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Abstract—Affected by hardware and wireless conditions in
WSNs, raw sensory data usually have notable data loss and
corruption. Existing studies mainly consider the interpolation of
random missing data in the absence of the data corruption. There
is also no strategy to handle the successive missing data. To address
these problems, this paper proposes a novel approach based on
matrix completion (MC) to recover the successive missing and
corrupted data. By analyzing a large set of weather data collected
from 196 sensors in Zhu Zhou, China, we verify that weather
data have the features of low-rank, temporal stability, and spatial
correlation. Moreover, from simulations on the real weather data,
we also discover that successive data corruption not only seriously
affects the accuracy of missing and corrupted data recovery but
even pollutes the normal data when applying the matrix completion
in a traditional way. Motivated by these observations, we propose
a novel Principal Component Analysis (PCA)-based scheme to
efficiently identify the existence of data corruption. We further
propose a two-phase MC-based data recovery scheme, named MC-
Two-Phase, which applies the matrix completion technique to fully
exploit the inherent features of environmental data to recover the
data matrix due to either data missing or corruption. Finally, the
extensive simulations with real-world sensory data demonstrate
that the proposed MC-Two-Phase approach can achieve very high
recovery accuracy in the presence of successively missing and
corrupted data.

Index Terms—Corrupted Data Recovery; Matrix Completion;
Wireless Sensor Networks

I. INTRODUCTION

Wireless sensor networks (WSNs) are widely utilized to gath-
er various environmental information, such as under water [1], in
forests [2], along road [3], and on volcanoes [4]. In WSNs, the
data collected from the monitoring of the dynamic environment
can generally be represented by an N × T Environment Matrix
(EM), which records data from N sensors over T time slots.
Events occurred in the physical world, such as forest fire,
earthquake or chemical spill, cannot be accurately detected using
inaccurate and incomplete sensory data [5]. Thus, it is extremely
important to obtain the full and accurate EM from raw sensory
data before making any further analysis and decision.

Affected by hardware and severe wireless conditions [6]–[8]
such as strong fading in WSNs, raw sensory data can have
notable loss and corruption. Data generated by WSNs may also
be unreliable and inaccurate as a result of the limitation in sensor
resources such as energy, memory, computational capacity, and

wireless bandwidth. Specially, when the battery power of a
sensor is exhausted, the probability of generating erroneous
data will grow rapidly [9]. In addition, in harsh and unattended
environments, some sensor nodes may malfunction and result in
noisy, faulty, missing and redundant data. Furthermore, sensor
nodes are vulnerable to malicious attacks such as denial of
service attacks, black hole attacks and eavesdropping [10], in
which data generation and processing will be manipulated by
adversaries. The above internal and external factors make it
difficult to obtain accurate EM data.

Several studies have been made to handle missing data,
through methods such as local interpolation based on K-Nearest
Neighbors (KNN) [11], global refinement through Delaunay Tri-
angulation (DT) [12], Multi-channel Singular Spectrum Analysis
(MSSA) based on principal component analysis [13]. However,
the above data interpolation techniques may not well uncover
spatio-temporal correlations in EM, and the interpolation quality
is generally not high. Moreover, designed for missing data
interpolation, these schemes cannot be applied to well handle
the data corruption.

With the rapid progress of sparse representation, matrix com-
pletion (MC) [14]–[16], a remarkable new field, has emerged
recently. According to the matrix completion theory, a matrix
can be accurately recovered with a relatively small number of
entries if the underlying matrix has a low-rank or approximately
low-rank structure. Different from [11]–[13], matrix completion
seeks to find a low-rank matrix which agrees well with the
observed entries of a matrix with incomplete data. Well exploit-
ing spatio-temporal correlations, matrix completion can achieve
good interpolation performance for random data missing.

Due to channel fading and sensor failures, successive data
missing or corruption may occur along the column (temporal)
and/or row (spatial) directions of EM, which makes it a big chal-
lenge to apply the matrix completion to accurately recover the
whole matrix [17]. Although MC theory allows the recovering
of a matrix with random missing entries, if a row or a column is
completely lost, MC operation does not have an effect on these
missing entries. Besides missing data, data corruption is also
unavoidable in WSNs. Although the corruption of data and its
impact on data recovery are discussed in [18], [19], they mainly
consider the interpolation of missing data while not identifying
and correcting the corrupted data.



This paper focuses on designing algorithms to detect the
existence of erroneous data and more accurately recover the
environmental data matrix in the presence of successive data
missing or corruption. Our contributions can be summarized as
follows:

• We first analyze large traces of real weather data, and our
analysis verifies that weather data have the features of low-
rank, temporal stability, and spatial correlation. Moreover,
from simulations on the real weather data, we also discover
that successive data corruption not only seriously impacts
the accuracy in the recovery of missing and corrupted data
but even pollutes the normal data when applying matrix
completion in a traditional way.

• We propose a two-phase environmental data recovery
scheme, named MC-Two-Phase, which takes advantage of
the inherent features of the measurements to recover the
monitoring data either due to data missing or corruption
based on matrix completion. Specifically, in the first phase,
our algorithm recovers the remaining data matrix by exclud-
ing the successively corrupted data to avoid their negative
effect. In the second phase, we take the data obtained in
the first phase and exploit matrix completion theory to take
full advantage of both the spatial and temporal stability to
recover the whole matrix.

• To accurately recover the EM data, in the MC-Two-Phase
scheme, we propose three algorithms: a structure-fault de-
tection algorithm based on Principal Component Analysis
(PCA), a spatial pre-interpolation algorithm, and a temporal
pre-interpolation algorithm. The results of these algorithms
are fully integrated with the MC to more reliably recover
an EM.

• Through comprehensive simulations based on real data
traces, we show that our MC-Two-Phase scheme can ac-
curately recover weather data even with a large amount of
data missing or corruption. The error ratios on the missing
data, the corrupted data, and the normal data under our
MC-Two-Phase (under SVT) are only 1%, 2%, and 1% of
those under the conventional SVT.

To the best of our knowledge, this is the first work that exploit-
s matrix completion to recover sensory matrix with successive
data missing or corruption.

The rest of this paper is organized as follows. We introduce
the related work in Section II. The fundamentals of matrix
completion and problem formulation are presented in Section
III. We introduce our empirical study with real weather data in
Section IV. In Sections V and VI, we present our proposed
PCA-based scheme for fault detection and our algorithm on
corrupted data recovery, respectively. Finally, we evaluate the
performance of the proposed MC-Two-Phase through extensive
simulations in Section VII, and conclude the work in Section
VIII.

