
BRVST: Efficient and Content-Expressive
Information Matching Overlay in Wireless Networks

Ying Li and Xin Wang
Department of Electrical and Computer Engineering

Stony Brook University
Email: {yingli, xwang}@ece.sunysb.edu

Abstract—Efficient and flexible information matching over
wireless networks has become increasingly important and chal-
lenging with the popularity of smart devices and the growth of
social-network-based applications. Some existing approaches de-
signed for wired networks are not applicable to wireless networks,
due to their overwhelming control overheads. In this paper, we
propose a reliable and scalable binary range vector summary
tree (BRVST) infrastructure for flexible information expression
support, effective content matching and timely information dis-
semination over the dynamic wireless network. A novel attribute
range vector structure has been introduced for efficient and
accurate content representation and a summary tree structure
to facilitate information aggregation. For robust and scalable
operations over dynamic wireless network, the proposed overlay
system exploits a virtual hierarchical geographic management
framework. Extensive simulations demonstrate that BRVST has
a significantly faster event matching speed, while incurs very low
storage and traffic overhead, as compared with peer schemes
tested.

I. INTRODUCTION

With the drastic growth of social and wireless application
information data generated and consumed, it is emergent to
establish a bridge infrastructure that can timely and accurately
discovers and delivers the information to various parties of
interests.

As an example of new era information service, a smart-
phone user in a downtown block wants to obtain a recom-
mendation for some restaurants while people close-by may be
also searching for the same type of information. Another user
just stepping out of a Thai cuisine is satisfied with the dining
experience and would like to share this place with others.
Other applications include traffic information posting and
retrieval where users cooperatively contribute to and benefit
from the real-time traffic reports.

These applications can be better met by a "contribute-and-
benefit" pattern system. Publish/Subscribe (Pub/Sub) system
is one of this type, in which subscribers specify their inter-
ests and publishers post advertisements. The system matches
subscriptions with publications. Unlike client/server models,
the Pub/Sub model decouples time, space, and flow between
publishers and subscribers to provide flexibility in information
distribution.

Gryphon [1] and SIENA [2] were once popular Pub/Sub
models in wire-line networks, however, their tree-based struc-
ture are not scalable in dynamic wireless network whose

topology may constant change due to mobility and connection
broken.

Many later attempts have been made to apply Pub/Sub
infrastructure for wireless networks [3] [4] [5], where the
information in the systems is roughly divided into several
basic types. These platforms cannot efficiently support het-
erogeneous user application needs.

Different from conventional Pub/Sub systems which mainly
categorize information into a few types for ease of imple-
mentation, the modern information system is expected to
better meet the customized information needs of individual
users. Besides the difference in categories, the heterogeneity
of information is more generally resulted from different values
or contents for the same type of information. In the restaurant
recommendation example, the difference in the service time
of a day or the average price level would totally distinguish
restaurants and draw the interests of different groups of
consumers, even when they provide the same type of foods.
Simply ascribing information into coarse types (food, movie,
car, etc.) cannot meet most application needs. On the other
hand, completely expressing every detail of the information in
words and matching over them is not feasible in reality. We
need an information system that supports rich and accurate
information content expression while efficiently reducing the
representation complexity.

In this paper, we propose a reliable and scalable content-
expressive information matching and dissemination infrastruc-
ture in a large-scale mobile wireless network, which utilizes
novel and efficient components as well as a location-based
virtual management infrastructure for efficient storage, light-
weight communications, and quick information match.

The main contributions of our work are:
• We propose a mechanism to flexibly and efficiently

represent information with the combination of a set of
elementary tuples for numerical expression of the content.

• We propose a novel Attribute Range Vector that allows
flexible vector length adjustment based on the information
accuracy requirement, and supports a unique simple bit-
wise operation for quick content matching check, to
facilitate accurate content representation as well as low-
overhead in storage and transmission.

• We propose a Summary Tree structure to facilitate ef-
ficient aggregation of information, which significantly
reduces the overhead for storing and transmitting infor-

mation updates.
• Different from Pub/Sub systems, which generally match

the publication over predefined or existing subscriptions,
where subscribers usually have to wait, our scheme makes
the matching process bidirectional so that all information
can be promptly processed for matching.

The rest of the paper is organized as follows. In Section II,
some related works are discussed. Section III gives the system
basic conventions and an overview of the overlay structure.
Section IV outlines the detailed design and algorithms for
information matching of BRVST. Extensive simulations are
evaluated in Section V. We conclude the work in Section VI.

II. RELATED WORK

There are lots of studies on developing information match-
ing mechanisms, among which Publish/Subscribe systems
are once prevalent. However, the work on Pub/Sub systems
over wireless networks is far less mature than that in wired
networks.

Very few efforts have been made to support flexible content-
based information matching and dissemination over wireless
networks. One of the challenges is to accurately represent the
content which often has a value range and to support efficient
query on the ranges. R-Tree [6] supports range query for a
single content attribute, but the structure consumes too large
space when the information is composed of multiple attributes.
Bloom Filter can also be modified to support range query.
MDSBF [7] combines multiple bloom filters with each one
representing one attribute of the content. However, this can
easily get into computational bottleneck as information volume
increases, because the query on each attribute bloom filter
requires several hashing operations. TAMA [8] has its own
design to express numeric ranges. Its fixed granularity-level
design, however, lacks the ability to balance between con-
tent representation accuracy and storage efficiency. Besides,
TAMA maintains information in tables without aggregation,
which is not efficient in both space and time complexity.
Instead, our novel variable-length attribute range vector, which
supports convenient aggregation, can not only flexibly repre-
sent numeric range of content to any desired accuracy level
with low storage space, but also take advantage of simple bit-
wise operations to facilitate efficient information matching.

