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Abstract—Affected by hardware and wireless conditions in WSNs, raw sensory data usually have notable data loss and corruption.

Existing studies mainly consider the interpolation of random missing data in the absence of the data corruption. There is also no

strategy to handle the successive missing data. To address these problems, this paper proposes a novel approach based on matrix

completion (MC) to recover the successive missing and corrupted data. By analyzing a large set of weather data collected from

196 sensors in Zhu Zhou, China, we verify that weather data have the features of low-rank, temporal stability, and spatial correlation.

Moreover, from simulations on the real weather data, we also discover that successive data corruption not only seriously affects the

accuracy of missing and corrupted data recovery but even pollutes the normal data when applying the matrix completion in a traditional

way. Motivated by these observations, we propose a novel Principal Component Analysis (PCA)-based scheme to efficiently identify

the existence of data corruption. We further propose a two-phase MC-based data recovery scheme, named MC-Two-Phase, which

applies the matrix completion technique to fully exploit the inherent features of environmental data to recover the data matrix due

to either data missing or corruption. Finally, the extensive simulations with real-world sensory data demonstrate that the proposed

MC-Two-Phase approach can achieve very high recovery accuracy in the presence of successively missing and corrupted data.

Index Terms—Corrupted data recovery, matrix completion, wireless sensor networks

Ç

1 INTRODUCTION

WIRELESS sensor networks (WSNs) are widely utilized
to gather various environmental information, such as

under water [1], in forests [2], along road [3], and on volca-
noes [4]. In WSNs, the data collected from the monitoring of
the dynamic environment can generally be represented by
an N � T Environment Matrix (EM), which records data
from N sensors over T time slots. Events occurred in the
physical world, such as forest fire, earthquake or chemical
spill, cannot be accurately detected using inaccurate and
incomplete sensory data [5]. Thus, it is extremely important
to obtain the full and accurate EM from raw sensory data
before making any further analysis and decision.

Affected by hardware and severe wireless conditions [6],
[7], [8] such as strong fading in WSNs, raw sensory data can
have notable loss and corruption. Data generated by WSNs
may also be unreliable and inaccurate as a result of the limi-
tation in sensor resources such as energy, memory, compu-
tational capacity, and wireless bandwidth. Specially, when
the battery power of a sensor is exhausted, the probability
of generating erroneous data will grow rapidly [9]. In addi-
tion, in harsh and unattended environments, some sensor
nodes may malfunction and result in noisy, faulty, missing
and redundant data. Furthermore, sensor nodes are vulner-
able to malicious attacks such as denial of service attacks,
black hole attacks and eavesdropping [10], in which data
generation and processing will be manipulated by adversar-
ies. The above internal and external factors make it difficult
to obtain accurate EM data.

Several studies have been made to handle missing data,
through methods such as local interpolation based on
K-Nearest Neighbors (KNN) [11], global refinement through
Delaunay Triangulation (DT) [12], Multi-channel Singular
Spectrum Analysis (MSSA) based on principal component
analysis [13]. However, the above data interpolation techni-
ques may not well uncover spatio-temporal correlations in
EM, and the interpolation quality is generally not high.More-
over, designed for missing data interpolation, these schemes
cannot be applied towell handle the data corruption.

With the rapid progress of sparse representation, matrix
completion (MC) [14], [15], [16], a remarkable new field, has
emerged recently. According to the matrix completion
theory, a matrix can be accurately recovered with a rela-
tively small number of entries if the underlying matrix has a
low-rank or approximately low-rank structure. Different
from [11], [12], [13], matrix completion seeks to find a low-
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rank matrix which agrees well with the observed entries of a
matrix with incomplete data. Well exploiting spatio-tempo-
ral correlations, matrix completion can achieve good inter-
polation performance for random data missing.

Due to channel fading and sensor failures, successive data
missing or corruptionmay occur along the column (temporal)
and/or row (spatial) directions of EM, which makes it a big
challenge to apply thematrix completion to accurately recover
the whole matrix [17]. Although MC theory allows the recov-
ering of a matrix with random missing entries, if a row or a
column is completely lost, MC operation does not have an
effect on these missing entries. Besidesmissing data, data cor-
ruption is also unavoidable in WSNs. Although the corrup-
tion of data and its impact on data recovery are discussed in
[18], [19], they mainly consider the interpolation of missing
datawhile not identifying and correcting the corrupted data.

This paper focuses on designing algorithms to detect the
existence of erroneous data and more accurately recover the
environmental data matrix in the presence of successive
data missing or corruption. Our contributions can be sum-
marized as follows:

� We first analyze large traces of real weather data,
and our analysis verifies that weather data have the
features of low-rank, temporal stability, and spatial
correlation. Moreover, from simulations on the real
weather data, we also discover that successive data
corruption not only seriously impacts the accuracy
in the recovery of missing and corrupted data but
even pollutes the normal data when applying matrix
completion in a traditional way.

� We propose a two-phase environmental data recov-
ery scheme, named MC-Two-Phase, which takes
advantage of the inherent features of the measure-
ments to recover the monitoring data either due to
data missing or corruption based on matrix comple-
tion. Specifically, in the first phase, our algorithm
recovers the remaining data matrix by excluding the
successively corrupted data to avoid their negative
effect. In the second phase, we take the data obtained
in the first phase and exploit matrix completion the-
ory to take full advantage of both the spatial and tempo-
ral stability to recover the whole matrix.

� To accurately recover the EM data, in the MC-Two-
Phase scheme, we propose three algorithms: a struc-
ture-fault detection algorithmbased onPrincipal Com-
ponent Analysis (PCA), a spatial pre-interpolation
algorithm, and a temporal pre-interpolation algorithm.
The results of these algorithms are fully integrated
with theMC tomore reliably recover an EM.

� Through comprehensive simulations based on real
data traces, we show that ourMC-Two-Phase scheme
can accurately recover weather data even with a large
amount of data missing or corruption. The error
ratios on the missing data, the corrupted data, and
the normal data under our MC-Two-Phase (under
singular value thresholding (SVT)) are only 1, 2, and
1 percent of those under the conventional SVT.

To the best of our knowledge, this is the first work that
exploits matrix completion to recover sensory matrix with
successive data missing or corruption.

The rest of this paper is organized as follows. We intro-
duce the related work in Section 2. The fundamentals of
matrix completion and problem formulation are presented
in Section 3. We introduce our empirical study with real
weather data in Section 4. In Sections 5 and 6, we present
our proposed PCA-based scheme for fault detection and
our algorithm on corrupted data recovery, respectively.
Finally, we evaluate the performance of the proposed MC-
Two-Phase through extensive simulations in Section 7, and
conclude the work in Section 8.

