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1 QuickSync: Improving Synchronization
2 Efficiency for Mobile Cloud Storage Services
3 Yong Cui, Zeqi Lai, Xin Wang, and Ningwei Dai

4 Abstract—Mobile cloud storage services have gained phenomenal success in recent few years. In this paper, we identify, analyze,

5 and address the synchronization (sync) inefficiency problem of modern mobile cloud storage services. Our measurement results

6 demonstrate that existing commercial sync services fail to make full use of available bandwidth, and generate a large amount of

7 unnecessary sync traffic in certain circumstances even though the incremental sync is implemented. For example, a minor document

8 editing process in Dropbox may result in sync traffic 10 times that of the modification. These issues are caused by the inherent

9 limitations of the sync protocol and the distributed architecture. Based on our findings, we propose QuickSync, a system with three

10 novel techniques to improve the sync efficiency for mobile cloud storage services, and build the system on two commercial sync

11 services. Our experimental results using representative workloads show that QuickSync is able to reduce up to 73.1 percent sync

12 time in our experiment settings.

13 Index Terms—Mobile cloud storage, mobile networks, measurement, synchronization efficiency

Ç

14 1 INTRODUCTION

15 PERSONAL cloud storage services are gaining tremendous
16 popularity in recent years by enabling users to conve-
17 niently synchronize files across multiple devices and back
18 up data. Services like Dropbox, Box, Seafile have prolifer-
19 ated and become increasingly popular, attracting many big
20 companies such as Google, Microsoft or Apple to enter this
21 market and offer their own cloud storage services. As a pri-
22 mary function of cloud storage services, data synchroniza-
23 tion (sync) enables the client to automatically update local
24 file changes to the remote cloud through network communi-
25 cations. Synchronization efficiency is determined by the speed
26 of updating the change of client files to the cloud, and con-
27 sidered as one of the most important performance metrics
28 for cloud storage services. Changes on local devices are
29 expected to be quickly synchronized to the cloud and then
30 to other devices with low traffic overhead.
31 More recently, the quick increase of mobile devices poses
32 the new demand of ubiquitous storage to synchronize users’
33 personal data from anywhere at anytime and with any con-
34 nectivity. Some cloud storage providers have extended and
35 deployed their services in mobile environments to support
36 Mobile Cloud Storage Services, with functions such as
37 chunking and deduplication optionally implemented to
38 improve the transmission performance.

39Despite the efforts, the sync efficiency of popular mobile
40cloud storage services is still far from being satisfactory, and
41under certain circumstances, the sync time is much longer
42than expected. The challenges of improving the sync effi-
43ciency in mobile/wireless environment are threefold. First,
44as commercial storage services are mostly closed source with
45data encrypted, their designs and operational processes
46remain unclear to the public. It is hard to directly study the
47sync protocol and identify the root cause of sync difficulty.
48Second, although some existing services try to improve the
49sync performance by incorporating several capabilities, it
50is still unknown whether these capabilities are useful or
51enough for good storage performance in mobile/wireless
52environments. Finally, as a mobile cloud storage system
53involves techniques from both storage and network fields, it
54requires the storage techniques to be adaptive and work effi-
55ciently in the mobile environment where the mobility and
56varying channel conditions make the communications sub-
57ject to high delay or interruption.
58To address above challenges, we identify, analyze and
59propose a set of techniques to increase the sync efficiency in
60modern mobile cloud storage systems. Our work consists of
61three major components: 1) identifying the performance
62bottlenecks based on the measurement of the sync opera-
63tions of popular commercial cloud storage services in the
64mobile/wireless environment, 2) analyzing in details the
65problems identified, and 3) proposing a new mobile cloud
66storage system which integrates a few techniques to enable
67efficient sync operations in mobile cloud storage services.
68We first measure the sync performance of the most popu-
69lar commercial cloud storage services in mobile/wireless
70networks (Section 2). Our measurement results show that
71the sync protocol used by these services is indeed ineffi-
72cient. Specifically, the sync protocol can not fully utilize the
73available bandwidth in high RTT environment or when
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of74 synchronizing multiple small files. Furthermore, although

75 some services, e.g., Dropbox, have implemented the incre-
76 mental sync to reduce the traffic size, this technique is
77 not valid in all scenarios. We observe that a document edit-
78 ing process may result in sync traffic 10 times that of the
79 modification.
80 We further conduct in-depth analysis of the trace data
81 and also apply decryption to identify the root cause of
82 the inefficiency in the sync protocol (Section 3). Based on
83 our studies, the two major factors that contribute to the inef-
84 ficiency are the inherent limitations of the sync protocol
85 and the distributed storage architecture. Specifically, the de-
86 duplication to reduce redundant data transmissions does
87 not always contribute to the sync efficiency. The distributed
88 nature of storage services poses a challenge to the practical
89 implementation of the delta encoding algorithm, and
90 the failure in the incremental sync may lead to a large traffic
91 overhead. The iterative sync scheme suffers from low
92 throughput when there is a need to synchronize a set of files
93 through a slow network.
94 Based on our observation and analysis, we propose Quick-
95 Sync, a system with three novel techniques to improve the
96 sync efficiency for mobile cloud storage services (Section 4).
97 To reduce the the sync time, we introduce Network-aware
98 Chunker to adaptively select the proper chunking strategy
99 based on real-time network conditions. To reduce the sync

100 traffic overhead, we propose Redundancy Eliminator to cor-
101 rectly perform delta encoding between two similar chunks
102 located in the original and modified files at any time during
103 the sync process. We also design Batched Syncer to improve
104 the network utilization of sync protocol and reduce the over-
105 headwhen resuming the sync from an interruption.
106 We build our QuickSync system on Dropbox, currently
107 the most popular cloud storage services, and Seafile, an
108 popular open source personal cloud storage system (Sec-
109 tion 5). Collectively, these techniques achieve significant
110 improvement in the sync latency for cloud storage services.
111 Evaluation results (Section 6) show that the QuickSync sys-
112 tem is able to significantly improve the sync efficiency,
113 reducing up to 73.1 percent sync time in representative sync
114 scenarios with our experiment settings. To the best of our
115 knowledge, we are the first to study the sync efficiency
116 problem for mobile cloud storage services.

117 2 SYNCHRONIZATION INEFFICIENCY

118 Sync efficiency indicates how fast a client can update
119 changes to the cloud. In this section, we conduct a series of
120 experiments to investigate the sync inefficiency issues exist-
121 ing in four most popular commercial cloud storage service

122systems in wireless/mobile environments. We will further
123analyze our observed problems and explain their root
124causes in Section 3.

1252.1 Architecture and Capabilities

126The key operation of the cloud storage services is data sync,
127which automatically maps the changes in local file systems
128to the cloud via a series of network communications. Before
129presenting the sync inefficiency issues, we first give a brief
130overview of the typical architecture of cloud storage serv-
131ices and the key capabilities that are often implemented for
132speeding up data transmissions.
133Architecture. A typical architecture of cloud storage serv-
134ices includes three major components [1]: the client, the con-
135trol server and the data storage server. Typically, a user has a
136designated local folder (called sync folder) where every file
137operation is informed and synchronized to the cloud by the
138client. The client splits file contents into chunks and indexes
139them to generate the metadata (including the hashes, modi-
140fied time etc.). The file system on the server side has an
141abstraction different from that of the client. Metadata and
142contents of user files are separated and stored in the control
143and data storage servers respectively. During the sync
144process, metadata are exchanged with the control server
145through the metadata information flow, while the contents are
146transferred via the data storage flow. In a practical implemen-
147tation, the control server and the data storage server may be
148deployed in different locations. For example, Dropbox
149builds its data storage server on Amazon EC2 and S3, while
150keeping its own control server. Another important flow,
151namely notification flow, pushes notifications to the client
152once changes from other devices are updated to the cloud.
153Key Capabilities. Cloud storage services can be equipped
154with several capabilities to optimize the storage usage and
155speed up data transmissions: 1) chunking (i.e., splitting a
156content into a certain size data unit), 2) bundling (i.e., the
157transmission of multiple small chunks as a single chunk), 3)
158deduplication (i.e., avoiding the retransmission of content
159already available in the cloud), 4) delta-encoding (i.e., only
160transmitting the modified portion of a file) and 5) compres-
161sion. The work in [2] shows how the capabilities are imple-
162mented on the desktop clients. We further follow the
163methods in [2] to analyze the capabilities already imple-
164mented on the mobile clients. Table 1 summarizes the capa-
165bilities of each service on multiple platforms, with the test
166client being the newest released version before March 1,
1672015. In following sections, we will show that these capabili-
168ties also make a strong side impact on the sync efficiency.