II. RELATED WORK
Data missing and corruption are unavoidable during data

gathering in WSNs.
A great deal of existing work has been devoted to interpolate

missing data. Among these, K-Nearest-Neighbor (KNN) [11]
simply utilizes the values of the nearest K neighbors to estimate
a missing data value. As a classical local interpolation method,

KNN is frequently applied in many low-fidelity estimation
cases. Delaunay Triangulation (DT) method [12] treats the
gathered data as vertices, and rebuilds virtual triangles for
data interpolation by taking advantage of the vertices and their
global errors. As a typical global refinement method, DT is
widely adopted in computer vision for surface rendering. Multi-
channel Singular Spectrum Analysis (MSSA) [13] is a data
adaptive and nonparametric method based on the embedded lag-
covariance matrix. MSSA is often applied in geographic data
and meteorological data recovery. The above methods are only
suitable for data interpolation with very few missing values.
They perform poorly when the data missing rate is high.

Besides above techniques, with the rapid progress of sparse
representation, matrix completion [14]–[16], a remarkable new
field, has emerged recently. Matrix Completion is the procedure
of filling in the missing entries of a partially observed matrix.
Without any restrictions on the number of degree of freedom
in the completed matrix, a matrix completion problem is under-
determined since the hidden entries could be assigned arbitrary
values. Thus matrix completion often seeks to find the low rank
matrix that matches the known entries.

It is well-known that the trace-norm is a convex surrogate to
the matrix rank, based on which, Candès et al. [14] proposes
to reconstruct a matrix which agrees well with the observed
entries while regulating the trace-norm. Candès et al. also show
that most n1 × n2 matrices of rank r (r ≪ min {n1, n2}) can
be perfectly recovered with very high probability by solving a
simple convex optimization program provided that the number of
samples is sufficient. Our recent research results [20], [21] show
that the recovery performance of matrix completion depends on
the sampling ratio of the matrix. To further reduce the sample
number and thus the communication and sensing cost in data
gathering process, we propose a sampling stop condition in [20]
and a sampling scheduling algorithm in [21].

Besides using the trace-norm to surrogate to the matrix
rank, some matrix factorization approaches are proposed for
the matrix completion problem. These approaches factorizes
an incomplete matrix into two (low-rank) matrices, which are
further multiplied to reconstruct the original matrix and infer
the missing data. The typical matrix factorization approaches
include Environmental space time improved compressive sensing
(ESTICS) [22], Sparsity Regularized SVD (SRSVD) [23], Spar-
sity Regularized Matrix Factorization (SRMF) [24], and Low-
rank matrix fitting (LMaFit) [25].

Although matrix completion techniques can also be exploited
for recovering random missing data due to the reasons such
as unstable wireless transmissions, the matrix can be recovered
only if there is no row or column to be completely empty. When
there exist successive data missing along the column and/or the
row due to reasons such as fading and sensor failures, current
matrix completion technique does not work.

Besides missing data, data corruption is also unavoidable in
WSNs. Very few studies [18], [19] in matrix completion consider
large data corruption, although matrix completion is shown
provably accurate when the few observed entries are added by
Gaussian noise with a small variance [26]. The method in [26]
can not deal with sparse random noise in the measurement. The
authors in [18] propose a method to recover the missing data
with adaptive outlier pursuit when part of the measurements are
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damaged by outliers, under the assumption that the number of
corrupted data is known. The work in [19] attempts to recover a
non-corrupted column in a low-rank matrix when some columns
in the matrix are corrupted. Taking iterative procedures with each
iterative step involving a matrix decomposition, the solutions
in [18], [19] suffer from large computation cost, and are thus
difficult to apply for EM reconstruction in large-scale WSNs.
Although the impact of data corruption is discussed, these
existing studies mainly consider the interpolation of missing data
while not identifying and correcting corrupted data.

Moreover, existing matrix completion techniques seldom dis-
cuss the corrupted data pattern. In contrast, based on the
simulation results presented in Section IV-D, we discover that
successive data corruption seriously impacts the accuracy of
missing data recovery and even pollutes the normal data when
applying matrix completion to EM in a traditional way, which
bring extremely high challenge to apply matrix completion for
recovery of EM.

In summary, existing work generally consider the interpolation
of random missing data. In this work, we propose to actively
recover successive missing or corrupted data to obtain full
and accurate EM. To the best of our knowledge, none of the
existing studies consider the recovery of corrupted data. We
propose a two-phase matrix completion scheme to solve the
problem. Our algorithm eliminates the negative effect caused by
corrupted data and takes advantage of spatial-temporal features
of environmental data to accurately recover EM in WSNs.

III. PRELIMINARY AND PROBLEM FORMULATION

In this section, we first introduce the fundamentals of matrix
completion, then present our problem formulation.

A. Fundamentals of Matrix Completion

Matrix completion is a new technique which can be applied
to recover a low-rank matrix from a subset of the matrix entries
[14]–[16]. Specifically, given the incomplete data matrix M ∈
Rn1×n2 with rank r ≪ min {n1, n2}, the matrix completion
problem can be formulated as follows:

min
X

rank(X)

subject to Xij = Mij , (i, j) ∈ Ω
(1)

where Ω is the set of locations corresponding to the observed
entries.

However, solving this rank minimization problem in (1) is
often impractical because it is NP-hard. Then [14] proves that
most matrices M of rank r can be perfectly recovered by solving
the optimization problem

min
X

∥X∥∗
subject to Xij = Mij , (i, j) ∈ Ω

(2)

provided that the number of samples m be sufficient and meet
the following condition:

m ≥ Cn6/5r log n, (3)

where C is a numerical constant and n = max{n1, n2}.
In (2), ∥X∥∗ is the nuclear norm (trace-norm) of the matrix

X , which is the sum of its singular values. That is, ∥X∥∗ =∑min{n1,n2}
i=1 σi and σi > 0 are the singular values of X .

Many matrix recovery approaches have been proposed to
solve the convex optimization problem in (2), including iterative
reweighted least squares algorithm (IRLS-M) [27], Spectral
Matrix Completion [28], fixed point continuation algorithm [29],
OptSpace [28], FixedPoint Continuation with Approximate SVD
(FPCA) [30], and singular value thresholding (SVT) [31].

Our MC-Two-Phase scheme does not depend on the under-
lying matrix recovery approach. We choose the singular value
thresholding (SVT) approach as an example to illustrate our MC-
Two-Phase scheme in this paper.

B. Problem Formulation

We define a matrix XN×T to hold the weather data, which
records data from N sensors over T time slots. In the weather
matrix, a row corresponds to a sensing location and a column
corresponds to a time slot. An entry represents the weather data
for a particular sensing location and time slot.

