluster. As highlighted in green in the figure, the subspace
selected for detection is the one associated to the available data
in the detection group, i.e. DC(C̄). On the other hand, while an
outage detection subspace based on SDC(C) could have been
formed in the past, such a subspace is not selected due to the
unavailability of data from DC(C) at time t.

C. Detecting Power Line Outages

The outage detection is made hard in the presence of
simultaneous data missing in both temporal and spatial di-
rections. To enable the outage detection with data missing,
we propose to form the detection groups with the support
of node-based subspaces learnt from data. According to the
data cluster a node i is the member of, every node i has
three associated subspaces {S0,S∪i ,S∩i }, and detection groups
{DC(C),DC(C)}.

The location of an outage is identified by the proximity of
the test data sample to a learned subspace. As defined in (3),
the subspaces are determined based on measurements from
all nodes in the grid, i.e. N dimensionality. For a subspace
S , we can divide the rows of U in (2) for S into two
different matrices: S(D) containing the rows that correspond
to members of the detection group, and S(N\D) with the rest
of the nodes.

Based on [12], a regressor Φ(S) = −(S(D)T )+S(N\D)T
can assist the approximation of the distance of samples in D to
a subspace S. Hence, the proximity of a sample to a subspace
S can be estimated as

proxS(X:,t) =|| XD,t −Φ(S)Φ(N\S)XD,t ||22 . (9)

When S contains the information of a failure, the proximity
can be used to identify such failure. To determine the proximity
above, the only requirement for the sample X:,t is that there
are no missing data in the measurements taken by nodes in D.
With our proposed cluster-based detection grouping, depending
on if there are data missing in the measurements of nodes
in cluster C at time t, we propose two alternative groups of
members for D below:

DC =

{DC(C), if any xk∈C,t is missing

DC(C), otherwise.
(10)
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Fig. 3: Scaling proximities to detect failure at node a.

Then when determining the proximity of X:,t to a sub-
space, we only need to use the portion of data corresponding to
nodes in the detection group selected and XD,t becomes XDC,t
in (9). The chance for both groups to miss data is very small,
thus the proximity of a test sample X:,t to a subspace can be
calculated even with missing data. The proximity proxS0(X:,t)
indicates how likely it is that the sample X:,t corresponds to
normal operation of the grid, without outages. If at least one
line of a node i experiences an outage, sample X:,t should be
relatively closer to S∪i than to S0 , i.e. proxS∪

i
(X:,t) is lower.

If there exists a severe outage around node i with multiple lines
of i disconnected, the proximity to the node-based intersection
subspace proxS∩

i
(X:,t) is lower.

In Figure 3, we illustrate the proximity-based detection
scheme. An outage is located in the cluster C and data from
all member nodes (a, b, c) are missing at the time of detection.
Thus, the non-missing portion of the sample, corresponding
to data from nodes outside of C, is used to calculate the
proximity to the detecting subspaces, highlighted in green.
Due to the coupling among power lines, the proximities to
subspaces of nodes not directly affected by a failure may
have values close to those of nodes affected (as shown with
solid green arrows), which may mislead the subspace method
to make a wrong detection. This is a consequence of the
similarity of detecting subspaces of nodes geographically (or
electrically) close to each other as determined by the topology
of the grid. On the other hand, an intersection subspace S∩i
captures the impact of node i and all its possible outages on
the grid. Proximities to these subspaces, shown with dashed
red arrows, are less ambiguous than the ones corresponding
to S∪i . However, subspaces S∩i may misguide the detection
when the failure to detect does not correspond to the total
outage subspace. To address this issue, we propose to increase
the difference between proximities to subspaces of different
nodes by scaling each proximity S∪i with the ratio between
the proximities of the sample to the total outage subspace and
the normal operational subspace:

ˆproxS∪
i
(X:,t) = proxS∪

i
(X:,t)

proxS∩
i
(X:,t)

proxS0
(X:,t)

(11)

The above calculation will be performed for all i ∈ N
and can be carried out in parallel, and the results will form
a proximity vector of the test sample: ˆprox(X:,t). Intuitively,
for an outage at line ei,j , the nodes being mostly impacted
are i, j and their immediate 1-hop neighbors. The impact
decreases when the nodes are located farther away from the
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outage location. This causes a monotonic decreasing trend in
the proximities of neighbor nodes, and we call it a proximity
rule.