TABLE 1
Capability Implementation of Four Popular Cloud Storage Services

Capabilities
Windows Android

Dropbox Google Drive OneDrive Seafile Dropbox Google Drive OneDrive Seafile

Chunking 4 MB 8 MB var. var. 4 MB 260 KB 1 MB �
Bundling

p � � � � � � �
Deduplication

p � � p p � � �
Delta encoding

p � � p � � � �
Data compression

p p � � � � � �
The var. refers to variable chunk size.
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170 To evaluate the effectiveness of deduplication in reducing
171 the original transmission data size, the metric Deduplication
172 Efficiency Ratio (DER) is defined as the ratio of the dedupli-
173 cated file size to the original file size. Intuitively, lower DER
174 means more redundancy can be removed and the total sync
175 time can be reduced. However, our experiment indicates
176 that lower DER may not alway make sync efficient.
177 As only Dropbox and Seafile incorporate the deduplica-
178 tion function, to study the relationship between the sync
179 time and DER, we use Wireshark to measure the packet
180 level trace of the two services in a controlled WiFi environ-
181 ment. We use tc to tune the RTT for each service according
182 to the typical RTT values in mobile/wireless networks [3].
183 We only perform measurements on the Windows platform
184 because most services did not implement the deduplication
185 on the Android platform. We collect about 500 MB user
186 data from a Dropbox user and upload these fresh data via
187 the tested services. From the trace captured we can get the
188 sync time and calculate the DER as a ratio of the transmis-
189 sion traffic size and the original traffic size.
190 Fig. 1 shows that the DER for Dropbox and Seafile are
191 87 and 65 percent respectively under each RTT setting. Intu-
192 itively, a higher DER value would take more time to com-
193 plete a sync operation. However, we find that in a better
194 network condition (e.g., when the RTT is 200 ms), it costs
195 more time for Seafile to complete the sync.

196 2.3 Failure of Incremental Sync

197 To reduce the network traffic for synchronizing changes,
198 some services such as Dropbox leverage the delta encoding
199 algorithm (e.g., rsync [4]) to achieve incremental sync instead
200 of full-file sync. However, as we will show next, the incre-
201 mental sync is not always available and the client software
202 may synchronize much more data than expected. To evalu-
203 ate how much additional traffic is incurred, we define a
204 metric Traffic Utilization Overhead (TUO) as the ratio of the
205 generated traffic size to the expected traffic size. When the value
206 of TUO is larger than 1, it indicates additional data are
207 transferred. A large TUO value indicates that more extra
208 data are transmitted to the storage server during a sync pro-
209 cess. We conduct two sets of experiments to find out when
210 the claimed incremental sync mechanism fails.
211 In the first experiment, all operations are performed on
212 synchronized files with both the metadata and contents
213 completely updated to the cloud. We perform three types of
214 basic operation in typical real-world usage patterns: flip bits,
215 insert and delete several continuous bytes at the head, end or
216 random position of the test file, and see howmuch sync traf-
217 fic will be generated when the given operation is performed.
218 Table 2 provides the details of these three basic operations.

219Since 10 KB is the recommended default window size in the
220original delta encoding algorithm [4], we vary w from 10 KB
221to 5 MB to ensure that the modification size is larger than the
222minimum delta that can be detected. To avoid the possible
223interaction between two consecutive operations, the next
224operation is performed after the previous one is completed.
225An operation in each case is performed 10 times to get the
226average result. Because GoogleDrive and OneDrive have not
227implemented the incremental sync, they upload the whole
228file upon the modification, and are expected to have a large
229amount of traffic even for a slight modification. Thus in this
230section our studies focus on Dropbox and Seafile.1

231In Figs. 2 a, 2 b, and 2 c, for Dropbox, interestingly the
232three types of operation result in totally different traffic
233sizes. For the flip operation, in most cases the TUO is close
234to 1. Even when the modification window is 10 KB, the
235TUO is less than 1.75, indicating that incremental sync
236works well for flip operations performed at any position.
237The sync traffic of insert operation is closely related to the
238position of the modification. The TUO is close to 1 when an
239insertion is performed at the end of the file, but the gener-
240ated traffic is much higher than expected when an insertion
241is made at the head or a random position. Specifically,
242inserting 3 MB data at the head or random position of a
24340 MB file results in nearly 40 MB sync traffic, which is close
244to the full file sync mechanism. The TUO results for the
245delete operation are similar to the insert operation. Differ-
246ently, deleting at the end of the file generates small sync
247traffic (TUO is close to zero). However deleting at the head
248or random position leads to larger sync traffic, especially for
249a large file, e.g., 40 MB (TUO is larger than 10). Another
250interesting finding is that for both insert and delete opera-
251tions in Dropbox, the TUO drops to a very low value when
252the modification window w is 4 MB, where the TUO is close
253to 1 for the insert operation and close to 0 for the delete
254operation.
255In Figs. 2 d, 2 e, and 2 f, the TUO results of different oper-
256ations for Seafile are similar. Although the TUO results are
257close to 1 for large modifications (e.g., modified size � 1
258MB), the TUO results are larger than 10 for all modifications
259smaller than 100 KB. This shows that the incremental sync
260in Seafile fails to reduce the sync traffic for small modifica-
261tions, no matter where the changes are made in a file.
262In the second experiment, we investigate the sync traffic
263of performing the modification on the files while the sync
264data are in the middle of transmissions to the cloud. We first
265create a 4 MB fresh file in the sync folder, and perform the

Fig. 1. Lower DER does not always make efficient.

TABLE 2
Three Types of Modification Operations

Operation Description (assuming the file size is S bytes)

Flip flip w bytes data at the head, end or random
position of the test file.

Insert insert w random data at the head, end or
random position of the test file.

Delete delete w random data at the head, end or
random position of the test file.

1. The latest version of Seafile adds the incremental sync. Therefore,
based on our prior conference versionwe add themeasurement for Seafile.
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266 same flip operation as that in the first experiment at a ran-
267 dom position with the modification window w ¼ 512 KB in
268 every 20 s. Note that the TUO of such an operation is close to
269 1 in the first experiment, and in the second experiment, the
270 flip operation is performed immediately after the file is created
271 while the sync process has not completed. Such a behavior is
272 common for an application such as MS-word or VMware
273 which creates fresh temp files and periodically modifies
274 them at runtime. We vary the number of modifications to
275 measure the traffic size. We also use tc to involve additional
276 RTT to see the traffic under different network conditions.
277 Fig. 3 shows the sync traffic of Dropbox for periodic flip
278 on a 4 MB file with various RTT. Interestingly, for all cases
279 the TUO is larger than 2, indicating that at least 8 MB data
280 are synchronized. Moreover, we observe that the TUO is
281 affected by the RTT. When the RTT is 600 ms, surprisingly
282 the TUO rises with the increase of the modification times.
283 The sync traffic reaches up to 28 MB, 448 percent of the new
284 content size(including both the fresh file and immediate
285 modifications) when the modifications are performed five
286 times. The result of Seafile is similar to that of Dropbox and
287 omitted due to the page limit.
288 Collectively, our measurement results show that the
289 incremental sync does not workwell in all cases. Specifically,
290 for insert and delete operations at certain positions, the gen-
291 erated traffic size is much larger than the expected size.
292 Moreover, the incremental sync mechanism may fail when
293 attempting to synchronize with the files in the middle of the
294 sync process which results in undesirable traffic overhead.