2 RELATED WORK

Data missing and corruption are unavoidable during data
gathering in WSNs.

A great deal of existing work has been devoted to inter-
polate missing data. Among these, K-Nearest-Neighbor
(KNN) [11] simply utilizes the values of the nearest K neigh-
bors to estimate a missing data value. As a classical local
interpolation method, KNN is frequently applied in many
low-fidelity estimation cases. Delaunay Triangulation (DT)
method [12] treats the gathered data as vertices, and
rebuilds virtual triangles for data interpolation by taking
advantage of the vertices and their global errors. As a typi-
cal global refinement method, DT is widely adopted in com-
puter vision for surface rendering. Multi-channel Singular
Spectrum Analysis (MSSA) [13] is a data adaptive and non-
parametric method based on the embedded lag-covariance
matrix. MSSA is often applied in geographic data and mete-
orological data recovery. The above methods are only suit-
able for data interpolation with very few missing values.
They perform poorly when the data missing rate is high.

Besides above techniques, with the rapid progress of
sparse representation, matrix completion [14], [15], [16], a
remarkable new field, has emerged recently. Matrix Com-
pletion is the procedure of filling in the missing entries of a
partially observed matrix. Without any restrictions on the
number of degree of freedom in the completed matrix, a
matrix completion problem is under-determined since the
hidden entries could be assigned arbitrary values. Thus
matrix completion often seeks to find the low rank matrix
that matches the known entries.

It is well-known that the trace-norm is a convex surro-
gate to the matrix rank, based on which, Cand�es et al. [14]
proposes to reconstruct a matrix which agrees well with the
observed entries while regulating the trace-norm. Cand�es
et al. also show that most n1 � n2 matrices of rank r
(r � min n1; n2f g) can be perfectly recovered with very high
probability by solving a simple convex optimization pro-
gram provided that the number of samples is sufficient.
Our recent research results [20], [21] show that the recovery
performance of matrix completion depends on the sampling
ratio of the matrix. To further reduce the sample number
and thus the communication and sensing cost in data gath-
ering process, we propose a sampling stop condition in [20]
and a sampling scheduling algorithm in [21].

Besides using the trace-norm to surrogate to the matrix
rank, some matrix factorization approaches are proposed
for the matrix completion problem. These approaches fac-
torizes an incomplete matrix into two (low-rank) matrices,
which are further multiplied to reconstruct the original
matrix and infer the missing data. The typical matrix
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factorization approaches include Environmental space time
improved compressive sensing (ESTICS) [22], Sparsity
Regularized SVD (SRSVD) [23], Sparsity Regularized Matrix
Factorization (SRMF) [24], and Low-rank matrix fitting
(LMaFit) [25].

Although matrix completion techniques can also be
exploited for recovering random missing data due to the
reasons such as unstable wireless transmissions, the matrix
can be recovered only if there is no row or column to be
completely empty. When there exist successive data missing
along the column and/or the row due to reasons such as
fading and sensor failures, current matrix completion tech-
nique does not work.

Besides missing data, data corruption is also unavoid-
able in WSNs. Very few studies [18], [19] in matrix comple-
tion consider large data corruption, although matrix
completion is shown provably accurate when the few
observed entries are added by Gaussian noise with a small
variance [26]. The method in [26] can not deal with sparse
random noise in the measurement. The authors in [18] pro-
pose a method to recover the missing data with adaptive
outlier pursuit when part of the measurements are dam-
aged by outliers, under the assumption that the number of
corrupted data is known. The work in [19] attempts to
recover a non-corrupted column in a low-rank matrix when
some columns in the matrix are corrupted. Taking iterative
procedures with each iterative step involving a matrix
decomposition, the solutions in [18], [19] suffer from large
computation cost, and are thus difficult to apply for EM
reconstruction in large-scale WSNs. Although the impact of
data corruption is discussed, these existing studies mainly
consider the interpolation of missing data while not identi-
fying and correcting corrupted data.

Moreover, existing matrix completion techniques seldom
discuss the corrupted data pattern. In contrast, based on the
simulation results presented in Section 4.4, we discover that
successive data corruption seriously impacts the accuracy
of missing data recovery and even pollutes the normal data
when applying matrix completion to EM in a traditional
way, which bring extremely high challenge to apply matrix
completion for recovery of EM.

In summary, existing work generally consider the inter-
polation of random missing data. In this work, we propose
to actively recover successive missing or corrupted data to
obtain full and accurate EM. To the best of our knowledge,
none of the existing studies consider the recovery of cor-
rupted data. We propose a two-phase matrix completion
scheme to solve the problem. Our algorithm eliminates the
negative effect caused by corrupted data and takes advan-
tage of spatial-temporal features of environmental data to
accurately recover EM in WSNs.

3 PRELIMINARY AND PROBLEM FORMULATION

In this section, we first introduce the fundamentals of
matrix completion, then present our problem formulation.

3.1 Fundamentals of Matrix Completion

Matrix completion is a new technique which can be applied
to recover a low-rank matrix from a subset of the matrix
entries [14], [15], [16]. Specifically, given the incomplete

data matrix M 2 Rn1�n2 with rank r � min n1; n2f g, the
matrix completion problem can be formulated as follows:

min
X

rankðXÞ
subject to Xij ¼ Mij; ði; jÞ 2 V;

(1)

where V is the set of locations corresponding to the
observed entries.

However, solving this rank minimization problem in (1)
is often impractical because it is NP-hard. Then [14] proves
that most matrices M of rank r can be perfectly recovered
by solving the optimization problem

min
X

Xk k�
subject to Xij ¼ Mij; ði; jÞ 2 V;

(2)

provided that the number of samples m be sufficient and
meet the following condition

m � Cn6=5r log n; (3)

where C is a numerical constant and n ¼ maxfn1; n2g.
In (2), Xk k� is the nuclear norm (trace-norm) of the

matrix X, which is the sum of its singular values. That is,

Xk k� ¼
Pmin n1;n2f g

i¼1 si and si50 are the singular values ofX.
Many matrix recovery approaches have been proposed

to solve the convex optimization problem in (2), including
iterative reweighted least squares algorithm (IRLS-M) [27],
Spectral Matrix Completion[28], fixed point continuation
algorithm [29], OptSpace [28], FixedPoint Continuation
with Approximate SVD (FPCA) [30], and singular value
thresholding [31].

Our MC-Two-Phase scheme does not depend on the
underlying matrix recovery approach. We choose the singu-
lar value thresholding approach as an example to illustrate
our MC-Two-Phase scheme in this paper.

