BRVST: Efficient and Content-Expressive Information Matching Overlay in Wireless Networks

Ying Li and Xin Wang
Department of Electrical and Computer Engineering
Stony Brook University
Email: {yingli, xwang}@ece.sunysb.edu

Abstract—Efficient and flexible information matching over wireless networks has become increasingly important and challenging with the popularity of smart devices and the growth of social-network-based applications. Some existing approaches designed for wired networks are not applicable to wireless networks, due to their overwhelming control overheads. In this paper, we propose a reliable and scalable binary range vector summary tree (BRVST) infrastructure for flexible information expression support, effective content matching and timely information dissemination over the dynamic wireless network. A novel attribute range vector structure has been introduced for efficient and accurate content representation and a summary tree structure to facilitate information aggregation. For robust and scalable operations over dynamic wireless network, the proposed overlay system exploits a virtual hierarchical geographic management framework. Extensive simulations demonstrate that BRVST has a significantly faster event matching speed, while incurs very low storage and traffic overhead, as compared with peer schemes tested.

I. INTRODUCTION

With the drastic growth of social and wireless application information data generated and consumed, it is emergent to establish a bridge infrastructure that can timely and accurately discovers and delivers the information to various parties of interests.

As an example of new era information service, a smartphone user in a downtown block wants to obtain a recommendation for some restaurants while people close-by may be also searching for the same type of information. Another user just stepping out of a Thai cuisine is satisfied with the dining experience and would like to share this place with others. Other applications include traffic information posting and retrieval where users cooperatively contribute to and benefit from the real-time traffic reports.

These applications can be better met by a "contribute-and-benefit“ pattern system. Publish/Subscribe (Pub/Sub) system is one of this type, in which subscribers specify their interests and publishers post advertisements. The system matches subscriptions with publications. Unlike client/server models, the Pub/Sub model decouples time, space, and flow between publishers and subscribers to provide flexibility in information distribution.

Gryphon [1] and SIENA [2] were once popular Pub/Sub models in wire-line networks, however, their tree-based structure are not scalable in dynamic wireless network whose topology may constant change due to mobility and connection broken.

Many later attempts have been made to apply Pub/Sub infrastructure for wireless networks [3] [4] [5], where the information in the systems is roughly divided into several basic types. These platforms cannot efficiently support heterogeneous user application needs.

Different from conventional Pub/Sub systems which mainly categorize information into a few types for ease of implementation, the modern information system is expected to better meet the customized information needs of individual users. Besides the difference in categories, the heterogeneity of information is more generally resulted from different values or contents for the same type of information. In the restaurant recommendation example, the difference in the service time of a day or the average price level would totally distinguish restaurants and draw the interests of different groups of consumers, even when they provide the same type of foods. Simply ascribing information into coarse types (food, movie, car, etc.) cannot meet most application needs. On the other hand, completely expressing every detail of the information in words and matching over them is not feasible in reality. We need an information system that supports rich and accurate information content expression while efficiently reducing the representation complexity.

In this paper, we propose a reliable and scalable content-expressive information matching and dissemination infrastructure in a large-scale mobile wireless network, which utilizes novel and efficient components as well as a location-based virtual management infrastructure for efficient storage, lightweight communications, and quick information match.

The main contributions of our work are:

- We propose a mechanism to flexibly and efficiently represent information with the combination of a set of elementary tuples for numerical expression of the content.
- We propose a novel Attribute Range Vector that allows flexible vector length adjustment based on the information accuracy requirement, and supports a unique simple bitwise operation for quick content matching check, to facilitate accurate content representation as well as low-overhead in storage and transmission.
- We propose a Summary Tree structure to facilitate efficient aggregation of information, which significantly reduces the overhead for storing and transmitting infor-
II. RELATED WORK

There are lots of studies on developing information matching mechanisms, among which Publish/Subscribe systems are once prevalent. However, the work on Pub/Sub systems over wireless networks is far less mature than that in wired networks.