Other types of systems such as [9] by Picco et al. assume
tree-based topologies, which are hard to maintain and vulner-
able to network topology changes. To avoid this drawback, the
wireless network can be divided into regions for more efficient
management and information distribution. DRIP [3] groups
nodes registered to different broker nodes into Voronoi regions
whose shape and size could change over time. However,
it may involve a high overhead to maintain the topology
region especially over a mobile network. Based on virtual
infrastructure, our design avoids the high overhead of region
maintenance and also facilitates information aggregation to
minimize information update changes.

III. MODEL BASICS AND SYSTEM OVERVIEW

In this work, we adopt the notion of Publication and
Subscription to distinguish information from the generators
and to the consumers. The whole information space is built
up with the basic element - attribute (Ai, i = 1, 2, ...), which
contains attribute name (an) specifying the identification of an
attribute (numeric ID in realization), and attribute value (av)
that specifies the content and is usually a numeric point or
range. i.e. Ai = {an, av}.

A subscription s is a conjunction of n attributes: s =
{A1∧· · ·∧An}. A publication p is a disjunction of attributes:
p = {A1 ∨ · · · ∨ An}, and is also referred to as an event.
Conventionally the attribute value of a subscription could
either be a numeric point or a range, while that for publication
is assumed only to be a numeric point, and many literature
studies [8] [10] have followed this convention. However, very
often some attributes of the information, when generated, are
not absolute point values. For example, the video surveillance
data could have its time attribute as a range which confines
the start and end points of a video segment. So our design
also supports range value for a publication attribute.

We assume all data published are trustful, and there is no
fraud or spam. Detecting malicious data is not our focus.

For users to get more precise information, we consider a
publication and a subscription to match each other iff: for each
attribute existing in the subscription, the same attribute must
also exist in the publication; and for the common attributes,
those from the publications must have their value ranges
contained by the value ranges of the corresponding attributes in
the subscription. i.e.∀As ∈ s,∃Ap ∈ p : (apn = asn, a

p
v ⊆ asv),

where the superscript s denotes the subscription, while p

denotes the corresponding terms for a publication.
In order to make the infrastructure scalable and more robust

to the network dynamics, we introduce a virtual management
infrastructure where the network space is mapped into virtual
zones each consisting of a set of virtual grids (Fig. 1). With
many wireless devices equipped with GPS receivers or having
other methods of localization [4], the grid and zone which
a node belongs to can be easily calculated based on node
location in reference to a reference virtual origin and a pre-
determined grid or zone size [11]. There is no need of a
complicated scheme to create and maintain the virtual grids or
zones. The grid size can be determined by the system based on
the application scenarios and performance tradeoffs. Its effects
is studied in Section V.

Each grid can elect a Grid Manager (GM) for Pub/Sub
message collection, aggregation and matching within the grid.
Each zone also has a Zone Manager (ZM) responsible for
Pub/Sub aggregation, matching, data catching over grids with-
in the zone. The schemes for leader election and maintenance
have been proposed by many literature work [11] which can
be leveraged in our system . The managers can be static or
mobile, depending on the system application scenarios.

Event matching and Pub/Sub message update are both
performed on demand. Subscriptions and publications in a grid

ZM1

3 111...11 9 110...10 17 111...01ZRSV_2 12 011...01

3 111...11 7 011...00GRSV_3

 zoom in
zone

1
zone

2

zone
3

zone
4

3 111...11 9 110...10GRSV_1

Zone 2

ZM1 Zone Manager

Grid Manager

Normal node

Fig. 1. An example system where each zone has 9 grids. The zone manager
collects Pub/Sub messages from grids within the zone and aggregates them
into control messages to exchange with other zones.

are collected and aggregated. Although nodes may frequently
move in and out of a grid, the aggregate filter may stay
unchanged. Messages are sent to the upper level ZM only
upon the change of aggregate filter. This will significantly
reduce the overhead for Pub/Sub message transmission and
matching in a dynamic wireless network. A ZM maintains
the Pub and Sub information of the grids within its zone with
efficient data structures to be introduced in Section IV, and the
Pub/Sub information of the whole zone can be similarly further
aggregated. As many mobile users have interests in close-by
information, the aggregate filters only need to be shared among
nearby zones or zones identified with Pub/Sub relationship.

Any new subscription or publication will trigger the event
matching process within its own zone first, then matching at
other zones whose aggregate filters imply potential chance
of match will initiate. This will significantly reduce the data
matching and distribution overhead. Once a publication is
matched with one or more subscribers, the overlay structure
will then deliver the data to these destinations using the
stateless geographic multicasting, RSGM [11], for reliable and
low overhead transmissions. The detailed routing process is
beyond the scope of this paper.

IV. BIDIRECTIONAL CONTENT MATCHING

In many conventional Pub/Sub systems, the subscriptions
are specified before the publications. However, some sub-
scribers may indicate their interests on some data that have
been published before. Simply throwing away the published
data when they cannot match the current subscriptions would
waste the system resources consumed for the information
matching and distribution. Instead, if the publications can be
stored even if they did not find match, the system could
immediately deliver the data to later subscribers once they
have interests.

In this work, we propose an efficient bi-directional content
matching infrastructure, so that newly published data will
be timely distributed to existing subscribers matched and
new subscriptions can also trigger the retrieving of interested
data already published quickly. In face of the challenge of
representing the rich contents while not significantly sacrific-
ing system performance, we novelly propose simple binary
bit vectors and summary tree structure to facilitate flexible

content-expressive information matching and dissemination
processes at low overhead for storage, transmission and com-
putation.

A. Binary Vector and its Operations
Content-based information system can potentially support

flexible user information need, but at the same time poses
high challenges for information representation and matching.
We introduce simple Attribute Range Vector to facilitate light-
weight content-expressive management while not compromis-
ing the accuracy of information matching.