3.2 Problem Formulation

We define a matrix XN�T to hold the weather data, which
records data from N sensors over T time slots. In the
weather matrix, a row corresponds to a sensing location
and a column corresponds to a time slot. An entry repre-
sents the weather data for a particular sensing location and
time slot.

The observed sensory matrix is defined as MN�T . As
mentioned in the introduction, because the data gathering
process is largely affected by hardware and wireless condi-
tions in WSNs, data measured and collected by WSNs are
often unreliable. As a result, the sensory matrix MN�T may
have some data lost and corrupted.

Since weather data normally have strong correlation
between neighboring locations and time slots, the weather
matrix should have low rank. This is confirmed with our
trace data in the next section. Low rank feature provides the
possibility for us to apply matrix completion to recover the
raw weather matrix XN�T from the observed MN�T , which
is our basic idea to solve the data recovery problem.

Despite the big progress in the area of matrix completion,
existing methods are often applied when there are only ran-
dom data missing. However, the failure of senor node, data
tampering by attackers, and the severe communication con-
dition may cause successive/mass data corruption in both

1436 IEEE TRANSACTIONS ON MOBILE COMPUTING, VOL. 16, NO. 5, MAY 2017



the matrix rows and columns, as shown in Fig. 1. Specifi-
cally, the successive data corruption in rows may be caused
from the failure of the senor node or data tampering on the
node. The mass data corruption in columns may result from
strong channel fading or failure around the sink node or
attacks to tamper data at multiple sensor nodes. In this
paper, we call such successive or mass data corruption as a
structure fault. The focus of this paper is to develop techni-
ques to accurately interpolate missing data and recover cor-
rupted data in the presence of structure fault.

Before we present our two-phase corrupted data recov-
ery algorithm based on matrix completion in Section 6, we
first analyze a large set of real weather data to better under-
stand their structure and characteristics in the next section.
We will show that the conventional matrix completion
methods perform poorly because a structure fault can
destroy the inherent feature in the weather matrix. It is thus
very challenging to apply matrix completion theory in the
practical weather gathering system.

4 EMPIRICAL STUDY WITH TRACES OF WEATHER

DATA

We have deployed 196 sensors to collect the weather data in
Zhu Zhou, China. Fig. 2 shows the map of Zhu Zhou, where
the red dot represents the location of a deployed sensor.
Each sensor reports its data once an hour to the weather
monitoring center via the cellular network. We have col-
lected a large amount of weather trace data from Zhu Zhou.
Each data element includes weather data of rain, tempera-
ture, and wind. Specially, we choose rain data to analyze
because Zhu Zhou is in the area prone to flood. The trace
data are collected in the duration of more than two years
from 2011 to 2013. In our simulations, we set N ¼ 196,
T ¼ 168. The trace data reveal the existence of some special
structures.

4.1 Low-Rank Feature

Weather data collected over different locations and time
slots are not independent. There exists inherent data redun-
dancy. We first apply singular value decomposition (SVD)
to examine whether the matrix has a good low-rank struc-
ture. A weather matrixXN�T can be decomposed as

X ¼ USV tr; (4)

where U is an N �N unitary matrix, V is a T � T unitary
matrix, V tr is the transpose of V , and S is a N � T diagonal
matrix with the diagonal elements (i.e., the singular values)

organized in the decreasing order (i.e., S ¼ diag s1; s2; . . . ;ð
sr; 0; . . . ; 0Þ). The rank of a matrix X, denoted by r, is equal
to the number of its non-zero singular values. A matrix is
low-rank if its r � minfN;Tg.

If a matrix has low-rank, its top k singular values occupy

the total or near-total energy
Pk

i¼1 s
2
i �

Pr
i¼1 s

2
i . The metric

we use is the fraction of the total variance captured by the
top k singular values

g kð Þ ¼
Xk
i¼1

s2
i =

Xr
i¼1

s2
i ; (5)

Fig. 3 plots the fraction of the total variance captured by the
top k singular values for different weather trace data from
different seasons. We find that the top 20 singular values
capture 70-90 percent variance in the real traces. These
results indicate that the data matrix X has a good low-rank
approximation. The low-rank feature is the prerequisite for
using matrix completion.

4.2 Temporal Stability

Weather data usually change slowly over time. To study the
short-term stability of weather matrix, we calculate the gap
between each pair of adjacent readings at a location. Specifi-
cally, the gap between each pair of adjacent readings cap-
tured in two consecutive time slots (j, and j� 1) is equal to

Tgapði; jÞ ¼ Xij �Xi;j�1

�� ��; (6)

where 14i4N and 24j4T , Xij represents the data
generated at the location of sensor i at time slot j.
Obviously, Tgapði; jÞ ¼ 0 if the weather data at location i is
not changed from time slot j� 1 to j. The smaller the
Tgapði; jÞ, the more stable the sensory readings for location i

around the time slot j.

Fig. 1. Successive data corrupted with random data lost.

Fig. 2. Weather sensor deployment in Zhu Zhou, China.

Fig. 3. Fraction captured by top k singular values.
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By computing the normalized difference values between
adjacent time slots, we measure the temporal stability at
node i and time slot j according to

DTgapði; jÞ ¼
Xij �Xi;j�1

�� ��
max14i4N;24j4T Xij �Xi;j�1

�� �� ; (7)

where max14i4N;24j4T Xij �Xi;j�1

�� �� is the maximal gap
between any two consecutive time slots in the weather
matrix.

We plot the cumulative distribution function (CDF) of
DTgapði; jÞ in Fig. 4. The X-axis represents the normalized
difference values between two consecutive time slots, i.e.,
DTgapði; jÞ. The Y-axis represents the cumulative probabil-
ity. We observe that more than 90 percent DTgapði; jÞ are
very small ð< 0:05Þ. These results indicate that temporal
stability exists in real environments. In Section 6.2, we
design our temporal pre-interpolation algorithm based on
this feature.

4.3 Spatial Correlation Feature

Weather data are often smooth in a small area, i.e., at a
given time, the data recorded at nearby locations have simi-
lar values. The spatial correlation between a node i and its
neighbors in a time slot j is measured by computing the dif-
ference between its data value and the average value of its
one-hop neighbors

Sgap i; jð Þ ¼ Xij � YðiÞXðjÞ=
X

YðiÞ
� �

; (8)

where YðiÞ is the ith row of matrix Y , XðjÞ is the jth column
of matrix X. Y is the topology matrix and defined as

Y ¼ Yij

� �
N�N

¼ 1 if i and j are 1-hop neighbors
0 otherwise.