The proximities found in ˆprox(X:,t) describe how close the
test sample is to all outage subspaces. Let us defineNt, a list of
size N where power nodes appear in an order according to the
sorted version of ˆprox(X:,t). According to the proximity rule,
contiguous nodes in Nt that show a decreasing proximity trend
should form a connected sub-component of the original grid.
This group of nodes that follow the proximity rule allow us to
identify the power line outages. Finally, the set of candidate
lines identified as outaged, F̂ , is formed by adding the power
lines ei,j , ∀i, j ∈ Nt.

V. PERFORMANCE EVALUATION

In this section, we test the proposed data-based outage
identification mechanism. We are interested in evaluating the
effectiveness of the proposed scheme on correctly identifying
power line outages when PMU measurements are unreliable.
Outage identification is performed using data samples con-
taining phasor measurements of N = |N | power nodes in
the grid. We consider that there exist a proper deployment of
PMUs in the grid in order to provide complete observability.
The problem of placement and deployment of PMUs to achieve
full observability is out of the scope of this paper and we refer
the readers to [13]. For the case of reliable PMU devices and
communication links, data samples are complete; otherwise
some data points are missing. Missing data will be tested by
removing certain measurements, i.e. data points, according to
the specified missing data pattern. Performance is studied using
the 14, 30, 57, and 118 IEEE bus systems. These systems have
20, 41, 80, and 186 power lines available for outage evaluation,
respectively.

The metrics of interest are: identification accuracy and false
alarm rate. Identification accuracy (IA) is defined as the ratio
of the number of correctly identified line outages to the total
number of outage test samples. An outage sample is considered
to be correctly identified if F̂ ⊆ F . False alarm (FA) rate is
the average mismatch between F and F̂ relative to the latter.
Calculation of both metrics is performed as follows:

IA =
| F̂ ∩ F |
| F | ,

FA = 1− | F̂ ∩ F |
| F̂ |

(12)

Furthermore, we compare the proposed methodology
against other learning-based and model-free outage identifi-
cation mechanisms found in the literature [4], [14]. These
works use slightly different variations of Multinomial Logistic
Regression and will be referred as MLR in the tests presented
below.

A. Data Sets

For training purposes, the proposed detection scheme uses
historical data of the normal operation of the grid and operation

during power line outages. Training data are synthetically gen-
erated using the topology and electrical information provided
by the IEEE Bus systems [15]. An IEEE test case consists
of information of parameters such as line impedance, rating
and node (power bus) connectivity, among others. Node data
contain information of the type of power bus (supply/generator,
demand/load, slack), power demand, power output, and voltage
phasors among others. The amount of power demand and/or
output power of a node as specified in the test cases defines a
single state of the power grid during normal operations. Such
single state of the power grid corresponds to a single data
sample. Different load variations are generated according to an
Ornstein-Uhlenbeck process [16] to account for the dynamic
and stochastic behavior of power demand in the grid over
a period of time. The time period considered is 24 hours.
Thus, the values of power demand specified in the test cases
are considered to be the expected demand during one day
of normal operations. Power generation (output) is adjusted
accordingly. The different power demands, and adjusted power
outputs, define different variations of the state of the power
grid during normal operations. Using the generated load and
generation levels, MATPOWER [17] is used to solve power
flows and the resulting voltage phasors are considered to be
PMU measurements. The AC model is used, instead of the DC
approximation, when calculating synchrophasors and Gaussian
noise is added to the voltage phasors [16] so that the obtained
data can represent real PMU measurements.

