
An Efficient Privacy-Preserving Compressive Data

Gathering Scheme in WSNs

Kun Xie1,2, Xueping Ning1, Xin Wang2, Shiming He3, Zuoting Ning1,
Xiaoxiao Liu4, Jigang Wen5, Zheng Qin1

1 College of Computer Science and Electronics Engineering, Hunan University,
Changsha, China

2 Department of Electrical and Computer Engineering, State University of New York at
Stony Brook, USA

3 School of Computer and Communication Engineering, Hunan Provincial Key
Laboratory of Intelligent Processing of Big Data on Transportation, Changsha University

of Science and Technology, Changsha, China
4 State Grid HuNan Electric Power Company Research Institute, Changsha, China
5 Institute of Computing Technology, Chinese Academy of Sciences, Beijing 100080,

China

Abstract

Because of the strict energy limitation and the common vulnerability of Wire-
less Sensor Networks (WSNs), providing efficient and secure data gathering
in WSNs becomes an essential problem. Compressive data gathering, which
is based on the recent breakthroughs in compressive sensing theory, has been
proposed as a viable approach for data gathering in WSNs at low communi-
cation overhead. Nevertheless, compressive data gathering is susceptible to
various attacks in the presence of the open wireless medium. In this paper,
we propose a novel Efficient Privacy-Preserving Compressive Data Gathering
Scheme, which exploits homomorphic encryption functions in compressive da-
ta gathering to thwart the traffic analysis/flow tracing and realize the privacy
preservation. This allows the proposed scheme to possess the two important
privacy-preserving features of message flow untraceability and message con-
tent confidentiality. Extensive performance evaluations and security analyses
demonstrate the validity and efficiency of the proposed scheme.
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1. INTRODUCTION

Wireless Sensor Networks (WSNs) are increasingly deployed in critical
security applications [4, 5, 56, 53, 40, 60] such as environment monitoring,
event detection, target counting and tracking. WSNs usually consist of a
large number of low-cost sensor nodes that have extremely limited sensing,
computation, and communication capabilities [29, 59]. As sensor nodes are
prone to attacks in remote and hostile environments, security issues such as
data confidentiality are extremely important [21, 39, 32, 28, 47, 22, 20, 48].
The efficiency and security of data transmission in WSNs is attracting more
and more attention.

Conventionally, data gathering in WSNs[46, 55, 54] is done by in-network
data compression in which the sensory readings are compressed by exploiting
the spatial correlation of the sensed data at the sink node [41, 1]. To gather
data from N sources, in-network compression approaches need O(N2) single-
hop transmissions in the worst case, which causes a high communication
overhead.

As a ground-breaking signal processing technique developed in recent
years, compressive sensing [15, 26] can accurately reconstruct sparse signals
with a relatively small number of random measurements. Compressive data
gathering has been exploited to reduce the communication overhead in WSN
[31, 50, 49, 61]. Instead of letting each node send a message to the sink,
the data sample from each node is multiplied with a measurement vector
of M random values; the partial projected results at each non-leaf node are
summed along the routing paths (tree)[30] to the sink, and the sink at last ac-
curately reconstructs the original sensor readings based on the small number
of received messages. The communication overhead is bounded by O(MN),
which is much smaller than O(N2) required in traditional in-network com-
pression approaches. Nevertheless, the security of compressive data gather-
ing is generally overlooked in current research. Because of the open wireless
medium, WSNs are susceptible to various attacks, such as eavesdropping and
node compromising. These attacks may breach the security of WSNs, includ-
ing confidentiality, integrity, and authenticity. Particularly, some advanced
attacks, such as controllable event triggering attack (CETA) and the random
event triggering attack (RETA) aiming to obtain the measurement matrix of
compressive sensing, can also to be launched in WSNs. These attacks seri-
ously impact the privacy of compressive data gathering [23]. Despite much
recent interest in applying CS theory to WSN, only the research in [23] tries



to study secure compressive data gathering by protecting the measuremen-
t matrix of compressive sensing. However, the methods proposed may be
vulnerable to the information leakage, which results in low confidentiality.
Moreover, the computation and communication overhead involved to protect
the measurement matrix is very high.

In this paper, based on compressive sensing and Homomorphic Encryp-
tion Functions (HEFs) [3, 36], we propose an Efficient Privacy-Preserving
Compressive Data Gathering Scheme for WSNs. Our objective is to achieve
the sensory readings confidentiality by preventing traffic analysis and flow
tracing in WSNs. To the best of our knowledge, this is the first research
effort that exploits the Homomorphic Encryption Functions in compressive
data gathering to thwart traffic analysis/flow tracing and achieve the privacy
conservation. We have made following contributions in the proposed scheme.

• We employ HEFs to effectively guarantee the confidentiality of sensory
readings by making them difficult for attackers to recover from the
summed data. As only the sink knows the decryption key, adversaries
cannot decrypt the sensory readings even if some intermediate sensor
nodes are compromised, or when the adversaries obtain the information
on the CS measurement matrix or the routing paths (tree) for data
gathering. Moreover, the coding/mixing feature of compressive data
gathering can also be exploited naturally to satisfy the requirements of
privacy preservation against traffic analysis and flow tracing.