�
(9)

With the locations of all deployed weather sensors, the
topology matrix is easily to obtain. Both rows and columns
in a topology matrix Y represent sensor nodes, and Yij

represents whether the node i and node j are one-hop
neighbor. Y is an N �N symmetric matrix, which has
binary values to capture the relationship between nodes.

In (8), the average data value of one-hop neighbors of
node i is obtained by dividing the total values of neighbors,

YðiÞXðjÞ, by the number of one-hop neighbors,
P

YðiÞ. The
spatial correlation feature at node i and time slot j can be
obtained by computing the normalized difference values
between neighboring nodes

DSgap i; jð Þ ¼ Xij � YðiÞXðjÞ=
P

YðiÞ
� �

maxi;j Xij

� ��mini;j Xij

� � ; (10)

where maxi;j Xij

� �
and mini;j Xij

� �
are the maximum and

minimum data values in the weather matrix, and

maxi;j Xij

� ��mini;j Xij

� �
stands for the maximal difference

value.
The CDF of DSgap i; jð Þ is plotted in Fig. 5. The X-axis rep-

resents the normalized difference between value of one
node and the average value of its one-hop neighbors, i.e.,
DSgap i; jð Þ, and the Y-axis represents the cumulative proba-
bility. No matter in which dataset, we can see that the prob-
ability of DSgap i; jð Þ < 0:05 is more than 95 percent, which
indicates that real weather data have strong spatial correla-
tion. In Section 6.1, we design our spatial pre-interpolation
algorithm based on this feature.

4.4 Negative Effects When Structure Faults Happen

The structure faults can be classified into two categories, a
row-structure fault if the successive data corruption (or suc-
cessive data missing) are in a row due to the sensor error,
and a column-structure fault if such data outliers are in a
column due to communication faults. In order to evaluate
the recovery performance for different methods and scenar-
ios, we define the following three metrics.

Definition 1. Error Ratio on Missing data (ERM): A metric for
measuring the error in the recovery of the random missing
entries in the matrix after interpolation

"ERM ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiP

i;j2pl Xij � X̂ij

� �2q
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiP

i;j2pl X
2
ij

q ; (11)

where pl denotes missing data set in the sensory matrix, Xij

and X̂ij denote the raw data and the recovered data at ði; jÞth
element ofX. Note that the condition i; j 2 pl in (11) indicates
that only errors on missing entries are counted.

Definition 2. Error Ratio on Corrupted data (ERC): A metric
for measuring the recovery error of all corrupted entries in the
matrix

"ERC ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiP

i;j2pc Xij � X̂ij

� �2q
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiP

i;j2pc X
2
ij

q ; (12)

where pc denotes corrupted data set in the sensory matrix.

Fig. 4. Temporal stability feature. Fig. 5. Spatial correlation feature.
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Definition 3. Error Ratio on Normal data (ERN): A metric to
measure the recovery error of all normal entries besides outliers
(i.e., missing or corrupted data) in the matrix

"ERN ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiP

i;j =2 pl[pcð Þ Xij � X̂ij

� �2q
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiP

i;j =2 pl[pcð Þ X
2
ij

q : (13)

In order to investigate how structure faults impact the
recovery performance, we generate data trace with random
data missing as well as structure data corruption from the
gathered weather data trace. Specifically, we choose the
rain traces gathered from July 1 to July 7, 2012 as the raw
data. We denote the raw trace data as XN�T . From the raw
data, we generate the corrupted synthesized data, denoted
as DN�T . The synthesized data D is generated through fol-
lowing steps.

Step 1. Among all the N � T entry locations in XN�T , 80
percent entries are randomly selected to form D. Denote
the selected location set as V. After this step, the synthe-
sized dataD can be expressed as follows.

Dij ¼ Xij ði; jÞ 2 V
0 otherwise;

�
(14)

Step 2. To generate structure data corruptions, we ran-
domly select some rows and columns, from which 60per-
cent successive entries on the rows and columns are set
as corrupted by adding randomly generated noise.
Denote the corrupted location set as P:

Dij ¼ Dij þ Zij ði; jÞ 2 P
Dij otherwise;

�
(15)

where Zij is the generated noise at location ði; jÞ
following a zero-mean normal distribution with variance

d2, that is Zij 	 N 0; d2
� �

.

After the above two steps, the corrupted synthesized
data matrix is obtained, and then the matrix completion is
applied to the corrupted data matrix D to obtain the recov-
ery data. Finally, we calculate the error ratio by comparing
the recovered data with the raw data traceX.

Fig. 6 shows the error ratio under row-structure faults
and column-structure faults. As expected, the Error Ratio

increases as the number of structure faults becomes higher.
As shown in Fig. 6a and 6c, structure faults have significant
impact on the recovery performance of the random missing
entries and even pollute normal entries. In Fig. 6b, the error
ratio on the corrupted entities is very high. The error ratio
even reaches 80 when the number of fault rows and the
number of fault columns are 14. Even when the data matrix
has only one corrupted row and column, the error ratio on
the corrupted entities is still larger than 20. Therefore, we
conclude that directly applying conventional matrix com-
pletion can not recover the structure corrupted data.

Moreover, these results demonstrate that structure faults
seriously destroy the inherent feature of the weather matrix,
which makes it difficult to directly apply conventional
matrix completion to interpolate weather data. It is impor-
tant and challenging to design a technique to accurately
interpolate the missing data as well as recover the corrupted
data in the presence of structure faults.

5 PCA-BASED STRUCTURE FAULT DETECTION

Without knowing the actual data value, it is very hard to
determine if any data are corrupted. Although some efforts
have been made in the literature to identify single faults,
our preliminary studies indicate that it is very difficult if
not completely impossible to find a structure fault which
results in successively corrupted data on a row or column.
In this section, we propose a PCA-based scheme to effec-
tively detect structure fault occurred on rows or columns in
the matrix.

PCA is a well-known technique for dimensionality reduc-
tion, with which original data can be projected into a lower
dimensional linear space with orthogonal components,
namely, principal component subspace. After the PCA pro-
cess, a set of correlated variables can be represented by a set
of uncorrelated variables, called principal components
(PCs). By carrying out PCA, a few PCs can represent most of
the information in the original data. Thus, dimensionality
can be reducedwith almost no loss of information.

Obviously, PCA-based approach can take effect only in
the case that the original data are correlated and can be trans-
formed and represented by principal components. From our
empirical study in Section 4, we have known that the
weather matrix has low-rank feature (thus the original data
are correlated), which makes it possible for us to design

Fig. 6. The recovery performance under conventional SVT when structure faults happen.
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row-structure/column-structure fault detection algorithms
based on Principal Component Analysis (PCA) [32].