Very few efforts have been made to support flexible content-based information matching and dissemination over wireless networks. One of the challenges is to accurately represent the content which often has a value range and to support efficient query on the ranges. R-Tree [6] supports range query for a single content attribute, but the structure consumes too large space when the information is composed of multiple attributes. Bloom Filter can also be modified to support range query. MDSBF [7] combines multiple bloom filters with each one representing one attribute of the content. However, this can easily get into computational bottleneck as information volume increases, because the query on each attribute bloom filter requires several hashing operations. TAMA [8] has its own design to express numeric ranges. Its fixed granularity-level design, however, lacks the ability to balance between content representation accuracy and storage efficiency. Besides, TAMA maintains information in tables without aggregation, which is not efficient in both space and time complexity. Instead, our novel variable-length attribute range vector, which supports convenient aggregation, can not only flexibly represent numeric range of content to any desired accuracy level with low storage space, but also take advantage of simple bitwise operations to facilitate efficient information matching.

Other types of systems such as [9] by Picco et al. assume tree-based topologies, which are hard to maintain and vulnerable to network topology changes. To avoid this drawback, the wireless network can be divided into regions for more efficient management and information distribution. DRIP [3] groups nodes registered to different broker nodes into Voronoi regions whose shape and size could change over time. However, it may involve a high overhead to maintain the topology region especially over a mobile network. Based on virtual infrastructure, our design avoids the high overhead of region maintenance and also facilitates information aggregation to minimize information update changes.

III. MODEL BASICS AND SYSTEM OVERVIEW

In this work, we adopt the notion of Publication and Subscription to distinguish information from the generators and to the consumers. The whole information space is built up with the basic element - attribute (A_i, $i = 1, 2, ...$), which contains attribute name (a_n) specifying the identification of an attribute (numeric ID in realization), and attribute value (a_v) that specifies the content and is usually a numeric point or range. i.e. $A_i = \{a_n, a_v\}$.

A subscription s is a conjunction of n attributes: $s = \{A_1 \land \cdots \land A_n\}$. A publication p is a disjunction of attributes: $p = \{A_1 \lor \cdots \lor A_n\}$, and is also referred to as an event. Conventionally the attribute value of a subscription could either be a numeric point or a range, while that for publication is assumed only to be a numeric point, and many literature studies [8] [10] have followed this convention. However, very often some attributes of the information, when generated, are not absolute point values. For example, the video surveillance data could have its time attribute as a range which confines the start and end points of a video segment. So our design also supports range value for a publication attribute.

We assume all data published are trustful, and there is no fraud or spam. Detecting malicious data is not our focus.

For users to get more precise information, we consider a publication and a subscription to match each other iff: for each attribute existing in the subscription, the same attribute must also exist in the publication; and for the common attributes, those from the publications must have their value ranges contained by the value ranges of the corresponding attributes in the subscription. i.e. $\forall A^s \subseteq s, \exists A^p \subseteq p: (a_n^s = a_n^p, a_v^s \subseteq a_v^p)$, where the superscript s denotes the subscription, while p denotes the corresponding terms for a publication.

In order to make the infrastructure scalable and more robust to the network dynamics, we introduce a virtual management infrastructure where the network space is mapped into virtual zones each consisting of a set of virtual grids (Fig. 1). With many wireless devices equipped with GPS receivers or having other methods of localization [4], the grid and zone which a node belongs to can be easily calculated based on node location in reference to a reference virtual origin and a predetermined grid or zone size [11]. There is no need of a complicated scheme to create and maintain the virtual grids or zones. The grid size can be determined by the system based on the application scenarios and performance tradeoffs. Its effects is studied in Section V.

Each grid can elect a Grid Manager (GM) for Pub/Sub message collection, aggregation and matching within the grid. Each zone also has a Zone Manager (ZM) responsible for Pub/Sub aggregation, matching, data catching over grids within the zone. The schemes for leader election and maintenance have been proposed by many literature work [11] which can be leveraged in our system. The managers can be static or mobile, depending on the system application scenarios.

Event matching and Pub/Sub message update are both performed on demand. Subscriptions and publications in a grid...
are collected and aggregated. Although nodes may frequently move in and out of a grid, the aggregate filter may stay unchanged. Messages are sent to the upper level ZM only upon the change of aggregate filter. This will significantly reduce the overhead for Pub/Sub message transmission and matching in a dynamic wireless network. A ZM maintains the Pub and Sub information of the grids within its zone with efficient data structures to be introduced in Section IV, and the Pub/Sub information of the whole zone can be similarly further aggregated. As many mobile users have interests in close-by information, the aggregate filters only need to be shared among nearby zones or zones identified with Pub/Sub relationship.