• Because of the homomorphism of HEFs, message recoding at intermedi-
ate sensor nodes can be directly performed on both the encrypted mes-
sages received and encoded sensory readings, without need for knowing
the decryption keys or performing expensive decryption operations on
each incoming message.

• We have conducted extensive performance evaluations and security
analyses. The performance evaluations on computational complexi-
ty demonstrate the efficiency of the proposed scheme. Moreover, the
security analysis demonstrates that the proposed scheme can not only
resist attacks from both inside and outside the network but also resist
brute force attack. Moreover, the influence of HEFs on the recovery
performance for compressive sensing is negligible. Thus, the compres-
sive sensing feature can be kept in our Efficient Privacy-Preserving
Compressive Data Gathering Scheme.



The rest of the paper is organized as follows. In Section 2, we present the
fundamentals of compressive sensing and discuss the related research. Section
3 introduces the network model and attack model. The proposed Privacy-
Preserving Compressive Data Gathering Scheme is described in Section 4.
We present the performance evaluations and security analysis of the proposed
scheme in Section 5. Simulation results are presented in Section 6. Finally,
Section 7 concludes the work.

2. FUNDAMENTALS AND RELATED RESEARCH

We first introduce the fundamentals of compressive sensing and then sum-
marize the most relevant existing research: data gathering in WSNs. We
review related research and identify the differences between our research and
existing research.

2.1. FUNDAMENTALS

Compressive sensing (CS) is a ground-breaking signal processing theorem
developed in recent years. According to the CS theory [15, 26], a sparse signal
can be recovered with a high probability by solving an optimization problem
from non-adaptive linear projections which preserves the structure of sparse
signals. Suppose x ∈ RN is an unknown sparse vector where ∥x∥0 = K and
K ≪ N . We call K the sparsity level of x. Then, x can be reconstructed by
a small number of measurements from the acquisition system by solving the
following problem

min
x

∥x∥0
subject to y = Φx

(1)

where Φ is an M×N measurement matrix and the number of measurements
M satisfies:

M ≥ cK log
N

K
(2)

where c is a constant value.
However, Eq. (1) is intractable because it is an NP-hard problem [13]. In

recent research [7, 24], it has been proven that the signal x can be recovered
by solving the following minimum l1-norm optimization problem with a very
high probability

min
x

∥x∥1
subject to y = Φx

(3)



with the measurement matrix Φ satisfying the Restricted Isometry Property
(RIP)[8], expressed as

(1− δs) ∥x∥2 ≤ ∥Φx∥2 ≤ (1 + δs) ∥x∥2 (4)

where δs is a constant and δs ∈ [0, 1). From [10] and [9], we know that
the Bernoulli matrix and the Gaussian random matrix satisfy the Restricted
Isometry Property when M satisfies (2). In this paper, we use the Bernoulli
matrix as the measurement matrix.

Many approaches have been proposed to solve the above convex opti-
mization problem in (3), such as Matching Pursuit (MP)[33], Orthogonal
Matching Pursuit (OMP)[42], and Projection onto Convex Sets (POCS)[6].
In this paper, we use OMP to recover the original sensory reading data.

2.2. RELATED RESEARCH

Compressive sensing is becoming a new paradigm for data gathering in
WSNs as it can greatly improve communication efficiency. In [2], a univer-
sal compressive wireless sensing scheme was proposed, in which sensed data
are collected and sent by synchronized amplitude-modulated analog trans-
missions to the fusion center in a single hop network. In [31], the authors
presented the first complete design to apply compressive sensing to data gath-
ering for large-scale WSNs, which is shown to be able to reduce the global
communication cost. Xiang et al. [50, 49] aimed to minimize the energy con-
sumption in data collection with compressive sensing and formulate a mixed
integer programming for data recovering. Zhao et al.[61] proposed a CS-based
data aggregation scheme that adopts Treelet as a sparse transformation tool
to efficiently address unordered sensory data. In [12], an alternative solution
for unreliable transmissions is to take more samples at the sources, so that
data recovery at the sink can still be performed in the face of data loss. The
detection of data anomaly is formulated as a compressive sensing problem
in [45]. In [16], network coding and compressive data gathering are jointly
considered to greatly reduce the transmission in WSNs. Ebrahimi et al. [17]
present a decentralized method to solve the joint problem of constructing for-
warding trees and link scheduling for compressive data gathering in WSNs
under the physical interference model, which can achieve the objective of
energy efficient data gathering with the minimal collection latency. In addi-
tion to the above research, our recent studies [51, 52] use vehicles as mobile
sensors and propose road condition context gathering and sharing schemes



based on compressive sensing to largely reduce the messages transmitted in
the vehicle Delay Tolerant Networks (DTNs).

The above studies focus on compressive data gathering without consider-
ing the security of data transmission. Very few recent studies [23, 37, 35, 43]
have made efforts to protect the secrecy of compressive sensing, among which,
Yaron Rachlin [37], Adem Orsdemir [35] and Ruslan Dautov [43] consider the
CS measurement matrix as an encrypted representation of the original signal
and provide different methods to protect the matrix from attackers. These
methods can prevent outside attack, but not inside attack. Our scheme can
prevent not only inside attack but also outside attack.