The observed sensory matrix is defined as MN×T . As men-
tioned in the introduction, because the data gathering process is
largely affected by hardware and wireless conditions in WSNs,
data measured and collected by WSNs are often unreliable. As
a result, the sensory matrix MN×T may have some data lost and
corrupted.

Since weather data normally have strong correlation between
neighboring locations and time slots, the weather matrix should
have low rank. This is confirmed with our trace data in the
next section. Low rank feature provides the possibility for us
to apply matrix completion to recover the raw weather matrix
XN×T from the observed MN×T , which is our basic idea to
solve the data recovery problem.
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Fig. 1. Successive data corrupted with random data lost

Despite the big progress in the area of matrix completion,
existing methods are often applied when there are only random
data missing. However, the failure of senor node, data tampering
by attackers, and the severe communication condition may cause
successive/mass data corruption in both the matrix rows and
columns, as shown in Fig. 1. Specifically, the successive data
corruption in rows may be caused from the failure of the senor
node or data tampering on the node. The mass data corruption in
columns may result from strong channel fading or failure around
the sink node or attacks to tamper data at multiple sensor nodes.
In this paper, we call such successive or mass data corruption as
a structure fault. The focus of this paper is to develop techniques
to accurately interpolate missing data and recover corrupted data
in the presence of structure fault.
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Before we present our two-phase corrupted data recovery
algorithm based on matrix completion in Section VI, we first
analyze a large set of real weather data to better understand
their structure and characteristics in the next section. We will
show that the conventional matrix completion methods perform
poorly because a structure fault can destroy the inherent feature
in the weather matrix. It is thus very challenging to apply matrix
completion theory in the practical weather gathering system.

IV. EMPIRICAL STUDY WITH TRACES OF WEATHER
DATA

We have deployed 196 sensors to collect the weather data in
Zhu Zhou, China. Fig. 2 shows the map of Zhu Zhou, where the
red dot represents the location of a deployed sensor. Each sensor
reports its data once an hour to the weather monitoring center
via the cellular network. We have collected a large amount of
weather trace data from Zhu Zhou. Each data element includes
weather data of rain, temperature, and wind. Specially, we
choose rain data to analyze because Zhu Zhou is in the area
prone to flood. The trace data are collected in the duration of
more than two years from 2011 to 2013. In our simulations, we
set N = 196, T = 168. The trace data reveal the existence of
some special structures.

Fig. 2. Weather sensor deployment in Zhu Zhou, China

A. Low-rank Feature

Weather data collected over different locations and time slots
are not independent. There exists inherent data redundancy.
We first apply singular value decomposition (SVD) to examine
whether the matrix has a good low-rank structure. A weather
matrix XN×T can be decomposed as:

X = UΣV tr (4)

where U is an N×N unitary matrix, V is a T×T unitary matrix,
V tr is the transpose of V , and Σ is a N × T diagonal matrix
with the diagonal elements (i.e. the singular values) organized in
the decreasing order (i.e. Σ = diag (σ1, σ2, · · · , σr, 0, · · · , 0)).
The rank of a matrix X , denoted by r, is equal to the number
of its non-zero singular values. A matrix is low-rank if its r ≪
min{N,T}.

If a matrix has low-rank, its top k singular values occupy the

total or near-total energy
k∑

i=1

σ2
i ≈

r∑
i=1

σ2
i . The metric we use is

the fraction of the total variance captured by the top k singular
values:

g (k) =

k∑
i=1

σ2
i /

r∑
i=1

σ2
i (5)

Fig. 3 plots the fraction of the total variance captured by the top
k singular values for different weather trace data from different
seasons. We find that the top 20 singular values capture 70%-
90% variance in the real traces. These results indicate that the
data matrix X has a good low-rank approximation. The low-rank
feature is the prerequisite for using matrix completion.

B. Temporal Stability

Weather data usually change slowly over time. To study the
short-term stability of weather matrix, we calculate the gap
between each pair of adjacent readings at a location. Specifically,
the gap between each pair of adjacent readings captured in two
consecutive time slots (j, and j − 1) is equal to

Tgap(i, j) = |Xij −Xi,j−1| (6)

where 1 6 i 6 N and 2 6 j 6 T , Xij represents the data
generated at the location of sensor i at time slot j. Obviously,
Tgap(i, j) = 0 if the weather data at location i is not changed
from time slot j − 1 to j. The smaller the Tgap(i, j), the more
stable the sensory readings for location i around the time slot j.

By computing the normalized difference values between ad-
jacent time slots, we measure the temporal stability at node i
and time slot j according to

∆Tgap(i, j) =
|Xij −Xi,j−1|

max
16i6N,26j6T

|Xij −Xi,j−1|
(7)

where max
16i6N,26j6T

|Xij −Xi,j−1| is the maximal gap between

any two consecutive time slots in the weather matrix.
We plot the cumulative distribution function (CDF) of

∆Tgap(i, j) in Fig. 4. The X-axis represents the normalized
difference values between two consecutive time slots, i.e.,
∆Tgap(i, j). The Y-axis represents the cumulative probability.
We observe that more than 90% ∆Tgap(i, j) are very small
(< 0.05). These results indicate that temporal stability exists
in real environments. In Section VI-B, we design our temporal
pre-interpolation algorithm based on this feature.

C. Spatial Correlation Feature

Weather data are often smooth in a small area, i.e., at a given
time, the data recorded at nearby locations have similar values.
The spatial correlation between a node i and its neighbors in a
time slot j is measured by computing the difference between its
data value and the average value of its one-hop neighbors:

Sgap (i, j) = Xij −
(
Y(i)X

(j)/
∑

Y(i)

)
, (8)

where Y(i) is the i-th row of matrix Y , X(j) is the j-th column
of matrix X . Y is the topology matrix and defined as

Y = (Yij)N×N =

{
1 if i and j are 1-hop neighbors
0 otherwise (9)

With the locations of all deployed weather sensors, the topology
matrix is easily to obtain. Both rows and columns in a topology
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matrix Y represent sensor nodes, and Yij represents whether
the node i and node j are one-hop neighbor. Y is an N ×
N symmetric matrix, which has binary values to capture the
relationship between nodes.

In (8), the average data value of one-hop neighbors of node i is
obtained by dividing the total values of neighbors, Y(i)X

(j), by
the number of one-hop neighbors,

∑
Y(i). The spatial correlation

feature at node i and time slot j can be obtained by computing
the normalized difference values between neighboring nodes:

∆Sgap (i, j) =
Xij −

(
Y(i)X

(j)/
∑

Y(i)

)
max
i,j

(Xij)−min
i,j

(Xij)
(10)

where max
i,j

(Xij) and min
i,j

(Xij) are the maximum and min-

imum data values in the weather matrix, and max
i,j

(Xij) −
min
i,j

(Xij) stands for the maximal difference value.