Any new subscription or publication will trigger the event matching process within its own zone first, then matching at other zones whose aggregate filters imply potential chance of match will initiate. This will significantly reduce the data matching and distribution overhead. Once a publication is matched with one or more subscribers, the overlay structure will then deliver the data to these destinations using the stateless geographic multicasting, RSGM [11], for reliable and low overhead transmissions. The detailed routing process is beyond the scope of this paper.

IV. BIDIRECTIONAL CONTENT MATCHING

In many conventional Pub/Sub systems, the subscriptions are specified before the publications. However, some subscribers may indicate their interests on some data that have been published before. Simply throwing away the published data when they cannot match the current subscriptions would waste the system resources consumed for the information matching and distribution. Instead, if the publications can be stored even if they did not find match, the system could immediately deliver the data to later subscribers once they have interests.

In this work, we propose an efficient bi-directional content matching infrastructure, so that newly published data will be timely distributed to existing subscribers matched and new subscriptions can also trigger the retrieving of interested data already published quickly. In face of the challenge of representing the rich contents while not significantly sacrificing system performance, we novelty propose simple binary bit vectors and summary tree structure to facilitate flexible content-expressive information matching and dissemination processes at low overhead for storage, transmission and computation.

A. Binary Vector and its Operations

Content-based information system can potentially support flexible user information need, but at the same time poses high challenges for information representation and matching. We introduce simple Attribute Range Vector to facilitate lightweight content-expressive management while not compromising the accuracy of information matching.

1) Attribute Range Vector (ARV): We propose a binary bit vector named Attribute Range Vector (ARV) to flexibly represent the numeric range values of an attribute, referred as the target range. The target range could be a single point value as well. An ARV has a small size and is easy to process. The numeric value of an attribute is generally limited within predefined boundaries, which can be determined in advance by the system based on some common knowledge. For example, the temperature of the weather has an lower and upper limit in physical world. A subscriber could indicate her interest by setting a target range within the limit defined by the system. To facilitate flexible range matching, the predefined limit range is divided into N smaller equal segments, while the value of N can vary based on the matching accuracy requirement. An N-bit ARV is formed by representing whether a segment matches a content range, following the steps below:

Step0: Set the initial segment to be the whole predefined limit range.

Step1: Check if the target attribute value range falls into some existing segments with each occupied more than (percentage) of the segment range, an accuracy threshold desired. If so, goes to the next step; otherwise divide each of the current segments into equal halves, and continue this step.

Step2: Make an N-bit vector with N equal to the current number of segments, with each bit indicating if the attribute range overlaps the corresponding segment range. 1 yes, and 0 no.

From the above ARV construction process, we can see that the number of bits of the vector can only be the power of 2, i.e., \(N = 2^i \), \(i = 0, 1, 2, 3,... \), and the length of ARV can be continuously doubled until a desired representation accuracy is achieved. The threshold \(\alpha \) trades off between accuracy and simplicity of the message representation.

For example, the attribute \(Age \), often involved in social network applications, is limited within 0 to 100. Three subscriptions that contain the attribute \(Age \) are: \(Age_{\text{sub1}} 1-48 \), \(Age_{\text{sub2}} 26-47 \), and \(Age_{\text{sub3}} 38-60 \). Their corresponding ARVs are obtained by constructing a split tree following the above steps as shown in Figure 2, with the level \(i \) having \(2^i \) segments. Suppose the threshold \(\alpha \) is set to 90% in this example. \(Age_{\text{sub1}} \) falls into the segment 0-50 and the fitting ratio of the target range 1-48 is 48/50, which is larger than the threshold \(\alpha = 90\% \). So this segment is accurate enough to represent the target range and the ARV for \(Age_{\text{sub1}} \) is 10.
Age\textsubscript{Sub2} apparently falls into the 0-50 segment of level 1, however, this range is not very accurate. We further divide the overall range into 4 new segments at the level 2, so the range 26-47 falls into the segment 25-50. We can use 4-bit vector 0100 to represent this 4-segment coverage, with the left most bit standing for the segment of the lowest value. The target range 38-60 of Age\textsubscript{Sub3} spans across the 0-50 segment and the 50-100 segment at the first-level of the split tree, but these two segments are inaccurate in representing the target range. If we go deeper into the level 3, the segment 37.5-50 & 50-62.5 will be accurate enough with the resulting ARV 00011000.