As described in section IV-A, our proposed detection
mechanism requires outage data of every line in the grid. Each
set of outage data is generated by removing the corresponding
line from the bus system topology information and rerun the
power flow solver, thus obtaining outage PMU measurements.
Cases that do not converge or result in disconnecting the
grid after line removal, i.e. islanding, are not considered. The
number of lines, out of the set of all lines in the system E , that
provide valid cases will be denoted by E ≤ |E|. Similarly as
it is performed for other energy management applications, the
generated data along with real PMU measurements collected
during a period of time can be used to train the proposed
outage identification system, and become part of the day-
ahead planning and forecasting tasks performed at the control
center. Generated data are divided into training and testing sets
following the procedure described in [14].

B. Complete Data Case

The proposed scheme identifies the location of the line out-
age using the proximity of the test sample to node-based outage
subspaces. To demonstrate the effectiveness of the proposed
subspace method, we evaluate the identification accuracy for
several test samples when detection groups are fully formed
and each test sample contains complete data.

Results in Figure 5 are the average accuracy of all single
line outage cases, where 100 randomly selected test samples
were evaluated for each outage case. Then, each bus system
topology is evaluated using 100*E test samples, where E is the
number of lines whose disconnection provides a valid test case
as defined in Section V-A. Results are presented in comparison
with the previously described Multinomial Logistic Regression
methods, marked as MLR. It is worth noting that, different
from MLR methods that learn identification rules based on
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(a) Effect on Identification Accuracy

(b) Effect on False Alarm rate

Fig. 4: Effect of Detection Groups formation

specific single line outages, our proposed subspace method
learns to identify outages based on the behavior of every node
in the system when any of its lines is faulted. Therefore, while
there is a very small identification accuracy difference between
MLR and the proposed detection mechanism, the performance
of both methodologies are comparable.

In Section IV-B we discussed that a naive way to form
a detection group is to include nodes that have orthogonal
loadings in the outage subspace. Furthermore, we described
how to add robustness to a detection group by including node
members determined with equation (8). As described in IV-A,
ideally all nodes with high detection capabilities in DC should
be included in the detection group. Furthermore, as described
in IV-C, the node subspaces through their detection groups
contain additional information of the detection capabilities of
the power nodes. Thus, in Figure 4, we evaluate the effect
of the proposed choice of detection groups. Results for a case
are obtained after the evaluation of 100 randomly selected data
samples from the case testing set. The average identification
accuracy of all single line outage cases is shown in the figure.

The values shown in the x-axis represent the portion of
nodes in the detection group that were found using equation
(8). Thus, with 0 the detection group used contains only
orthogonal members, and with 1 outage identifcation is per-
formed with the proposed robust detection group.

When no detection capabilities learning is performed, the

(a) Identification Accuracy for Single Line Outages.

(b) False Alarm Rate for Single Line Outages.

Fig. 5: Complete Data case

detection groups only include nodes that showed low correla-
tions in each intersection subspace. It can be seen in the figure,
that when our methodology uses a naive detection group, i.e.
0 on the x-axis, identification performance is compromised
with high false alarm rate. On the other hand, as we increase
the portion of nodes found by (8) into a detection group,
the performance is improved. Once we use a detection group
formed as proposed, i.e. 1 on the x-axis, identification accuracy
is relatively high for any power system evaluated, and the false
alarm rate is also significantly reduced.

This demonstrates two things: 1) learning subspaces for
identifying outages is effective, 2) by adding nodes with
historic high detection capabilities to the detection groups, we
improve the performance of the subspace method. Moreover, a
detection group formed as proposed contains more nodes than
the naive choice of orthogonal nodes. In the missing data case,
some measurements of member nodes will not be available,
then these larger detection groups can provide alternatives from
reliable nodes with similar detection capabilities.