1) Attribute Range Vector (ARV): We propose a binary
bit vector named Attribute Range Vector (ARV) to flexibly
represent the numeric range values of an attribute, referred
as the target range. The target range could be a single point
value as well. An ARV has a small size and is easy to process.
The numeric value of an attribute is generally limited within
predefined boundaries, which can be determined in advance by
the system based on some common knowledge. For example,
the temperature of the weather has an lower and upper limit
in physical world. A subscriber could indicate her interest by
setting a target range within the limit defined by the system. To
facilitate flexible range matching, the predefined limit range is
divided into N smaller equal segments, while the value of N
can vary based on the matching accuracy requirement. An N -
bit ARV is formed by representing whether a segment matches
a content range, following the steps below:

Step0: Set the initial segment to be the whole predefined
limit range.

Step1: Check if the target attribute value range falls into
some existing segments with each occupied more
than α (percentage) of the segment range, an accu-
racy threshold desired. If so, goes to the next step;
otherwise divide each of the current segments into
equal halves, and continue this step.

Step2: Make an N -bit vector with N equal to the current
number of segments, with each bit indicating if the
attribute range overlaps the corresponding segment
range, 1 yes, and 0 no.

From the above ARV construction process, we can see that
the number of bits of the vector can only be the power of 2,
i.e., N = 2i, i = 0, 1, 2, 3..., and the length of ARV can be
continuously doubled until a desired representation accuracy
is achieved. The threshold α trades off between accuracy and
simplicity of the message representation.

For example, the attribute Age, often involved in social
network applications, is limited within 0 to 100. Three sub-
scriptions that contain the attribute Age are: AgeSub1 1-48,
AgeSub2 26-47, and AgeSub3 38-60. Their corresponding
ARVs are obtained by constructing a split tree following the
above steps as shown in Figure 2, with the level i having
2i segments. Suppose the threshold α is set to 90% in this
example. AgeSub1 falls into the segment 0-50 and the fitting
ratio of the target range 1-48 is 48/50, which is larger than
the threshold α = 90%. So this segment is accurate enough
to represent the target range and the ARV for AgeSub1 is 10.

0-100

0-50

50-100

0-25

25-50

50-75

75-100

0-12.5

12.5-25

25-37.5

62.5-75

37.5-50

50-62.5

87.5-100

75-87.5

Level 0 Level 1 Level 2 Level 3

AgeSub1

(1-48)
AgeSub2

(26-47)
AgeSub3

(38-60)

1

1
1

1

0

0

0

0

0

0

0

0

0

0

 10 0100 00011000

Attribute value
range:

ARV:

Fig. 2. The segment division procedure in constructing an ARV.

AgeSub2 apparently falls into the 0-50 segment of level 1,
however, this range is not very accurate. We further divide the
overall range into 4 new segments at the level 2, so the range
26-47 falls into the segment 25-50. We can use 4-bit vector
0100 to represent this 4-segment coverage, with the left most
bit standing for the segment of the lowest value. The target
range 38-60 of AgeSub3 spans across the 0-50 segment and
the 50-100 segment at the first-level of the split tree, but these
two segments are inaccurate in representing the target range. If
we go deeper into the level 3, the segment 37.5-50 & 50-62.5
will be accurate enough with the resulting ARV 00011000.

A shorter ARV is always preferable to reduce the transmis-
sion and storage overhead. The ARV bit vector is checked after
each modification for the potential of simplification. Except
level 0, the number of bits in an ARV is always even and in
the power of 2. When the length of ARV is larger than 1,
starting from one side of the vector, if every consecutive 2-bit
has the same value (both ’1’ or both ’0’), the length of the
vector can be reduced into half by taking every other bit to
form a new ARV. For example, 1100 can be reduced to 10,
but not 0110 nor 0111 which does not have the same value for
consecutive 2-bit. The simplification operation will continue
without losing the accuracy of the information until the vector
cannot be further simplified.

Likewise, a given vector could also be extended by 2i

(i=1,2,3...) times when needed by simply doubling the bit
patterns. This feature is extremely useful in the matching
process we will discuss later, where two or more ARVs need
to be adjusted to have the equal length before they can be
compared or merged.

The proposed ARV is the elementary component of Subs
and Pubs, and some other aggregated management structures
at different hierarchical levels are composed of ARVs.

Under our matching rule specified in Section III, the at-
tribute of a publication is considered to match with that of a
subscription when its value range is contained by that of the
same attribute of the subscription. When the same attribute for
Pub and for Sub are represented with 2 ARVs respectively,
and are scaled to the same length of bits, the matching rule
now translates into: the bit positions where the Pub ARV
has ’1’ need also to be ’1’ for the Sub ARV. There will be

a slight chance for two ARVs satisfying this criteria to be
actually not matched due to improper choice for the afore
mentioned accuracy level threshold α. As these attribute-
level false positives get significantly large, an event-level false
positive will happen which causes erroneous matching result
and thus unwanted traffic overhead. The impact of threshold
α on the event-level false positive rate is studied in Section V.

2) ARV Merge: A merge operation is needed for informa-
tion aggregation. As the length of the vectors could only be
the power of 2, two vectors of different lengths can always
be made equal by doubling the length of the shorter one
several times as previously mentioned. Suppose we want to
merge the same attribute vector of Sub1 & Sub2 which are
0100 & 10 respectively, we only need to scale up 10 by
repeating each of its bit once to get 1100, and the merge can
be completed by only a simple bitwise "OR" between 0100
& 1100 to get the result 1100. This number can in turn be
simplified into 10 without losing the accuracy. This indicates
that the segment 0-50 can represent the merge of the ranges
26-47 and 1-48. As the accuracy level for each segment is
ensured to be higher than α, the accuracy of the ARV will
not be impacted when it is scaled up or down. The merge
operation is always carried at the length of longest ARV thus
over the finest level of segments, and the merge of ARV will
maintain the accuracy level. The ARV’s merit for convenient
merge operation is critical to information aggregation which
contributes to very low storage and transmission overhead.

