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Abstract—Multi-robot systems(MRS) have many applications
and the efficient operation of MRS relies on coordination of
robots. However, it is difficult to build network connections
among randomly distributed robots in the presence of robot
movements and weak wireless channels. In this work, we propose
to jointly exploit communications and motion control to efficiently
establish robot connections . To achieve this goal, we concurrently
use MUSIC and particle filter to more accurately and efficiently
estimate robot signal directions, built on which signal strength-
based potential field is formed to control robot motion to establish
and maintain communication links. Our studies based on testbed
and simulations demonstrate the effectiveness of our algorithm in
networking robots, with much higher number of robots connected
compared to peer algorithms.

[. INTRODUCTION

Multi-robot systems (MRS) [1] are widely used in severe
environment for applications such as disaster rescuing and
national security. Wireless communications are often exploited
for robots to coordinate their actions. The efficiency of the
system depends on the collaboration among robots. In a res-
cuing environment, the robots may be dropped from vehicles
from the air or on the ground. Although robots are dropped
within a region, they may not be close enough to communicate
with each other and thus cannot coordinate their actions.
In addition, due to the severe fading and unstable channel
conditions, existing communication links may break. Although
MRS have broad applications, the literature work generally
assume there exists a network to connect all robots. The above
practical issues are often ignored. The lack of communication
among robots will significantly compromise the performance
of the multi-robot system.

The goal of this work is to develop a set of schemes that
can facilitate robots to establish and maintain communication
links, which in turn allows for flexible coordination among
robots thus significantly increasing the performance and func-
tionalities of multi-robot systems.

Although robots cannot directly communicate, they may be
able to sense the signals from others. The sensing range is
generally much larger than the communications range. The
range will be even larger if the transmission is carried over low
frequency channel and using small transmission rate. Based
on this communication feature, we propose the use of dual-
channel communication, one beacon channel for transmission
of signaling messages to significantly increase the range for

robot coordination thus the efficiency of MRS and one data
channel to support large data exchange among robots. Specifi-
cally, the range increase of transmission on beacon channel
will be exploited to establish the communication network
among robots.

Despite that the larger transmission range over beacon chan-
nel provides a higher chance of establishing robot connections,
to the best of our knowledge, there is no existing work that ex-
ploits this feature to actively build a communication network.
Different from conventional work where the communication
links are passively maintained, our proposed scheme will
concurrently exploit communications and robot motion control
to actively establish communication links and network.

An isolated robot may be able to sense signals from others.
If a robot moves towards the signal sources, it will help the
robot to connect with other networked nodes. This requires
the finding of the direction of the signal and the control of the
robot motion to establish the communication links. However,
the finding of signal direction is hard when the received
signal strength is extremely low, especially in the presence
of large noise and channel variation while these are often
experienced by MRS working in a harsh environment. Particle
filer [2], [3] is a good candidate for signal estimation when
the distribution of the received signals is unknown and varies
over time, however, it involves a large overhead to update
the weights of particles and process the data. On the other
hand, MUSIC algorithm [4] is often used to estimate a signal
direction in a more stable environment but cannot adapt well
with the dynamics. In order to reliably and efficiently form
network connections, in this work, we exploit the concurrent
use of particle filter and MUSIC algorithm to effectively
reduce the signal estimation space and ensure more accurate
and low-overhead estimation and tracking of signal directions.
Finally, to establish and maintain network connections in the
presence of channel randomness, we novelly apply potential-
field-based control with wireless signal measurements to adapt
the network topology in response to environment changes.

The rest of the paper is organized as follows. We revise
the related work in Section II, and introduce our system
model in Section ITII. We present the details of our algorithms
in Section IV, and our scheme for network maintenance in
Section V. We conclude the work in Section VIIL.



II. RELATED WORK

To the best of our knowledge, there is no work actively
building robot network from the scratch taking into account
the severe wireless transmission conditions. In this section, we
first review the basic work in MRS field, and then review the
work on robot localization and mapping.