A shorter ARV is always preferable to reduce the transmission and storage overhead. The ARV bit vector is checked after each modification for the potential of simplification. Except level 0, the number of bits in an ARV is always even and in the power of 2. When the length of ARV is larger than 1, starting from one side of the vector, if every consecutive 2-bit has the same value (both '1' or both '0'), the length of the vector can be reduced into half by taking every other bit to form a new ARV. For example, 1100 can be reduced to 10 without losing the accuracy. This indicates that the segment 0-50 can represent the merge of the ranges 26-47 and 1-48. As the accuracy level for each segment is ensured to be higher than \(\alpha\), the accuracy of the ARV will not be impacted when it is scaled up or down. The merge operation is always carried at the length of longest ARV thus over the finest level of segments, and the merge of ARV will maintain the accuracy level. The ARV’s merit for convenient merge operation is critical to information aggregation which contributes to very low storage and transmission overhead.

3) Match of ARVs: Our purpose of introducing ARV is to facilitate fast information matching, which could be easily achieved with fast bit-wise operations under the following conditions:

A subscription, represented by conjunctions of attributes like \(A \land B \land C\), where \(A, B\) and \(C\) are three different attributes, is considered to be matched only if all the attributes are satisfied. A publication is allowed to have additional attributes than \(A \lor B \lor C\), i.e. \(A \lor B \lor C \lor F \lor G\), to still be considered as matching the subscription, as long as all the attributes of the subscription \((A, B\) and \(C\) in this example) are satisfied on their values. This convention intuitively means that subscribers will always accept information that is more elaborate than their expectations.

For differentiation and ease of referral, an subscription and publication attribute range vector are called respectively an S-ARV and P-ARV. If one or more attributes of the subscription are not included by the publication, we can immediately claim they do not match each other, given the conditions above. Otherwise they are further checked. First all the S-ARVs and P-ARVs are respectively concatenated following the corresponding order as shown in Figure 3, with all the redundant P-ARVs ignored and each corresponding pair of P-ARV and S-ARV scaled to the same length. Then the Sub and Pub are considered to match each other if and only if all bits after the following operations are 0: The cascaded P-ARVs vector and S-ARVs vector first have the bitwise AND operation, and the result XOR with the original cascaded P-ARVs vector.
The result is not all ‘0’ thus not match

Algorithm 1 shows how to add a subscription into the current summary forest. On lines 3-10, a new subscription will become either the child or the parent of an existing root, depending on whether it contains all the attributes of a root or all of its attributes are contained by a root of the forest, with the value ranges of corresponding common attributes overlapping each other. Otherwise, the subscription will be made a new stand alone root, as shown on lines 12 and 16. On line 18, after inserting the new subscription, the summary value range attached to the root of the affected tree will be updated. Line 19 checks whether trees can be merged to one another to reduce the number of trees in the forest, i.e., the size of the forest, every time the summary value range of a tree is changed, by examining whether one tree root can be
inserted as the child of another tree root following the similar criteria.

Algorithm 1 Adding a subscription s into the summary forest

1: if there are already nodes in the forest then
2: for each root node R_i of the forest do
3: if the subscription s contains all the attributes in R_i then
4: if the summary value range of each attribute in R_i overlaps that of s then
5: insert s as the child of R_i into the summary tree;
6: end if
7: else if R_i contains all the attributes of s then
8: if each attribute value range of s overlaps the summary value range of the same attribute in R_i then
9: make s the parent of R_i as the new root;
10: end if
11: else
12: make s a new root of the forest;
13: end if
14: end for
15: else
16: make s a new root of the forest;
17: end if
18: Adjust the summary value range of the affected tree.
19: Check whether the forest can be reduced by merging trees.

For illustration, suppose a grid has the following subscriptions with letters representing different attribute names: $A(0-50), B(10-50), A(0-25)B(15-45), A(25-100)B(30-40)C(13-27), B(25-50)F(5-10), E(0-30)F(25-35), B(5-45)E(5-10)G(0-100), E(0-10)F(30-45)H(5-15)$. Applying them one after another with Algorithm 1 will generate a summary forest as shown in Figure 4.

Algorithm 2 Removing a subscription s from the forest

1: if s is a root of the forest then
2: delete the tree originated from root s;
3: for each children node of s do
4: apply Algorithm 1;
5: end for
6: else
7: delete s from the summary tree;
8: end if
9: Adjust the summary value range for each affected tree.
10: Check whether the forest can be reduced by merging trees.