The CDF of ∆Sgap (i, j) is plotted in Fig. 5. The X-axis
represents the normalized difference between value of one node
and the average value of its one-hop neighbors, i.e., ∆Sgap (i, j),
and the Y-axis represents the cumulative probability. No matter
in which dataset, we can see that the probability of ∆Sgap (i, j)
< 0.05 is more than 95%, which indicates that real weather data
have strong spatial correlation. In Section VI-A, we design our
spatial pre-interpolation algorithm based on this feature.

D. Negative Effects When Structure Faults Happen

The structure faults can be classified into two categories, a
row-structure fault if the successive data corruption (or succes-
sive data missing) are in a row due to the sensor error, and
a column-structure fault if such data outliers are in a column
due to communication faults. In order to evaluate the recovery
performance for different methods and scenarios, we define the
following three metrics.

Definition 1 Error Ratio on Missing data (ERM): a metric
for measuring the error in the recovery of the random missing
entries in the matrix after interpolation.

εERM =

√∑
i,j∈πl

(
Xij − X̂ij

)2

√∑
i,j∈πl

X2
ij

(11)

where πl denotes missing data set in the sensory matrix, Xij

and X̂ij denote the raw data and the recovered data at (i, j)-th
element of X . Note that the condition i, j ∈ πl in (11) indicates
that only errors on missing entries are counted.

Definition 2 Error Ratio on Corrupted data (ERC): a metric
for measuring the recovery error of all corrupted entries in the
matrix.

εERC =

√∑
i,j∈πc

(
Xij − X̂ij

)2

√∑
i,j∈πc

X2
ij

(12)

where πc denotes corrupted data set in the sensory matrix.
Definition 3 Error Ratio on Normal data (ERN): a metric to

measure the recovery error of all normal entries besides outliers
(i.e., missing or corrupted data) in the matrix.

εERN =

√∑
i,j /∈(πl∪πc)

(
Xij − X̂ij

)2

√∑
i,j /∈(πl∪πc)

X2
ij

(13)

In order to investigate how structure faults impact the recovery
performance, we generate data trace with random data missing
as well as structure data corruption from the gathered weather
data trace. Specifically, we choose the rain traces gathered from
July 1 to July 7, 2012 as the raw data. We denote the raw trace
data as XN×T . From the raw data, we generate the corrupted
synthesized data, denoted as DN×T . The synthesized data D is
generated through following steps.

Step 1: Among all the N ×T entry locations in XN×T , 80%
entries are randomly selected to form D. Denote the selected
location set as Ω. After this step, the synthesized data D can be
expressed as follows.

Dij =

{
Xij (i, j) ∈ Ω
0 otherwise

(14)

Step 2: To generate structure data corruptions, we randomly
select some rows and columns, from which 60% successive
entries on the rows and columns are set as corrupted by adding
randomly generated noise. Denote the corrupted location set as
Π:

Dij =

{
Dij + Zij (i, j) ∈ Π

Dij otherwise
(15)

where Zij is the generated noise at location (i, j) following a
zero-mean normal distribution with variance δ2, that is Zij ∼
N

(
0, δ2

)
.

After the above two steps, the corrupted synthesized data
matrix is obtained, and then the matrix completion is applied to
the corrupted data matrix D to obtain the recovery data. Finally,
we calculate the error ratio by comparing the recovered data
with the raw data trace X .

Fig. 6 shows the error ratio under row-structure faults and
column-structure faults. As expected, the Error Ratio increases
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(a) Error Ratio on Missing Data (b) Error Ratio on Corrupted Data (c) Error Ratio on Normal Data

Fig. 6. The recovery performance under conventional SVT when structure faults happen

as the number of structure faults becomes higher. As shown in
Fig. 6(a) and Fig. 6(c), structure faults have significant impact
on the recovery performance of the random missing entries and
even pollute normal entries. In Fig. 6(b), the error ratio on the
corrupted entities is very high. The error ratio even reaches 80
when the number of fault rows and the number of fault columns
are 14. Even when the data matrix has only one corrupted row
and column, the error ratio on the corrupted entities is still
larger than 20. Therefore, we conclude that directly applying
conventional matrix completion can not recover the structure
corrupted data.

Moreover, these results demonstrate that structure faults se-
riously destroy the inherent feature of the weather matrix,
which makes it difficult to directly apply conventional matrix
completion to interpolate weather data. It is important and
challenging to design a technique to accurately interpolate the
missing data as well as recover the corrupted data in the presence
of structure faults.

V. PCA-BASED STRUCTURE FAULT DETECTION

Without knowing the actual data value, it is very hard to
determine if any data are corrupted. Although some efforts have
been made in the literature to identify single faults, our prelim-
inary studies indicate that it is very difficult if not completely
impossible to find a structure fault which results in successively
corrupted data on a row or column. In this section, we propose a
PCA-based scheme to effectively detect structure fault occurred
on rows or columns in the matrix.

PCA is a well-known technique for dimensionality reduc-
tion, with which original data can be projected into a lower
dimensional linear space with orthogonal components, namely,
principal component subspace. After the PCA process, a set of
correlated variables can be represented by a set of uncorrelated
variables, called principal components (PCs). By carrying out
PCA, a few PCs can represent most of the information in the
original data. Thus, dimensionality can be reduced with almost
no loss of information.

Obviously, PCA-based approach can take effect only in the
case that the original data are correlated and can be transformed
and represented by principal components. From our empirical
study in Section IV, we have known that the weather matrix has
low-rank feature (thus the original data are correlated), which

makes it possible for us to design row-structure/column-structure
fault detection algorithms based on Principal Component Anal-
ysis (PCA) [32].

Different from the traditional fault detection algorithm, a
PCA-based fault detection algorithm can effectively detect faults
in the lower dimension principal component subspace instead
of the original high dimension data space. In the principal
component subspace, the first few PCs can contribute most to
the data variance, we call these few PCs major PCs. As shown
in Fig. 7, the PCA-based fault detection is designed based on
the following principle: the faults are extreme data that cause
a notable increase in variance and covariance in the original
variables which can be detected through the examination of the
major PCs only. As shown in Fig. 7, we can detect points 1, 2
and 3 to be faulty because their projected points are located far
away from the points projected from normal data.

Fig. 7. Schematic representation of PCA-based structure fault detection

As PCA-based fault detection approaches do not need any
assumption of the distribution of the original data and are more
scalable to various data sets [33]–[37], we design our structure
fault detection algorithm based on PCA.