A. Multi-robot Systems (MRS)

A multi-robot system can work in various situations, such
as disaster rescuing and the exploration of an unknown area.
A multi-robot network (WANET) [5] can be implemented
as a decentralized ad hoc wireless network. The authors in
[6] propose to applysome new concepts such as stochastic
gradient to help the robots to deal with some probabilistic
events. The focus of the work in [7] is to deploy a multi-
robot system with heterogeneous robots for optimal system
functions under the nonholonomic constraint. Different from
the literature work, the aim of our work is to design algorithms
to enable connections of robots in MRS which is essential for
flexible and efficient robot coordination and task completion.

B. SLAM(Simultaneous localization and mapping)

Simultaneous localization and mapping (SLAM) [8] is a
technique used by robots (or digital machines) to construct a
map of an unknown environment or to update a map within a
known environment while simultaneously keeping track of the
machine’s location in the physical environment. In [8], the au-
thors proposed a range-only SLAM with occupancy maps. The
method will simultaneously update and check the exploited
map of the robot based on some range-only information. To
complete a SLAM task, there is no requirement of keeping
all robots connected, although a connected network of robots
can collaborate to complete the task more efficiently. Making
a map of a geographic area is one type of task of MRS but
not our focus, although robots in our proposed system can
also detect the unknown environment around them. In order to
combat severe communication conditions, robots in our system
will form a virtual map based on the received signal strength
to facilitate network formulation and maintenance, which will
also in turn allow for more efficient SLAM if needed.

Rendezvous [9] can be used to help the robots to form
networks too. Requiring robots to meet in the same location
at a given time, a rendezvous algorithm will significantly
compromise the flexibility and performance of MRS. Although
our scheme allows a much higher chance of forming network
among robots and much larger robot coordination range, our
scheme works only when robots can sense signals from others
albeit weak. Rendezvous methods can complement our scheme
when no signals can be detected by robots.

III. PROBLEM AND SYSTEM MODEL

We consider a system with a set of small robots randomly
distributed in a domain of interest. Each robot is equipped with
multiple antennas. The robots may be dropped from an air-
plane for disaster rescuing or other national defense purpose.
As robots may be dropped to different locations, it is difficult

for all the robots to be networked and able to communicate.
In addition, as a result of severe communication environment
the robots often face, some existing communication links may
break.

To better exploit the cooperation among robots for more
efficient task execution, the aim of this work is to facilitate
the robots in the system to form connections. Specifically, our
work exploits both control and communications to establish a
network of robots in the presence of constant robot movement
and harsh wireless communications conditions.

In this section, we first introduce the communication model
we consider for the system, and then present the challenges
and the system architecture.

A. Communication with Dual Ranges

There are two types of communication ranges related to
the transmission of a packet: 1) transmission range L., inside
which a node can receive or overhear the packet transmission,
and 2) carrier sensing range L, inside which a node can sense

the signal but may not be able to decode it correctly.

For two mobile robot nodes R; and R; with a distance d; ;
in between, if a signal is transmitted by R; at a power P;
on a frequency channel f, the power received at R; can be
expressed as [10]

Pi; = a®P;G;G:10° "0 /[(4n f)dS |]. (1)

Here, G; and G, are the antenna gains of R; and R;
respectively. The average signal power received by R; usually
decays at a factor { € [2,4] as d; ; increases. The channel
condition between R; and R; varies due to multi-path fading
represented by a?, where « is a random variable following the
Rayleigh or Rician distribution, and shadowing represented
by 10%/10, where x is a shadowing fading factor following
the log-normal distribution. With a transmission rate r and
channel bandwidth B, the normalized per-bit signal (Fj) to
interference plus noise (I;) ratio (SINR) at R; is

SINR;; = (Ep/It)i; = (Pij/7)/[(Pint: + Pni)/Bl,  (2)

where P;,:; and P,; are the average interference and noise

power received by R; respectively. A signal transmitted by R
can be successfully received and decoded by R; only when
SINR;; > 7, where 7y; is R;’s decoding threshold and
depends on R;’s decoding capability. When ,; < SINR; ; <
Y¢;, Where g, denotes R;’s signal sensing threshold, R; is
inside the signal sensing range L, but outside the transmission
range L; of R;. R; can sense the transmission from R;
but cannot decode the signal. Usually L, > 2L, so the
transmission from a sender can be sensed by a receiver at
a much longer distance. Equ. 1 and 2 show that both the
transmission range and carrier sensing range depend on the
transmission power and rate, and channel bandwidth, condi-
tions and frequency.