2952.4 Bandwidth Inefficiency

296Sync throughput is another critical metric that reflects the
297sync efficiency. The sync protocol relies on TCP and its
298performance is affected by network factors such as RTT or
299packet loss. Because of different system implementations,
300it is unreasonable to evaluate how the underlying band-
301width of a storage service is used by directly measuring the
302throughput or latency [2]. To characterize the network
303usage of sync protocol, we introduce a novel metric, Band-
304width Utilization Efficiency (BUE), which is defined as the
305ratio of the practical measured throughput to the theoretical
306TCP bandwidth. The latter indicates the available bandwidth
307in steady state and can be estimated by Segment size�cwnd

RTT ,
308where cwnd is the observed average congestion window
309size during the transmission. The BUE metric is a value
310between 0 and 1. Rather than measuring the end-to-end
311throughput, we apply BUE to evaluate how well the cloud
312storage service can utilize the available network bandwidth
313to reduce the sync time.
314To investigate how the sync protocol utilizes the underly-
315ing network bandwidth, we have the Windows and
316Android clients of Dropbox, GoogleDrive, OneDrive and
317Seafile run in Wi-Fi and cellular networks (UMTS) respec-
318tively. We create a set of highly compressed files (to exclude
319the effect of compression) with various total sizes in the
320sync folder and measure the packet-level trace using Wire-

321shark and tcpdump. We compute the theoretical TCP band-
322width based on real-time observed RTT and cwnd to
323calculate BUE. In Wi-Fi networks, we use tc to tune the
324RTT, simulating various network conditions. In cellular net-
325works we change the position to tune the RTT. Each test is
326performed 10 times to calculate the average result.
327The BUE results of all services in WiFi networks with dif-
328ferent RTT are shown in Fig. 4. For each service, the BUE of
329synchronizing 4 MB file is close to 1, reflecting that all serv-
330ices are able to fully utilize the available bandwidth. The
331traffic size of synchronizing 40 KB*100 files is close to that
332of 4 MB file, but we observe that the BUE slumps signifi-
333cantly when synchronizing multiple files. This degradation
334is more serious for GoogleDrive and OneDrive, with their

Fig. 2. Traffic utilization overhead of Dropbox and Seafile generated by a set of modifications. In this experiment, we perform flip, insert, and delete
operation over continuous bytes at the head, end or random position of the test file.

Fig. 3. TUO of synchronizing modification in the middle of sync process.
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336 files. For all services, BUE decreases for large files such as
337 20 or 40 MB and when RTT increases. The degradation of
338 BUE indicates that the sync protocol cannot efficiently uti-
339 lize the underlying available bandwidth. The decrease of
340 BUE for large RTT indicates that the sync protocol can not
341 well adapt to a slow network. Results in cellular networks
342 are similar and omitted due to the page limit.

343 3 ROOT CAUSE OF SYNC INEFFICIENCY

344 Our observations have demonstrated that mobile cloud
345 storage services suffer from sync inefficiency problems. In
346 this section, we analyze the sync protocol and explain the
347 root causes for the inefficiency.

348 3.1 Pinning Down the Sync Protocol

349 It is difficult to directly analyze the sync protocol of com-
350 mercial services such as Dropbox, as they are closed source
351 and most of the network traffic is encrypted. To understand
352 the sync protocol, we exploit both measurement and
353 decryption. Specifically, we first analyze the network traces
354 of all services studied in Section 2 to show the general sync
355 process, and then we hijack the encrypted traffic of Dropbox
356 to understand the protocol details.
357 Commonality Analysis. Although it is difficult to obtain
358 the protocol details from the encrypted sync, we still can
359 get some high-level knowledge of the protocol by analyz-
360 ing the packet-level network traces, and our analyses
361 indicate that the sync processes of all services in various
362 platforms commonly have three key stages: 1) sync prepa-
363 ration stage, the client first exchanges data with the control
364 server; 2) data sync stage, the client sends data to, or
365 retrieves data from the data storage server. In case that
366 the chunking scheme is implemented, data chunks are
367 sequentially stored or retrieved with a “pause” in
368 between, and the next chunk will not be transferred until
369 the previous one is acknowledged by the receiver; 3) sync

370finish stage, the client communicates with the control
371server again to conclude its sync process.
372In-Depth Analysis. The Dropbox client is written in
373Python. To decrypt the traffic and obtain the details of the
374sync protocol, we leverage the approach in [5] to hijack the
375SSL socket by DynamoRIO [6]. Although we only decrypt
376the Dropbox protocol, combining the commonality analysis
377we think the other three services may follow a sync protocol
378similar to that of Dropbox.
379Fig. 5 shows a typical Dropbox sync workflow when
380uploading a new file. In the sync preparation stage, the file is
381first split and indexed locally, and the block list which
382includes all identifiers of chunks is sent to the control server
383in the commit_batch. Chunks existing in the cloud can be
384identified through hash-based checking and only new
385chunks will be uploaded. Next in the data-synchronization
386stage, the client communicates with the storage server
387directly. The client synchronizes data iteratively, and in
388each round of iteration several chunks will be sent. At the
389end of one round of iteration, the client updates the meta-
390data through the list message to inform the server that a
391batch of chunks have been successfully synchronized, and
392the server sends an OK message in response. Finally in the
393sync-finish stage, the client communicates with the control
394server again to ensure that all chunks are updated by the
395commit_batch, and updates the metadata.

3963.2 Why Less Data Cost More Time

397Generally, to identify the redundancy in the sync process, the
398client splits data into chunks and calculates their hashes to
399find the redundancy. However, chunking with a large num-
400ber of hashing operations is computationally expensive, and
401the time cost and the effectiveness of deduplication are
402strongly impacted by the chunking method. For instance,
403fixed-size chunking used by Dropbox is simple and fast, but
404is less effective in deduplication. Content defined chunking
405(CDC) [7] used by Seafile is more complex and computation
406extensive, but can identify a larger amount of redundancy.
407In our experiment in Section 2.2, when RTT is 200 ms,
408Seafile uses the content defined chunking to achieve
40965 percent DER. Although the available bandwidth is suffi-
410cient, the complex chunking method takes too much time
411hence its total sync time is larger than Dropbox. However,
412when the RTT is 500 ms and the bandwidth is limited, lower
413DER leads to lower sync time by significantly reducing the
414transmission time. The key insight from this observation is
415that it is helpful to dynamically select the appropriate
416chunking method according to the channel condition.

4173.3 Why the Traffic Overhead Increases

418Although delta encoding is a mature and effective method,
419it is not implemented in all cloud storage services. One

Fig. 4. Bandwidth utilization efficiency of four cloud storage services in various network conditions.

Fig. 5. A typical sync process of Dropbox.

CUI ET AL.: QUICKSYNC: IMPROVING SYNCHRONIZATION EFFICIENCY FOR MOBILE CLOUD STORAGE SERVICES 5



IEE
E P

ro
of420 possible reason is that most delta encoding algorithms work

421 at the granularity of file, while to save the storage space for
422 lower cost, files are often split into chunks to manage for
423 cloud storage services. Naively piecing together all chunks
424 to reconstruct the whole file to achieve incremental sync
425 would waste massive intra-cluster bandwidth.
426 Among popular storage clouds, Dropbox implements
427 delta encoding at the chunk granularity. From the decrypted
428 traffic, we find that each chunk has a “parent” attribute
429 to map it to another similar chunk, and the delta encoding
430 is adopted between the two chunks. Fig. 6 shows howDrop-
431 box performs delta encoding at the granularity of chunk
432 when inserting 2 MB data at the head of a 10 MB file. When
433 the file is modified, the client follows the fixed-size chunking
434 method to split and re-index the file. The chunks without
435 hash change are not processed further, so the TUO results of
436 4 MB window size in Fig. 2 are all close to 1. Otherwise, a
437 map is built based on the relative locations of the original
438 and modified versions, and the delta encoding is executed
439 between mapped chunks. Thus the delta of C1’ and C1 is
440 2 MB and the total delta is 6 MB, 3 times the insertion size. In
441 Fig. 2, inserting 3 MB data at the head of 40 MB file causes
442 nearly 40 MB the total sync traffic, because all chunks are
443 mapped to different parents after the re-indexing. In this
444 case, the incremental sync fails to only update the changed
445 content. Different from Dropbox, the source codes of Seafile
446 indicate that the minimal modification it can detect is 1 MB,
447 which makes its delta-encoding algorithm very inefficient.
448 Seafile generates much higher unexpected sync traffic for
449 small filemodifications.
450 As discussed in Section 3.1, the metadata is updated after
451 contents are successfully uploaded. Therefore, for a chunk in
452 the middle of sync, if it is modified before sync finishes, the
453 chunk can not be used for delta encoding. In the second
454 experiment in Section 2.3, when the modification happens at
455 the beginning time of the sync process, the client has to
456 upload both the original and modified versions and thus the
457 TUO is at least 2. Moreover, in the case that RTT=600 ms,
458 every modification is performed during the uploading pro-
459 cess, and eachmodified version has to be uploaded entirely.