Different from the traditional fault detection algorithm, a
PCA-based fault detection algorithm can effectively detect
faults in the lower dimension principal component sub-
space instead of the original high dimension data space. In
the principal component subspace, the first few PCs can
contribute most to the data variance, we call these few PCs
major PCs. As shown in Fig. 7, the PCA-based fault detec-
tion is designed based on the following principle: the faults
are extreme data that cause a notable increase in variance
and covariance in the original variables which can be
detected through the examination of the major PCs only. As
shown in Fig. 7, we can detect points 1, 2 and 3 to be faulty
because their projected points are located far away from the
points projected from normal data.

As PCA-based fault detection approaches do not need
any assumption of the distribution of the original data and
are more scalable to various data sets [33], [34], [35], [36],
[37], we design our structure fault detection algorithm
based on PCA.

As shown in Algorithm 1, suppose there is a sensory
matrix MN�T , we design our row-structure fault detection
algorithm as follows. On line 1, we first organize the sensory

matrix into row-style MN�T ¼ M1;M2; . . . ;MN½ 
tr with each
Mi ð1 � i � NÞ being an T -dimensional vector carrying the
data of sensor i. On lines 2-4, an T �N 0 matrix WT�N 0 is
found to transform the original data matrix M to the data
matrix P in the principal component subspace. On line 5,
the transformed matrix is calculated through P ¼ M �W ,
where P ¼ ½P1; . . . ; PN 0 
 with P1; . . . ; PN 0 being the PCs to
represent most of the information in the original data. From
our empirical study in Section 4, we observe that the top 20
singular values capture 70-90 percent rates of the accumula-
tive contribution in the real data traces. The relationship
between the singular value si and the eigenvalue �i is

�i ¼ s2
i . Therefore, in our performance studies of this paper,

we chooseN 0 ¼ 20.
In general, an observation is considered as an outlier if it is

different from the majority of the data or has an unlikely
value under the assumed probability model of the data.
Compared with euclidean distance, Mahalanobis distance
[38], [39] takes into account the correlation between observa-
tions in the distance calculation and thus is a more robust
test statistic for the outlier detection. In this paper, instead of
using the euclidean distance, we apply the Mahalanobis dis-
tance to determine the difference in the principal component
subspace. Geometrically, Pik in PN�N 0 can be interpreted as

the projection of the original data Mi (1 � i � N) onto the
principal component PCk (1 � k � N 0), and Pik is called a
principal component score. According to [40], the sum of the
squares of the standardized principal component scores,

that is, d2i ¼
PN 0

k¼1

P2
ik
�k
, is equivalent to the square of theMaha-

lanobis distance from Mi to the center of the sensory data
where 1 � i � N , �k is the kth eigenvalue of the sensory
covariance matrix of M. Therefore, to detect the row struc-
ture fault, on line 6, we calculate the square of theMahalano-
bis distance of dataMi.

Algorithm 1. Row-Structure Fault Detection Algorithm

Input: a sensory matrixMN�T

1: Organize the sensory matrix into row-style MN�T ¼ M1;½
M2; . . . ;MN 
tr with each Mi ð1 � i � NÞ being an T -dimen-
sional vector carrying the data of sensor i.

2: Normalize the original sensory matrix M, denoted by M0.
Compute the covariance matrix R ofM0.

3: Find the eigenvalues and eigenvectors of matrix R, sort the
eigenvalues in the descending order, �1; �2; . . . ; �T with
�1 � �2 � � � � � �T , and select the first N 0 eigenvectors by
their rates of accumulative contributions, denoted byPN 0

i¼1
�iPT

i¼1
�i
.

4: Matrix W is composed by the eigenvectors whose corre-
sponding eigenvalues are selected, and the kth column in
W is the eigenvector corresponding to the kth largest eigen-
value �k.

5: Calculate P ¼ M �W where P ¼ ½P1; . . . ; PN 0 
 is the data
matrix in the principal component subspace and P1; . . . ; PN 0
are the PCs which can be applied to represent most of the
information in the original data.

6: In the principal component subspace, calculate the square
of the Mahalanobis distance from data Mi to the center of
the sensory data, that is,

d2i ¼
XN 0

k¼1

P 2
ik

�k
; (16)

where 1 � i � N , �k is the kth eigenvalue of the sensory
covariance matrix ofM.

7: DataMi is abnormal if

d2i > x2
N 0;a; (17)

where x2
N 0 ;a is the upper a percentage point of the chi-

square distribution with the degree of freedom N 0.

Since the principal components are assumed to be uncor-
related, the distribution of the Mahalanobis distance follows
a chi-square distribution with N 0 degrees of freedom (N 0 is
the number of principal components). Therefore, our crite-
rion for row-structure fault detection is given on line 7: a
row-structure fault is considered to happen if the square of

the Mahalanobis distance of Mi is d
2
i > x2

N 0;a where x2
N 0;a is

the upper a percentage point of the chi-square distribution
with the degreeN 0. In this paper, a is set as 0.975.

Above is our proposed row-structure fault detection algo-
rithm. We can also organize the sensory matrix M into a
column-style with each column being an N-dimensional
vector. Our column-structure fault detection algorithm can be

Fig. 7. Schematic representation of PCA-based structure fault detection.
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designed in the similarwaywith row-structure fault detection
algorithm. Due to the space limitation, we do not describe our
PCA-based column-structure fault detection algorithm.

After a sensory matrix is processed to detect the row-
structure faults and the column-structure faults, we will
remove these faults to reduce their negative effects, and
then apply the matrix completion to the remaining data in
the first phase of our MC-Two-Phase scheme as introduced
in Section 6.

6 CORRUPTED DATA RECOVERY

To avoid the negative effects brought by structure faults, we
design an innovative corrupted data recovery scheme (MC-
Two-Phase) based on matrix completion, which recovers
the data by taking advantage of the low-rank, temporal sta-
bility, and spatial correlation features of the data matrix.
Our algorithm MC-Two-Phase has two phases with steps
shown in Fig. 8 as follows:

Phase 1: Fault data removing. To eliminate the negative
effects brought by structure faults, we first preprocess the
matrix. This phase includes three steps: 1) The rows and col-
umns detected with structure faults are removed from the
sensory matrix. If the number of fault rows and columns are
nr and nc, respectively, we denote the remaining data
matrix as MðN�nrÞ�ðT�ncÞ, as shown in Fig. 8b. 2) The matrix

completion technique is applied to MðN�nrÞ�ðT�ncÞ to obtain

the complete matrix by filling the items experiencing ran-
dom missing data, denoted as RðN�nrÞ�ðT�ncÞ, as shown in

Fig. 8c. 3) Update MN�T by replacing the parts without
structure faults with RðN�nrÞ�ðT�ncÞ, as shown in Fig. 8d.