For a given transmission power, the transmission range and
carrier sensing range increase when the transmission frequency
and rate decrease. Based on this observation, we consider the
use of dual radio channels for multi-robot system (MRS).
Each robot will be equipped with two radios, one tuned to
the low-frequency beacon channel for robot coordination and



the other operating on a high-frequency data channel for
high-rate data transmission. A robot will transmit low-rate
beacons which will further increase the beacon range. The
beacon channel can have a much longer range than the data
channel. If the data rate and frequency of the data channel
are m, times and m, times those of the beacon channel, the
beacon transmission range can be {/m,m? times the data
transmission range, and the beacon sensing range will be more
than 2{/m,m? times the data transmission range.

In this paper, we focus on the network establishment
part. We will exploit the use of beacon channel and robot
mobility control to establish new connections among robots
and form a communication network, and maintain existing
connections under communication channel dynamics. Each
robot will periodically send out beacon messages to facilitate
the establishment and maintenance of the network. If a robot
cannot sense any signals from its team members it can
increase its own beacon transmission power to increase the
chance for other robots to detect and respond to its request
(by moving towards it or sending a stronger signal). For a
robot which temporarily loses the connection due to channel
fluctuation, power control can be the quickest way to recover
the connection. After getting connected or reconnected, the
involved robots can adjust their positions and reduce the power
to the normal range.

The use of beacon channel here is fundamentally different
from the conventional dual-channel schemes [11]-[13] which
are applied in an existing network to perform handshaking
between nodes to reduce the hidden terminal and exposed
terminal problems. The novel use of the beacon channel to es-
tablish and maintain connections for multi-robot coordination
will largely expand the connected operation range of robots,
improve the communication reliability and coverage, enhance
the operational flexibility and efficiency of MRS, and save
energy for energy-limited MRS.

B. System Model and Challenges

In the MRS system we consider, each robot is equipped
with an antenna array which can be used to send and receive
signals. In order to enable more flexible MRS function and
facilitate the connection of nodes, we consider the coordination
among robots through the longer-range beacon channel. In this
work, we focus on the design of algorithms to establish the
communication links between an isolated robot and the other
ones at a given transmission frequency and power. Specifically,
our algorithm will efficiently find the direction of sensed
signals and exploit robot motion control to drive robots to
move towards the signal sources.

An antenna array can be applied to find the direction of sig-
nals sensed. In order to connect a robot with others, the robot
first measures the signals and then determines the direction to
move. This process will be followed as the robot moves step
by step towards the signal sources, and the measurements in
steps follow a Markov process. As a practical system often has
the capability of getting the received signal strength indicator
(RSSI), we use y(t) to represent the RSSI measured by a

robot at time ¢. A robot, however, cannot directly measure
the direction of signal arrival (DoA) z(t). There is a need
to estimate x(t) to guide robot movement for forming the
communication connection.

To find out the DoA is not a simple task. The movements
of robots and the channel fading will make the signal received
weak and vary in strength. Practically, there is no model to
accurately capture the relation between the distance and signal
strength, which makes the detection of signal direction hard.
As the distribution of z(t) is unknown, we will apply Particle
filter (PF) [2] [3] to estimate its distribution based on the
measured values of y(t). Particle filter can work recursively
to effectively track the direction of movements.

In order to better estimate the distribution of a variable
of interest, Particle filter uses a large number of particles to
help update the posterior probability. In this work, a particle
corresponds to an RSSI value at a specific location between
the robot and signal sources. Each particle is given a weight to
indicate its importance. The set of particles are not all actually
measured but are simulated, with the weight of the particles
updated upon each RSSI measurement. The estimation of the
parameters of the particle filter [14] will help us to determine
the distribution of RSSI in two dimensional space, which
further helps to better estimate and track DOA to guide the
movement of the robot.

Simply using a large number of particles to develop PF
would introduce a big computational overhead and takes long
time to find the correct moving direction. As an alternative
technique, MUSIC [4] can be used by an antenna array to find
the direction of signals. However, the direction detected would
be very inaccurate if the received signal strength is weak. As
robots constantly move, MUSIC algorithm also cannot be used
to efficiently predict and track the direction changes.