Recently, Kong et al. [25] proposed a Privacy Preserving Compressive
Sensing scheme for crowdsensing based trajectory recovery, which combines
the homomorphic obfuscation method KVP into the compressive sensing
framework to accomplish recovery accuracy and privacy preservation simul-
taneously. This scheme encrypts a trajectory with several other trajectories
while maintaining the homomorphic obfuscation property for compressive
sensing. Although it can protect against stalkers and eavesdroppers, it is
used in crowd-sensing recovery to reconstruct all users’ trajectories based
on their trajectory correlations and is not fit for data gathering in wireless
sensor networks.

Only one recent study [23] tries to support the secure compressive data
gathering in WSNs. The authors proposed two statistical inference attacks
on compressive data gathering, which can estimate the measurement matrix
Φ when the eavesdroppers collect enough data from one or more nodes.
They also proposed a new compressive data aggregation scheme SCDG to
improve data confidentiality. In every monitoring round, new random seeds
are generated and sent from the sink to the sensor nodes, according to which
new measurement vectors are generated in sensor nodes. The computation
and communication overhead is high. Moreover, the measurement vectors
are individually generated in each node in every monitoring round, which
results in a high error rate.

In contrast, this paper exploits Homomorphic Encryption Functions in
compressive data gathering to thwart traffic analysis/flow tracing and real-
ize privacy preservation. Taking advantage of the lightweight Homomorphic
Encryption Functions, our scheme is efficient with low computational com-
plexity. Moreover, the influence of HEFs on the recovery performance for
compressive sensing is negligible. Thus, the good features of compressive
sensing can be kept in our Efficient Privacy-Preserving Compressive Data



Gathering Scheme.

3. Network model and attack model

3.1. Network model

Consider a WSN that consists of one sink node and N randomly distribut-
ed sensor nodes. The ultimate goal of the WSN is to securely collect all data
from sensor nodes at the sink with low cost. Without data aggregation, each
node needs to send its sensory reading to the sink following a routing path;
hence nodes around the sink will carry heavy traffic, as they are supposed
to relay the data from the downstream nodes. To alleviate the bottleneck
problem, we adopt compressive data gathering in which compressive sensing
is applied to the data collection. The sink node collects data from various
sensors along the aggregation paths, and the paths form a tree topology.

Let x(t) denote the sensory reading of the tth-round of the WSN with
x(t) = (x1(t), x2(t), · · · , xN(t))

T , where xi(t) (i ∈ [1, N ]) corresponds to the
reading of sensor Si. Let Φ denote an M × N measurement matrix, with
the column vector ϕi assigned to the sensor Si. After all nodes obtain their
readings at the tth-round, each node Si multiplies its reading xi(t) by its
coefficient column vector ϕi to expand its reading to an M -dimension vector
ϕixi(t) and transmits this encoded data vector in M messages rather than
the raw data xi(t) to its upstream node. The aggregation is done by sum-
ming the coded vectors whenever they meet; therefore, the traffic load on
the aggregation path is always M . After the sink collects the aggregated
M -dimension vector (denote y ∈ RM×1 the aggregated M -dimension vector)
rather than N raw sensory readings, a compressive sensing recovery algo-
rithm can be used as a decoding algorithm to recover the original N sensory
readings. The communication overhead is low and bounded by O(MN).

Fig. 1 illustrates the basic idea of compressive data gathering. S1 multi-
plies its reading x1(t) with the coefficient vector ϕ1, and sends the encoded
vector to S2. Upon receiving the messages, S2 multiplies its reading x2(t)
with the coefficient vector ϕ2 and then sends the sum ϕj1x1(t) + ϕj2x2(t)
(j ∈ [1,M ]) to S4. Similarly, each node Si contributes to the relayed mes-
sages and re-encodes the messages by adding its own encoded data. Finally,
the sink will receive a vector

∑N
i=1 ϕixi(t), M weighted sums of all the read-

ings.
In the compressive data gathering scheme, the encoding process is done

in a distributed fashion on each node, where each node simply performs some



multiplications and summations whose computational cost can be negligibly
small.

Without loss of generality, anonymous secure routing protocol [57] is de-
ployed to assist sensor nodes to determine forwarding paths. The secure
routing paths are only required to be established at the beginning and are
not required to change or be re-established for each new monitoring round.
The monitoring round of a packet can be hidden in the secure routing scheme,
and the attackers cannot identify the monitoring round of a packet for their
further analysis.

This aggregation procedure, however, may cause potential information
leakage in network because the coefficient matrix Φ can be estimated by
an adversary through statistical inference. With a good estimation of the
coefficient matrix, an attacker can easily recover the original sensory readings.
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Figure 1: Compressive data gathering

3.2. Attack Model

We consider the following two attack models (as shown in Fig. 2) that
can attack the confidentiality of data.

An outside attacker can be considered as a global passive eavesdropper
that has the ability to observe all network links and thus all messages trans-
mitted in the WSN. By analyzing and comparing the messages going into
and out of a link, it is possible for a global outside attacker to trace flow
packets in the WSNs. An inside attacker may compromise several intermedi-
ate nodes. If the intermediate nodes have the decryption keys, the message
plaintext can be easily recovered.