460 3.4 Why the Bandwidth Utilization Decreases

461 Iteration is a key characteristic of the data sync, but may sig-
462 nificantly reduce the bandwidth utilization. There are sev-
463 eral reasons. First, when synchronizing a lot of chunks
464 smaller than the maximum chunk size, the client has to wait
465 for an acknowledgement from the server before transferring
466 the next chunk. Thus the sequential acknowledgement lim-
467 its the bandwidth usage, especially when sending a number
468 of small files and RTT is high.

469Second, although Dropbox incorporates bundling to bun-
470dle small chunks into a bigger one (up to 4 MB) to mitigate
471the problem, we can still see the throughput slumps
472between two iterations when synchronizing large files (e.g.,
47340 MB). Different from other storage services, when trans-
474ferring multiple big chunks at 4 MB, Dropbox opens up to
475four concurrent TCP connections during the sync process.
476At the beginning of a new iteration, the client assigns new
477chunks for different connections. If one connection has
478transferred the assigned chunk and received the acknowl-
479edgement, it will not immediately start to send the next
480chunk. Only after the other three connections have finished
481transmissions, the new chunks are assigned. During the
482iterations, because of the idle waiting of several connections,
483the throughput reduces significantly.
484Moreover, for GoogleDrive, it opens several new TCP
485connections, each taking one iteration to transfer one chunk.
486For instance, it totally creates 100 storage flows in 100 itera-
487tions to synchronize 100 small files. Such a mechanism
488would incur additional overhead for opening a new SSL
489connection and extend the slow start period, leading to sig-
490nificant throughput degradation thus reduced BUE.

4914 SYSTEM DESIGN

492Improving the sync efficiency in wireless networks is
493important for mobile cloud storage services. In light of vari-
494ous issues that result in sync inefficiency, we propose
495QuickSync, a novel system which concurrently exploits a
496set of techniques over current mobile cloud storage services
497to improve the sync efficiency.

4984.1 System Overview

499To efficiently complete a sync process, our QuickSync system
500introduces three key components: the Network-aware
501Chunker (Section 4.2), the Redundancy Eliminator (Sec-
502tion 4.3), and the Batched Syncer (Section 4.4). The basic func-
503tions of the three components are as follows: 1) identifying
504redundant data through a network-aware deduplication technique;
5052) reducing the sync traffic by wisely executing delta encoding
506between two “similar” chunks; and 3) adopting a delayed-batched
507acknowledgement to improve the bandwidth utilization.
508Fig. 7 shows the basic architecture of QuickSync. The sync
509process begins upon detecting a change (e.g., add or modify
510a file) in the sync folder. First, the Chunk Selector inside the
511Network-aware Chunker splits an input file through content
512defined chunking with the chunk size determined based on
513the network condition monitored by the Network Monitor.
514Metadata and contents are then delivered to the Redundancy
515Eliminator, where redundant chunks are removed and delta

Fig. 6. An example to explain why the incremental sync fails in Dropbox.
After inserting 2 MB data (C4) at the beginning of a 10 MB file, Dropbox
re-indexes chunks and calculates the delta content.

Fig. 7. QuickSync system overview.
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517 the sync traffic for modification operations. Specifically,
518 QuickSync leverages the Sketch-based Mapper to calculate
519 the similarity of different chunks and identify similar
520 chunks. A database is applied to store metadata of local
521 files. Finally the Batched Syncer leverages a delayed-batched
522 acknowledgement mechanism to synchronize all data
523 chunks continuously to the cloud and conclude the sync pro-
524 cess. Like other cloud storage systems, QuickSync separates
525 the control server for metadata management from the stor-
526 age server for data storage. Metadata and file contents are
527 transferred bymeta flow and content flow respectively. Next
528 we describe the detailed design for each component.

529 4.2 Network-Aware Chunker

530 To improve the sync efficiency, our first step is to identify the
531 redundant data before the sync process. Although dedupli-
532 cation is often applied to reduce the data redundancy for
533 storage in general cloud systems, extending existing dedu-
534 plication techniques for personal cloud storage services faces
535 two new challenges. First, previous deduplication techni-
536 ques mostly focus on saving the storage space [8], improving
537 the efficiency for large-scale remote backup [9], [10], or only
538 optimizing the downlink object delivery [11]. These strate-
539 gies are difficult to apply for personal cloud storage because
540 they often involve huge overhead and require an important
541 property named “stream-informed” [8], which requires the
542 data segment and their fingerprints to follow the same order
543 as that in a data file or stream. Such a property is not included
544 in a personal scenario. Second, a deduplication scheme
545 should be network-aware in a mobile network with varying
546 topology and channel conditions. A deduplication with
547 aggressive chunking will incur high computational cost for
548 mobile devices, which may degrade the sync performance
549 under good network conditions (Section 2.2).
550 Generally, the chunking granularity is closely related to
551 the computation overhead and the effectiveness of dedupli-
552 cation. A more aggressive chunking strategy with very
553 small chunk size may allow for more effective deduplica-
554 tion, but would involve higher total computation overhead
555 to identify the duplicated data over a large number of
556 chunks, and vice versa. All previous deduplication systems
557 use a static chunking strategy with a fixed average chunk
558 size. Derived from the basic idea of Dynamic Adaptive
559 Streaming over HTTP (DASH), the basic procedure of our
560 approach is to adaptively select an appropriate chunking
561 strategy according to the real-time network conditions to
562 reduce the total sync time. Intuitively, in slow networks,
563 since the bandwidth is limited, we select aggressive chunk-
564 ing strategy to identify more redundancy and reduce the

565transmission time. When the bandwidth is sufficient, we
566prefer larger chunks because of its lower computation over-
567head. Specifically, our approach consists of two key techni-
568ques as we will introduce below.

5694.2.1 Network-Aware Chunk Size Selection

570Instead, we propose the concept of Virtual Chunk that
571implicitly stores the offset and length to generate the
572pointers to the real content. For each user file on the server
573side, QuickSync only stores one copy of all its chunks
574including real contents, all Virtual Chunks under different
575chunking strategies, and the metadata. Specifically, the
576metadata mainly contains a block list including all hashes of
577chunks, and a vblock list including all hashes of Virtual
578Chunks. For a Virtual Chunk, the offset and the length of
579the corresponding chunks can be calculated based on the
580knowledge of all previous Virtual Chunk sizes in the vblock
581list. Therefore each Virtual Chunk only needs to store the
582chunk size of itself. In an uploading process of QuickSync,
583after receiving all chunks of a file, the server forms the file
584according to its metadata. It then conducts all other strate-
585gies on the chunking strategy list to resplit the file and gener-
586ate the metadata under various strategies.
587Fig. 8 gives an example to illustrate howQuickSync gener-
588ates Virtual Chunks on the server to reduce the storage over-
589head. Assume that we have two optional chunking strategies
590to process a 6 MB file. To respond to different chunking
591requirements of the client, the server can maintain multiple
592block_lists containing all hashes and multiple copies of the
593same file, as shown in Fig. 8 a at the cost of large storage
594space. Figs. 8 b and 8 c show the cases when we use Virtual
595Chunks to save the storage space. For all Virtual Chunks gen-
596erated by the equal chunking strategy, we add a vblock_list
597including all hashes of these Virtual Chunks to themetadata.
598When the server needs to synchronize data to a client, the
599server first finds the corresponding chunk through the given
600metadata. If the chunk found is a virtual one, the server
601fetches the corresponding content based on the offset and
602length of the chunk recorded. Fig. 9 shows an example. Like
603all other commercial systems, QuickSync does not transfer
604contents between two clients directly. A file is split into two
605chunks and uploaded to the server. Then the server takes
606other strategies to get three Virtual Chunks that point to the
607real contents. When the server needs to update or send the
608Virtual Chunks, it fetches the content from the storage based
609on its pointer.