For more efficient and reliable finding of direction of the
signal sources, we will exploit the concurrent use of PF and
MUSIC in this work. Specifically, MUSIC will be applied
to guide the update of weights of particles, so those falling
outside the angular range estimated by MUSIC will be given
low PF weights and even be trimmed. This allows PF to
quickly converge to the right direction of sources.

In conventional communication networks, it is hard to
connect a far-away node and the network is easy to break
in an environment with severe channel fading. The motion of
robot provides the unique benefit to establish and maintain
the network with the exploration of controlled movement.
The question is how a robot can be driven to move for
network establishment. As the only information we can get
is the measured signal strength, we introduce the concept of
signal strength-based potential field. Rather than forming the
potential field based on location which is difficult to know in
practice, the potential field in our system is formed according
to the measured strength of the signals. Robots will be driven
to move towards a direction that can achieve the target field
value. This method is easy to implement than conventional
motion control method, and also helps to address the challenge
of ensuring reliable communications under severe and varying



channel conditions.

The basic network establishment process is summarized in
Fig. 1. Based on the input signal strength measurement, the
Particle filter and MUSIC algorithm will work interactively
to effectively update the weights of PF through recursive
Bayesian iteration. The derived signal strength and direction
of movement will be applied to form the potential field to
control the motion of robots.

Signa Pa‘_rﬁde Hstablish
Filter Potential Network
Field
MUSIC Motion Control
Estima-
tion

Signal Processing

Fig. 1. System Block Diagram

Rather than simply driving robots to move closely, to
increase the work efficiency of a MRS system, it is often
desirable for the robot group to cover a large area. This would
allow MRS to monitor a large domain for better security.
In addition, a communication link may break as a result of
channel dynamics and robot movement. In order to ensure
a large network coverage while maintaining the network
connectivity, our system will include a network maintenance
scheme with concurrent use of RSSI-based Voronoi diagram
and PID control.

IV. NETWORK ESTABLISHMENT

We focus on the design of algorithms to establish network
among robots which are beyond the communication range but
within the sensing range. If a robot cannot communicate with
others but can sense some signals around, it can move towards
the signal source(s) until it is within the communication range
of other robots. This requires the finding of the direction of
the sources and the control of the robot to move along the
direction. As each robot is equipped with multiple antennas,
they may be applied to find the direction of signals based
on the received signal strength. However, the received signals
may be weak and unstable as a result of channel fading and
robot movement. This makes the direction finding difficult.

In this section, we first present our basic algorithm used
to continuously measure the received signal strength and
derive the direction of the signal based on particle filter in
Section IV-A. We then describe how MUSIC algorithm can be
applied to facilitate PF to more efficiently and quickly estimate
the signal direction in Section IV-B. Finally, we present our
motion control scheme based on the signal strength and signal
direction estimated in Section IV-C.

A. Recursive Bayesian Estimation of the Signal Direction

A robot may sense the existence of signals from one robot
or a robot group in the distance. Different from the target
detection, to establish the communication network, there is

no need to differentiate the signals from different robots. An
isolated robot only needs to search for other robots based on
their aggregate signal received. As the signal measured can
be weak and dynamic, for more reliably tracking the received
signal and finding the direction to drive robot movement, we
exploit the use of Particle filter. The weights of IV particles
are initialized to 1/N. Then the Particle filter is formulated
through a recursive Bayesian process, which will evolve over
time based on consecutive measurement and filter update
process, with the variables x(t) and y(t) predicted for the next
time instant denoted as x(¢ + 1) and y(t + 1). At each time
instant, our system will update the Particle filter following the
steps below:

1) Getting the current measurement y(¢)

2) Signal propagation

3) Updating the system parameters according to the
Bayesian Rule

4) Weight update and normalization

5) Going to the first step and iterating until a target condi-
tion is met

6) Estimating the distribution of x(¥)

A robot will measure the RSSI value y(¢), and then the
particle weights will be updated through a signal propaga-
tion process following the Bayesian Rule. Then the particles
weights are normalized and the ones whose weights are very
small will be discarded. Then the input parameters of the
Particle filter will be updated. After several updating periods,
we will have more knowledge about the distribution of x(¢).