We assume that the attacker has sufficient resources (e.g., in storage,
computation and communication) to perform these advanced attacks. Both
outside and inside attackers may perform more advanced traffic analysis/flow
tracing techniques such as time correlation, size correlation, content correla-
tion, and brute force.
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Figure 2: Attack model

4. Solution Description

Because of the typically remote and hostile deployment environment, it
is difficult to provide effective physical protection to sensors. Rather than re-
quiring more external protection, it is essential to enforce secure compressive
data gathering along the aggregation paths for high data fidelity.

There are two typical secure data aggregation categories: hop-by-hop
encrypted data aggregation and end-to-end encrypted data aggregation.

In hop-by-hop encrypted data aggregation, security and data aggrega-
tion are achieved together in a hop-by-hop fashion. That is, data aggrega-
tors must decrypt every message received, aggregate the messages according
to the corresponding aggregation function, and encrypt the aggregation re-
sult before forwarding it. If an inside attacker compromises an intermediate
aggregator to get the decryption key, the data confidentiality is breached.
Therefore, besides that the decryption/encryption process introduces higher
latency, a hop-by-hop secure data aggregation protocol cannot provide data
confidentiality at data aggregators.

To mitigate the drawbacks of hop-by-hop secure data aggregation, end-to-
end encrypted data aggregation exploits symmetric cryptography or asym-
metric key cryptography functions to provide end-to-end data confidentiality.



Different from the hop-by-hop secure data aggregation, the data aggregators
do not have the key to decrypt sensory data.

Therefore, to reduce the transmission delay and energy consumption, our
Privacy-Preserving Compressive Data Gathering Scheme follows the end-to-
end encrypted data aggregation. Particularly, we exploit the HEF to enhance
security in the compressive data gathering. Before we give the detailed solu-
tion in Section 4.2, we first introduce the fundamentals of the Homomorphic
Encryption Function.

4.1. Homomorphic Encryption Function

Homomorphic encryption is a form of encryption that allows operations
on plaintext to be performed by operating on corresponding ciphertext. Let
E(x) denote the encryption of the message x. E(·) needs to satisfy the
following properties:

1) Additivity: Given the ciphertext, E(x) and E(y), there exists a compu-
tationally efficient algorithm Add(·, ·) such that E(x+y) = Add(E(x), E(y))

2) Scalar Multiplicativity: Given E(x) and a scalar t, there exists a com-
putationally efficient algorithm Mul(·, ·) such that E(t · x) = Mul(E(x), t).

Benaloh [3] and Paillier [36] cryptosystems are such two additive HEF-
s, where the addition on plaintext can be achieved by performing a mul-
tiplicative operation on the corresponding ciphertext, i.e., E(x1 + x2) =
E(x1).E(x2). Based on E(t · x) = E(

∑t
i=1 x), the following two equations

can be easily derived.

E(t · x) = Et(x)

E(
∑

i
ti · xi) =

∏
i
Eti(x)

(5)

As Paillier cryptosystem [36] is one of the few practical homomorphic
public-key cryptosystems, in this paper, we employ the Paillier cryptosystem
as the HEF to apply encryption to enhance the security of compressive data
gathering.

In the Paillier cryptosystem, the key can be generated following the steps
below.

1. Choose two large prime numbers p and q randomly and independently
of each other such that gcd (pq, (p− 1)(q − 1)) = 1 (where gcd is the
abbreviation of greatest common divisor). This property is assured if
both primes are of equal length [36].



2. Compute n = pq and λ = lcm(p − 1, q − 1) (that is, λ is the lowest
common multiple of p− 1, q − 1).

3. Select random integer g where g ∈ Z∗
n2 [34].

4. Function L is defined as L (u) = u−1
n
.

The public (encryption) key is (n, g) and the private (decryption) key is
λ. Based on the generated keys, the Paillier cryptosystem is described below.

Encryption :
plaintext m(m < n), random r(r < n)
ciphertext c = gm · rn mod n2

(6)

Decryption :
ciphertext c(c < n2)

plaintext m = L(cλ mod n2)
L(gλ mod n2)

mod n
(7)

where r is a random factor in the Paillier cryptosystem.
In Paillier cryptosystem, the cost of both encryption and decryption is

essentially that of one exponentiation in Z∗
n2 with the exponent roughly n(the

product of two exponentiations in the encryption can be done in roughly the
same time as one exponentiation).

As shown in Eq.(6), in the Paillier cryptosystem, given a message m and
the public key(n, g), the encryption function is E(m) = gm · rn(mod n2). It
satisfies the following homomorphic property:

E(m1) · E(m2) = gm1+m2 · (r1 · r2)n(mod n2)

= E(m1 +m2).
(8)

4.2. Operations at Sensor Nodes and Sink

Our scheme is designed based on HEF with the public-key encryption.
Without loss of generality, the sensory readings would be encrypted by a
public key that is known for all nodes including eavesdroppers. We assume
that each sink acquires two keys, the encryption key (n, g) (public key) and
the decryption key λ (private key), from an offline Trust Authority (TA).
The encryption key (n, g) is published to all the other nodes. For security,
the sink is required to negotiate the key pair in advance [11]. During the
message transmission, we also assume that the encryption key (n, g) and
the monitoring round of a packet are hidden by the secure routing scheme
[27], and only authenticated intermediate nodes can obtain the information.