3) Match of ARVs: Our purpose of introducing ARV is
to facilitate fast information matching, which could be easily
achieved with fast bit-wise operations under the following
conditions:

A subscription, represented by conjunctions of attributes
like A∧B∧C, where A, B and C are three different attributes,
is considered to be matched only if all the attributes are
satisfied. A publication is allowed to have additional attributes
than A∨B∨C, i.e. A∨B∨C∨F∨G, to still be considered as
matching the subscription, as long as all the attributes of the
subscription (A, B and C in this example) are satisfied on their
values. This convention intuitively means that subscribers will
always accept information that is more elaborate than their
expectations.

For differentiation and ease of referral, an subscription and
publication attribute range vector are called respectively an S-
ARV and P-ARV. If one or more attributes of the subscription
are not included by the publication, we can immediately
claim they do not match each other, given the conditions
above. Otherwise they are further checked. First all the S-
ARVs and P-ARVs are respectively concatenated following
the corresponding order as shown in Figure 3, with all the
redundant P-ARVs ignored and each corresponding pair of P-
ARV and S-ARV scaled to the same length. Then the Sub
and Pub are considered to match each other if and only if
all bits after the following operations are 0: The cascaded P-
ARVs vector and S-ARVs vector first have the bitwise AND
operation, and the result XOR with the original cascaded P-
ARVs vector.

10 11001010

Attr.1 Attr.2 Attr.5

Scale

Ignore Attr.5

1110 1001

Attr.1 Attr.2

1100 1010

Attr.1 Attr.2

1110 1001

Attr.1 Attr.2

A
N

D

1100 1000

Attr.1 Attr.2

1100 1010

Attr.1 Attr.2
0000 0010

Attr.1 Attr.2

XOR

P-ARVs:

S-ARVs: S-ARVs:

P-ARVs:

P-ARVs:

P-ARVs AND S-ARVs:

The result is not all

‘0’thus not match

Fig. 3. The bit-wise matching evaluation of a Pub and Sub.

Figure 3 gives an example. The subscription has 2 attributes,
and the publication has 3 attributes. To perform the matching,
the attribute 1 (Attr.1) of the publication is scaled to 4 bits,
while the Attr.5 is omitted because it is not involved in the
subscription. Then bitwise operations are carried out: (P-ARVs
AND S-ARVs) XOR P-ARVs, and the result is not all ’0’ thus
is not a match. Because Attr.2 of the publication has a ’1’ in
the bit position where the subscription Attr.2 does not, which
means the attribute 2 value range of the publication is out of
that of the subscription.

B. Basic System Architecture and Maintenance
As introduced in Section III, we take the virtual grid as

the lowest-level management unit for a multi-hop wireless
network. Each grid has a Grid Manager (GM), and a set
of grids form a zone that is under the control of a Zone
Manager (ZM). The example system in Figure 1 is split into
multiple zones with each zone being composed of 9 grids.
In this section, we present the functions at each level of our
infrastructures.

1) Subscription Maintenance at the Grid Manager:
A subscriber sends its subscription to its grid manager on
demand. Each subscription message is a concatenation of
all its attributes, i.e. all the corresponding ARVs. There are
possibly many subscriptions in an information-dense area.
Simply storing and transmitting all subscriptions would not
only incur a large overhead in traffic and storage but also
difficult to track the frequent subscription changes due to
the user mobility and frequent user interest changes. On the
other hand, selectively ignoring some of the subscriptions
would compromise the system performance. In our system, the
GM will aggregate the subscriptions by finding the minimum
representative subscription set to represent all the subscriptions
within the grid before recording them and sending them to the
upper level.

Two subscriptions could share some common attributes,
and the attribute set of a subscription could contain all the
attributes of another subscription. In the second case, if the
value ranges of the common attributes overlap each other
to some extent, we could take the subscription which has
all its attributes contained by the other subscription as the
representative subscription of both subscriptions. However, if
the value ranges of the common attributes do not have any

intersection, then using one subscription to represent the other
is not appropriate. We use an example to illustrate this aggre-
gation principle. Suppose there are 2 subscriptions in a grid,
SUB1: A and SUB2: A∧B∧C, where A, B and C are different
attributes. According to our scheme, since all publications that
contain the attribute A including the ones that also contain B
and/or C will all be routed to this grid for further matching,
thus taking SUB1 as the representative subscription, compared
to otherwise having both SUB1 and SUB2, will help reduce
the subscription information storage and control traffic without
sacrificing the completeness of subscription information in this
grid. Once receiving the information based on the aggregate
filter, the GM will further match the information with indi-
vidual subscription to determine if the information matches
all the criteria of a subscriber. Thus aggregation reduces the
message and data transmission between the ZM and GM, but
does not sacrifice the accuracy requirement of each subscriber.
The subscription aggregating process can be realized through

A(0-25)B(15-45)

A(25-100)B(30-40)C(13-27)
A(0-50)

B(25-50)F(5-10)

B(5-45)E(5-10)G(0-100)

B(10-50)

E(0-30)F(25-35) E(0-10)F(30-45)H(5-15)

A(0-100)

B(5-50)

E(0-30)F(25-45)

Representative Sub. Set

with summary value range Roots

Fig. 4. Summary forest with attribute summary value range in shade.

a summary tree, which is actually a forest containing several
separate trees as shown horizontally in Figure 4. All the
subscriptions of a tree will be represented by its root, and
a tree node will contain all attributes of the root. There is also
a summary range attached to each root shown as the shaded
block in Figure 4, obtained by merging (’OR’ operation) the
value range of common attributes (underscored in Figure 4)
of all the subscriptions on a tree. When determining if a node
should be inserted into a tree, we will check if some of its
attributes are the same as the root and if the attribute ranges
overlap the current summary ranges. The summary ranges of
all trees form the representative subscription set of the grid as
shown on the left side of the dash line in Figure 4.