In this section, we first introduce the Bayesian model of our
problem, and then describe how the distribution of particles
evolves over time.

1) Problem Introduction: The signal will become stronger
when the robot gets closer to the sources. In each step of
movement, the robot would like to find out the direction that
could lead to the strongest received signal. In order to achieve
this goal, in a step, a robot will estimate the DoA for the next
step based on the strength of the signal received in previous
steps using recursive Bayesian Estimation [15] [16].

The signal measurement and DoA finding are performed at
discrete time instants in our system corresponding to steps of
movement. We let xj, to denote the direction estimated at step
k, and uﬁ,(cl) to be the weight set for a particle 7. Wy denotes the
weight vector value at time k. N is the number of particles.

Wy = [w](:)’wl(cz), -

S wM] 3)
The direction x4 can be estimated based on the previous
direction derived xj and the current weight of the particles
Wk, 1.e., Tpe1 = f(ag,wr). We can derive x from the
measurement y, i.e., ©x = hi(yk, vx), with v, being a random
noise variable. So y; will be updated after x; as the new
sample is measured. In the next iteration, we can measure
new yi41 to estimate the xj4 .

Let X1 represent the set of previous values of z, including



Tk—1,Tk—2 - To. We can define the following probability:

P (yklyr—1) = /P (Y |Yk—1, wk—1) P (Wg—1|yr—1) dwg_1.
4)

As wy—1 will not be influenced by yx_1, i.e, P (Wg—1|yr—1) =
P (wy—1), our algorithm can work recursively.

P (yr|Yr-1) = /5(yk — fe—1 (Yk—1. wi—1))
P (wg-1) dwg—1

According to the Bayesian rule, we have the following
formula.

&)

P(xr|ye) P(yr| Xk—-1)
P Xk-1)
Here, the denominator can be calculated by:

P(yxlor) = (6)

P(xg|yr) = /5(5% — hi(yx, vr) ) p(vr ) dug @)

The likelihood for  and y can be calculated using statistic
distribution such as Gaussian distribution [2] in communica-
tion system. Here ¢ is the Dirac delta function.

2) Particle Propagation: For a finite set of particles, the
performance of the algorithm is dependent on the choice of
the proposed distribution:

(k| Xe—1, Yi) ®

Z 'w(L)é

The optimal proposal distribution in equation (9) is given
as the sum of delta function at each particle.

P(zrlyk) w;(CL)) )

(k| Xe—1, Yr) = p(wr|2r_1,Y8)- (10)

However, the transition probability of the prior distribution
is often used as the importance function for weight update,
since it is easier to draw particles (or samples) and perform
subsequent importance weight calculations:

m(Tk]| Xp—1,Ys) = (1D

Sequential Importance Resampling (SIR) filters with tran-
sition prior probability distribution as importance function
are commonly known as bootstrap filter and condensation
algorithm. Our weight function can be calculated based on
the Gaussian distribution around each particle. So our particle
filter is the implementation of Gaussian particle filter.

p(Tk|Tr—1)-

wi = P(yP|zD) (12)

The wj, can be updated and normalized in the particle
filter process. The most important equation to update is the
equation 17 and equation 18.

To perform particle filter, we first draw samples from the
proposal distribution. We then choose some sample point from

the 2D space and denote the x value at the L — th particle
or sample as Té ). This particle is generated randomly at the
beginning with a direction value x and will be updated when
we resample the signal.

(L)

e~ (a2 o) (13)

Here L is the Lth particle and y is the measured signal
strength. After we draw Lth sample, we update the weights
up to a normalizing constant:

L
@) p(yux( Np(a
Wr—1 )
( |$o k—1>Y0: k)

Note that we can use the transition prior probability distri-
bution as the importance function. It will help us simplify the
equation (15).

L) (L)
l‘
ab 2t?)

(14)

)|T(L)1) (15)

77( |T0k 17J0h) p(Tk

The equation (16) can be simplified to the following format.

In this equation, the weight will be updated according to the
conditional probability of signal strength y.