As shown in Algorithm 1, suppose there is a sensory matrix
MN×T , we design our row-structure fault detection algorithm
as follows. On line 1, we first organize the sensory matrix
into row-style MN×T = [M1,M2, · · ·MN ]

tr with each Mi

(1 ≤ i ≤ N) being an T -dimensional vector carrying the
data of sensor i. On lines 2-4, an T × N ′ matrix WT×N ′

is found to transform the original data matrix M to the data
matrix P in the principal component subspace. On line 5, the
transformed matrix is calculated through P = M ×W , where
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Algorithm 1 Row-structure fault detection algorithm
Input: a sensory matrix MN×T

1: Organize the sensory matrix into row-style MN×T =
[M1,M2, · · ·MN ]tr with each Mi (1 ≤ i ≤ N) being an T -
dimensional vector carrying the data of sensor i.

2: Normalize the original sensory matrix M , denoted by M0. Com-
pute the covariance matrix R of M0.

3: Find the eigenvalues and eigenvectors of matrix R, sort the
eigenvalues in the descending order, λ1, λ2, · · · , λT with λ1 ≥
λ2 ≥ · · · ≥ λT , and select the first N ′ eigenvectors by their rates

of accumulative contributions, denoted by
∑N′

i=1 λi∑T
i=1 λi

.
4: Matrix W is composed by the eigenvectors whose corresponding

eigenvalues are selected, and the k-th column in W is the eigen-
vector corresponding to the k-th largest eigenvalue λk.

5: Calculate P = M × W where P = [P1, · · · , PN′ ] is the data
matrix in the principal component subspace and P1, · · · , PN′ are
the PCs which can be applied to represent most of the information
in the original data.

6: In the principal component subspace, calculate the square of the
Mahalanobis distance from data Mi to the center of the sensory
data, that is,

d2i =
N ′∑
k=1

P 2
ik

λk
(16)

where 1 ≤ i ≤ N , λk is the k-th eigenvalue of the sensory
covariance matrix of M .

7: Data Mi is abnormal if

d2i > χ2
N′,α (17)

where χ2
N′,α is the upper α percentage point of the chi-square

distribution with the degree of freedom N ′.

P = [P1, · · · , PN ′ ] with P1, · · · , PN ′ being the PCs to represent
most of the information in the original data. From our empirical
study in Section IV, we observe that the top 20 singular values
capture 70%-90% rates of the accumulative contribution in the
real data traces. The relationship between the singular value σi

and the eigenvalue λi is λi = σ2
i . Therefore, in our performance

studies of this paper, we choose N ′ = 20.
In general, an observation is considered as an outlier if it is

different from the majority of the data or has an unlikely value
under the assumed probability model of the data. Compared
with Euclidean distance, Mahalanobis distance [38], [39] takes
into account the correlation between observations in the distance
calculation and thus is a more robust test statistic for the outlier
detection. In this paper, instead of using the Euclidean distance,
we apply the Mahalanobis distance to determine the difference in
the principal component subspace. Geometrically, Pik in PN×N ′

can be interpreted as the projection of the original data Mi

(1 ≤ i ≤ N ) onto the principal component PCk (1 ≤ k ≤ N ′),
and Pik is called a principal component score. According to [40],
the sum of the squares of the standardized principal component

scores, that is, d2i =
N ′∑
k=1

P 2
ik

λk
, is equivalent to the square of the

Mahalanobis distance from Mi to the center of the sensory data
where 1 ≤ i ≤ N , λk is the k-th eigenvalue of the sensory
covariance matrix of M . Therefore, to detect the row structure
fault, on line 6, we calculate the square of the Mahalanobis
distance of data Mi.

Since the principal components are assumed to be uncorre-
lated, the distribution of the Mahalanobis distance follows a

chi-square distribution with N ′ degrees of freedom (N ′ is the
number of principal components). Therefore, our criterion for
row-structure fault detection is given on line 7: a row-structure
fault is considered to happen if the square of the Mahalanobis
distance of Mi is d2i > χ2

N ′,α where χ2
N ′,α is the upper α

percentage point of the chi-square distribution with the degree
N ′. In this paper, α is set as 0.975.

Above is our proposed row-structure fault detection algorithm.
We can also organize the sensory matrix M into a column-style
with each column being an N -dimensional vector. Our column-
structure fault detection algorithm can be designed in the similar
way with row-structure fault detection algorithm. Due to the
space limitation, we do not describe our PCA-based column-
structure fault detection algorithm.

After a sensory matrix is processed to detect the row-structure
faults and the column-structure faults, we will remove these
faults to reduce their negative effects, and then apply the matrix
completion to the remaining data in the first phase of our MC-
Two-Phase scheme as introduced in Section VI.

VI. CORRUPTED DATA RECOVERY

To avoid the negative effects brought by structure faults, we
design an innovative corrupted data recovery scheme (MC-Two-
Phase) based on matrix completion, which recovers the data by
taking advantage of the low-rank, temporal stability, and spatial
correlation features of the data matrix. Our algorithm MC-Two-
Phase has two phases with steps shown in Fig. 8 as follows:
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Fig. 8. Two-phase corrupted data recovery scheme

Phase 1 Fault data removing. To eliminate the negative effects
brought by structure faults, we first preprocess the matrix. This
phase includes three steps: 1) The rows and columns detected
with structure faults are removed from the sensory matrix. If the
number of fault rows and columns are nr and nc, respectively,
we denote the remaining data matrix as M(N−nr)×(T−nc), as
shown in Fig. 8(b). 2) The matrix completion technique is
applied to M(N−nr)×(T−nc) to obtain the complete matrix by
filling the items experiencing random missing data, denoted as
R(N−nr)×(T−nc), as shown in Fig. 8(c). 3) Update MN×T by re-
placing the parts without structure faults with R(N−nr)×(T−nc),
as shown in Fig. 8(d).

Phase 2 Recovery of data with structure faults. The original
data matrix is recovered based on the pre-processed matrix.
This phase also has three steps: 1) Spatial pre-interpolation,
where the row data with structure faults are replaced with
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the date from neighboring sensors, taking advantage of spatial
correlation, as shown in Fig. 8(e). 2) Temporal pre-interpolation,
where the column data experiencing structure faults are replaced
with the data from adjacent time slots, taking advantage of
temporal stability, as shown in Fig. 8(f). 3) Matrix re-processing,
where matrix completion is applied to recover the original
data matrix XN×T from the matrix obtained following above
two procedures, exploiting both spatial correlation and temporal
stability, as shown in Fig. 8(g)

In the next two sub-sections, we will present in details how
these two interpolation steps in phase 2 work.