Algorithm 1 shows how to add a subscription into the
current summary forest. On lines 3-10, a new subscription
will become either the child or the parent of an existing root,
depending on whether it contains all the attributes of a root
or all of its attributes are contained by a root of the forest,
with the value ranges of corresponding common attributes
overlapping each others. Otherwise, the subscription will be
made a new stand alone root, as shown on lines 12 and 16.
On line 18, after inserting the new subscription, the summary
value range attached to the root of the affected tree will be
updated. Line 19 checks whether trees can be merged to one
another to reduce the number of trees in the forest, i.e., the
size of the forest, every time the summary value range of a
tree is changed, by examining whether one tree root can be

inserted as the child of another tree root following the similar
criteria.

Algorithm 1 Adding a subscription s into the summary forest
1: if there are already nodes in the forest then
2: for each root node Ri of the forest do
3: if the subscription s contains all the attributes in Ri then
4: if the summary value range of each attribute in Ri

overlaps that of s then
5: insert s as the child of Ri into the summary tree;
6: end if
7: else if Ri contains all the attributes of s then
8: if each attribute value range of s overlaps the summary

value range of the same attribute in Ri then
9: make s the parent of Ri as the new root;

10: end if
11: else
12: make s a new root of the forest;
13: end if
14: end for
15: else
16: make s a new root of the forest;
17: end if
18: Adjust the summary value range of the affected tree.
19: Check whether the forest can be reduced by merging trees.

For illustration, suppose a grid has the following subscrip-
tions with letters representing different attribute names: A(0-
50), B(10-50), A(0-25)B(15-45), A(25-100)B(30-40)C(13-27),
B(25-50)F(5-10), E(0-30)F(25-35), B(5-45)E(5-10)G(0-100),
E(0-10)F(30-45)H(5-15). Applying them one after another
with Algorithm 1 will generate a summary forest as shown
in Figure 4.

Algorithm 2 Removing a subscription s from the forest
1: if s is a root of the forest then
2: delete the tree originated from root s;
3: for each children node of s do
4: apply Algorithm 1;
5: end for
6: else
7: delete s from the summary tree;
8: end if
9: Adjust the summary value range for each affected tree.

10: Check whether the forest can be reduced by merging trees.

Algorithm 2 works to remove a node in response to un-
subscription. On lines 1-5, if the subscription to be deleted
is the root of a tree, then this whole tree is removed with
all the non-root nodes reinserted into the forest by applying
algorithm 1 one by one. If the subscription is not a root, it is
simply deleted from the tree as shown on lines 6-7. Then the
affected trees will have their summary value ranges updated
accordingly on line 9. Line 10 works similarly as the last line
of Algorithm 1 to reduce the forest size.

Each GM will maintain a subscription summary forest, and
updates the trees in response to the changes of subscription
from individual subscribers within the grid. When a node
wants to send a new subscription, modify or unsubscribe its
existing subscription, it will send a message with the affected

sub through on-demand light-weight geographic routing [12]
to the GM. The GM will either insert or delete the subscription
following the Algorithm 1 or 2. A new action may change
the representative set. In many cases, however, individual
subscription changes will not lead to the change of the aggre-
gated information summary at the root level of the tree. This
feature is very important. It helps to increase the stableness and
significantly reduce the information maintenance overhead in
a wireless environment with possible constant node movement
and thus frequent subscription changes. The representative set
is forged into a vector, named Grid Representative Set Vector
(GRSV) as shown in Figure 5 by cascading each subscription
from the representative set. The GRSV will be sent to the ZM
upon its change to reduce the update overhead.

Sub A

Representative Subscriptions Source grid ID (corresponding ARV)

A 1 (101...10) 3 (111...10) 5 (001...11)

B 1 (010...10) 7 (000...10)

EΛF 1 (001...00)(100...10)
SOF

... ...

Sub B Sub EΛF

3 111...11 9 110...10
ZRSV :

(to be sent to other ZMs)

GRSV :

(from belonging grids)

Sub A

11Λ14 111...01, 101...11

Sub B Sub EΛF

AID of A

3 101...10 9 010...10

AID of B AID of EΛF

11Λ14 001...00, 100...10

Fig. 5. The ZM converts the GRSVs received from belonging grids into
SOF, then converts it into ZRSV by summary tree scheme.

2) Subscription Maintenance at the Zone Manager: Each
zone manager maintains a subscription origin form (SOF)
generated based on the GRSVs sent by grids with subscriptions
within its zone, as shown in Figure 5. The representative
subscriptions from the grids will again be aggregated through
the summary tree scheme similar to that at the grid level.
We cascade each subscription of the resulting representative
set to form a long vector - Zone Representative Set Vector
(ZRSV). The ZRSVs are exchanged among ZMs to guide the
publication distributions. The SOF will be updated if there
is a GRSV update, but similar to the grid level aggregation,
an individual update in SOF may not lead to ZRSV change.
The aggregation helps to reduce the message distribution and
simplify the information matching process, which is more
critical for dynamic wireless networks. The ZRSV only needs
to be distributed to relevant zones upon changes, after a
given period, or when the zone receives unwanted traffic.
Each ZM maintains the ZRSVs received from neighboring
zones and zones interested in its publications (learned from
previous successful match processes) to guide the distribution
of published data.

C. Match a Publication over Subscriptions
When a node generates a publication, it will send the data

along with the publication ARVs describing the data to its
GM. GM will perform a match within its grid by comparing

the publication ARVs with its representative Sub set, i.e., the
roots with summary ranges of the summary forest, using the
matching rule defined in Section IV-A3. If a root is matched,
each of its tree node is further examined to precisely find
the subscribers. The data will be forwarded to the identified
subscribers through on-demand stateless geographic multicast
scheme [11]. No matter local matches are found or not, GM
will forward the data along with the P-ARVs and the grid ID
to the zone manager.