To avoid transmitting measurement matrix Φ from the sink to sensors, we
adopt a simple strategy: before data transmission, the sink broadcasts a
random seed to the entire network. Then, each sensor generates its own
seed using this global seed and its unique identification. With a pre-installed
pseudo random number generator, each sensor Si is able to generate the
corresponding column vector ϕi with the vector’s entry values chosen from
{−1, 1}. These vectors can be reproduced at the sink given that the sink
knows the identifications of all sensors, and thus the sink node can obtain
the measurement matrix Φ.

From Fig. 1, we know that the aggregated M -dimension message vector
obtained at the sink using traditional compressive data gathering can be
written as follows:

y(t) =
N∑
i=1

ϕixi(t), (y(t) ∈ RM×1). (9)

which can be further written as follows.


y1(t)
y2(t)
· · ·

yM(t)

 =


ϕ11 ϕ12 ϕ13 · · · ϕ1N

ϕ21 ϕ22 ϕ23 · · · ϕ2N

· · · · · · · · · · · · · · ·
ϕM1 ϕM2 ϕM3 · · · ϕMN




x1(t)
x2(t)
x3(t)
· · ·

xN(t)

 (10)

⇒


ϕ11x1(t) + ϕ12x2(t) + ϕ13x3(t) + · · ·+ ϕ1NxN(t) = y1(t)
ϕ21x1(t) + ϕ22x2(t) + ϕ23x3(t) + · · ·+ ϕ2NxN(t) = y2(t)

· · ·
ϕM1x1(t) + ϕM2x2(t) + ϕM3x3(t) + · · ·+ ϕMNxN(t) = yM(t)

(11)

For secure compressive data gathering, we expect the sink to receive en-
crypted aggregated messages instead of the raw aggregating messages, that
is,


Eng(ϕ11x1(t) + ϕ12x2(t) + ϕ13x3(t) + · · ·+ ϕ1NxN(t)) = y

′
1(t)

Eng(ϕ21x1(t) + ϕ22x2(t) + ϕ23x3(t) + · · ·+ ϕ2NxN(t)) = y
′
2(t)

· · ·
Eng(ϕM1x1(t) + ϕM2x2(t) + ϕM3x3(t) + · · ·+ ϕMNxN(t)) = y

′
M(t)

(12)



where Eng() is the HEF encryption function using the public key (n, g), y
′
j(t)

is the expected cryptal aggregating message value of yj(t) received at the
sink. According to the properties of HEFs, Eq. (12) can be further written
as


Eng(ϕ11x1(t)) · Eng(ϕ12x2(t)) · · · · · Eng(ϕ1NxN(t)) = y

′
1(t)

Eng(ϕ21x1(t)) · Eng(ϕ22x2(t)) · · · · · Eng(ϕ2NxN(t)) = y
′
2(t)

· · ·
Eng(ϕM1x1(t)) · Eng(ϕM2x2(t)) · · · · · Eng(ϕMNxN(t)) = y

′
M(t)

(13)

⇒


Eϕ11

ng (x1(t)) · Eϕ12
ng (x2(t)) · · · · · Eϕ1N

ng (xN(t)) = y
′
1(t)

Eϕ21
ng (x1(t)) · Eϕ22

ng (x2(t)) · · · · · Eϕ2N
ng (xN(t)) = y

′
2(t)

· · ·
EϕM1

ng (x1(t)) · EϕM2
ng (x2(t)) · · · · · EϕMN

ng (xN(t)) = y
′
M(t)

(14)

According to Eq. (14), our Privacy-Preserving Compressive Data Gath-
ering Scheme is designed consisting of three algorithms: leaf node encoding,
non-leaf node encoding and recoding, and sink node decoding.

Algorithm 1 Leaf Node Encoding
Input: the sensory message of leaf node Si at round t, denoted as xi(t), measure-

ment vector ϕi = (ϕ1i, ϕ2i, · · · , ϕMi)
T , public key (n, g)

Output: encrypted message vector at leaf node Si, denoted as x
′
i(t)

1: Apply Eq. (6) to encrypt xi(t) using the public key (n, g), then obtain the
encrypted message Eng(xi(t)).

2: Perform exponential operations on Eng(xi(t)) with the exponents of ϕi, obtain

the encrypted vector x
′
i(t) = (Eϕ1i

ng (xi(t)), E
ϕ2i
ng (xi(t)), · · · , EϕMi

ng (xi(t)))
T

Algorithm 1 shows the leaf node encoding algorithm which consists of two
steps. In the first step, the leaf node Si encrypts the message generated by
itself, i.e., Eng(xi(t)), then performs the exponential operation on Eng(xi(t))
with the exponents being theM values in the vector ϕi = (ϕ1i, ϕ2i, · · · , ϕMi)

T .
Algorithm 2 shows the non-leaf node encoding and recoding algorithm.

