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Abstract— The inference of traffic volume of the whole network
from partial traffic measurements becomes increasingly critical
for various network engineering tasks, such as capacity planning
and anomaly detection. Previous studies indicate that the matrix
completion is a possible solution for this problem. However,
as a 2-D matrix cannot sufficiently capture the spatial-temporal
features of traffic data, these approaches fail to work when the
data missing ratio is high. To fully exploit hidden spatial-temporal
structures of the traffic data, this paper models the traffic data
as a 3-way traffic tensor and formulates the traffic data recovery
problem as a low-rank tensor completion problem. However,
the high computation complexity incurred by the conventional
tensor completion algorithms prevents its practical application
for the traffic data recovery. To reduce the computation cost,
we propose a novel sequential tensor completion algorithm, which
can efficiently exploit the tensor decomposition result based on
the previous traffic data to derive the tensor decomposition upon
arriving of new data. Furthermore, to better capture the changes
of data correlation over time, we propose a dynamic sequential
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tensor completion algorithm. To the best of our knowledge, we are
the first to propose sequential tensor completion algorithms to
significantly speed up the traffic data recovery process. This
facilitates the modeling of Internet traffic with the tensor to well
exploit the hidden structures of traffic data for more accurate
missing data inference. We have done extensive simulations
with the real traffic trace as the input. The simulation results
demonstrate that our algorithms can achieve significantly better
performance compared with the literature tensor and matrix
completion algorithms even when the data missing ratio is high.

Index Terms— Internet traffic data recovery, tensor
completion.

I. INTRODUCTION

GAINING a full knowledge of the traffic data volume
between a set of origin and destination (OD) pairs in

the networks becomes increasingly critical for a wide variety
of network engineering tasks [2], including capacity planning,
load balancing, path setup, dimensioning, provisioning, anom-
aly detection, and failure recovery.

Although important, it is impractical to collect measurement
data from a very large number of points in a large network
at the fine time-scales. To reduce the cost, an alternative
measurement strategy usually adopted by the network mon-
itoring system is to take random measurement samples from
the full traffic data. The actual data collected can be even
less when experiencing data loss under severe communication
and system conditions, such as network congestion, node
misbehavior, transmission interference [3]–[6], and monitor
failure. As many network engineering tasks require the com-
plete traffic information or they are highly sensitive to the
missing data, the accurate reconstruction of missing values
from partial traffic measurements becomes a key problem, and
we refer this problem as the traffic data recovery problem.

Various studies have been made to handle missing traffic
data. As most of the known approaches are designed based
on purely spatial [7]–[9] or purely temporal [10], [11] infor-
mation, their data recovery performance is low. To utilize
both spatial and temporal information, several recent studies
model the traffic data as traffic matrices and propose matrix-
based algorithms to recover the missing traffic data [12]–[20].
Although these approaches present good performance when
the data missing ratio is low, their performance suffers when
the missing ratio is large, especially in the extreme case
when the traffic data on several time intervals are all lost.

Tensors are the higher-order generalization of vectors and
matrices. Tensor-based multilinear data analysis has shown
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that tensor models can take full advantage of the multilinear
structures to provide better data understanding and information
precision. Tensor-based analytical tools have seen applica-
tions for web graphs, knowledge bases, chemometrics, signal
processing, computer vision, anomaly detection [21], [22] etc.

To overcome the shortcomings of the matrix-based methods,
we propose to model the traffic data based on the multi-way
tensor, and design an accurate traffic recovery algorithm. Our
algorithm takes advantage of the tensor pattern to combine and
exploit correlations among multi-dimensional spatial-temporal
data to better preserve multiple features of the traffic data and
extract the underlying factors in each feature.

Although promising, compared to matrices, tensors
have additional data dimensions and it is more difficult
to perform tensor completion. Several tensor completion
algorithms [23]–[27] have been proposed for the data recovery
with their core lying in the tensor decomposition. Requiring a
large number of computations, it is difficult to adopt the exist-
ing tensor decomposition methods in the traffic data recovery.
It is important and challenging to reduce the computation cost
and speed up the tensor completion process.

To design an efficient and accurate traffic data recovery
algorithm, we first analyze a large trace of real traffic data,
and our studies reveal that there exist hidden structures in
the data. To fully exploit theses hidden structures for the
data recovery, we model the traffic data as a 3-way traffic
tensor and formulate the traffic data recovery problem as a
low-rank tensor completion problem. Furthermore, we propose
two sequential tensor completion algorithms to quickly solve
the problem with a low computation cost. To the best of our
knowledge, this is the first time that the tensor pattern is
introduced to model the Internet traffic data to well capture
the hidden features in the data. Our model has good low-
rank property, which helps to preserve the multi-way nature of
the traffic data and extract the underlying multi-mode hidden
structures in the traffic data. Our contributions are summarized
as follows:

• Based on the analysis of real traffic trace, we reveal that
traffic data have the features of temporal stability, spatial
correlation, and periodicity.