The ZM will match the P-ARVs against its SOF, to decide
which grids within the zone to forward the data to for further
matching at GM level. It also matches against all ZRSVs for
other zones it maintains. The data along with the publication P-
ARVs and the zone ID will be multicasted towards the centers
of the zones that match this publication. Once the data reach a
target zone, they will be forwarded to the ZM which will match
the Pub with each item of the SOF. The data will be multicast
to the matched grids, where the GMs will again multicast the
data finally to the matched subscribers.

As mentioned earlier, each ZM only actively maintains
the ZRSVs of its neighbors. However, other zones may also
have subscribers to its publication. If the publication ARVs
associated with a publisher are seen by the ZM the first time
or after a given time period since its last global distribution,
the ARVs will be multicasted to all zones to inform them
the existence of new publications. A zone x with the matched
ZRSV will send to the ZM its ZRSV, which will be maintained
by the ZM along with other ZRSVs. ZM will multicast
publication data to the zones with matched ZRSVs. A zone
will update its ZRSV to the publication zone following the
ZRSV update rules described earlier. A ZRSV will be removed
if there are no data match with it for a predefined timeout
period. To further reduce the overhead, for a large system, the
period of sending the publication ARVs to farther-away zones
can be made larger as generally the information has location
constraints. In addition, a zone without any data matched with
some subscriptions could also actively search for publishers by
broadcast a query message within certain range or query the
ZMs within certain zone-hop distance.

D. Publication Caching and Match

Publications may not match any subscription in a single
attempt, and a subscriber may want to retrieve earlier pub-
lished data. Conventional studies generally assume publica-
tions always get matched; if not, the unmatched publications
are simply discarded. This would waste the system resources
that haven been used in generating, matching and distributing
these published data, and also cannot meet the users’ urgent
needs for previously published data if discarded. In this work,
we introduce publication caching to facilitate bidirectional
matching which also supports matching a subscription over
cached publications. A zone manager receiving a publication
will cache the data at the ZM or designated storage server for
a predefined duration, and records the ARVs of this pub along
with its source node’s ZID and GID. In case that the caching

space is running out, data with least matching-hit records will
be removed.

A ZM holds SOFs of its own zone and ZRSVs of other
relevant zones. Upon the update of the SOF or ZRSV, the ZM
will compare the changed SOF or ZRSV with the ARVs of
the cached publication so that the matched subscribers can get
the interested data right away.

V. SIMULATION AND PERFORMANCE EVALUATION

We implement BRVST using NS2.34. The focus of BRVST
is on information content matching and forwarding mecha-
nisms, and the underlying routing scheme follows SOGR [12]
and RSGM [11] for on-demand robust unicast and multicast
respectively. 400 nodes are randomly distributed initially in
a network region of size 1000m x 1000m to reflect the real-
world mobile user density. In our default setting, the network
is divided into 4 equal zones with 4 equal grids inside each.
These numbers will vary when studying the impact of grid
size on system performances. The node movement follows
the improved Random Waypoint model [13]. All the nodes
including the autonomously elected GM and ZM could move
following the model. The wireless channel propagation model
is set to be TwoRayGround, and 802.11a is adopted as the
MAC protocol with an average transmission range of 80m.
Publications and subscriptions are generated by randomly
selected nodes. Each publication or subscription has one to
three attributes, which are randomly selected from a predefined
set of 15. The range of an attribute is also randomly generated
within a predefined range limit based on the attribute type. If
not otherwise specified, the average node moving speed is set
to 5 m/s, the Pub and Sub generation rates are both set to
200/minute, and the accuracy threshold α is set to 90%.

There is very limited number of studies closely related
to ours. For performance references, we select two existing
Pub/Sub schemes, DRIP and TAMA, that are partly compa-
rable to our work. DRIP [3] (INFOCOM’08) is proposed for
wireless networks which group nodes into Voronoi regions
to manage the network, while BRVST introduces geographic
zones to facilitate management and information distribution.
TAMA [8] (ICDCS’11) is a middleware for content matching,
but is not specified for wireless networks. To be fair, we
compare the impact of node mobility on the matching time for
DRIP and BRVST in wireless environment, without including
TAMA. The number of Voronoi regions for DRIP is also set to
16 under the same region area and node density. Since TAMA
also considers using attribute range to describe contents,
we compare it with BRVST on the false positive rate. The
management overhead involved for storing and transmitting
publication and subscribe filters are compared among all three
schemes.

A. Matching Time
It is equally important for both the information provider and

consumer to be served as fast as possible, so we evaluate the
time for an emergent publication and an emergent subscription
to get matched separately.

0 100 200 300 400
0

500

1000

1500

2000

Subscription generation rate (messages/minute)
 {publication generation rate fixed at 200}

A
ve

ra
ge

 m
at

ch
in

g
tim

e
pe

r
 p

ub
lic

at
io

n
re

qu
es

t (
m

s)
i(a)

DRIP
BRVST

0 100 200 300 400
0

500

1000

1500

Publication generation rate (messages/minute)
 {subscription generation rate fixed at 200}

A
ve

ra
ge

 m
at

ch
in

g
tim

e
pe

r
 p

ub
lic

at
io

n
re

qu
es

t (
m

s)

i(b)

DRIP
BRVST

0 100 200 300 400
0

1000

2000

3000

Publication generation rate (messages/minute)
 {subscription generation rate fixed at 200}

A
ve

ra
ge

 m
at

ch
in

g
tim

e
pe

r
 s

ub
sc

rip
tio

n
re

qu
es

t (
m

s)

ii(a)

DRIP
BRVST

0 100 200 300 400
0

1000

2000

3000

Subscription generation rate (messages/minute)
 {publication generation rate fixed at 200}

A
ve

ra
ge

 m
at

ch
in

g
tim

e
pe

r
 s

ub
sc

rip
tio

n
re

qu
es

t (
m

s)

ii(b)

DRIP
BRVST

Fig. 6. i(a) Matching time per Pub request as Sub rate increases; i(b)
Matching time per Pub request as Pub rate increases; ii(a) Matching time
per Sub request as Pub rate increases; ii(b) Matching time per Sub request as
Sub rate increases.