With HEFs, intermediate nodes are allowed to directly perform multiplica-
tion on the encrypted messages. In other words, because of the homomor-
phism of the HEF, encryption on the summation of messages in each node can
be achieved by performing a multiplication operation on the corresponding
ciphertext. Data forwarding can be achieved by operating on the encrypted



Algorithm 2 Non-leaf Node Encoding and Recoding
Input: the sensory message of non-leaf node Si at round t, denoted as xi(t), the

message vector received from its previous node Sj , denoted as xj(t), measure-

ment vector ϕi = (ϕ1i, ϕ2i, · · · , ϕMi)
T , public key (n, g)

Output: encrypted message vector at non-leaf node Si, denoted as x
′
i(t)

1: Apply Eq.(6) to encrypt xi(t), then obtain the encrypted message Eng(xi(t)).
2: Perform exponential operations on Eng(xi(t)) with the exponents of ϕi, obtain

x
′
i(t) = (Eϕ1i

ng (xi(t)), E
ϕ2i
ng (xi(t)), · · · , EϕMi

ng (xi(t)))
T

3: According to Eq.(14), x
′
i(t) = x

′
i(t) ◦ xj(t) where ◦ is the Hadamard product

operation defined as follows: ∀a,b ∈ RM , (a ◦ b)i = (a)i(b)i

Algorithm 3 Sink Node Decoding

Input: the received encrypted message y
′
j(t), private key λ

1: Decrypt the received message according to Eq.(7) using the private key λ, then
obtain the plaintext of y

′
j(t), denoted as yj(t)

2: Solve the following compressive sensing recovery problem to recover the orig-
inal sensory reading vector x(t) from the decrypted data y(t)

min
x(t)

∥x(t)∥1
subject to y(t) = Φx(t)

(15)

through Orthogonal Matching Pursuit (OMP) [42].

messages without the need of knowing the decryption keys or performing the
decryption operations.

After receiving the aggregated messages of a monitoring round, the sink
node can recover the raw sensory readings following Algorithm 3. In Al-
gorithm 3, the sink node first decrypts the received message, then applies
Orthogonal Matching Pursuit (OMP) [42] on the decrypted message to ob-
tain the original sensory reading vector x(t).

Fig. 3 illustrates an example of the proposed scheme. Node S1 first en-
crypts the message generated by itself, i.e., Eng(x1(t)), then performs the
exponential operation on Eng(x1(t)) with the exponents being the M val-
ues in vector ϕ1 = (ϕ11, ϕ21, · · · , ϕM1)

T . We can then have a vector of M
encrypted data (Eϕ11

ng (x1(t)), E
ϕ21
ng (x1(t)), · · · , EϕM1

ng (x1(t)))
T . After the node

S2 receives the encrypted data vector from S1, it should perform a mul-
tiplying operation on corresponding data in two vectors to obtain a new



vector (Eϕ11
ng (x1(t)) · Eϕ12

ng (x2(t)), E
ϕ21
ng (x1(t)) · Eϕ22

ng (x2(t)), · · · , EϕM1
ng (x1(t)) ·

EϕM2
ng (x2(t)))

T , and then forward this new vector to S4. Finally, the sink

node will receive the encrypted data vector y
′
j(t) =

∏N
i=1E

ϕji
ng (xi(t))) and

recover the raw sensory data following Algorithm 3.
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Figure 3: Encryption model

From the above algorithms, we can conclude that the influence of HEFs
on the recovery performance for compressive sensing is negligible. Thus, the
compressive sensing feature can be kept in our Efficient Privacy-Preserving
Compressive Data Gathering Scheme.

5. Performance Evaluations and Security Analysis

In this section, we first evaluate the computational overhead of our pro-
posed scheme, and then analyze its security.

5.1. Computational Overhead

The computational overhead of the proposed scheme can be investigated
from three aspects: leaf node encoding, non-leaf node’s encoding and re-
coding, and sink node’s decoding. As the computational overhead of the
proposed scheme is closely related to the specific homomorphic encryption
algorithm, in the following analysis, we will take the Paillier cryptosystem as
the encryption method when necessary.

5.1.1. Computational complexity on a leaf node

To encode the sensory reading, a leaf node Si needs one encryption oper-
ation and M exponentiations with the exponent corresponding to its associ-
ated ϕi. According to the Paillier cryptosystem, every encryption operation



requires 2 exponentiations, 1 multiplication, and 1 modulus operation. When
n ≫ m in the Paillier cryptosystem, the computational complexity of one
encryption operation is O(log n), which is incurred for multiplication opera-
tions. Moreover, the measurement matrix adopted in this paper is a {−1, 1}
Bernoulli matrix. Therefore, the computational complexity of exponentia-
tions in encoding is very small. The computational complexity on a leaf
node is O(log n) in terms of multiplication operations.

5.1.2. Computational complexity on non-leaf node:

In addition to encoding its own sensory reading, the non-leaf node should
perform M multiplication operations between the received data vector and
the corresponding encoded values of their own encrypted data vector to com-
plete the recoding procedure. Therefore, the computational complexity on
non-leaf node is O(log n+M).

5.1.3. Computational complexity on sink:

According to the operations on sink, to recover the original sensory read-
ings, the sink will first decrypt the encrypted M messages, and then apply
OMP to reconstruct the original reading data. The sinks need M decryption
operations and 1 OMP reconstruction operation. According to the Paillier
cryptosystem, decrypting an element requires 1 exponentiation, 1 multiplica-
tion, and 1 division operation. The computational complexity of one decryp-
tion operation is O(log n) in terms of multiplication operations. Therefore,
the computational complexity of decryption is O(M · log n). According to
OMP, the computational complexity of using OMP to reconstruct the origi-
nal message x(t) is O(K · logN) where K is the sparsity of x(t). Therefore,
the computational complexity of recovering the original sensory readings on
the sink node is O(M · log n) +O(K · logN).