6104.3 Redundancy Eliminator

611The Redundancy Eliminator is designed to eliminate the
612redundant sync traffic. Ideally, only the modified parts of
613the file need to be synchronized to the server through a tech-
614nique such as delta encoding. However the effective func-
615tion of delta encoding has two requirements. First, the map

Fig. 8. An example showing how QuickSync generates Virtual Chunks
on the server.

Fig. 9. When the server synchronizes data to the client, the server finds
real contents via Virtual Chunks and then delivers data to the client.
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616 of the new to the old version must be identified as the input
617 for encoding. Second, the two versions for encoding must
618 be “similar”, otherwise executing the delta encoding will
619 not provide any benefit but only involves additional com-
620 putation overhead. As discussed in the previous section, all
621 files in current cloud storage systems are stored as indepen-
622 dent chunks distributedly, and the delta encoding algorithm
623 is executed between pairs of chunks in the modified and the
624 original file. With the fixed-size chunking, modification on
625 file may lead to a map between two “un-similar” chunks.
626 Also, a chunk in the middle of the uploading process cannot
627 be compared to enable delta encoding. We employ two tech-
628 niques to alleviate these problems.

629 4.3.1 Sketch-Based Mapping

630 In QuickSync, once changes are detected and the modified
631 files are split into chunks, two similar chunks in the original
632 and the modified files are mapped in two steps. We first
633 compare the hashes of the new chunks with those of the
634 original file to identify the unchanged chunks that do not
635 need to be updated. Second, for the chunks without a hash
636 match in the original version, we leverage a technique
637 named sketch to estimate the similarity of chunks in the two
638 versions. We only build a map between two similar chunks
639 in the new and old versions to perform delta-encoding. The
640 chunks without either a hash or sketch match are treated as
641 “different” chunks and will be transferred directly. We get
642 the sketch by identifying “features” [9] of a chunk that
643 would not likely change when there are small data varia-
644 tions. In our implementation of QuickSync, we apply a roll-
645 ing hash function over all overlapping small data regions,
646 and we then choose the maximal hash value seen as one fea-
647 ture. We generate multiple features of the same chunk using
648 different hash functions. Chunks that have one or more fea-
649 tures in common are likely to be very similar, but small
650 changes to the data are unlikely to perturb the maximal val-
651 ues. To better represent a chunk, we get the sketch of the
652 chunk by calculating the XOR of four different features.

653 4.3.2 Buffering Uncompleted Chunks

654 To take advantage of the chunks transmitted in the air for
655 the delta encoding, we introduce two in-memory queues to
656 buffer the incomplete chunks that have been processed by
657 the Network-aware Chunker. The uploading queue temporar-
658 ily stores all chunks waiting to be uploaded via network
659 communication, with each chunk recorded with three parts:
660 the data content, the hash value and the sketch of it. New
661 chunks from the Network-aware Chunker are pushed into
662 this queue and popped up if they have been completely
663 uploaded. We can thus build a map between a new chunk
664 and the one found in the uploading queue.
665 To handle modification operations, we create an updating
666 queue to buffer a chunk that finds a sketchmatch with another
667 chunk either on the server or the local uploading queue. Each
668 chunk in the updating queue is tagged with the hash of its
669 matched chunk. Chunks are inserted into the updating queue
670 if a sketch match is found and popped up when the delta
671 encoding for two similar chunks is completed.
672 Algorithm 1 summarizes how Redundancy Eliminator
673 processes chunks provided by Network-aware Chunker and

674eliminates redundant data before delivering chunks to the
675Batched Sync for transmission. Upon file modifications and
676the triggering of sync, files are first split into chunks by the
677Network-aware Chunker. Then the Redundancy Eliminator
678executes the two-step mapping process. The chunk without
679a sketch or hashmatch is treated as a new chunk and inserted
680into the uploading queue directly, while the ones foundwith
681sketch match are bundled by the Redundancy Eliminator
682along with their hashes and put in the updating queue. In
683Algorithm 1, we include an uploading process that monitors
684the uploading queue and delivers chunks to Batched Syncer
685for further uploading. We also provide an independent
686updating process to continuously fetch chunk from the
687updating queue, and then calculate the delta between the
688mapped chunks. The delta will be inserted into the upload-
689ing queue. Finally all data in the uploading queue are syn-
690chronized to the server by the Batched Syncer.

691Algorithm 1. Sync Process at the Redundancy Eliminator

6921: /*Assume that files are split as chunk_list first.*/
6932: Two-step mapping process:
6943: for each chunk Ci in chunk_list do
6954: /*Step 1: check whether Ci is redundant.*/
6965: if find hashðCiÞ in uploading queue or cloud then
6976: omit redundant Ci, continue;
6987: end if
6998: /*Step 2: check whether Ci has a similar chunk.*/
7009: if find sketchðCiÞ in uploading queue or cloud then
70110: map Ci to the matched one;
70211: add Ci to updating queue;
70312: else
70413: add Ci to uploading queue;
70514: end if
70615: end for
70716: /*Upload new chunks to the cloud.*/
70817: Uploading process:
70918: for each chunk Ci in uploading queue do
71019: deliver Ci to Batched Syncer for uploading;
71120: end for
71221: /*Perform delta-encoding between mapped chunks.*/
71322: Updating process:
71423: for each chunk Ci in updating queue do
71524: calculate the delta between Ci and the mapped one;
71625: deliver the delta to Batched Syncer for uploading;
71726: end for

7184.4 Batched Syncer

719The per-chunk sequential acknowledgement from the appli-
720cation layer and the TCP slow start are the main factors that
721decrease the bandwidth utilization, especially for the sync
722of multiple small chunks. To improve the sync efficiency,
723we design the Batched Syncer with two key techniques to
724improve the bandwidth utilization.

7254.4.1 Batched Transmission

726Cloud storage services leverage the app-layer acknowledge-
727ment to maintain the chunk state. As a benefit, upon a con-
728nection interruption, a client only needs to upload the un-
729acknowledged chunks to resume the sync. Dropbox simply
730bundles small chunks into a large chunk to reduce the
731acknowledgement overhead. Although this helps improve
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732 the sync throughput, when there is a broken connection, the
733 Dropbox client has to retransmit all small chunks if the bun-
734 dled one is not acknowledged.
735 Our first basic technique is to defer the app-layer acknow-
736 ledgement to the end of the sync process, and actively check
737 the un-acknowledged chunks upon the connection interrup-
738 tion. This method on the one hand reduces the overhead due
739 to multiple acknowledgements for different chunks and also
740 avoids the idle waiting for the acknowledgement between
741 two chunk transmissions. On the other hand it avoids the
742 need of retransmitting many chunks upon a connection
743 interruption. The check will be triggered under two condi-
744 tions. First, the check will be initiated when the client cap-
745 tures a network exception, usually caused by the process
746 shut down or the connection loss at the local side. Second,
747 the failure of the sync process can be also caused by interrup-
748 tion in the network that cannot be easily detected by the local
749 devices. To detect the network failure, we monitor the trans-
750 mission progress to estimate if there is an exception in the
751 network. Specifically, we monitor the data transfer progress
752 in small time windows (e.g., a second). If there is no progress
753 in several consecutive time windows, the Batched Syncer
754 actively terminates the current connection and checks the
755 control server for themissing chunks.
756 During the transmission, the Batched Syncer continuously
757 sends chunks in the uploading queue of the Redundancy
758 Eliminator. If the connection is interrupted by network
759 exceptions or the sync process has no progress for a period of
760 time, the client connects to the control server to query the un-
761 acknowledged chunks, and then uploads them after the con-
762 tent flow is re-established.