• To fully exploit the hidden structures for the data recov-
ery, we model the traffic data as a 3-way traffic tensor,
which allows us to combine and utilize the multi-mode
(i.e. OD pair-mode, time-mode, and day-mode) correla-
tions of data to better infer the missing data.

• To reduce the computation cost of the traffic recovery,
we propose a Sequential Tensor Completion algorithm
(STC) so that the tensor can be decomposed for the
current data based on the tensor decomposition result of
the previous traffic data. To more accurately recover the
data exploiting the feature of the dynamic data, we fur-
ther propose a Dynamic Sequential Tensor Completion
algorithm (DSTC) based on STC. Both algorithms do
not need to involve a complete tensor decomposition
procedure for the current data, so the computation cost
can be significantly reduced.

• To evaluate the performance of our proposed algorithms,
we have performed extensive simulations based on real

traffic trace. Compared with existing tensor or matrix
completion schemes, our algorithms can achieve signif-
icantly better performance in terms of several metrics,
including the ratio of the recovery error, the ratio of the
successful recovery, recovery loss, MAE, RMSE, and the
computation time.

The rest of the paper is organized as follows. We introduce
the related work in Section II. The preliminaries of tensor
are presented in Section III. We present our analyses on the
real traffic data, our system model and problem formulation,
and our sequential tensor completion algorithm in Section IV,
Section V, and Section VI, respectively. Finally, we evaluate
the performance of the proposed algorithm through exten-
sive simulations in Section VII, and conclude the work in
Section VIII.

II. RELATED WORK

In this section, we review the related work on the recovery
of the missing Internet traffic data, and identify the differences
of our work from the existing work.

A set of studies have been made to handle the missing
traffic data. Designed based on purely spatial [7]–[9] or purely
temporal [10], [11] information, most of the known approaches
have a low data recovery performance.

To capture more spatial-temporal features in the traffic
data, SRMF [12] proposes the first spatio-temporal model
of traffic matrices (TMs). It finds sparse approximations to
TMs, and recovers the missing data with the spatio-temporal
operation and local interpolation. Following SRMF, several
other matrix recovery algorithms [12]–[20], [28] including our
paper [17], [20], [29] are proposed to recover the missing
data from partial measurements. Compared with the vector-
based recovery approaches, as a matrix could capture more
information and correlation among traffic data, matrix-based
approaches achieve much better recovery performance. How-
ever, a two-dimension matrix is still limited in capturing a
large variety of correlation features hidden in the traffic data.
For example, although the traffic matrix defined in [12] can
represent the traffic flows in different time slots to catch the
spatial correlation among flows and the small-scale temporal
feature, it can not incorporate other temporal features such as
the feature of the traffic periodicity. Therefore, a matrix is still
not enough to capture the comprehensive correlations among
the traffic data, and the data recovery performance under the
matrix-based approaches is still low.

It is promising to apply the emerging higher-order tensors
to model the data that intrinsically have many dimensions.
Tensor-based missing data recovery methods can capture the
global structure of the data via a high-order decomposi-
tion (named tensor decomposition), and tensor-based methods
prove to be good analytical tools for dealing with the multi-
dimensional data.

So far, tensor-based data recovery has been utilized in
various fields (see an in-depth survey by Kolda and Bader
[30]). Although tensor completion has proven to be effective in
these applications, the features extracted from signal process-
ing [31], deep neural networks [32], and road traffic [33], [34]
are different from those of the Internet traffic. The modeling
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and solutions of existing tensor completion algorithms can not
be directly applied for the efficient and accurate Internet traffic
recovery. Our recent work in [35] made an attempt to apply
the tensor completion to recover the traffic data from partial
measurements and loss. Directly modeling the traffic data
using 3-way tensor with each mode corresponding respectively
to the origin, destination and the total number of time intervals
to consider, this study can not exploit the traffic periodicity in
the traffic data recovery, so the recovery accuracy is not high.

Several tensor completion algorithms [23]–[26], [36] are
proposed for the data recovery. The core of the tensor com-
pletion lies in the tensor decomposition, which commonly
takes two forms: CANDECOMP/PARAFAC (CP) decomposi-
tion [37], [38] and Tucker decomposition [39]. In multilinear
algebra, the tensor decomposition may be regarded as a gen-
eralization of the matrix singular value decomposition (SVD)
to tensors. In fact, Tucker decomposition is also known as a
higher-order SVD (HOSVD) [40]. Haeffele and Vidal in [32]
present a general framework to analyze a wide variety of
factorization problems within a convex formulation (where
tensor decomposition is one example), and show that the
global minimum of the factorization problems can be achieved
if they satisfy a simple condition. Some recent work [41]–[44]
study the low-tubal-rank tensor model and low-tubal-rank
tensor completion. Among which, the work in [41] pro-
vides the first theoretical guarantees on the global optimality
for the low-tubal-rank tensor completion problem, and the
Liu et al. in [42] provide an adaptive tubal sampling strategy
to reduce the sampling budget. As the number of elements in a
tensor increases exponentially with the number of dimensions,
the computational and memory requirements increase quickly,
which becomes the main challenge of applying the tensor
decomposition in the practical applications.