5.2. Overhead comparisons

We compare the overhead of our scheme with three other data gathering
schemes.

• SCDG proposed in [23], which encrypts data by dynamically changing
the measurement matrix Φ to prevent an attacker from obtaining the
matrix. Dynamic matrix update will greatly increase the overhead of
both the computation and communication.



• The scheme proposed by Vilela et al. [44], which exploits the mixing
feature of the network coding. In this scheme, every intermediate node
will receive a data packet that contains a random linear combination
of all data from its former nodes. It also uses two types of coefficients
to encode and decode the data in intermediate nodes. Therefore, the
sink node needs two rounds of decoding processes, decrypting the co-
efficients and performing Gaussian elimination to recover the original
data, which may reduce the algorithm efficiency. Moreover, a consider-
able space overhead will be incurred by the extra set of coding vectors.
In comparison, we call this scheme ”network coding”.

• The algorithm proposed by Fan et al. [18], which encrypts Global En-
coding Vectors (GEVs) through the HEF to resist traffic analysis attack
in network coding and protect the untraceability and confidentiality of
the data package. Because of the homomorphism of HEFs, random
linear network coding could be performed directly on the encrypted
coding vectors. However, the computational complexity involved for
multiplication operations is (O(N3logn)) for a GEM with N GEVs. In
comparison, we call this scheme ”Encrypt by HEF + Coding”.

Compressive sensing provides efficient in-network operations for data gath-
ering in WSNs. As there are few studies on secure compressive sensing data
gathering in WSNs, for fair comparison, we only compare our scheme with
one CS-based scheme [23] that has a goal similar to ours. Moreover, as anoth-
er good in-network technique, network coding (ONC) [14, 58] has attracted
much research interest because it can significantly improve the throughput
and power efficiency of wireless networks with the mix of various traffic flows
via algebraic operations. In addition to the scheme in [23], we compare
our scheme with two other secure network coding based data transmission
schemes [44, 18].

Table. 1 summarizes the overhead comparison results. In this table, N
is the number of source nodes that collect environment data in WSNs, M is
the number of rows in matrix Φ(M ≪ N), K is the sparsity of environment
data vector x ∈ RN , n is the public key in HEF and l is the generation
number of messages in the network coding scheme. Except that the Network
coding [44] cannot prevent the outside attack, the other three schemes can
prevent both inside and outside attack. The computational overhead of all
the peer schemes reaches exponential order with N . Except for the Network
coding scheme [44], as M ≪ N , the space overhead of our scheme is much



lower than Encrypt by HEF + Coding scheme [18] and SCDG [23], while the
Network coding scheme cannot prevent outside attack. Therefore, it is fair to
conclude that our scheme outperforms the other three schemes on thwarting
inside and outside attacks at low space and computational cost.

Network coding

[44]

Encrypt by HEF

+ Coding
[18] SCDG [23] Our scheme

Preventing

inside attack

√ √ √ √

Preventing

outside attack
×

√ √ √

Computational

overhead
O(N3) O(N3 · log n) O(N3)

O(M · log n)+
O(K · logN)

Space overhead N/(l +N) N2 N2 M ·N

Table 1: Comparison among our scheme and the other three schemes

5.3. Security analyses

5.3.1. Preventing inside attacks

To prevent inside attacks, the first step is to protect the monitoring round
number. If an adversary attempts to launch a traffic-analysis attack, the ad-
versary should first identify the packet’s monitoring round number. However,
in our scheme, the monitoring round number is hidden in the secure routing
scheme.

The second step is to resist attackers from analyzing the size correlation
and content correlation, two widely used techniques in traffic analysis. In
our scheme, the message received by an immediate node is the product of its
previous nodes in topology, such that adversaries cannot obtain the size of
the message. To launch the message content correlation attack, the adversary
must intercept messages of the same monitoring round and determine if an
intercepted message in a downstream link is a linear combination of some
known messages. In our scheme, it is impossible for an adversary to achieve
the content correlation between messages.



5.3.2. Preventing outside attacks

Our scheme can prevent timing attacks and protect route. According to
[38], a timing attack needs to record the set of messages coming in and going
out of the network as well as their respective arrival and departure times.
As shown in Fig. 4, S1 and S2 are the nodes where messages come from,
and S6 and S7 are the nodes where messages go to. In our scheme, messages
in every node are encrypted, and every receiving and forwarding message in
the intermediate node is the mixed message of its previous hops. In Fig.
4, the messages received by nodes S6 and S7 are just vectors, and they are
the products of nodes unknown to the adversary. Thus, it is impossible for
adversaries to obtain the correlated route timing information by analyzing
the messages in the two sets. Attackers cannot obtain the path of source
messages and their next hop from by collecting messages from outside or
recording the time of message forwarding. Then, we can prevent the attackers
from inferring the route information of message forwarding and the network
topology by timing attack.
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Figure 4: Route protection

In addition to preventing timing attack, we can also prevent adversaries
from identifying the source of a message. For a global adversary, it is easy
to trace the forwarding path of a message if the encrypted message remains
the same during its forwarding. In our scheme, the encrypted message is
changed after getting through every node, and so it is hard for adversaries
to trace the path or find the source of a message.