763 4.4.2 Reusing Existing Network Connections

764 The second technique is to reuse the existing network con-
765 nections rather than making new ones in storing files. While
766 it may be easy and natural to make a new network connec-
767 tion for each chunk, the handshake overhead for establish-
768 ing a new connection is not negligible, and creating many
769 new connections also extends the period in the slow start
770 state especially for small chunks. The Batched Syncer reuses
771 the storage connection to transfer multiple chunks, avoiding
772 the overhead of duplicate TCP/SSL handshakes. Moreover,
773 cloud storage services maintain a persistent notification
774 flow for capturing changes elsewhere. Hence we reuse the
775 notification flow for both requesting notification and send-
776 ing file data to reduce the handshake overhead and the
777 impact of slow start. Specifically, both the request and data
778 are transferred over HTTP(S), so we use the Content-

779 Type field in the HTTP header to distinguish them in the
780 same TCP connection.

781 5 SYSTEM IMPLEMENTATION

782 To evaluate the performance of our proposed schemes, we
783 build the QuickSync system over both Dropbox and Seafile
784 platforms.
785 Implementation Over Dropbox. Since both the client and
786 server of Dropbox are totally closed source, we are unable
787 to directly implement our techniques with the released
788 Dropbox software. Although Dropbox provides APIs to
789 allow user program to synchronize data with the Dropbox

790server, different from the client software, the APIs are
791RESTful and operate at the full file level. We are unable to
792get the hash value of a certain chunk, or directly implement
793delta-encoding algorithm via the APIs.
794To address this problem, we leverage a proxy in Amazon
795EC2 which is close to the Dropbox server to emulate the
796control server behavior. The proxy is designed to generate
797the Virtual Chunks, maintain the map of file to the chunk
798list and calculate the hash and the sketch of chunks. During
799a sync process, user data are first uploaded to the proxy,
800and then the proxy updates the metadata in the database
801and stores the data to the Dropbox server via the APIs. Since
802the data storage server of Dropbox is also built on Amazon
803EC2, the bandwidth between our proxy and Dropbox is suf-
804ficient and not the bottleneck.
805To make our Network-aware Chunker efficient and
806adjustable, we use the SAMPLEBYTE [11] as our basic
807chunking method. Like other content defined chunking
808methods, the sample period p set in SAMPLEBYTE also
809determines both the computation overhead and dedupli-
810cation ratio. We leverage the adjustable property of p to
811generate a suite of chunking strategies with various dedu-
812plication ratio and computation overhead, including the
813chunk-based deduplication with the average chunk size
814set to 4, 1 MB, 512 and 128 KB. Each Virtual Chunk con-
815tains a 2-byte field for chunk length.
816We use librsync [13] to implement delta encoding. We
817use a tar-like method to bundle all data chunks in the sync
818process, and a client communicates with our proxy at the
819beginning of a sync process to notify the offset and length of
820each chunk in the sync flow. The timer of our Syncer is set
821to 60 s. We write the QuickSync client and proxy in around
8222,000 lines of Java codes. To achieve efficiency, we design
823two processes to handle chunking and transmission tasks
824respectively in the client. The client is implemented on a
825Galaxy Nexus smartphone with a 1.2 GHz Dual Core CPU,
8261 GB memory and the proxy is built on an Amazon EC2
827server with a 2.8 GHz Quad Core CPU and 4 GB memory.
828Implementation Over Seafile. Although we introduce a
829proxy between the client and the Dropbox server, due to the
830lack of full access of data on the server, this implementation
831suffers from the performance penalty. For instance, to per-
832form delta encoding, the proxy should first fetch the entire
833chunk from the Dropbox server, update its content and
834finally store it back to Dropbox. Even though the bandwidth
835between the proxy and the Dropbox server is sufficient,
836such an implementation would inevitably involve addi-
837tional latency during the sync process.
838In order to show the gain in the sync efficiency when our
839system is fully implemented and can directly operate over
840the data, we further implement QuickSync with Seafile [14],
841an open source cloud storage project. The implementation
842is similar to that using Dropbox but without the need of a
843proxy. Specifically, we directly modify source codes at both
844the client and server sides. We modify the client in a Linux
845laptop with a 2.6 GHz Intel Quad Core CPU and 4 GB mem-
846ory. We build the server on a Linux machine with a 3.3 GHz
847Intel Octal Core CPU and 16 GB memory, as only the Seafile
848software on Linux platform is open source. Techniques in
849QuickSync can also be implemented in the similar way on
850other mobile platforms.
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852 To evaluate the performance of our schemes, we first inves-
853 tigate the throughput improvement of using the Network-
854 aware Chunker, and then show that the Redundancy Elimi-
855 nator is able to effectively reduce the sync traffic. We further
856 evaluate the capability of the Batched Syncer in improving
857 the bandwidth utilization efficiency. Finally, we study the
858 overall improvement of the sync efficiency using real-world
859 workloads. In each case, we compare the performances of
860 the original Seafile and Dropbox clients with those when
861 the two service frameworks are improved with QuickSync.

862 6.1 Impact of the Network-Aware Chunker

863 We first evaluate how theNetwork-aware Chunker improves
864 the throughput under various network conditions.We collect
865 about 200 GB data from 10 cloud storage services users, and
866 randomly pick about 50 GB as the data set for uploading. The
867 rest about 150 GB data are pre-stored on the server for dedu-
868 plication purpose. We repeat the sync process under various
869 RTT to measure the sync speed, defined as the ratio of the
870 original data size to the total sync time, and the average CPU
871 usage of both the client and server. The minimal RTT from
872 our testbed to the Seafile and Dropbox server is 30 and
873 200ms respectively.
874 In Fig. 10a, when the RTT is very low (30 ms), since the
875 bandwidth is sufficient, the client selects the un-aggressive
876 chunking strategy with low computation overhead to split
877 files, and the sync speed outperforms the original one by
878 12 percent. In Fig. 10b, the Network-aware Chunker is shown
879 to adaptively select smaller average chunk size in a poor net-
880 work condition to eliminate more redundancy and reduce
881 the total sync time. Thus, although the sync speed decreases
882 at higher RTT, our scheme can still achieve a higher total sync
883 speed by selecting a smaller average chunk size with the
884 aggressive chunking strategies to eliminatemore redundancy
885 and thus reduce the transmission time. Overall, our imple-
886 mentations can dynamically select an appropriate chunking
887 strategy for deduplication,which leads up to about 31 percent
888 increase of the sync speed under various network conditions.

889We plot the CPU usages of QuickSync client and server
890in Fig. 11. Since the original systems do not change their
891chunking strategies based on network conditions, we also
892plot their constant CPU usages as the baseline. As RTT
893increases, the CPU usages for both the client and server of
894QuickSync increase, as more aggressive chunking strategy
895is applied to reduce the redundant data. The CPU usage for
896Seafile is lower because of more powerful hardware. The
897CPU usage of client reaches up to 12.3 and 42.7 percent in
898two implementations respectively which is still within the
899acceptable range.

9006.2 Impact of the Redundancy Eliminator

901Next we evaluate the sync traffic reduction of using our
902Redundancy Eliminator with the average chunk size set to
9031 MB to exclude the impact of adaptive chunking. We con-
904duct the same set of experiments for modify operation as
905shown in Fig. 2, and measure the sync traffic size to calcu-
906late their TUO.
907In Fig. 12, for both flip and insert operations, the TUO of
908our mechanism for all files in any position is close to 1,
909indicating that our implementation only synchronizes the
910modified content to server. The TUO results for flip or
911insert operation on small files (� 100 KB) have reached
9121.3, where the additional traffic is due to the basic over-
913head of delta encoding. The TUO results for delete opera-
914tion are close to 0 because the client does not need to
915upload the delta besides performing the delta encoding.
916The results of Dropbox modification are similar and omit-
917ted due to the page limit.
918Furthermore, to evaluate the traffic reduction for syn-
919chronizing changes of file whose corresponding chunks are
920on their way to the server, we conduct the same set of
921experiments as those in Fig. 3 with the results shown in
922Table 3. The TUO results in each case are close to 1. Our
923scheme only needs to synchronize the new contents under
924arbitrary number of modifications and any RTT, with our
925in-memory uploading queue to buffer files in the middle of
926transmissions to facilitate the delta encoding.