A. Spatial Pre-interpolation

With the existence of spatial correlation, data values captured
by sensors within one-hop distance are similar. To ensure more
accurate recovery of data, one key issue is to avoid using
faulty data in the interpolation process. We construct a spatial
constraint matrix H following four steps below to facilitate the
spacial interpolation:

• Step 1. For a WSN consisting of N sensors, HN×N

is initialized by a diag (d1, d2, · · · , dN ) with the central
diagonal elements of the matrix set to 1, that is, d1 = d2 =
· · · = dN = 1.

• Step 2. Replace the row-structure fault data with their
neighboring data. For a row i which experiences the struc-
ture fault, in the data matrix (1 ≤ i ≤ N ), set H(i) = Y(i),
where H(i) and Y(i) are the i-th row of matrix H and matrix
Y , respectively. Matrix Y is the one-hop topology matrix
introduced in Section IV-C.

• Step 3. To avoid utilizing a faulty value to interpolate other
faulty data when there are multiple row-structure faults, for
each fault at i-th row of the matrix M (1 ≤ i ≤ N ), set
the i-th column of the spatial constraint matrix to 0, that is
H(i) = 0 (where H(i) denotes the i-th column of matrix
H).

• Step4. Normalize the rows of H so that all elements of a
row add up to 1.

After obtaining the spatial constraint matrix, for a sensor i
with fault, we can apply the average data value of its one-hop
neighbors to pre-interpolate the corresponding faulty row data
through H × M , where M is the data matrix obtained in the
first phase of our MC-Two-Phase scheme.

Example 1, For a WSN consisting of 5 sensor nodes, the
topology matrix Y and the sensory matrix M are expressed as:

Y =


0 1 0 1 1
1 0 1 1 0
0 1 0 0 0
1 1 0 0 1
1 0 0 1 0

 (18)

M =


M11 M12 M13 M14 M15

M21 M22 M23 M24 M25

M31 M32 M33 M34 M35

M41 M42 M43 M44 M45

M51 M52 M53 M54 M55

 (19)

Assume that sensors 2 and 4 are running out of the energy
and the row-structure faults are detected at rows 2 and 4 in the
sensory matrix. From the topology matrix, we know sensors 1,

3, and 4 are the one-hop neighbors of sensor 2, while sensors
1, 2, and 5 are the one-hop neighbors of sensor 4. According
to the steps introduced above, the spatial constraint matrix H is
built as follows:

H =


1 0 0 0 0
0 1 0 0 0
0 0 1 0 0
0 0 0 1 0
0 0 0 0 1

 ⇒ H =


1 0 0 0 0
1 0 1 1 0
0 0 1 0 0
1 1 0 0 1
0 0 0 0 1


(20)

where the rows 2 and 4 of the matrix H is replaced with the
corresponding rows of Y .

Sensors 2 and 4 are one-hop neighbors. To avoid utilizing
error data at row 2 and row 4 in matrix M to interpolate other
data, we let columns H(2) and H(4) to be 0, and we obtain

H =


1 0 0 0 0
1 0 1 0 0
0 0 1 0 0
1 0 0 0 1
0 0 0 0 1

 (21)

Then we normalize the rows of H

H =


1 0 0 0 0
1/2 0 1/2 0 0
0 0 1 0 0
1/2 0 0 0 1/2
0 0 0 0 1

 (22)

Finally, through H × M , we can obtain the spatial pre-
interpolated matrix

H×M =


M11 M12 M13 M14 M15

M11+M31
2

M12+M32
2

M13+M33
2

M14+M34
2

M15+M35
2

M31 M32 M33 M34 M35
M11+M51

2
M12+M52

2
M13+M53

2
M14+M54

2
M15+M55

2
M51 M52 M53 M54 M55


(23)

B. Temporal Pre-interpolation

Similar to spatial pre-interpolation in Section VI-A, we con-
struct a temporal constraint matrix G following four steps below
to capture the temporal stability feature:

• Step 1. Initialize the matrix GT×T with its diagonal
elements set to 1.

• Step 2. Replace the column-structure fault data utiliz-
ing those from neighboring time slots. For each column-
structure fault at time slot i (1 ≤ i ≤ T ), we first set
the i-th column of G to 0, i.e., G(i) = 0, and then set
entries Gj,i = wji where a slot j is the one that has strong
relationship with slot i and wji is the weight that reflects
how strong the relationship is.

• Step 3. To avoid interpolating data with other faulty data
when there are multiple column-structure faults, for each
fault at i-th column in matrix M (1 ≤ i ≤ T ), set the i-th
row in temporal constraint matrix to 0, that is G(i) = 0 .

• Step 4. Normalize columns of G so that all elements of a
column add up to 1.

After obtaining the temporal constraint matrix G, we can
apply M × G to obtain the temporal pre-interpolated matrix,
where M is the data matrix with corrupted rows spatially
interpolated.

8



Exponentially Weighted Moving Average (EWMV) is consid-
ered to be effective in estimating data in time series model [41],
[42]. We design our temporal pre-interpolation algorithm based
on EWMA. Taking EWMA as an example, we show a temporal
pre-interpolation algorithm utilizing the adjacent 4 time slots
(i.e. 2 slots before and 2 slots after the fault) to replace the data
corrupted by the column-structure fault.

Example 2, for a WSN consisting of 4 sensor nodes, its
sensory matrix M with 5 time slots is :

M =


M11 M12 M13 M14 M15

M21 M22 M23 M24 M25

M31 M32 M33 M34 M35

M41 M42 M43 M44 M45

 (24)

Assuming that the time slot 3 is detected to have column-
structure fault, following steps 1-3 above, we first set the 3rd
column of G to 0, that is, G(3) = 0, and then set entries G2,3 =
α, G1,3 = 1 − α, G4,3 = α, G5,3 = 1 − α, where 0 ≤ α ≤ 1.
The temporal constraint matrix G is built as

G =


1 0 0 0 0
0 1 0 0 0
0 0 1 0 0
0 0 0 1 0
0 0 0 0 1

 ⇒ G =


1 0 (1− α) 0 0
0 1 α 0 0
0 0 0 0 0
0 0 α 1 0
0 0 (1− α) 0 1


(25)

Normalize columns of G, we have

G =


1 0 (1− α)/2 0 0
0 1 α/2 0 0
0 0 0 0 0
0 0 α/2 1 0
0 0 (1− α)/2 0 1

 (26)

Finally, with M × G, we can obtain the temporally pre-
interpolated matrix with the 3rd column M (3) as

M(3) = α

(
M(4) +M(2)

2

)
+ (1− α)

(
M(5) +M(1)

2

)
, 0 ≤ α ≤ 1

(27)
Obviously, M (3) in (27) is in the EWMA style, where 0 ≤ α ≤ 1
is the smoothing constant (also referred to as the discount factor).
M (1), M (2), M (4), and M (5) are the sensory data in the time
slot 1, 2, 4, and 5, respectively. In this paper, we set α = 0.8.