To the best of our knowledge, we are the first to apply the
tensor pattern to model the Internet traffic data to well exploit
the hidden structures (temporal stability, spatial correlation
feature, and traffic periodic pattern) of the traffic data, and
propose sequential tensor completion algorithms to signifi-
cantly speed up the traffic data recovering process. We have
performed extensive simulations with the real traffic trace as
the input. The simulation results show that our sequential
tensor completion algorithms can achieve highly accurate
recovery performance with a short computation time.

III. PRELIMINARIES OF TENSOR

In this section, we introduce some basic concepts related to
the tensor.

Definition 1 (Tensor): A tensor, also known as N th-order
or N -way tensor, multidimensional array, N -way or N -mode
array, is a higher-order generalization of a vector (first-order
tensor) and a matrix (second-order tensor), and denoted as
A ∈ R

I1×I2×···×IN where N is the order of A, also called
way or mode. The element of A is denoted by ai1,i2,··· ,iN ,in ∈
{1, 2, · · · , In}, 1 ≤ n ≤ N .

Definition 2: Given a tensor A ∈ R
I1×I2×···×IN , a mode-k

vector v is defined as the vector that is obtained
by fixing all indices of A but varying the mode-k

Fig. 1. Unfolding of the (I1 × I2 × I3)− tensor A to the (I1 × I2I3)−
matrix A(1), the (I2 × I3I1)− matrix A(2), and the (I3 × I1I2)−
matrix A(3).

Fig. 2. A tensor A ∈ R3×2×3 .

index:v = Ai1,··· ,ik−1,:,ik+1,··· ,in with ij(j �= k) a fixed value.
We refer to the set of all mode-k vectors of A as the mode-k
vector space. The mode-k unfolding, or matricization [40],
of A, denoted by A(k), is an Ik ×

�
i�=k Ii matrix whose

columns are all possible mode-k vectors.
For a N th-order tensor A ∈ R

I1×I2×···×In , the mode-
k unfolded matrix A(k) ∈ R

Ik×
�

i�=k Ii contains the ten-
sor element ai1,i2,··· ,in , id ∈ {1, 2, · · · , Id} at the position
in the unfolding matrix with its row index ik and column
index j equal to (in+1 − 1) In+2In+3 · · · IN I1I2 · · · In−1+
(in+2 − 1) In+3In+4 · · · IN I1I2 · · · In−1 + · · · + (iN − 1) I1

I2 · · · In−1+ (i1 − 1) I2I3· · · In−1 + (i2 − 1)I3I4 · · · In−1 +
· · ·+ in−1.

Fig. 1 shows an unfolding procedure of a 3rd-order tensor,
which involves the tensor dimensions I1, I2, I3 in a cyclic way.
The dotted arrow in Fig. 1 shows how the mode-k unfolding
matrix is formed. Fig. 2 gives an example of the unfolded
matrix A(2) for a tensor A ∈ R

3×2×3.
Definition 3 (Tensor Rank or CP-Rank [30], [45]): The

rank of an arbitrary N th-order tensor A, denoted by
R = rank(A), is the minimal number of rank-1 tensors
that yield A in a linear combination. In other words, this
is the smallest number of components in an exact CP
decomposition [37], [38].

One major difference between the matrix rank and the
tensor CP-rank is that there is no straightforward algorithm
to determine the CP-rank of a specific given tensor, which is
proven to be NP-hard problem [45].

Definition 4 (n-rank [30]): The n-rank of an arbitrary
N th-order tensor A, denoted by Rn = rankn(A), is the
tuple of the ranks of the N unfolding matrices, that is, Rn =�
rank

�
A(1)

�
, rank

�
A(2)

�
, . . . , rank

�
A(N)

��
.
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Fig. 3. Empirical study with real traffic data.

IV. EMPIRICAL STUDY WITH REAL TRAFFIC DATA

The literature studies [33] have shown that the similarity is
one of the factors that impact the interpolation performance for
data recovery. In this section, we perform a set of experiments
with the public traffic trace Abilene [46] to investigate and
discover the Internet traffic features.

A. Temporal Stability

Let Υ denote the non-empty set of all origins and destina-
tions in a network and let |Υ| = N . Traffic data are typically
measured over some time intervals, and the value reported is
an average. Therefore, we can denote z(i, j, k) to be the traffic
from origin i to destination j averaged over the time duration
[k, k + τ), where τ denotes the measurement interval.