Algorithm 2 works to remove a node in response to unsubscripton. On lines 1-5, if the subscription to be deleted is the root of a tree, then this whole tree is removed with all the non-root nodes reinserted into the forest by applying algorithm 1 one by one. If the subscription is not a root, it is simply deleted from the tree as shown on lines 6-7. Then the affected trees will have their summary value ranges updated accordingly on line 9. Line 10 works similarly as the last line of Algorithm 1 to reduce the forest size.

Each GM will maintain a subscription summary forest, and updates the trees in response to the changes of subscription from individual subscribers within the grid. When a node wants to send a new subscription, modify or unsubscribe its existing subscription, it will send a message with the affected sub through on-demand light-weight geographic routing [12] to the GM. The GM will either insert or delete the subscription following the Algorithm 1 or 2. A new action may change the representative set. In many cases, however, individual subscription changes will not lead to the change of the aggregated information summary at the root level of the tree. This feature is very important. It helps to increase the stableness and significantly reduce the information maintenance overhead in a wireless environment with possible constant node movement and thus frequent subscription changes. The representative set is forged into a vector, named Grid Representative Set Vector (GRSV) as shown in Figure 5 by cascading each subscription from the representative set. The GRSV will be sent to the ZM upon its change to reduce the update overhead.

Fig. 5. The ZM converts the GRSVs received from belonging grids into SOF, then converts it into ZRSV by summary tree scheme.

2) Subscription Maintenance at the Zone Manager: Each zone manager maintains a subscription origin form (SOF) generated based on the GRSVs sent by grids with subscriptions within its zone, as shown in Figure 5. The representative subscriptions from the grids will again be aggregated through the summary tree scheme similar to that at the grid level. We cascade each subscription of the resulting representative set to form a long vector - Zone Representative Set Vector (ZRSV). The ZRSVs are exchanged among ZMs to guide the publication distributions. The SOF will be updated if there is a GRSV update, but similar to the grid level aggregation, an individual update in SOF may not lead to ZRSV change. The aggregation helps to reduce the message distribution and simplify the information matching process, which is more critical for dynamic wireless networks. The ZRSV only needs to be distributed to relevant zones upon changes, after a given period, or when the zone receives unwanted traffic. Each ZM maintains the ZRSVs received from neighboring zones and zones interested in its publications (learned from previous successful match processes) to guide the distribution of published data.

C. Match a Publication over Subscriptions

When a node generates a publication, it will send the data along with the publication ARVs describing the data to its GM. GM will perform a match within its grid by comparing
the publication ARVs with its representative Sub set, i.e., the roots with summary ranges of the summary forest, using the matching rule defined in Section IV-A3. If a root is matched, each of its tree node is further examined to precisely find the subscribers. The data will be forwarded to the identified subscribers through on-demand stateless geographic multicast scheme [11]. No matter local matches are found or not, GM will forward the data along with the P-ARVs and the grid ID to the zone manager.

The ZM will match the P-ARVs against its SOF, to decide which grids within the zone to forward the data to for further matching at GM level. It also matches against all ZRSVs for other zones it maintains. The data along with the publication P-ARVs and the zone ID will be multicasted towards the centers of the zones that match this publication. Once the data reach a target zone, they will be forwarded to the ZM which will match the Pub with each item of the SOF. The data will be multicast to the matched grids, where the GMs will again multicast the data finally to the matched subscribers.

As mentioned earlier, each ZM only actively maintains the ZRSVs of its neighbors. However, other zones may also have subscribers to its publication. If the publication ARVs associated with a publisher are seen by the ZM the first time or after a given time period since its last global distribution, the ARVs will be multicasted to all zones to inform them the existence of new publications. A zone \(x \) with the matched ZRSV will send to the ZM its ZRSV, which will be maintained by the ZM along with other ZRSVs. ZM will multicast publication data to the zones with matched ZRSVs. A zone will update its ZRSV to the publication zone following the ZRSV update rules described earlier. A ZRSV will be removed if there are no data match with it for a predefined timeout period. To further reduce the overhead, for a large system, the period of sending the publication ARVs to farther-away zones can be made larger as generally the information has location constraints. In addition, a zone without any data matched with some subscriptions could also actively search for publishers by broadcast a query message within certain range or query the ZMs within certain zone-hop distance.