Our temporal pre-interpolation algorithm can be easily ex-
tended to support other types of interpolation schemes and with
different time slots and weight setting.

As shown in Fig. 8, our MC-Two-Phase consists of two
phases which includes several main techniques: PCA-based
structure fault detection, matrix recovery algorithm, spatial pre-
interpolation, and temporal pre-interpolation. For the PCA-based
structure fault detection, PCA transformation is the main step for
fault detection with its complexity generally being O(p2n+ p3)
for a data set of size n with p features. Our MC-Two-Phase does
not depend on the underlying matrix recovery algorithms, while
different matrix recovery algorithms have different computation
complexity. In practice, we will choose approximate matrix
recovery algorithms according to the application requirements.
In MC-Two-Phase, the proposed spatial pre-interpolation and
temporal pre-interpolation are based on simple matrix multipli-
cation with neighbor information, thus the complexity is very
low.

VII. PERFORMANCE EVALUATIONS

To evaluate the performance of our MC-Two-Phase scheme,
we have performed extensive simulations driven by real weather
traces collected by our deployed 196 sensors.

Three series of simulations are conducted. We evaluate the
performance of our PCA-based structure fault detection algo-
rithm in the first simulation, and then evaluate our MC-Two-
Phase scheme on handling the structure corruption in the second
simulation. The corrupted data set utilized in the first two series
of simulations is generated from the raw trace data following
the steps described in Section IV-D. In the third simulation,
to evaluate the performance of our MC-Two-Phase scheme on
handling the missing of whole rows or columns, we generate
the data set from the raw trace data by randomly letting some
rows and columns be empty.

A. Evaluation of PCA-based Structure Fault Detection

We use two performance metrics to evaluate the PCA-based
Structure Fault Detection algorithm: false positive ratio and false
negative ratio. False positive ratio is the proportion of normal
rows/columns that are erroneously reported as being corrupted.
False negative ratio is the proportion of corrupted rows/columns
that are erroneously reported as normal. Following the procedure
of Section IV-D, we generate corrupted data matrix in two
different ways: 1) Only row or column structure faults are
generated in the data matrix; and 2) The corrupted data matrix
includes both row and column structure faults. To investigate
how the noise level impacts the performance of structure fault
detection algorithms, two different noise levels δ2 = 20 and
δ2 = 10 are simulated.

Figs. 9(a) and 9(b) show the performance of the proposed row-
structure fault detection algorithm and column-structure fault
detection algorithm when the data matrix includes only row or
column structure faults, respectively. We can see that the false
negative ratios of our algorithms are zero under both noise levels.
It is easily observed that the larger the noise level is, the smaller
the false positive ratio thus the larger detection accuracy. Even
δ2 = 10, the false positive ratio can be controlled to be very low
(i.e., less than 0.03 for row-structure fault detection, and 0.06
for column-structure fault detection).

Figs. 10 and 11 show the false positive ratio and false negative
ratio when both row and column structure faults exist in the data
matrix. Our PCA-based fault detection approach can achieve
false positive ratio less than 0.04 (δ2 = 10), 0.006 (δ2 = 20) in
all cases and zero false negative ratio.

Therefore, our PCA-based fault detection approach can detect
various structure faults, which may be caused by failures of
senor nodes or data tampering from attackers. In following
simulations, we set δ2 = 20.

B. Performance Comparison

As our MC-Two-Phase is designed to not depend on the un-
derlying matrix recovery approach, to evaluate the performance
of the proposed MC-Two-Phase, four different matrix recovery
approaches are implemented under our MC-Two-Phase scheme.

• SVT [31]. SVT approximates the matrix with the minimum
nuclear norm obeying a set of convex constraints. SVT
has two remarkable features: applying the soft-thresholding
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Fig. 9. Data matrix includes only row or column structure faults

(a) Fault positive ratio δ2 = 20 (b) False negative ratio δ2 = 20

Fig. 10. Data matrix includes both row and column structure faults with the
noise level δ2 = 20

(a) Fault positive ratio δ2 = 10 (b) False negative ratio δ2 = 10

Fig. 11. Data matrix includes both row and column structure faults with the
noise level δ2 = 10

operation is to a sparse matrix, and the rank of the matrix
obtained in iterations is empirically non decreasing.

• SRSVD [23]. SRSVD derives two decomposed matrix L
and R using an alternating least-square procedure. It solves
the interpolation problem by fixing one of the decomposed
matrices, L or R, and taking the other as the optimization
variable. Then the roles of the two matrices are swapped to
continue alternating towards a solution till the convergence.
The recovered matrix can be calculated from LRT at last.

• SRMF [24]. Similar to SRSVD, SRMF solves the inter-
polation problem using alternating least squares. Different
from SRSVD, SRMF exploits spatio-temporal properties in
the matrix decomposition.

• LMaFit [25]. LMaFit is an alternating minimization
scheme which can be started from a rough over-estimate
of the true matrix rank for completion, and updates each of
the three variables X , Y or Z (Z is the estimated matrix
and X , Y are decomposed matrices) efficiently while fixing
the other two.

The implemented MC-Two-Phase schemes under differ-
ent matrix recovery approaches are denoted as SVT-Two-

Phase, SRSVD-Two-Phase, SRMF-Two-Phase, and LMaFit-
Two-Phase, respectively. Moreover, for performance compari-
son, the above four matrix recovery approaches are also directly
implemented on the corrupted synthesized data to recover the
sensory matrix. In our performance studies, the directly im-
plemented schemes are denoted as SVT, SRSVD, SRMF, and
LMaFit, respectively.

1) Structure Corrupted Fault
Although the performance under the conventional SVT is

shown in Fig. 6, for the convenience of comparison, we still
draw the performance results of conventional SVT in Fig. 12(a),
Fig. 14(a), and Fig. 16(a).

In Figs. 12-17, our MC-Two-Phase scheme is shown to be able
to control the error ratios on the missing data, the corrupted data,
and the normal data at a very low level, while the error ratios
under conventional SVT, LMaFit, SRSVD, SRMF are much
higher. Taking SVT as an example, although SVT-Two-Phase
and SVT adopt the same singular value thresholding (SVT)
approach to recover the matrix, the error ratios on the missing
data, the corrupted data, and the normal data under SVT-Two-
Phase are only 1%, 2%, and 1% of those under the conventional
SVT.