Traffic data usually change slowly over time. To study the
stability of traffic data, we calculate the difference between
each pair of adjacent time measurements at a origin-destination
(OD) pair. The difference for two consecutive time slots
(k, and k − 1) is equal to

gap(i, j, k) = |z(i, j, k)− z(i, j, k − 1)| (1)

where 1 � i, j � N , 2 � k � Γ and Γ is the number of time
intervals of interest. Obviously, gap(i, j, k) = 0 if the traffic
data of OD pair (i, j) does not change from time slot k − 1
to k. The smaller the gap(i, j, k), the more stable the traffic
data for OD pair (i, j) around time slot k.

By computing the normalized difference values between
adjacent time slots, we measure the temporal stability at OD
pair (i, j) and time slot k as

Δgap(i, j, k) =
|z(i, j, k)− z(i, j, k − 1)|

max
2�k�Γ

|z(i, j, k)− z(i, j, k − 1)| (2)

where max
2�k�Γ

|z(i, j, k)− z(i, j, k − 1)| is the maximal gap

between any two consecutive time slots in the traffic data from
origin i to destination j.

We plot the CDF of Δgap(i, j, k) in Fig.3(a). The X-axis
represents the normalized difference values between two con-
secutive time slots, i.e., Δgap(i, j, k). The Y-axis represents
the cumulative probability. We observe that more than 90%
Δgap(i, j, k) are very small (< 0.1). These results indicate
that the temporal stability exists in the real traffic data.

B. Spatial Correlation Feature

A correlation coefficient is a quantitative measure of some
type of correlation and dependence. Let z(i, j), z(i�, j�) ∈
R

T denote the traffic vectors of OD pair(i, j) and OD

pair(i�, j�). The spatial correlation between OD pair(i, j) and
OD pair(i�, j�) can be calculated according to

S ((i, j) , (i�, j�))

=

Γ�

k=1

�
|z(i,j,k)−z̄(i,j)|

max
2�k�Γ

|z(i,j,k)−z̄(i,j)| × |z(i�,j�,k)−z̄(i�,j�)|
max

2�k�Γ
|z(i�,j�,k)−z̄(i�,j�)|

�

�
Γ�

k=1

(z(i,j,k)−z̄(i,j))2

max
2�k�Γ

(z(i,j,k)−z̄(i,j))2

�
Γ�

k=1

(z(i�,j�,k)−z̄(i�,j�))2

max
2�k�Γ

(z(i�,j�,k)−z̄(i�,j�))2

(3)

where 1 ≤ i, j, i�, j� ≤ N , z̄(i, j) = 1
Γ

Γ�

k=1

z(i, j, k),

z̄(i�, j�) = 1
Γ

Γ�

k=1

z(i�, j�, k).

The CDF of S ((i, j) , (i�, j�)) is plotted in Fig. 3(b). The
X-axis represents value of S ((i, j) , (i�, j�)), the Y-axis rep-
resents the cumulative probability. From the figure, we can
see that the value S ((i, j) , (i�, j�)) < 0.3 is less than 20%,
the value S ((i, j) , (i�, j�)) > 0.5 is nearly about 60%, which
indicates that real Internet traffic data have strong spatial
correlation.

C. Traffic Periodic Pattern

As we know, users usually have similar Internet visiting
behaviors at the same time of different days, such as the similar
traffic mode in working hours and sleeping hours. To study the
traffic periodic pattern in a day, we calculate the gap between
each pair of measurements in two consecutive days at an OD
pair. In Abilene [46], traffic measurements are taken every
5 minutes, one day have 288 time intervals. Therefore, the gap
between each pair of measurements in adjacent days captured
in two time slots (k, and k + 288) is equal to

day(i, j, k) = |z(i, j, k)− z(i, j, k + 288)| (4)

where 1 � i, j � N and 1 � k � Γ − 288 and Γ is
time intervals present. Obviously, the smaller the day(i, j, k),
the more similar the traffic data for OD pair (i, j) around the
same time slot of adjacent days.

By computing the normalized difference values between
adjacent days, we measure the traffic similarity at OD pair
(i, j) and time slot k according to

Δday(i, j, k) =
|z(i, j, k)− z(i, j, k + 288)|

max
1�k�Γ−288

|z(i, j, k)− z(i, j, k + 288)| (5)

where max
1�k�Γ−288

|z(i, j, k)− z(i, j, k + 288)| is the maximal

gap between any two adjacent days in the traffic data from
origin i to destination j.

We plot the CDF of Δday(i, j, k) in Fig.3(c). The X-axis
represents the normalized difference values between two
adjacent days, i.e., Δday(i, j, k). The Y-axis represents the
cumulative probability. We observe that more than 90%
Δday(i, j, k) are very small (< 0.05). These results indicate
that traffic periodic pattern exists in real Internet traffic trace.