Phase 2: Recovery of data with structure faults. The original
data matrix is recovered based on the pre-processed
matrix. This phase also has three steps: 1) Spatial pre-
interpolation, where the row data with structure faults
are replaced with the date from neighboring sensors, tak-
ing advantage of spatial correlation, as shown in Fig. 8e. 2)
Temporal pre-interpolation, where the column data exper-
iencing structure faults are replaced with the data from
adjacent time slots, taking advantage of temporal stability,
as shown in Fig. 8f. 3) Matrix re-processing, where matrix
completion is applied to recover the original data matrix
XN�T from the matrix obtained following above two proce-
dures, exploiting both spatial correlation and temporal
stability, as shown in Fig. 8g.

In the next two sections, we will present in details how
these two interpolation steps in phase 2 work.

6.1 Spatial Pre-Interpolation

With the existence of spatial correlation, data values cap-
tured by sensors within one-hop distance are similar. To
ensure more accurate recovery of data, one key issue is to
avoid using faulty data in the interpolation process. We con-
struct a spatial constraint matrix H following four steps
below to facilitate the spacial interpolation:

� Step 1. For a WSN consisting of N sensors, HN�N is
initialized by a diag d1; d2; . . . ; dNð Þ with the central
diagonal elements of the matrix set to 1, that is,
d1 ¼ d2 ¼ � � � ¼ dN ¼ 1.

� Step 2. Replace the row-structure fault data with
their neighboring data. For a row i which experien-
ces the structure fault, in the data matrix (1 � i � N),
set HðiÞ ¼ YðiÞ, where HðiÞ and YðiÞ are the ith row of

matrix H and matrix Y , respectively. Matrix Y is the
one-hop topology matrix introduced in Section 4.3.

� Step 3. To avoid utilizing a faulty value to interpo-
late other faulty data when there are multiple row-
structure faults, for each fault at ith row of the matrix
M (1 � i � N), set the ith column of the spatial con-

straint matrix to 0, that is HðiÞ ¼ 0 (where HðiÞ

denotes the ith column of matrixH).
� Step 4. Normalize the rows of H so that all elements

of a row add up to 1.
After obtaining the spatial constraint matrix, for a sensor

i with fault, we can apply the average data value of its one-
hop neighbors to pre-interpolate the corresponding faulty
row data through H �M, where M is the data matrix
obtained in the first phase of our MC-Two-Phase scheme.

Example 1. For a WSN consisting of five sensor nodes,
the topology matrix Y and the sensory matrix M are
expressed as

Y ¼

0 1 0 1 1
1 0 1 1 0
0 1 0 0 0
1 1 0 0 1
1 0 0 1 0

2
66664

3
77775 (18)

M ¼

M11 M12 M13 M14 M15

M21 M22 M23 M24 M25

M31 M32 M33 M34 M35

M41 M42 M43 M44 M45

M51 M52 M53 M54 M55

2
66664

3
77775: (19)

Assume that sensors 2 and 4 are running out of the
energy and the row-structure faults are detected at rows 2
and 4 in the sensory matrix. From the topology matrix, we
know sensors 1, 3, and 4 are the one-hop neighbors of sensor
2, while sensors 1, 2, and 5 are the one-hop neighbors of sen-
sor 4. According to the steps introduced above, the spatial
constraint matrixH is built as follows:

H ¼

1 0 0 0 0
0 1 0 0 0
0 0 1 0 0
0 0 0 1 0
0 0 0 0 1

2
66664

3
77775 ) H ¼

1 0 0 0 0
1 0 1 1 0
0 0 1 0 0
1 1 0 0 1
0 0 0 0 1

2
66664

3
77775; (20)

Fig. 8. Two-phase corrupted data recovery scheme.
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where the rows 2 and 4 of the matrix H is replaced with the
corresponding rows of Y .

Sensors 2 and 4 are one-hop neighbors. To avoid utilizing
error data at row 2 and row 4 in matrix M to interpolate

other data, we let columns Hð2Þ and Hð4Þ to be 0, and we
obtain

H ¼

1 0 0 0 0
1 0 1 0 0
0 0 1 0 0
1 0 0 0 1
0 0 0 0 1

2
66664

3
77775: (21)

Then we normalize the rows ofH

H ¼

1 0 0 0 0
1=2 0 1=2 0 0
0 0 1 0 0
1=2 0 0 0 1=2
0 0 0 0 1

2
66664

3
77775: (22)

Finally, through H �M, we can obtain the spatial pre-
interpolated matrix

H �M ¼

M11 M12 M13 M14 M15
M11þM31

2
M12þM32

2
M13þM33

2
M14þM34

2
M15þM35

2
M31 M32 M33 M34 M35

M11þM51
2

M12þM52
2

M13þM53
2

M14þM54
2

M15þM55
2

M51 M52 M53 M54 M55

2
66664

3
77775:

(23)

6.2 Temporal Pre-Interpolation

Similar to spatial pre-interpolation in Section 6.1, we con-
struct a temporal constraint matrix G following four steps
below to capture the temporal stability feature:

� Step 1. Initialize the matrix GT�T with its diagonal
elements set to 1.

� Step 2. Replace the column-structure fault data uti-
lizing those from neighboring time slots. For each
column-structure fault at time slot i (1 � i � T ), we

first set the i-th column of G to 0, i.e., GðiÞ ¼ 0, and
then set entries Gj;i ¼ wji where a slot j is the one
that has strong relationship with slot i and wji is the
weight that reflects how strong the relationship is.

� Step 3. To avoid interpolating data with other faulty
data when there are multiple column-structure
faults, for each fault at ith column in matrix M
(1 � i � T ), set the ith row in temporal constraint
matrix to 0, that is GðiÞ ¼ 0 .

� Step 4. Normalize columns of G so that all elements
of a column add up to 1.

After obtaining the temporal constraint matrix G, we can
apply M �G to obtain the temporal pre-interpolated
matrix, where M is the data matrix with corrupted rows
spatially interpolated.

Exponentially Weighted Moving Average (EWMV) is
considered to be effective in estimating data in time series
model [41], [42]. We design our temporal pre-interpolation
algorithm based on EWMA. Taking EWMA as an example,
we show a temporal pre-interpolation algorithm utilizing
the adjacent four time slots (i.e., two slots before and two

slots after the fault) to replace the data corrupted by the col-
umn-structure fault.