For each newly published event, we evaluate the average
time taken to match it with the subscribers. We allow publi-
cation to be matched with a later generated subscription and
vice versa, so the delay is also affected by the subscription
and publication generating frequency, as shown in Figure 6-i.
In Figure 6-i(a) the publications rate is fixed at 200/min, while
the subscription rate is varied. In Figure 6-i(b), the subscription
rate is fixed at 200/min, while the publication rate is varied.
Similarly, we evaluate the average time duration for a newly
generated subscription to match the publication in Figure 6-
ii(a) and (b), with the subscription and publication rate fixed
at 200/min respectively.

We can observe that BRVST has a much shorter average
matching time as compared to DRIP under all test scenarios.
A publication (or subscription) request has a shorter time to be
matched when there is a higher subscription (or publication)
rate as shown in Figures 6-i(a) and ii(a). The reduction of
matching time reaches a limit, beyond which the matching
time may slightly increase as a result of higher processing
overhead.

On the contrary, as the publication (or subscription) rate
becomes larger, the time to match a publication (or subscrip-
tion) increases as a result of competitions, which deteriorate
the average matching time, as shown in Figures 6-i(b) and
ii(b). As DRIP involves network-wide broadcast to establish
and maintain Voronoi regions, the matching time increases
exponentially, while BRVST has only a sub-linear increasing
time, which indicates its better scalability to system load.

Figure 7-(a) tests and compares the reliability of BRVST
and DRIP in terms of matching time performance under
high node mobility, with the average node speed varying
from 0 to 20m/s. The average matching time per message
(including either the publication match or subscription match)
of DRIP increases significantly as a result of its broadcast-
based management overhead. The delay becomes more severe
when the average moving speed is higher than 10m/s, where

0 5 10 15 20
0

1000

2000

3000

4000

5000

Average node movement speed (m/s)

A
ve

ra
ge

 m
at

ch
in

g
tim

e
pe

r
 p

ub
 o

r
su

b
re

qu
es

t (
m

s)

(a)

DRIP
BRVST

0 200 400 600 800 1000
0

500

1000

1500

2000

Grid size (meter)

A
ve

ra
ge

 m
at

ch
in

g
tim

e
pe

r
 p

ub
 o

r
su

b
re

qu
es

t (
m

s)

(b)

0 200 400 600 800 1000
0

100

200

S
to

ra
ge

 o
r

tr
af

fic
 c

on
su

m
pt

io
n

(K
B

)

matching time
node storage
traffic per match

Fig. 7. (a)Mobility impact on average matching time; (b)Grid size impact on
BRVST’s average matching time per message, system average node storage
consumption and traffic volume incurred per match. The setting of grid size
variation corresponds to the number of grids varying from 64 downto 1.

nodes could move across regions within the average matching
duration. Based on light-weight virtual management infras-
tructure, BRVST has much more stable performance in the
mobility case.

In Figure 7-(b), the matching time is seen to first reduce
with grid size and then increase. As the grid size increases,
the number of grids decreases so does the number of zones,
while the number of nodes in a grid increases. In a larger grid,
messages are more likely to get matched within the grid or
zone, and there are fewer other zones to check with. However
when the grid size gets too large, messages need to interact
over longer distance with GMs and ZMs. In addition, a large
number of nodes also result in more filters in a grid which
incurs a longer matching time.

B. System Maintenance Overhead

We compare the overhead for storing and transmitting man-
agement messages at broker nodes and regular network nodes
respectively. In Figure 8, the publication and subscription rates
increase at the same speed.

In Figure 8-i(a), TAMA and BRVST both have lower
storage overhead at regular nodes, as these nodes do not store
publication and subscription information. Specifically, BRVST
only requires each node to keep a few ID numbers which are
very small in volume. With the need of storing a delay list of
brokers and neighboring information, DRIP has much higher
storage overhead, and the overhead increases quickly with the
load.

In Figure 8-i(b), the storage overhead at brokers for all
three schemes increase linearly with the load. DRIP has a
much higher increasing rate with its need of maintaining
information of both non-broker nodes and other brokers, as
well as the subscriptions and publications of all the nodes
in the network. Both TAMA and BRVST exploit range-based
content representation to reduce the storage space. BRVST
exploits space efficient aggregate scheme, so its storage space
is 60% lower than that of TAMA.

We compare DRIP and BRVST on the overhead for trans-
mission of management messages. In Figure 8-ii(a), the over-
head of DRIP increases exponentially due to its inefficient
broadcast mechanism. BRVST does not requirement signifi-
cant overhead to maintain its zone and grid infrastructure, and

0 100 200 300 400
0

200

400

600

800

Message generation rate (messages/minute)
 {Message composition of pub/sub = 1:1}

A
ve

ra
ge

 s
to

ra
ge

 c
on

su
m

pt
io

n
fo

r
 e

ac
h

no
n−

br
ok

er
 n

od
e

(B
yt

e)
 i(a)

DRIP
TAMA
BRVST

0 100 200 300 400
0

100

200

300

400

500

Message generation rate (messages/minute)
 {Message composition of pub/sub = 1:1}

A
ve

ra
ge

 s
to

ra
ge

 c
on

su
m

pt
io

n
 fo

r
ea

ch
 b

ro
ke

r
no

de
 (

K
B

)

i(b)

DRIP
TAMA
BRVST

0 100 200 300 400
0

500

1000

Message generation rate (messages/minute)
 {Message composition of pub/sub = 1:1}

O
ve

ra
ll

ba
si

c
sy

st
em

 m
an

ag
em

en
t

 tr
af

fic
 o

ve
rh

ea
d

(M
B

)

 ii(a)

DRIP
BRVST

0 100 200 300 400
0

50

100

Message generation rate (messages/minute)
 {Message composition of pub/sub = 1:1}

A
ve

ra
ge

 tr
af

fic
 o

ve
rh

ea
d

 in
cu

rr
ed

 p
er

 m
at

ch
 (

K
B

)

ii(b)

DRIP
BRVST

Fig. 8. Storage consumption for i(a)non-broker node; i(b)broker node;
ii(a)Basic system traffic overhead; ii(b)Traffic overhead incurred per match.

only sends highly aggregated publish or subscribe information,
thus it has a much lower transmission overhead.