Fig. 10. Speed improved by network-aware Chunker. Fig. 11. CPU overhead of network-aware Chunker.

Fig. 12. Traffic utilization overhead reduction of Seafile modification.
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928 6.3.1 Improvement of BUE

929 To examine the performance of the Batched Syncer in
930 improving the bandwidth utilization, we set the average
931 chunk size to 1 MB to exclude the impact of adaptive chunk-
932 ing. In Section 2.4, we observe that cloud storage services
933 suffer low BUE, especially when synchronizing a lot of
934 small files. We conduct the same set of experiments with
935 use of our proposed schemes.
936 Fig. 13 shows the level of BUE improvement under different
937 network conditions. When synchronizing a batch of chunks,
938 the reduction of the acknowledgement overhead helps
939 improve the bandwidth utilization efficiency up to 61 percent.
940 The improvement is more obvious in high RTT environment
941 where the throughput often experiences big reduction espe-
942 ciallywhen the acknowledgements are frequent.

943 6.3.2 Overhead for Exception Recovery

944 The per chunk acknowledgement is designed to reduce the
945 recovery overhead when the sync process is unexpectedly
946 interrupted. In our Batched Syncer, the client will not wait
947 for an acknowledgement for every chunk. Now we examine
948 whether this design will cause much more traffic overhead
949 for exception recovery. We upload a set of files with differ-
950 ent sizes, and close the TCP connection when half of the file
951 has been uploaded. After the restart of the program, the cli-
952 ent will create a new connection to finish the sync. We
953 record the total sync traffic and calculate the TUO in Fig. 14.
954 Our results show that in each case, the TUO of QuickSync is
955 close to 1, and the highest TUO is only about 1.5, indicating
956 that our implementations will not cause very high overhead
957 for exception recovery. In our design, before resuming the
958 sync, the client communicates with the server first to check
959 the chunks that are not received and need to be transferred.

960 6.4 Performance of the Integrated System

961 Now we assess the overall performance of our implementa-
962 tion using a series of representative workloads for cloud
963 storage services on Windows or Android. Each workload
964 combines a set of file operation events, including file

965creation, modification or deletion, which will trigger corre-
966sponding events in the local file system. The event number
967in each workload and performance results are shown in
968Table 4. We compare the sync performance of QuickSync
969with other two alternatives. LBFS [7] is a low-bandwidth
970remote file system that leverages the fine-granularity
971content-defined chunking to identify and reduce the redun-
972dant sync traffic. EndRE [11] is an end-system redundancy
973elimination service. We also show the performance results
974of the original system as the baseline in our evaluation.
975We first generate the workloads on Windows platform
976based on Seafile and its modification. The QuickSync Paper
977workload is resulted from uploading the files of this paper,
978and the Seafile Source generates load by storing all the
979source codes of the Seafile. Both types of workload contain
980a lot of small files and do not contain the file modification or
981deletion. Compared to the original system, although the
982traffic size reduction for the two workloads are small (7.5
983and 8.9 percent), our implementation reduces the total sync
984time by 35.1 and 51.8 percent respectively. The reduction is
985mainly caused by bundling the small files to improve the
986bandwidth utilization, as the Seafile Source contains 1,259
987independent files. The Document Editing workload on Win-
988dows is generated when we naturally edit a PowerPoint file
989in the sync folder from 3 to 5 MB within 40 min. We capture
990many creation and deletion events during the editing pro-
991cess, as temporary files whose sizes are close to that of the
992original .ppt file are created and deleted. Changes are auto-
993matically synchronized. Our solution significantly reduces
994the traffic size, with QuickSync to execute the delta encod-
995ing on the temporary files in the middle of the sync process
996to reduce the traffic. The Data Backup workload on Win-
997dows is a typical usage for large data backup. This work-
998load contains 37,655 files, with various file types (e.g., PDF
999or video) and sizes (from 1 KB to 179 MB). Our QuickSync
1000achieves 37.4 percent sync time reduction by eliminating
1001the redundancy and reducing the acknowledgement over-
1002head to improve the bandwidth utilization.
1003We also play the workload on Android platform. The
1004Document Editing workload on Android is similar to that
1005generated in the above experiment but contains fewer modi-
1006fications. Our implementation reduces 41.4 percent of the
1007total sync time. The Photo Sharing is a commonworkload for
1008mobile phones. Although the photos are often in the encoded
1009format and hard to be deduplicated, our implementation can
1010still achieve 24.1 percent time saving through the batched
1011transmission scheme. The SystemBackupworkload is gener-
1012ated to back up all system settings, app binaries together
1013with app configurations in a phone via a slow 3G network.
1014As our implementation adaptively selects aggressive chunk-
1015ing strategy to eliminate larger amount of the backup traffic

TABLE 3
TUO of Sync Process

RTT (ms) Seafile+QuickSync Dropbox+QuickSync

# ¼ 1 # ¼ 3 # ¼ 5 # ¼ 1 # ¼ 3 # ¼ 5

30 1.2306 1.1795 1.1843 - - -
200 1.1152 1.2742 1.1834 1.1067 1.1777 1.2814
400 1.2039 1.2215 1.2420 1.1783 1.1585 1.2978
600 1.2790 1.1233 1.2785 1.2268 1.2896 1.1865

During the uploading process, modifications are performed in the being synced
files.

Fig. 13. BUE improvement.

Fig. 14. Recovery overhead.
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1017 52.9 percent sync time saving is achieved. App Data Backup
1018 is a workload generated when we walk in the outdoor envi-
1019 ronment while using a phone in a LTE network to back up
1020 the data and configurations of several specified applications.
1021 As the network condition changes during our movement,
1022 QuickSync dynamically selects the proper chunking strategy
1023 to eliminate the redundant data, which reduces 45.1 percent
1024 sync traffic and 73.1 percent total sync time.
1025 Interestingly, for most workloads in our experiment
1026 LBFS achieves the lowest traffic size in the sync process, but
1027 the total sync time of LBFS is larger than other solutions.
1028 This is because LBFS leverages a very aggressive deduplica-
1029 tion strategy that chops files into small chunks and identi-
1030 fies redundant data by checking hash values. However, the
1031 aggressive strategy does not always improve the sync effi-
1032 ciency since it is computation-intensive in the resource-
1033 constraint mobile platform. In addition, the effectiveness of
1034 deduplication degrades for compressed workloads (e.g.,
1035 photo sharing). QuickSync outperforms LBFS and EndRE
1036 by adaptively selecting the proper chunking strategy
1037 according to current network conditions, and wisely execut-
1038 ing delta encoding during file editing.