D. Publication Caching and Match

Publications may not match any subscription in a single attempt, and a subscriber may want to retrieve earlier published data. Conventional studies generally assume publications always get matched; if not, the unmatched publications are simply discarded. This would waste the system resources that have been used in generating, matching and distributing these published data, and also cannot meet the users’ urgent needs for previously published data if discarded. In this work, we introduce publication caching to facilitate bidirectional matching which also supports matching a subscription over cached publications. A zone manager receiving a publication will cache the data at the ZM or designated storage server for a predefined duration, and records the ARVs of this publication along with its source node’s ZID and GID. In case that the caching space is running out, data with least matching-hit records will be removed.

A ZM holds SOFs of its own zone and ZRSVs of other relevant zones. Upon the update of the SOF or ZRSV, the ZM will compare the changed SOF or ZRSV with the ARVs of the cached publication so that the matched subscribers can get the interested data right away.

V. SIMULATION AND PERFORMANCE EVALUATION

We implement BRVST using NS2.34. The focus of BRVST is on information content matching and forwarding mechanisms, and the underlying routing scheme follows SOGR [12] and RSGM [11] for on-demand robust unicast and multicast respectively. 400 nodes are randomly distributed initially in a network region of size 1000m x 1000m to reflect the real-world mobile user density. In our default setting, the network is divided into 4 equal zones with 4 equal grids inside each. These numbers will vary when studying the impact of grid size on system performances. The node movement follows the improved Random Waypoint model [13]. All the nodes including the autonomously elected GM and ZM could move following the model. The wireless channel propagation model is set to be TwoRayGround, and 802.11a is adopted as the MAC protocol with an average transmission range of 80m. Publications and subscriptions are generated by randomly selected nodes. Each publication or subscription has one to three attributes, which are randomly selected from a predefined set of 15. The range of an attribute is also randomly generated within a predefined range limit based on the attribute type. If not otherwise specified, the average node moving speed is set to 5 m/s, the Pub and Sub generation rates are both set to 200/minute, and the accuracy threshold \(\alpha \) is set to 90%.

There is very limited number of studies closely related to ours. For performance references, we select two existing Pub/Sub schemes, DRIP and TAMA, that are partly comparable to our work. DRIP [3] (INFOCOM’08) is proposed for wireless networks which group nodes into Voronoi regions to manage the network, while BRVST introduces geographic zones to facilitate management and information distribution. TAMA [8] (ICDCS’11) is a middleware for content matching, but is not specified for wireless networks. To be fair, we compare the impact of node mobility on the matching time for DRIP and BRVST in wireless environment, without including TAMA. The number of Voronoi regions for DRIP is also set to 16 under the same region area and node density. Since TAMA also considers using attribute range to describe contents, we compare it with BRVST on the false positive rate. The management overhead involved for storing and transmitting publication and subscribe filters are compared among all three schemes.

A. Matching Time

It is equally important for both the information provider and consumer to be served as fast as possible, so we evaluate the time for an emergent publication and an emergent subscription to get matched separately.
When the average moving speed is higher than 10 m/s, where based management overhead. The delay becomes more severe of DRIP increases significantly as a result of its broadcast-

mission of management messages. In Figure 8-ii(a), the over-

head increases exponentially due to its inefficient storage space. BRVST exploits range-based aggregate scheme, so its storage space is much smaller in volume. With the need of storing a delay list of unprocessed messages at broker nodes and regular network nodes, DRIP has much higher storage overhead, and the overhead increases quickly with the load.

In Figure 8-i(b), the storage overhead at brokers for all three schemes increase linearly with the load. DRIP has a much higher increasing rate with its need of maintaining information of both non-broker nodes and other brokers, as well as the subscriptions and publications of all the nodes in the network. Both TAMA and BRVST exploit range-based content representation to reduce the storage space. BRVST exploits space efficient aggregate scheme, so its storage space is 60% lower than that of TAMA.

We compare DRIP and BRVST on the overhead for transmission of management messages. In Figure 8-ii(a), the overhead of DRIP increases exponentially due to its inefficient broadcast mechanism. BRVST does not require significant overhead to maintain its zone and grid infrastructure, and nodes could move across regions within the average matching duration. Based on light-weight virtual management infrastructure, BRVST has much more stable performance in the mobility case.