5.3.3. Brute force attack

When adversaries adopt brute force attack to obtain the sensory readings
in our scheme, the computational complexity in the brute force attack should
include three parts.



First, one should know the monitoring round number of messages. As-
suming that we have collected the messages from W monitoring rounds, then
the complexity of determining that there are M messages from one monitor-
ing round is O(CM

MW ).
Second, because the data gathering in our scheme is along aggregation

paths, one should infer the topological structure to obtain the measurement
matrix to further recover the original sensory data. Based on the messages
found from the same monitoring round, if one wants to infer the topological
structure to build the measurement matrix with N columns (where N is
the number of sensor nodes), the complexity of identifying the first column
is O(N). Similarly, after identifying the first column, the complexity of
identifying the second column is O(N−1). For a WSN consisting of N sensor
nodes, the overall complexity of inferring the correct topological structure to
build the measurement matrix required in the compressive sensing theory is
O(N !).

Third, one should infer the real message under the condition of not know-
ing the secret key. Attackers can collect data from a compromised node, but
the data on every node is the product of encrypted data from the compro-
mised node and its previous nodes. If attackers want to infer messages of
compromised node and its former nodes from the attacked node while not
knowing the messages from former nodes, they need to estimate the maxi-
mum value of messages and determine the real data in the range of zero and
the maximum. The number of nodes in network topological structure is usu-
ally large; thus, an attacker cannot compromise every node to collect data
but can only estimate the real message in part from the compromised nodes.
Assuming q = max(xi(t)) is the estimated maximum, the complexity of find-
ing the correct data of one node in the range of 0 and q is O(q + 1). There
are N nodes in our topological structure; then the complexity of finding all
the plaintext on every node is O((q + 1)N).

Based on the analysis above, the overall complexity for an attacker to infer
the message by brute force is O(CM

MW (N ! + (q + 1)N)), which is in factorial
and exponential order. Therefore, if one wants to infer our message by brute
force attack, it is impossible with the huge computation power needed.

The complexities of decryption by secret key at the sink and brute force
are related to the number of nodes in the topological structure. With increas-
ing node number, the complexity increases almost linearly when decrypted
by the secret key, and increases exponentially when decrypted by the brute
force. As shown in Fig. 5, when the node number increases from 50 to 100,



the complexity of normal decryption on the sink increases from 62 to 63.3,
and the logarithm of complexity of brute force increases from 72 to 165.
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Figure 5: Complexity of decryption when K=4, W=5, q=10, M=8 and n=1000

6. Simulation

We implement our scheme and the Advanced Encryption Standard (AES)
[19] for performance comparisons. AES is a symmetric block cipher that can
encrypt and decrypt information. It is a standardized encryption algorithm
and has become the default choice in numerous applications. In this com-
parison, our scheme is called CS-HE, and we implement it in the network for
data gathering. Different from our scheme, we implement the AES encryp-
tion algorithm in the network where each intermediate node needs to make
decryption and encryption operation upon a message’s arrival.

We take the end-to-end delay as the performance metric to evaluate per-
formance. The above two algorithms are evaluated through extensive simu-
lations using NS-2. In the simulations, 100 nodes are generated randomly in
a 600 m × 600 m area. The sink node is located in the center of the area.
The maximum communication range of each node is set to 70 meters. All the
simulation results are obtained by averaging over 20 runs of simulations. We
use the Bernoulli matrix as the measurement matrix for compressive sensing
which is generated following the descriptions in Section 4.2. To evaluate the
performance of the proposed scheme under different packet sizes, we vary the
simulated packet size from 64 to 256.

Fig. 6 shows the simulation results. The end-to-end delay of our scheme
is correlated with the packet size and the largest hop number from all sensor
nodes to the sink. As expected, the end-to-end delay increases with the
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Figure 6: End to end delay under different hop numbers.

increase of the number of hops, as more node participation in data relays
would invoke more homomorphic operations. Meanwhile, the delay increases
with increasing packet size.

Compared with AES algorithm, our scheme has much lower end-to-end
delay. AES algorithm requires every intermediate relay node to decrypt the
messages received before making arithmetical operation on them; and then
encrypts the operation results before forwarding. Both encryption and de-
cryption operations introduce extra network latency. In contrast, our scheme
frees the intermediate relay nodes from the complicated encryption and de-
cryption operations. Intermediate nodes carry out arithmetical operation on
the ciphertext as if they were plaintext, which saves much time for the whole
process.

7. Conclusion

In this paper, we propose an Efficient Privacy-Preserving Compressive
Data Gathering Scheme to protect against traffic analysis and flow trac-
ing in WSNs. With the lightweight homomorphic encryption exploited, the
proposed scheme offers two significant privacy preserving features, packet
flow untraceability and message content confidentiality, which can efficient-
ly thwart traffic analysis/flow tracing attacks. Moreover, with homomor-
phic encryption, the proposed scheme keeps the essence of compressive data
gathering, and each sink can recover the original sensory reading through
CS reconstruction algorithm after the sink decrypts the messages received.



We have performed extensive performance evaluations and security analysis,
which demonstrates that our scheme not only has good security features to
protect privacy but also has a low computation and communication overhead.
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