Example 2. for a WSN consisting of 4 sensor nodes, its sen-
sory matrixM with 5 time slots is

M ¼
M11 M12 M13 M14 M15

M21 M22 M23 M24 M25

M31 M32 M33 M34 M35

M41 M42 M43 M44 M45

2
664

3
775: (24)

Assuming that the time slot 3 is detected to have column-
structure fault, following steps 1-3 above, we first set the 3rd
column of G to 0, that is, Gð3Þ ¼ 0, and then set entries
G2;3 ¼ a, G1;3 ¼ 1� a, G4;3 ¼ a, G5;3 ¼ 1� a, where
0 � a � 1. The temporal constraint matrix G is built as

G ¼

1 0 0 0 0
0 1 0 0 0
0 0 1 0 0
0 0 0 1 0
0 0 0 0 1

2
66664

3
77775 ) G ¼

1 0 ð1� aÞ 0 0
0 1 a 0 0
0 0 0 0 0
0 0 a 1 0
0 0 ð1� aÞ 0 1

2
66664

3
77775:

(25)

Normalize columns of G, we have

G ¼

1 0 ð1� aÞ=2 0 0
0 1 a=2 0 0
0 0 0 0 0
0 0 a=2 1 0
0 0 ð1� aÞ=2 0 1

2
66664

3
77775: (26)

Finally, with M �G, we can obtain the temporally pre-

interpolated matrix with the 3rd columnMð3Þ as

Mð3Þ ¼ a
Mð4Þ þMð2Þ

2

	 

þ 1� að Þ Mð5Þ þMð1Þ

2

	 

; 0 � a � 1:

(27)

Obviously, Mð3Þ in (27) is in the EWMA style, where
0 � a � 1 is the smoothing constant (also referred to as the

discount factor). Mð1Þ, Mð2Þ, Mð4Þ, and Mð5Þ are the sensory
data in the time slot 1, 2, 4, and 5, respectively. In this paper,
we set a ¼ 0:8.

Our temporal pre-interpolation algorithm can be easily
extended to support other types of interpolation schemes
and with different time slots and weight setting.

As shown in Fig. 8, our MC-Two-Phase consists of two
phases which includes several main techniques: PCA-based
structure fault detection, matrix recovery algorithm, spatial
pre-interpolation, and temporal pre-interpolation. For the
PCA-based structure fault detection, PCA transformation is
the main step for fault detection with its complexity gener-
ally being Oðp2nþ p3Þ for a data set of size nwith p features.
Our MC-Two-Phase does not depend on the underlying
matrix recovery algorithms, while different matrix recovery
algorithms have different computation complexity. In prac-
tice, we will choose approximate matrix recovery algo-
rithms according to the application requirements. In MC-
Two-Phase, the proposed spatial pre-interpolation and
temporal pre-interpolation are based on simple matrix
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multiplication with neighbor information, thus the com-
plexity is very low.

7 PERFORMANCE EVALUATIONS

To evaluate the performance of our MC-Two-Phase scheme,
we have performed extensive simulations driven by real
weather traces collected by our deployed 196 sensors.

Three series of simulations are conducted. We evaluate
the performance of our PCA-based structure fault detection
algorithm in the first simulation, and then evaluate our MC-
Two-Phase scheme on handling the structure corruption in
the second simulation. The corrupted data set utilized in the
first two series of simulations is generated from the raw trace
data following the steps described in Section 4.4. In the third
simulation, to evaluate the performance of our MC-Two-
Phase scheme on handling the missing of whole rows or
columns, we generate the data set from the raw trace data by
randomly letting some rows and columns be empty.

7.1 Evaluation of PCA-Based Structure Fault
Detection

We use two performance metrics to evaluate the PCA-based
Structure Fault Detection algorithm: false positive ratio and
false negative ratio. False positive ratio is the proportion
of normal rows/columns that are erroneously reported as
being corrupted. False negative ratio is the proportion of cor-
rupted rows/columns that are erroneously reported as nor-
mal. Following the procedure of Section 4.4, we generate
corrupted data matrix in two different ways: 1) Only row or
column structure faults are generated in the data matrix; and
2) The corrupted data matrix includes both row and column
structure faults. To investigate how the noise level impacts
the performance of structure fault detection algorithms, two
different noise levels d2 ¼ 20 and d2 ¼ 10 are simulated.

Figs. 9a and 9b show the performance of the proposed
row-structure fault detection algorithm and column-
structure fault detection algorithm when the data matrix
includes only row or column structure faults, respectively.
We can see that the false negative ratios of our algorithms
are zero under both noise levels. It is easily observed that
the larger the noise level is, the smaller the false positive
ratio thus the larger detection accuracy. Even d2 ¼ 10, the
false positive ratio can be controlled to be very low (i.e., less
than 0.03 for row-structure fault detection, and 0.06 for
column-structure fault detection).

Figs. 10 and 11 show the false positive ratio and false neg-
ative ratio when both row and column structure faults exist
in the data matrix. Our PCA-based fault detection approach
can achieve false positive ratio less than 0.04 (d2 ¼ 10), 0.006

(d2 ¼ 20) in all cases and zero false negative ratio.

Therefore, our PCA-based fault detection approach can
detect various structure faults, which may be caused by fail-
ures of senor nodes or data tampering from attackers. In fol-
lowing simulations, we set d2 ¼ 20.

7.2 Performance Comparison

As our MC-Two-Phase is designed to not depend on the
underlying matrix recovery approach, to evaluate the per-
formance of the proposed MC-Two-Phase, four different
matrix recovery approaches are implemented under our
MC-Two-Phase scheme.

� SVT [31]. SVT approximates the matrix with the min-
imum nuclear norm obeying a set of convex con-
straints. SVT has two remarkable features: applying
the soft-thresholding operation is to a sparse matrix,
and the rank of the matrix obtained in iterations is
empirically non decreasing.

� SRSVD [23]. SRSVD derives two decomposed
matrix L and R using an alternating least-square
procedure. It solves the interpolation problem by
fixing one of the decomposed matrices, L or R,
and taking the other as the optimization variable.
Then the roles of the two matrices are swapped to
continue alternating towards a solution till the
convergence. The recovered matrix can be calcu-

lated from LRT at last.
� SRMF [24]. Similar to SRSVD, SRMF solves the

interpolation problem using alternating least squ-
ares. Different from SRSVD, SRMF exploits spatio-
temporal properties in the matrix decomposition.

� LMaFit [25]. LMaFit is an alternating minimization
scheme which can be started from a rough over-
estimate of the true matrix rank for completion, and
updates each of the three variables X, Y or Z (Z is

Fig. 9. Data matrix includes only row or column structure faults.