V. SYSTEM MODEL AND PROBLEM FORMULATION

In this section, we first present our traffic tensor model, and
then formulate the traffic data recovery problem.
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Fig. 4. Traffic tensor model.

A. Traffic Tensor Model

Current traffic interpolation approaches usually model the
traffic data with a traffic matrix X ∈ R

o×Γ (o = N × N ),
where a column of X represents the traffic data of all OD
pairs at one time slot, while a row of X represents the time
evolution of a single OD pair. As discussed in the introduc-
tion, modeling the traffic data in the matrix format cannot
sufficiently capture spatial and temporal characteristics of
the traffic data. Therefore, although matrix-based approaches
work well when the ratio of the missing data is low, their
performances degrade significantly when the data missing ratio
becomes large.

To address the issues of the matrix-based methods men-
tioned above, we propose to apply the tensor to model traffic
data. As a straightforward way of modeling [35], traffic tensor
may be formed with a 3-way tensor Z ∈ R

N×N×Γ, corre-
sponding respectively to the origin, destination and the total
number of time intervals to consider. However, such a 3-way
tensor model can not fully exploit the similarity structures
hidden in the traffic data.

To fully exploit the traffic features of temporal stability,
spatial correlation, as well as the periodicity pattern, we model
the traffic data as a 3-way tensor X ∈ R

o×t×d (as shown
in Fig.4), where o corresponds to N ×N OD pairs, and there
are d days to consider with each day having t time intervals.
Obviously, we have Γ = t × d. Fig.4 uses Abilene trace
data [46] as an example to illustrate this model. The traffic
data are collected between 144 OD pairs in 168 days, and the
measurements are made every 5 minutes which corresponds
to 288 time slots every day. Therefore, the trace data can
be modeled as a 3-way tensor X ∈ R

o×t×d with o = 144,
t = 288, and d = 168. According to [47], the missing data
recovery performance becomes better when the dimensions of
the tensor are more balanced. If we use the traffic tenor in [35]
with the tensor formed with source, destination and time slot,
for the data taken from 12 sources and 12 destinations (totally
144 OD pairs) over 288×168 time slots, the tensor would be in
a oblong shape with the dimension of the time slot much larger
than the other two dimensions. Instead, with our tensor setup,
the sizes of three dimensions are much more balanced with
144(OD), 168(Day), and 288(time slot). Therefore, the tensor
model in this paper is better than the one in [35] for missing
data recovery.

B. Problem Formulation

Before we present our problem formulation, we first
utilize following table to summarize some most used
variables.

Variables
X ∈ R

o×t×d Raw traffic tensor
M ∈ R

o×t×d Measurement traffic tensor
Ω Set of indices of the observed entries in M
X(i), M(i) ith-mode unfolding matrix of X and M
l(i), n(i) No. rows and No. columns of X(i) and M(i)

Uij Vector space of the matrices ∈ R
i×j

M is generally an incomplete tensor due to sample-based
traffic monitoring and the unavoidable data loss resulted from
severe communication conditions. We define the operation
MΩ = XΩ as

mijk =

	
xijk if (i, j, k) ∈ Ω
0 otherwise

(6)

If there are no traffic data between a particular pair of nodes
in a given time interval, of course, it leaves the corresponding
entry in M to be empty. In our study, we use zero as a
placeholder to replace the empty entry.

To recover the missing traffic data, the traffic data recovery
problem can be formulated as a tensor completion problem
with the goal of finding its missing entries through the
minimization of the tensor rank as

min
X

rank (X )

s.t. XΩ =MΩ (7)

According to the definition of n-rank, the n-rank of a given
n-way tensor can be analyzed by means of matrix techniques.
Therefore, the tensor completion problem defined in (7) can
be further transformed to

min
X

3


i

rank
�
X(i)

�

s.t. XΩ =MΩ (8)

VI. TRAFFIC DATA RECOVERY

In order to reduce the computation cost, we propose two
sequential tensor completion algorithms to quickly recover the
traffic data. In this section, we first analyze the challenges, then
present the proposed algorithms.

A. Challenges

The problem in (8) considers the tensor as multiple matrices
and forces the matrix unfolded along each mode of the tensor
to be low rank. Therefore, the tensor completion problem is
transformed to the low-rank matrix completion problem along
each mode, and the final tensor data can be obtained by folding
the recovered data of each mode.

Rather than straight-forwardly recovering the matrix data,
to speed up the tensor completion process, we consider an
approach with two steps: 1) Finding a recovering method
that allows for the reuse of the previous recovered data to
reduce the computation complexity, and 2) Developing an
algorithm that can efficiently recover new data during the
continuous monitoring process. Although promising, there are
a few challenges to address:

• What algorithm to use to recover each unfolded matrix
of the tensor? Existing solutions generally recover a
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matrix via convex relaxation with the nuclear norm
minimization. This method can work efficiently if the
matrix satisfies certain incoherence conditions [49], [50]
and sufficiently number of entries are observed. However,
it may bring long computation time and even not converge
when the sample data are not sufficient.