~(L) (L) (L))

Wy = = Wi~ 1p(yk|xk (16)

3) Implementation of Particle Filter: With a simpler format
of w, we can develop our algorithm for the robot system.
We pick N particles in the region of interest. Instead of
distributing the particles into a large region which leads to
inaccurate particle representation, as we will introduce in
Section IV-B, the region we consider will be restricted and lie
around the coarse direction found with the MUSIC algorithm.
The weights of all particles are initialized with equal weight

at 1/N [17]. Then the value w( ) corresponding to the weight
of the Ly, particle at the time k can be calculated recursively
as follows:

w = w'" plyglat

) a7

As the update is made only based on the states of the recent
two steps, the storage cost is low. The probability p(yk|a: )
can be calculated according to the function § = h~'(z). Then
the probability will be estimated according to the Gaussian
distribution.

The weights can be normalized as

. (L)
wilt) = e . (18)
2= Wy,

As time goes on and more samples are taken, some of the
weights will be very small and approach zero. In order to
improve the efficiency of Particle filter, we will determine the
effective number of particles and the updated new particles in
the Particle filter before we update « and take more samples.

The effective number of particles Ncys can be calculated
as
19)



If the effective number of particles is less than a given thresh-
old, i.e., Neﬁ < Nipr, we perform re-sampling by drawing
P particles from the current particle set with probabilities
proportional to their weights and replacing the current particle
set with this new one. We then set w,iL) =1/N.

With weights of particles updated, we can update the
direction of signal sources as follows:

Try1 = flag, wi) (20)

We can repeat the previous procedures until the robot can
communicate with the robot(s) it receives signals from.

B. Regulation of Particle Region for Efficient State Estimation

The cost of Particle filter increases quickly with the number
of particles used. As discussed in Section III-B, we can
apply MUSIC algorithm to coarsely estimate the arriving
angle of the received signal so that the particle filter can
work in a restricted region (Fig. 2) to significantly reduce
the computational expense caused by the large number of
particles.

Fig. 2. Particle Filter Implementation Region

MUSIC detects angular frequencies in a signal by perform-
ing an eigen decomposition on the autocorrelation matrix of
the data vector of samples taken from the received signal.
We use variable y to denote the received signal strength, s to
denote the original signal strength without noise, and N the
additive noise. A is the matrix serving as the transfer function

from original signal s and signal strength .
y=As+ N 21

The autocorrelation matrix of signal y, IR, is calculated as

R, = Elyy"?]AR, A" + o°I (22)
where R, is defined as
R, = E[ss"]. (23)

Then we can get the eigen values V;, from the matrix A,
The power function corresponding to angle € can be found as
a™(6)a(0)
af(0)V,,V,Ha(0)

P(9) = (24)

where a() is the column vector in Matrix A. The € corre-
sponding to the peak value of the power function P(8) is the
estimated arriving signal direction.

In order to reduce the complexity of Particle filter, we select
the particles within the angular range [0 — 7/4,6 4+ 7/4] in
our scheme. This eliminates the unnecessary particles, which
will not only reduce the computational cost and time, but also
increase the accuracy of the angle estimation.

C. Motion Control Based on Potential Field

After processing the received signals, we can extract two
useful data values: the received signal strength y and the
estimated direction of arrival x. The robot can communicate
with others only if the signal strength y is above a signal
decoding threshold e. The value z informs the robot the
direction to move in order to connects with other robots it
receives signals from. In this section, we will introduce the
motion control algorithm that can drive the robot movement
according to the = and y values evaluated from the previous
steps.

The motion control algorithm should guide the robot how
much to move, and which direction to move. As the estimated
signal has both the amplitude and direction, it is very natural
to connect it to the physical field, i.e., the potential field, which
shares the same feature and has some well defined theory
to follow. The potential field is formed due to the difference
between two values. In our work, the field strength is related to
the relative direction and signal strength. Different from a force
which is associated with a direction, the potential field does
not have direction and all fields can be added. The potential
field has been used in the literature to guide movement based
on a known target location, where the location to be reached
is an attractive pole for the end effect while obstacles form
repulsive surfaces for the manipulator parts.