Fig. 10. Data matrix includes both row and column structure faults with
the noise level d2 ¼ 20.

Fig. 11. Data matrix includes both row and column structure faults with
the noise level d2 ¼ 10:
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the estimated matrix and X, Y are decomposed
matrices) efficiently while fixing the other two.

The implemented MC-Two-Phase schemes under differ-
ent matrix recovery approaches are denoted as SVT-Two-
Phase, SRSVD-Two-Phase, SRMF-Two-Phase, and LMaFit-
Two-Phase, respectively. Moreover, for performance com-
parison, the above four matrix recovery approaches are also
directly implemented on the corrupted synthesized data to
recover the sensory matrix. In our performance studies, the
directly implemented schemes are denoted as SVT, SRSVD,
SRMF, and LMaFit, respectively.

7.2.1 Structure Corrupted Fault

Although the performance under the conventional SVT is
shown in Fig. 6, for the convenience of comparison, we still
draw the performance results of conventional SVT in
Figs. 12a, 14a, and 16a.

In Figs. 12, 13, 14, 15, 16, and 17, our MC-Two-Phase
scheme is shown to be able to control the error ratios on
the missing data, the corrupted data, and the normal data

at a very low level, while the error ratios under conven-
tional SVT, LMaFit, SRSVD, SRMF are much higher.
Taking SVT as an example, although SVT-Two-Phase and
SVT adopt the same singular value thresholding approach
to recover the matrix, the error ratios on the missing data,
the corrupted data, and the normal data under SVT-
Two-Phase are only 1, 2, and 1 percent of those under the
conventional SVT.

It is worth noticing that, in Figs. 14a, 14b, 14c, and 14d,
the recovery error ratios for corrupted rows and columns
are high under the conventional SVT, LMaFit, SRSVD and
SRMF. Even when the data matrix has only one corrupted
row or column, the error ratio for the corrupted entries is a
big value larger than 20. In contrast, the error ratios under
SVT-Two-Phase, LMaFit-Two-Phase, SRSVD-Two-Phase,
and SRMF-Two-Phase are less than 0.8 in all scenarios
studied (Fig. 15).

When there exist corrupted rows or columns, the recov-
ery error ratios on normal data and missing data are also
higher under conventional SVT, LMaFit, SRSVD and SRMF,

Fig. 12. The recovery performance on missing data when structure corrupted faults exist under conventional method.

Fig. 14. The recovery performance on corrupted data when structure corrupted faults exist under conventional method.

Fig. 13. The recovery performance on missing data when structure corrupted faults exist under Two-Phase scheme.
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as shown in Figs. 16 and 12. These results also demonstrate
that, regardless of the underlying matrix recovery
approaches, successive data corruption seriously impacts
the accuracy of missing data recovery and even pollutes the
normal data.

From Figs. 16c and 16d, we can see that, the error ratios
on normal data under conventional SRSVD and SRMF can
even reach three due to the existence of corrupted entries.
In contrast, as shown in Figs. 17c and 17d, the error ratios
under SRSVD-Two-Phase and SRMF-Two-Phase are much
smaller and in the range of [0.01, 0.03] and [0.01, 0.04]
respectively. Though the error ratio on normal data under
conventional SVT (Fig. 16a) is under 0.08, it is still higher
than that of SVT-Two-Phase (Fig. 17a).

All these simulation results demonstrate that our MC-
Two-Phase scheme is very effective in handling structure
faults and recovering the corrupted matrix data. More-
over, the four MC-Two-Phase implementation with four
different matrix recovery techniques also demonstrate
that our MC-Two-Phase is a general matrix completion

scheme and dose not depend on the underlying matrix
recovery approaches.

7.2.2 Row and Column Missing

Fig. 18 shows the recovery performance when some rows
and columns are missing in the data matrix through our
MC-Two-Phase scheme. As shown in Fig. 18, MC-Two-
Phase schemes achieve the very low error ratios (which are
within the range of [0.5, 0.8]) under all matrix recovery
approaches.

From the literature work, we know that conventional
matrix completion approaches can only recover data if there
is no row or column to be completely empty. If a row or a
column is missing, these schemes do not have effect on
these missing entries. Different from conventional matrix
completion approaches, in our MC-Two-Phase scheme, we
utilize our proposed spatial pre-interpolation, temporal
pre-interpolation algorithms to fill in the empty rows and
columns first, and then apply the matrix completion to
smooth the data. Therefore, our MC-Two-Phase scheme can

Fig. 16. The recovery performance on normal data when structure corrupted faults exist under conventional method.

Fig. 17. The recovery performance on normal data when structure corrupted faults exist under Two-Phase scheme.

Fig. 15. The recovery performance on corrupted data when structure corrupted faults exist under Two-Phase scheme.
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break the restriction in the conventional matrix completion
techniques to correctly recover the whole row and column
of missing data.

The low-rank feature is the prerequisite for matrix com-
pletion and thus our proposed techniques in this paper. As
almost all physical conditions monitored are continuous
without sudden changes, sensory data generally exhibit
strong spatio-temporal correlation [43]. Thus the sensory
data matrix has a low-rank feature. Some previous studies
[22], [44], [45], [46] also show that sensory matrices of tem-
perature, humidity, light, and PM2.5 are low-rank and have
high spatiotemporal correlations. Although this paper uti-
lizes weather data collected from 196 sensor notes as a case
to verify the effectiveness of the proposed MC-Two-Phase
scheme, we expect that our scheme can also work well to
recover other sensory matrices. In our future work, we will
evaluate the performance of our MC-Two-Phase on other
sensory matrices.

8 CONCLUSION

This paper proposes a two-phase matrix completion scheme
to recover successively missing or corrupted data, named
MC-Two-Phase. The scheme applies matrix completion to
fully exploit the inherent features of environmental data to
perform data recovery. MC-Two-Phase scheme includes
three algorithms: structure fault detection based on Princi-
pal Component Analysis (PCA), spatial pre-interpolation,
and temporal pre-interpolation. Most importantly, our
scheme exploits matrix completion to fully integrate results
from the three algorithms for more efficient and reliable
data recovery.

We have performed extensive simulations with real-
world sensory data. The simulation results demonstrate
that our MC-Two-Phase can achieve very good recovery
performance when successive data corruption exists. Specif-
ically, the error ratios on the missing data, the corrupted
data, and the normal data under our SVT-Two-Phase are
only 1, 2, and 1 percent of those under the conventional
SVT. Moreover, our MC-Two-Phase scheme can break the
restriction in conventional matrix completion techniques to
correctly recover the data matrix even when some rows or
columns are completely empty.
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