In Figure 7-(b), the matching time is seen to first reduce with grid size and then increase. As the grid size increases, the number of grids decreases so does the number of zones, while the number of nodes in a grid increases. In a larger grid, messages are more likely to get matched within the grid or zone, and there are fewer other zones to check with. However when the grid size gets too large, messages need to interact over longer distance with GMs and ZMs. In addition, a large number of nodes also result in more filters in a grid which incurs a longer matching time.

B. System Maintenance Overhead

We compare the overhead for storing and transmitting management messages at broker nodes and regular network nodes respectively. In Figure 8, the publication and subscription rates increase at the same speed.

In Figure 8-i(a), TAMA and BRVST both have lower storage overhead at regular nodes, as these nodes do not store publication and subscription information. Specifically, BRVST only requires each node to keep a few ID numbers which are very small in volume. With the need of storing a delay list of brokers and neighboring information, DRIP has much higher storage overhead, and the overhead increases quickly with the load.

In Figure 8-i(b), the storage overhead at brokers for all three schemes increase linearly with the load. DRIP has a much higher increasing rate with its need of maintaining information of both non-broker nodes and other brokers, as well as the subscriptions and publications of all the nodes in the network. Both TAMA and BRVST exploit range-based content representation to reduce the storage space. BRVST exploits space efficient aggregate scheme, so its storage space is 60% lower than that of TAMA.

We compare DRIP and BRVST on the overhead for transmission of management messages. In Figure 8-ii(a), the overhead of DRIP increases exponentially due to its inefficient broadcast mechanism. BRVST does not require significant overhead to maintain its zone and grid infrastructure, and nodes could move across regions within the average matching duration. Based on light-weight virtual management infrastructure, BRVST has much more stable performance in the mobility case.

In Figure 7-(b), the matching time is seen to first reduce with grid size and then increase. As the grid size increases, the number of grids decreases so does the number of zones, while the number of nodes in a grid increases. In a larger grid, messages are more likely to get matched within the grid or zone, and there are fewer other zones to check with. However when the grid size gets too large, messages need to interact over longer distance with GMs and ZMs. In addition, a large number of nodes also result in more filters in a grid which incurs a longer matching time.

B. System Maintenance Overhead

We compare the overhead for storing and transmitting management messages at broker nodes and regular network nodes respectively. In Figure 8, the publication and subscription rates increase at the same speed.

In Figure 8-i(a), TAMA and BRVST both have lower storage overhead at regular nodes, as these nodes do not store publication and subscription information. Specifically, BRVST only requires each node to keep a few ID numbers which are very small in volume. With the need of storing a delay list of brokers and neighboring information, DRIP has much higher storage overhead, and the overhead increases quickly with the load.

In Figure 8-i(b), the storage overhead at brokers for all three schemes increase linearly with the load. DRIP has a much higher increasing rate with its need of maintaining information of both non-broker nodes and other brokers, as well as the subscriptions and publications of all the nodes in the network. Both TAMA and BRVST exploit range-based content representation to reduce the storage space. BRVST exploits space efficient aggregate scheme, so its storage space is 60% lower than that of TAMA.

We compare DRIP and BRVST on the overhead for transmission of management messages. In Figure 8-ii(a), the overhead of DRIP increases exponentially due to its inefficient broadcast mechanism. BRVST does not require significant overhead to maintain its zone and grid infrastructure, and nodes could move across regions within the average matching duration. Based on light-weight virtual management infrastructure, BRVST has much more stable performance in the mobility case.

In Figure 7-(b), the matching time is seen to first reduce with grid size and then increase. As the grid size increases, the number of grids decreases so does the number of zones, while the number of nodes in a grid increases. In a larger grid, messages are more likely to get matched within the grid or zone, and there are fewer other zones to check with. However when the grid size gets too large, messages need to interact over longer distance with GMs and ZMs. In addition, a large number of nodes also result in more filters in a grid which incurs a longer matching time.
content. The most valuable contributions of BRVST are its introduction of a novel attribute range vector that can accurately represent information content with extreme efficiency both in space and computationally, and the summary tree concept that enables effective extraction and aggregation of information. All these proposed structures help significantly reduce storage and communication consumption as well as computation overhead, and ensure stable performance. Extensive simulations demonstrate that BRVST is reliable and scalable in large and dynamic wireless network conditions even under very high information load.

REFERENCES