• How to reduce the computation to reuse previous tensor
factorization ? To reuse the previous results of the tensor
factorization, the derived tensor factorization should be
able to capture the main features of both historical data
and the current data based only on past data and partially
observed new data, and the solution needs to be simple
for implementation for online monitoring.

B. Completion of Unfolded Matrix With the
Reuse of Previous Results

Given the limitation of conventional methods based on
nuclear norm minimization, to support efficient online moni-
toring with sequential sampling scheme while ensuring low-
overhead data recovery, we consider a completion method that
searches for the orthogonal column space on the Grassmann
manifold to match the partial measurement data.

To find a rank-r(i) matrix X�
(i) that is consistent with the

observations (M(i))Ω, the column space searching problem
for the matrix completion can be expressed as

min
U(i)∈Ul(i)r(i)

�
�
�
�
M(i) −U(i)Wtr

(i)



Ω

�
�
�

2

F
(9)

where U(i) is the column orthogonal matrix of matrix M(i).
�·�F denotes the Frobenius norm, and Wtr

(i) denotes the
transpose of W(i). Given a U(i), the W(i) in Eq.(9) can be
calculated through the following function:

W(i) = argmin
W(i)∈R

n(i)×r(i)

�
�
�
�
M(i) −U(i)Wtr

(i)



Ω

�
�
�

2

F
(10)

The low-rank matrix completion is transformed to the
column space searching problem with the aim of finding a
column space consistent with the observed entries. As we
don’t know W(i) in advance, to find the optimal column
orthogonal matrix U(i), problems in (9) and (10) should
be iteratively solved until it converges. After we obtain the
column orthogonal matrix U(i) and matrix W(i), through
U(i)Wtr

(i), the incomplete ith-mode matrix M(i) can be recov-
ered and the X�

(i) = U(i)Wtr
(i) is the resulted recovery matrix.

In the following contents, we will further utilize the good
feature of the column orthogonal matrix to propose a sequen-
tial tensor completion approach to significantly speed up traffic
recovery process.

Traffic measurement data generally come in sequence.
To obtain the complete traffic data for the advanced network
management, the tensor completion task will be invoked
periodically or upon the request of the network operators.
It would involve a large computation cost if we directly solve
the column space searching problem by iteratively executing
(9) and (10) to find the column space of each unfolding matrix
when the tensor completion task is invoked.

Fig. 5. Sequence tensor completion tasks at time t and t + 1. (a) Traffic
tensor and its unfolding matrices obtained at time t. (b) Traffic tensor and its
unfolding matrices obtained at time t + 1.

Fig. 5 shows the sequence of the tensor completion tasks at
time t and time t+1. Comparing the Fig.5 (a) with the Fig.5(b),
the major parts of the traffic data (undertone color data) are
the same in both figures, where the traffic data are recovered
from the previous measurements. The only difference is that
the tensor in Fig.5(b) has more traffic data than the tensor
in Fig. 5(a), and consequently more columns and rows in the
unfolding matrices. The additional data are obtained from the
new measurements. This relationship provides us an opportu-
nity to reuse the previous result of tensor decomposition to
deduce the tensor decomposition for the current data so the
data can be quickly recovered.

For a rank-r matrix X = [X{1,...,n−1}, x{n}] ∈ R
l×n,

where X{1,...,n−1} is the submatrix of X by removing the last
column from X. Let M be the observation matrix of X, that is,
MΩ = XΩ and

�
m{n}

�
Ωn

=
�
x{n}

�
Ωn

where m{n} and x{n}
are the last column of M and X, respectively, with its observed
entry set Ωn. To recover matrix X from M, before we present
our sequential tensor completion algorithm in Algorithm 1, the
following theorem will illustrate how to calculate the column
orthogonal matrix of M = [M{1,...,n−1}, m{n}] ∈ R

l×n based
on the obtained column orthogonal matrix of M{1,...,n−1}.

Theorem 1: Let U1 = argmin
U∈Ulr

�(M−UWtr)Ω�2F , and

define

U� = U0 +
�

(cos (ση)− 1)
p

�p� +sin (ση)
�

���
�

ωtr

�ω� (11)
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Fig. 6. Sequential tensor completion for traffic data.

where U0 is an l × r matrix whose orthogonal columns
span M{1,...,n−1}, and η > 0 is a small stepsize,

ω = argminω

�
�
�(U0)Ωn

ω − �
m{n}

�
Ωn

�
�
�

2

2
is the least-squares

weight, p = U0ω, � =
�
m{n}

�
Ωn
− p is the residual vector,

and σ = ��� �p�. Then U1 and U� are identical with a specific
choice for step size η.