C. Missing Data Case

The previous study demonstrated that the proposed sub-
space method along with properly formed detection groups can
effectively identify outage locations. As explained in Section I,
data issues are often overlooked when designing applications
based on PMU data. The design of our proposed detection
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scheme was motivated by the possible occurrence of missing
data. Now we evaluate the effect of missing data on the
performance of the proposed solution. First, we evaluate the
important case of missing data originated precisely at the
outage location. Then, we study the impact of other missing
data patterns that can occur in the PMU network. Namely, we
evaluate the impact of another random pattern of relatively
small number of missing measurements. Then we evaluate
the systems under a generalization of possible missing data
patterns.

1) Missing Outage Data: Consider the missing data pattern
shown at the top row of Figure 6. Given an outage of line ei,j ,
the phasor data points of the corresponding nodes i and j are
considered to be missing for this pattern. This missing data
pattern is of particular importance as it can be originated as a
consequence of PMU malfunctioning, or communication link
unavailability, due to the outage itself. We account for other
missing data patterns in the studies in the later cases.

The results are presented in Figure 7. Similar to the
performance study with complete data, each system tests all
possible line outages and 100 realizations of each outage case
are evaluated. It can be seen in the figure, the performance
of the subspace method is only slightly impacted by the
presence of missing data from the outage locations. In fact,
the performance is comparable with that when complete data
are available for fault identification, using either our detection
mechanism or peer solutions. On the other hand, the perfor-
mance of MLR-based solutions is greatly degraded as such
methods work specifically based on the data signatures of
single line outages when complete data are available. Thus, it
is expected that the identification of outage ei,j would require
the data points from nodes i and j. The subspace method,
instead, can exploit the use of available data samples from
other nodes for the identification of an outage location. In this
study, we have restricted that the data are only missed from
the outage locations. Our results show that the performance of
the peer methodologies is largely impacted even when there is
only a relatively small number of missing data points.

2) Missing Random Data: The missing data pattern used in
Section V-C1 affect the data samples of the nodes associated
with the outage being evaluated. Given that such data anomaly
locations coincide with the outage locations, it could be argued
that a data-based mechanism could claim to identify an outage
only when encountering missing data points. In other words,

(a) Identification Accuracy for Missing Outage Data

(b) False Alarm rate for Missing Outage Data

Fig. 7: Missing Outage data case

the algorithm could classify missing data as a power outage.
The following scenario will be used to evaluate the capability
of an outage detection application to differentiate data anoma-
lies, in the form of missing data, from power anomalies due
to an outage.

Test samples are drawn exclusively from the normal oper-
ations case. Then, some data points are dropped as illustrated
on the pattern of the middle row of Figure 6. That is, data
points of existing lines are missing but no outage has occurred.
Hence, |F | = 0 and FA = 1 in Equation (12) when |F̂ | 	= 0 .

Similarly, IA = 1 when |F̂ | = 0 . In Figure 8, we can see that
the false alarm of the subspace method is negligible and the
performance is still comparable with that of the no missing data
scenario, which demonstrate its robustness on differentiating
missing data from actual outages. On the other hand, the
extremely high FA rate associated with MLR methods further
confirms that conventional methods based on data learning can
confuse small missing data patterns with outages as explained
before.

In Figure 9, we evaluate the missing data pattern shown
at the bottom row of Figure 6. In this scenario, test samples
are drawn from line outage cases and we restrict the random
missing data are not from the outage locations. This is the
case where missing data and outages are not correlated. In
the figure, while peer solutions have a small improvement
on their performance compared with the previous case, its
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(a) Identification Accuracy for Normal Operations samples

(b) False Alarm for Normal Operations samples

Fig. 8: Random Missing Data Normal Operations case

performance is far from that of the proposed detection scheme.
These results indicate that the subspace method can effectively
handle different missing data patterns of interest.