Different from the literature work, the positions of the
remote robots are unknown. Specifically, the motion control
needs to drive a robot to move towards the other robots until its
received signal strength is above the signal decoding threshold,
and we need an attractive field to generate the force to drive
robot movement. On the other hand, it is beneficial for robots
to be as far as possible so they can cover a large area for
better surveillance. So a repulsive field is needed when robots
get too close. Further, a repulsive field can also prevent a robot
from hitting an obstacle. In this work, we focus on the fields
that help establish and maintain the communication links.

We define a potential function U to capture all factors that
may influence our estimation of the signal strength and field
value: VU = [g—g, cee (?(?T[i T Without loss of generality, we
consider a variable space R?, while our algorithm can also
work in the space of R> space. We consider a signal field
which is a function of the received signal strength y, and is
composed of both the attractive field U, (y) and the repulsive
field Uyep(y)

U(y) = Uy (y) + Urep(y) (25)



where

1
Uatt(y) = §kattf(y)2 - kattf(y) (26)
1 1 1 2 . g
_ [ skl — ) i fl@) <e
Uprep(y) —{ 0 v Y i fo) > e 27)

kqt+ and kycp represent the scaling factors of attractive field
and repulsive field, respectively. f(z) represents the measured
RSSI strength, while € is the target RSSI threshold. This filed
is just a component when we implement the field. The total
field will be the sum of Uy (y) and U,ep(y).

The forces, Fyo: and Fl., can be obtained by negative
gradient of potential functions, Uy and U,.qs.

=V Ut = Farr = =Fare f(y) + kare (28)
1 1 1y 1
shre (757 — 7))
-V Urep(w) = Freq = 0 i f(x) S € (29)
if f(z) > e

As a robot node may have a few neighbors, there will be
several different attractive and repulsive fields around:
Ux) => Ust(y) + > Urep(y) (30)
i J

Considering the limited computation ability of robots and
maximum number of robots in our design, the repulsive field
is generated with sum of at least tree independent field we
defined earlier. Corresponding distribution is shown in Fig 4

1) Attractive Field: The attractive field which drives the
robot to move closer to the signal source is defined as follows

S ka2 (Y) = kanf(y) if fy) <e
Uatt(x) = { Q%k;tff ' if f(y) >e€

The threshold € has been set for the attractive force to make the
function bounded in a reasonable range. When the distance is
larger than ¢, the gradient will be 0 in that interval. The force
generated by the attractive field will only influence in the range
of €. The attractive field will attract the neighboring robots
when the gets to far from the objective robot. Repulsive one
will make sure they don’t bump with each other and maximize
the coverage.

2) Repulsive Field: As an opposite field of attractive field,
the repulsive one will prevent the robot from getting too close
to each other. So here comes our repulsive definition.

3D

Omaoc if 0 < f(y) < fmam
Urep(y) = %krep(f(lm) - f_lo)Q if fraz < f(y) <e
0 if f(y) >

(32)
The f,qz 1S the maximum possible value of the received signal
strength. Since the gradient in innermost part is zero, it will
conflict with the definition of repulsive field. So we will define
the repulsive force separately.

Fig. 3. Attractive Field

F'm,a,a:

if 0 < f(y) < fmax
Freply) = { sk (555 = O V I®)
0

if frnaz < f(y) < e
if f(2) > e
(33)
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Fig. 4. 3D plot of Potential Field for single mobile robot

With our definition of the potential field, if a single robot
is located in the center of the field, we will have the field
distribution as shown in Fig 5. The repulsive force in the center
not only prevents bumping field, but also keeps the signal
strength received by a robot to be around the target SNR value.

y-axis

Fig. 5. 2D plot for rotating potential field

Using (0,0) as the reference location for each robot, 3
center points of attractive field will be selected. The parameter
€ can be a smaller value compared to the field value at
communication range. So it works like a threshold. When a



robot is selected as the attractive center, the three points should
satisfy two conditions as follows:

€ = radius
|f(xzvyz)| S fmaz

where the (z;,y;) is the center of a mobile robot. In addition,
attractive points should not be too close to other robots. In
order to have a larger coverage area, we can set the field to
rotate in the updating period, so that the robot will not be
trapped to a local minimum point. The rotation matrix for two
dimensional graph can be defined as in equation 11, where 6
is the rotation angle and the relationship can be denoted as
the rotation matrix R.