According to the orthonormal columns of U0 which spans
M{1,...,n−1}, we can get

U0 = argmin
U∈Ulr

�
�
�
M{1,...,n−1} −UWtr

�
Ω

�
�2

F

From m{n} = U0w + �, we have

m{n} =
�
U0

�
���

� �
w
���

�

.

And then, we can get

[M{1,...,n−1}, m{n}] =
�

U0
�

���
� �

I w
0 ���

� �
W 0
0 1

�tr

.

Furthermore, we have
�

U0
�

���
�

= argmin
U∈Ul(r+1)

�(M−UWtr)Ω�2F

Taking the SVD of the center matrix to be

�
I w
0 ���

�

= ŨΣ̃Ṽ
tr

; Σ̃ =

⎡

⎢
⎢
⎢
⎣

δ1

. . .
δr

δr+1

⎤

⎥
⎥
⎥
⎦
.

To find a matrix ∈ Ulr by catching most energy of the first
r singular values of matrix M, set

Ut+1 =
��

U0
�

���
�
Ũ



{1,...,r}
,

Wt+1 =
��

W 0
0 1

�

ṼΣ̃
�

{1,...,r}
,

only the top r singular vectors are needed.
According the ISVD algorithm in [51], we can get Ut+1 =

argmin
U∈Ulr

�
�
�
[M{1,...,n−1}, m{n}]−UWtr

�
Ω

�
�2

F

Proof:
It was shown in [52] that updating U0 to Ut+1

is equivalent to GROUSE for a specific step size η,
which performs the gradient descent directly on the Grass-
mann manifold, that is, Ut+1 = U� = U0 +

�
(cos (ση)− 1) p

�p� + sin (ση) �
���


ωtr

�ω� , which completes
the proof.

According to Theorem 1, when a new column vector v is
appended to the matrix M, we do not need a new column
space searching procedure to calculate the orthogonal column
matrix U� for the matrix [M,v]. Instead, U� can be derived
from U and v only, where U is the orthogonal column
matrix of M whose orthogonal columns span M. Therefore,
Theorem 1 provides a good approach to reuse the column
space found for the previous traffic data to quickly recover
the current traffic data.

C. Sequential Tensor Completion

To design our sequential tensor completion algorithm,
we first provide some notations. As shown in Fig.6, the under-
tone color data are processed in the previous tensor completion
procedure, while the dark color data are newly obtained. The
three unfolding matrices of the traffic tensor (in Fig. 6 (a)) are
shown in Fig. 6 (e), Fig. 6(f), and Fig. 6(g), which can be fur-
ther transformed into Fig. 6(h), Fig. 6(i), and Fig.6(j), respec-
tively. Note that, the traffic matrices in Fig. 6(h) and (i) are
the elementary transformation of matrices in Fig. 6(e) and (f),
the traffic matrix in Fig. 6(j) is the transpose of the matrix
in Fig. 6(g).

As shown in Fig. 6(h), Fig. 6(i), and Fig. 6(j),
we denote undertone color data as (M(t))(1), (M(t))(2), and
(M(t))(3), and the remainder dark color data as (M(t+1))(1),
(M(t+1))(2), and (M(t+1))(3), respectively. According to
Theorem 1, by utilizing the column space of (M(t))(1),
(M(t))(2), and (M(t))(3) to calculate the column space of the

whole
��

M(t)

�
(1)

,
�
M(t+1)

�
(1)

�
,

��
M(t)

�
(2)

,
�
M(t+1)

�
(2)

�
,

and
��

M(t)

�
(3)

,
�
M(t+1)

�
(3)

�
, we design our Sequential Ten-

sor Completion algorithm (STC), as shown in Algorithm 1.
As shown on lines 4-6 in Algorithm 1, for the newly

coming traffic data in (M(t+1))(i) (1 ≤ i ≤ 3), we add
each column in (M(t+1))(i) sequentially to existing data,
and update the corresponding column space by utilizing the
previous

�
U(t)

�
(i)

and the new column to add.

To train the column orthogonal matrix
�
U(t+1)

�
(i)

to more
accurately capture the column information of the newly traffic
data in (M(t+1))(i), we repeat the training procedure (lines
4-6) CycleNum rounds.

Then according to Eq.(10), calculate the optimal�
W(t+1)

�
(i)

and set X�
(i) =

�
U(t+1)

�
(i)

�
W(t+1)

�tr

(i)
as

the recovery matrix for this unfolding matrix. After folding
each recovered unfolding matrix X�

(1), X�
(2), and X�

(3),
the recovered traffic tensor can obtained as shown on line 9.