3) PMU Network Reliability: So far, we have studied
missing data from outage and random locations, and their
impacts on identifying the correct situation: outage (and its
location) or normal operations. Now we generalize the patterns
of missing data that can occur in the PMU network. We are
interested in studying the impact of any number of missing
data points in a test sample with no restriction on the location
of the missing data points. In this study, we simultaneously
consider all data patterns shown in Figure 6 with an arbitrary
number of missing points.

To account for a realistic generalization of the results,
we consider the reliability reported of common PMU devices
and corresponding communication links [18]. Such reliability
will define the probability of occurrence of a specific missing
data pattern. For example, consider the extreme missing data
pattern where all data points are missing in the sample. This
corresponds to the case where all PMU (or communication
links) are not working. The sample at this low reliability point
of the network will cause any solution to not work properly.
However, such scenario is highly unlikely to happen. Hence,
to properly account for each missing data scenario, we use the
effective false alarm rate for a given reliability level r scenario
as:

(a) Identification Accuracy for Outage samples

(b) False Alarm for Outage samples

Fig. 9: Random Missing Data Outage case

FA(r) =
2L∑
l=1

FAlpl(r) (13)

Where FAl represents the false alarm rate defined in (12) when
data points are missing according to the pattern specified in
scenario l. L represents the number of PMU devices (and their
corresponding PMU→ PDC communication links). Hence, we
are considering a weighted average of all possible missing data
patterns. Each combination determines which data samples are
missing, indicating that the PMU and/or its communication
link is not working. The parameter r represents the total
system-wide reliability level of a PMU network of the type
shown in Figure 1 and can be calculated as:

r = (rPMUrPMU→PDC)
L (14)

where we have considered that the reliability of the L PMUs,
and their associated communication links, are independent.
rPMU and rPMU→PDC correspond to the reliability levels
of the PMU device and its communication link with the PDC,
respectively. We consider links to the Control Center, PDC
→ CC, to be reliable. The weight pl(r) is the probability of
occurrence of the l − th missing data scenario, calculated as
follows:
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Fig. 10: Real PMU Network Reliability case

pl(r) =
L∏

i=1

pi,l (15)

where pi,l,r = rPMUrPMU→PDC if the i-th PMU device is
working (no missing data) for the l-th missing data pattern,
otherwise pi,l,r = 1− rPMUrPMU→PDC . Each l-th of the 2L

data patterns considered in (13) corresponds to all possible
combinations of missing data for all L PMUs. Thus, (13)
provides the appropriate false alarm metric over all data
patterns. The parameters information is adopted from [18].

Given the reported range of rPMU and using Equation
(14), we evaluate the effective false alarm rate of the proposed
subspace scheme for different levels of system-wide PMU
network reliability. Results are presented in Figure 10. It
can be seen in the figure, the proposed methodology has a
consistent performance with the scenarios of other missing
data patterns previously evaluated. That is, the subspace-
based detection scheme produces relatively small errors when
identifying locations of outages under any possible missing
data situation.

VI. CONCLUSION

PMU measurements provide high precision data that can
be exploited to enhance traditional model-based power grid
monitoring and control. We address one application of vital im-
portance, the timely discovery of power line outages. Current
detection schemes that make use of PMU data either assume
that all measurements are available or ignore the missing data
scenario. These considerations can largely compromise the
performance of a data-based application. Particularly, without
reliable data, detection mechanisms can fail to provide real-
time situational awareness for grid operators to take the
proper corrective control actions. In this paper, we proposed a
subspace learning based detection mechanism that is robust to
different possible missing data patterns. To address the missing
data problem, we design detection groups that provide alterna-
tive measurements to process along with the learned subspaces.
We evaluate the proposed methodology using different IEEE
test systems. Our results show that, when data are complete, the
subspace-based method along with properly formed detection
groups can achieve comparable detection performance as peer
methodologies. When tested over several common patterns of
missing data, our performance is not compromised by the
evaluated missing data scenarios and largely outperforms peer

methodologies. Furthermore, we generalize the missing data
scenario to account for different possible patterns of missing
data according to the reliability of the PMU network and obtain
similar robust performance.
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