It is worth noticing that, in Fig. 14(a), Fig. 14(b), Fig. 14(c)
and Fig. 14(d), the recovery error ratios for corrupted rows and
columns are high under the conventional SVT, LMaFit, SRSVD
and SRMF. Even when the data matrix has only one corrupted
row or column, the error ratio for the corrupted entries is a
big value larger than 20. In contrast, the error ratios under
SVT-Two-Phase, LMaFit-Two-Phase, SRSVD-Two-Phase, and
SRMF-Two-Phase are less than 0.8 in all scenarios studied (Fig.
15).

When there exist corrupted rows or columns, the recovery
error ratios on normal data and missing data are also higher
under conventional SVT, LMaFit, SRSVD and SRMF, as shown
in Fig.16 and Fig.12. These results also demonstrate that, regard-
less of the underlying matrix recovery approaches, successive
data corruption seriously impacts the accuracy of missing data
recovery and even pollutes the normal data.

From Fig. 16(c) and Fig. 16(d), we can see that, the error
ratios on normal data under conventional SRSVD and SRMF can
even reach 3 due to the existence of corrupted entries. In con-
trast, as shown in Fig. 17(c) and Fig. 17(d), the error ratios under
SRSVD-Two-Phase and SRMF-Two-Phase are much smaller
and in the range of [0.01, 0.03] and [0.01, 0.04] respectively.
Though the error ratio on normal data under conventional SVT
(Fig. 16(a)) is under 0.08, it is still higher than that of SVT-
Two-Phase (Fig. 17(a)).

All these simulation results demonstrate that our MC-Two-
Phase scheme is very effective in handling structure faults and
recovering the corrupted matrix data. Moreover, the four MC-
Two-Phase implementation with four different matrix recovery
techniques also demonstrate that our MC-Two-Phase is a general
matrix completion scheme and dose not depend on the underly-
ing matrix recovery approaches.

2) Row and Column Missing
Fig. 18 shows the recovery performance when some rows and

columns are missing in the data matrix through our MC-Two-
Phase scheme. As shown in Fig.18, MC-Two-Phase schemes
achieve the very low error ratios (which are within the range of

10



(a) Error Ratio Under SVT (b) Error Ratio Under LMaFit (c) Error Ratio Under SRSVD (d) Error Ratio Under SRMF

Fig. 12. The recovery performance on missing data when structure corrupted faults exist under conventional method

(a) Error Ratio Under SVT-Two-
Phase

(b) Error Ratio Under LMaFit-Two-
Phase

(c) Error Ratio Under SRSVD-Two-
Phase

(d) Error Ratio Under SRMF-Two-
Phase

Fig. 13. The recovery performance on missing data when structure corrupted faults exist under Two-Phase scheme

(a) Error Ratio Under SVT (b) Error Ratio Under LMaFit (c) Error Ratio Under SRSVD (d) Error Ratio Under SRMF

Fig. 14. The recovery performance on corrupted data when structure corrupted faults exist under conventional method

(a) Error Ratio Under SVT-Two-Phase (b) Error Ratio Under LMaFit-Two-
Phase

(c) Error Ratio Under SRSVD-Two-
Phase

(d) Error Ratio Under SRMF-Two-
Phase

Fig. 15. The recovery performance on corrupted data when structure corrupted faults exist under Two-Phase scheme

[0.5, 0.8]) under all matrix recovery approaches.

From the literature work, we know that conventional matrix
completion approaches can only recover data if there is no row or
column to be completely empty. If a row or a column is missing,

these schemes do not have effect on these missing entries.
Different from conventional matrix completion approaches, in
our MC-Two-Phase scheme, we utilize our proposed spatial
pre-interpolation, temporal pre-interpolation algorithms to fill in
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(a) Error Ratio Under SVT (b) Error Ratio Under LMaFit (c) Error Ratio Under SRSVD (d) Error Ratio Under SRMF

Fig. 16. The recovery performance on normal data when structure corrupted faults exist under conventional method

(a) Error Ratio Under SVT-Two-
Phase

(b) Error Ratio Under LMaFit-Two-
Phase

(c) Error Ratio Under SRSVD-Two-
Phase

(d) Error Ratio Under SRMF-Two-
Phase

Fig. 17. The recovery performance on normal data when structure corrupted faults exist under Two-Phase scheme

(a) Error Ratio Under SVT-Two-Phase (b) Error Ratio Under LMaFit-Two-
Phase

(c) Error Ratio Under SRSVD-Two-
Phase

(d) Error Ratio Under SRMF-Two-
Phase

Fig. 18. The recovery performance when whole rows and columns are missing under Two-Phase scheme

the empty rows and columns first, and then apply the matrix
completion to smooth the data. Therefore, our MC-Two-Phase
scheme can break the restriction in the conventional matrix
completion techniques to correctly recover the whole row and
column of missing data.

The low-rank feature is the prerequisite for matrix completion
and thus our proposed techniques in this paper. As almost all
physical conditions monitored are continuous without sudden
changes, sensory data generally exhibit strong spatio-temporal
correlation [43]. Thus the sensory data matrix has a low-rank
feature. Some previous studies [22], [44]–[46] also show that
sensory matrices of temperature, humidity, light, and PM2.5 are
low-rank and have high spatiotemporal correlations. Although
this paper utilizes weather data collected from 196 sensor notes
as a case to verify the effectiveness of the proposed MC-Two-
Phase scheme, we expect that our scheme can also work well
to recover other sensory matrices. In our future work, we will

evaluate the performance of our MC-Two-Phase on other sensory
matrices.

VIII. CONCLUSION

This paper proposes a two-phase matrix completion scheme to
recover successively missing or corrupted data, named MC-Two-
Phase. The scheme applies matrix completion to fully exploit the
inherent features of environmental data to perform data recovery.
MC-Two-Phase scheme includes three algorithms: structure fault
detection based on Principal Component Analysis (PCA), spatial
pre-interpolation, and temporal pre-interpolation. Most impor-
tantly, our scheme exploits matrix completion to fully integrate
results from the three algorithms for more efficient and reliable
data recovery.

We have performed extensive simulations with real-world
sensory data. The simulation results demonstrate that our MC-
Two-Phase can achieve very good recovery performance when
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successive data corruption exists. Specifically, the error ratios on
the missing data, the corrupted data, and the normal data under
our SVT-Two-Phase are only 1%, 2%, and 1% of those under
the conventional SVT. Moreover, our MC-Two-Phase scheme
can break the restriction in conventional matrix completion
techniques to correctly recover the data matrix even when some
rows or columns are completely empty.
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