(34)

Fig. 6. Repulsive Field

R |:COS 0 35)
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This rotating matrix will allow a robot to rotate the direction
of the field according to the current received signal strength
and the estimated DOA z. The rotation operation helps to
adjust the potential field slightly according to the change in
the direction of arrival.

V. MAINTAIN COMMUNICATION

It is important to maintain the network connections with
constant robot movement and severe link conditions. Instead
of letting all robots to gather within a small area which
compromises the function of MRS [18], it is important to
ensure a maximum coverage of MRS while maintaining the
connectivity among robots.

Voronoi diagram is widely used in many topology control
problems. In this section, we integrate use of Voronoi diagram
with RSSI and DoA found in the previous steps introduced to
maximize the coverage of the multi-robot system.

To maintain the RSSI between neighboring robots around
the target value, we further apply PID control to work with
Voronoi diagram. The input of the controller is the RSSI
received from other robots. Defining w(t) as the controller
output, the formula of the PID algorithm is:

d

In Eq. 36, the proportional, integral, and derivative terms
are summed to calculate the output of the PID controller. The

t
u(t) =MV(0) = Kye(t) + K: [ e(r)dr + KaGelt) GO

Fig. 7. Communication range after moving to the centroid of Voronoi polygon

model will keep working until the error between the measured
RSSI and the target RSSI value approaches zero.

VI. EVALUATION

@ 5]
1800 ] (]
1600
1400
1200

(&)
1000| &)
800
600
400
(€]

200 o

0 500 1000 1500 2000

Fig. 8. Initial distribution of robots.

To evaluate the performance of our design, we build a
testbed with eight Roomba robots each equipped with four
antennas. Eight robots are randomly distributed within a field
of 500*500 meters. We measure the signal strength of robots at
different locations, and then feed the measured signal strength
data into matlab simulator. The distribution of robots is shown
in fig 8. !

A. Direction Finding with Music and Particle Filter

Using our improved version of MUSIC algorithm, we can
detect the arrival signal angle according to the strength of the
signals received by the antenna array. In Fig. 9, the direction
of signal corresponds to the peak value of the MUSIC power,
and we can see four typical signals are detected to come from
different directions. The output is the angle in radius.

B. Maximum Number of Robots in the Largest Group

Our algorithm focuses on getting more robots connected in
the communication range and maintaining the existing links. In
fig 10, concurrent use of MUSIC and Particle filter allows the
highest average number of robots to be connected in the largest
connected group. The number doubles that using MUSIC
algorithm alone, and triples that using the random movement
or rendezvous scheme. This demonstrates the effectiveness of
our algorithm in improving the accuracy of DoA estimation,
thus ensuring more efficient network formulation.

'In the fig 8 11 12, the = and y legends represents the x coordinate and y
coordinate in 2D space.
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Fig. 9. Direction estimation with MUSIC and Particle filter.
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Fig. 10. Maximum number of robots in the largest group

C. Algorithm Evaluation

To evaluate the performance of our algorithm in networking
a robot group, we compare our algorithm with the MUSIC
only algorithm in fig 11 and fig 12. The blue line denotes the
robot which is within the communication range. Our algorithm
gets more robots connected with its use of particle filter
for more accurate estimation of the direction of arrival of
signals in the presence of noise and dynamic wireless channel
conditions.

VII. CONCLUSION

MRS have broad applications. The efficiency and func-
tionalities of MRS rely on flexible robot coordination, which
in turn depends on reliable communications between robot
nodes. However, robots dropped into the fields may not be
connected initially and existing connections may break as a
result of robot movement and severe wireless communication
environment. There is a lack of study on efficient connection
formulation among a randomly distributed group of robots in
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Fig. 11. Network topology withFig. 12. Network topology with

Music algorithm only our algorithm

the presence of weak and random wireless channel conditions
and mobility. We propose to pro-actively build and maintain
network connections with interactive and integrated use of
communications and motion control techniques. Specifically,
we exploit concurrent use of MUSIC and Particle filter to
more accurately estimate the direction of sensed robot signals,
and apply signal-based potential field to further guide robot
movement. Our performance studies demonstrate that our
proposed methods are very effective in connecting robots into
a network.
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