1039 7 RELATED WORK

1040 Measurement Study. Recently a large number of measure-
1041 ment research efforts have been conducted on enterprise
1042 cloud storage services [15], [16], [17], [18] and personal
1043 cloud storage services [2], [19], [20], [21], [22], [23], [24], [25].
1044 Focusing on the enterprise cloud storage services,
1045 CloudCmp [15] measures the elastic computing, persistent
1046 storage, and networking services for four major cloud pro-
1047 viders. The study in [16] provides a quantitative analysis of
1048 the performance of the Windows Azure Platform. Works in
1049 [17] perform an extensive measurement against Amazon S3
1050 to elucidate whether cloud storage is suitable for scientific
1051 grids. Similarly, [18] presents a performance analysis of the
1052 Amazon Web Services. However these studies provide no
1053 insights into personal cloud storage services, while our
1054 measurement study focuses on the emerging personal cloud
1055 storage services in mobile/wireless environments.
1056 Some literature studies also attempt to analyze the per-
1057 formance of personal cloud storage services. To our best
1058 knowledge, Hu et al. first analyze personal cloud storage
1059 services by comparing the performance of Dropbox, Mozy,
1060 Carbonite and CrashPlan [24]. However, they only provide

1061an incomplete analysis on the backup/restore time for sev-
1062eral types of files. Gracia-Tinedo et al. study the REST inter-
1063faces provided by three big players in the personal cloud
1064storage arena [22], and more recently they conduct a mea-
1065surement study of the internal structure of UbuntuOne [21].
1066Drago et al. give a large-scale measurement for Dropbox
1067[19], and then compare the system capabilities for five popu-
1068lar cloud storage services in [2]. However, all these previous
1069studies only focus on the desktop services based on black-
1070box measurement. Li et al. give the experimental study of
1071the sync traffic, demonstrating that a considerable portion of
1072the data sync traffic is wasteful [20]. Our work steps closer
1073to reveal the root cause of inefficiency problem from the pro-
1074tocol perspective, and we are the first to study the sync effi-
1075ciency problem in mobile/wireless networks where the
1076network condition (e.g., RTT) may change significantly.
1077System Design. There are many studies about the system
1078design for cloud storage services [26], [27] but they mostly
1079focus on enterprise backup instead of the personal cloud.
1080UniDrive [28] is designed to boost the sync performance of
1081personal cloud storage services by leveraging multiple
1082available clouds to maximize the parallel transfer opportu-
1083nities. However, relying on existing cloud storage plat-
1084forms, UniDrive is not able to address the sync inefficiency
1085problems we identified in existing personal cloud storage
1086services. An adaptive sync defer (ASD) mechanism is pro-
1087posed to adaptively defer the sync process to follow the lat-
1088est data update [29]. The bundling idea of our Batched
1089Syncer is similar to ASD, but ASD incurs much more recov-
1090ery overhead when the sync is interrupted. Moreover, as a
1091middleware solution, ASD can not avoid the incremental
1092sync failure described in Section 2.3. QuickSync addresses
1093the sync failure problem by applying our sketch-based
1094redundancy elimination. ViewBox [30] is designed to detect
1095the corrupted data through the data checksum and ensure
1096the consistency by adopting view-based synchronization. It
1097is complemented with our QuickSync system.
1098CDC and Delta Encoding. QuickSync leverages some exist-
1099ing techniques, such as content defined chunking [7], [8],
1100[9], [10], [11], [14], [31], [32] and delta encoding [4]. Rather
1101than directly using these schemes, the aim of QuickSync is
1102to design best strategies to adjust and improve these techni-
1103ques for better supporting mobile cloud storage services. In
1104all previous systems using CDC, both the client and server
1105use the fixed average chunk size. In contrast, QuickSync uti-
1106lizes CDC addressing for a unique purpose, adaptively

TABLE 4
Practical Performance Evaluation for QuickSync Using a Series of Real World Representative Workloads

Workload (Platform) # of Events Traffic Size Sync Time

C M D Origin QSync LBFS EndRE Origin QSync LBFS EndRE

QuickSync Paper (W) 74 0 0 4.67 MB 4.32 MB 4.18 MB 4.47 MB 27.6 s 17.9 s 31.4 s 19.8 s
Seafile Source (W) 1,259 0 0 15.6 MB 14.2 MB 13.7 MB 14.9 MB 264.1 s 127.3 s 291.8 s 174.1 s
Document Editing (W) 12 74 7 64.3 MB 12.7 MB 57.3 MB 60.2 MB 592.0 s 317.3 s 514.8 s 488.2 s
Data Backup (W) 37,655 0 0 2 GB 1.4 GB 1.1 GB 1.6 GB 68.7 m 43.1 m 83.4 m 55.6 m
Document Editing (A) 1 4 0 4.1 MB 1.5 MB 3.7 MB 3.9 MB 24.4 s 14.3 s 46.8 s 21.9 s
Photo Sharing (A) 11 0 0 21.1 MB 20.7 MB 20.2 MB 20.6 MB 71.9 s 54.6 s 133.6 s 65.2 s
System Backup (A) 66 0 0 206.2 MB 117.9 MB 96.4 MB 136.9 MB 612.3 s 288.7 s 762.4 s 402.8 s
App Data Backup (A) 17 0 0 66.7 MB 36.6 MB 34.9 MB 41.3 MB 465.7 s 125.0 s 271.4 s 247.9 s

We compare the sync performance with the original system, LBFS [7], and EndRE [11]. W: Windows platform. A: Android platform. Event C: Creation. Event
M: Modification. Event D: Deletion.
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1107 selecting the optimized average chunking size to achieve
1108 the sync efficiency. Delta encoding is also not a new idea
1109 but it poses big challenge when implemented with the cloud
1110 storage system where files are split into chunks and stored
1111 distributedly. The techniques proposed in our Redundancy
1112 Eliminator leverage the sketch of chunks to address the lim-
1113 itation and wisely perform delta encoding on similar
1114 chunks to reduce the sync traffic overhead.

1115 8 DISCUSSION

1116 In this section, we discuss other issues in deploying and
1117 using QuickSync to improve the sync efficiency for mobile
1118 cloud storage services.
1119 Why QuickSync Focuses on Upload Traffic. In our current
1120 design of QuickSync, we mainly focus on improving the
1121 sync efficiency of the upload transmission for two key rea-
1122 sons. First, the dominant traffic of most traditional mobile
1123 applications, such as web browser, streaming application, or
1124 news reader incur the download traffic. Hence a number of
1125 previous efforts have studied on the download transmission
1126 optimization in mobile/wireless environments [10], [11],
1127 [31]. However as an emerging and popular services, mobile
1128 cloud storage generates significant upload traffic which is
1129 rarely studied in previous works. Second, typically in an
1130 LTE/3G network, the upload throughput is much less than
1131 the download throughput [3]. Therefore, it is necessary and
1132 more important to improve the sync efficiency for the upload
1133 traffic of cloud storage services in amobile environment.
1134 Energy Consumption. In this paper we mostly focus on the
1135 sync efficiency of mobile cloud storage services. Due to the
1136 limited battery drain of mobile devices, energy consump-
1137 tion is another important performance metric for the mobile
1138 sync services [33]. It is hard to give a conclusion whether
1139 QuickSync will cause additional energy consumption for
1140 mobile devices. This is because QuickSync improves the
1141 sync efficiency by increasing the bandwidth utilization and
1142 reducing the volume of sync traffic. Although our techni-
1143 ques may cause additional computation overhead in certain
1144 scenarios, these techniques also effectively reduce the data
1145 transmission time as well as the energy caused by network
1146 interfaces. Generally, the transmission energy consumption
1147 is more significant. However, we would not claim that
1148 QuickSync reduce the energy consumption, but will study
1149 the energy problem in the future.
1150 Deployment of QuickSync. QuickSync can be deployed in
1151 current cloud storage services by adding a QuickSync proxy
1152 between the client and the server, or updating the existing
1153 server-side infrastructure to incorporate these new techni-
1154 ques provided by QuickSync. A proxy-based implementa-
1155 tion is easier for deployment but involves more computation
1156 and storage overhead since it requires the proxy to temporar-
1157 ily store the intermediate state of the sync process, while a
1158 full implementation of QuickSync can achieve better perfor-
1159 mance but needs to update the server. Besides, a proxy-based
1160 implementation is also complemented with multi-cloud sys-
1161 tem [28] which is built on multiple existing cloud providers
1162 to obtain better reliability and security.

1163 9 CONCLUSION

1164 Despite their near-ubiquity, mobile cloud storage services
1165 fail to efficiently synchronize data in certain circumstance.

1166In this paper, we first study four popular cloud storage
1167services to identify their sync inefficiency issues in wireless
1168networks. We then conduct the in-depth analysis to give the
1169root causes of the identified problems with both trace stud-
1170ies and data decryption. To address the inefficiency issues,
1171we propose QuickSync, a system with three novel techni-
1172ques. We further implement QuickSync to support the sync
1173operation with Dropbox and Seafile. Our extensive evalua-
1174tions demonstrate that QuickSync can effectively save the
1175sync time and reduce the significant traffic overhead for
1176representative sync workloads.
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