In Figure 8-ii(b), when the message rate is low, BRVST and
DRIP have similar matching overhead. At a higher load, how-
ever, the overhead of DRIP increases exponentially, while the
overhead of BRVST is compensated as each publication can
match multiple subscriptions with its aggregate subscription
mechanism.

In Figure 7-(b), as grid size increases, both the average node
storage space and the traffic volume incurred for each match
reduce. With a larger grid size, nodes are less likely to move
out of the grid, thus the overhead associated with grid change
will be lower. A larger grid also allows better information
aggregation, thus reducing the matching traffic.

C. False Positive Rate

As TAMA and BRVST represent contents with certain range
granularity to reduce complexity, it would also introduce some
false positive rate and forwards some unwanted traffic to
nodes.

Figure 9-(a) shows that the false positive rate is inversely
proportional to the accuracy threshold α, and approximately
bounded by 1 − α. There is an obvious tradeoff between the
accuracy level of representing information and the length of
the ARV vector thus the overhead. The higher the accuracy
level, the more storage and traffic volume incurred. Figure 9-
(b) shows as the false positive rate rises, the traffic overhead
of both system increases. However at the same false positive
rate, BRVST would waste much less traffic than TAMA due
to its efficient ARV representation.

VI. CONCLUSION

In this paper, we present BRVST, an information content
matching and forwarding engine in wireless network, which
supports maximum flexibility in the expression of information

0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

E
ve

nt
−

le
ve

l f
al

se
 p

os
iti

ve
 r

at
e

Accuracy level threshold α

(a)

0.4 0.5 0.6 0.7 0.8 0.9 1
0

50

S
to

ra
ge

 o
r

tr
af

fic
 c

on
su

m
pt

io
n

(K
B

)

FP rate
storage
traffic

0 0.1 0.2 0.3 0.4 0.5
0

50

100

150

200

250

Event−level false positive rate

T
ra

ffi
c

vo
lu

m
e

w
as

te
d

(K
B

)

(b)

TAMA
BRVST

Fig. 9. (a)Threshold α impact on BRVST’s event-level false positive rate,
average broker storage consumption and traffic volume incurred per match;
(b)Traffic volume wasted due to false positive match for BRVST and TAMA.

content. The most valuable contributions of BRVST are its in-
troduction of a novel attribute range vector that can accurately
represent information content with extreme efficiency both in
space and computationally, and the summary tree concept that
enables effective extraction and aggregation of information.
All these proposed structures help significantly reduce storage
and communication consumption as well as computation over-
head, and ensure stable performance. Extensive simulations
demonstrate that BRVST is reliable and scalable in large and
dynamic wireless network conditions even under very high
information load.

REFERENCES

[1] R. E. Strom, G. Banavar, T. D. Chandra, M. Kaplan, K. Miller,
B. Mukherjee, D. C. Sturman, and M. Ward, “Gryphon: An information
flow based approach to message brokering,” CoRR, 1998.

[2] A. Carzaniga, D. S. Rosenblum, and A. L. Wolf, “Design and evaluation
of a wide-area event notification service,” ACM Trans. Comput. Syst.,
vol. 19, pp. 332–383, August 2001.

[3] Q. Yuan and J. Wu, “Drip: A dynamic voronoi regions-based pub-
lish/subscribe protocol in mobile networks,” in INFOCOM 2008, april
2008, pp. 2110 –2118.

[4] N. Carvalho, F. Araujo, and L. Rodrigues, “Reducing latency in
rendezvous-based publish-subscribe systems for wireless ad hoc net-
works,” ser. ICDCSW ’06. IEEE Computer Society, 2006.

[5] J. Mocito, J. A. Briones-García, B. Koldehofe, H. Miranda, and L. Ro-
drigues, “Geographical distribution of subscriptions for content-based
publish/subscribe in manets,” in Proceedings of the ACM/IFIP/USENIX
Middleware’08. ACM, 2008, pp. 102–103.

[6] A. Guttman, “R-trees: a dynamic index structure for spatial searching,”
ser. SIGMOD ’84, 1984, pp. 47–57.

[7] Y. Hua, D. Feng, and T. Xie, “Multi-dimensional range query for data
management using bloom filters,” ser. CLUSTER ’07, 2007, pp. 428–
433.

[8] Y. Zhao and J. Wu, “Towards approximate event processing in a large-
scale content-based network,” ser. ICDCS ’11, pp. 790–799.

[9] G. Picco, G. Cugola, and A. Murphy, “Efficient content-based event
dispatching in the presence of topological reconfiguration,” in ICDCS
2003, may 2003, pp. 234 – 243.

[10] Z. Jerzak and C. Fetzer, “Bloom filter based routing for content-
based publish/subscribe,” in Proceedings of the second international
conference on Distributed event-based systems, ser. DEBS ’08, pp. 71–
81.

[11] X. Xiang, X. Wang, and Y. Yang, “Stateless multicasting in mobile ad
hoc networks,” IEEE Transactions on Computers, vol. 59, no. 8, pp.
1076 –1090, aug. 2010.

[12] X. Xiang, X. Wang, and Z. Zhou, “Self-adaptive on-demand geographic
routing for mobile ad hoc networks,” IEEE Transactions on Mobile
Computing, vol. 1, p. 99, 2011.

[13] W. Navidi and T. Camp, “Stationary distributions for the random
waypoint mobility model,” IEEE Transactions on Mobile Computing,
vol. 3, no. 1, pp. 99–108, 2004.