D. Dynamic Sequential Tensor Completion

In Algorithm 1, the number of columns of the orthogonal
matrix from

�
U(t)

�
(i)

to
�
U(t+1)

�
(i)

is kept the same. How-
ever, our recent studies [17], [53] reveal that the rank of the
matrix varies over time, although the network monitoring data
can be represented as a low rank matrix. When new traffic data
comes, the rank of whole traffic data may increase as more data
is added. Therefore, fixing the number of columns (thus the
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Algorithm 1 Sequential Tensor Completion (STC)

Input: The orthogonal matrices
�
U(t)

�
(1)

,
�
U(t)

�
(2)

,
�
U(t)

�
(3)

for (M(t))(1), (M(t))(2), and (M(t))(3)
Output: The recovered traffic tensor X
1: for i← 1, . . . , 3 do
2:

�
U(t+1)

�
(i)

=
�
U(t)

�
(i)

3: for k ← 1, · · · , CycleNum do
4: for each column vector v in (M(t+1))(i) with its

observed entry set Ωv do
5: Apply Theorem 1 to update the column orthogonal

matrix
�
U(t+1)

�
(i)

=
�
U(t+1)

�
(i)

+
�

(cos (ση)− 1)
p

�p�
+ sin (ση)

�

���
�

ωtr

�ω� (12)

where

ω = argminω

�
�
�
�
U(t+1)

�
(i)Ωv

ω − (v)Ωv

�
�
�

2

2
(13)

p =
�
U(t+1)

�
(i)

ω, residual � = (v)Ωv
− p, and σ =

��� �p�.
6: end for
7: end for
8: According to Eq.(10),

�
W(t+1)

�
(i)

can be calculated
from
�
W(t+1)

�
(i)

= argmin
W∈R

n(i)×r(i)

�
�
�
�
�

� ��
M(t)

�
(i)

,
�
M(t+1)

�
(i)

�

−�
U(t+1)

�
(i)

Wtr

�

Ω

�
�
�
�
�

2

F

(14)

where n(i) = (n(t))(i) + (n(t+1))(i) with (n(t))(i) and
(n(t+1))(i) being the numbers of columns of matrices
(M(t))(i) and (M(t+1))(i), respectively.

9: X�
(i) =

�
U(t+1)

�
(i)

�
W(t+1)

�tr

(i)
10: end for

11: X =
3�

i=1

1
3fold

�
X�

(i)



12: Return traffic tensor X .

rank r) of the orthogonal matrix can not well represent practi-
cal network monitoring data and the recovery performance has
room to improve. Therefore, based on Algorithm 1, we further
design DSTC (Dynamic Sequential Tensor Completion) in
Algorithm 2 to dynamically change the rank of the orthogonal
matrix when needed to more accurately capture the feature of
the data to more accurately recover the data.

In Algorithm 2, the orthogonal matrix is trained multiple
times on lines 10-14 similar to lines 3-7 in Algorithm 1.
However, when scanning each column of the newly coming
traffic data the first time, the rank will change and new column
will be added when needed in Algorithm 2.

Specially, on line 4, as vj is a sparse vector with only
small portion of its entries (in Ωvj ) having values, we set
vj = (vj)Ωvj

+ (e)Ω̄vj
, where e is a small vector with the

values of its entries very small (i.e., 10−6) and Ω̄vj is the
set of locations of unobserved entries in vj . As the column
vectors in the orthogonal matrix act as the basis vectors to
span the traffic data space, adding vector (e) is to avoid the
newly added column vector in the orthogonal matrix to be
a sparse vector. On line 5, �j = (vj) − p is the residual
vector of column vj represented by the current orthogonal
matrix. Our column expanding principle is that: when the ratio
of ��j� is larger than α��j−1�, a new column is added to
the orthogonal matrix and the orthogonal matrix is updated
to

�
U(t+1)

�
(i)

= [
�
U(t+1)

�
(i)

,
�j

��j� ]. Obviously, as �j is the
residual vector of column vj , it is orthogonal to the columns
of the matrix updated before. On line 6, α is constant with
α > 1. In this paper, we set α = 2 in the simulation part.

In the simulation part, we will show that such a dynamic
design can effectively improve the recovery performance of
the static algorithm.

E. Algorithm analysis

In this section, we compare the computation complex-
ity of our two sequential tensor completion algorithms
(STC and DSTC) with that of the direct matrix completion
solution.

According to the definition of n-rank, to complete a ten-
sor, we first solve the low-rank matrix completion problem
along each mode, and then obtain the final tensor data by
folding the recovered data of each mode. Moreover, for
accurate missing data recovery, we further translate the matrix
completion problem to a column space searching problem
and propose two sequential algorithms (STC and DSTC) to
solve the problem. As the final recovered tensor is folded by
the recovered matrices of all modes, we analyze the com-
putation complexity of the matrix completion algorithm for
each mode.

As shown in Algorithm 1, our STC mainly includes two
parts. The first is to deduce the column orthogonal matrix�
U(t+1)

�
(i)

based on the matrix decomposition result of previ-

ous data. The second part calculates the matrix
�
W(t+1)

�
(i)

by
solving the matrix least squares minimization problem in (14).

According to Theorem 1, the matrix
�
U(t+1)

�
(i)

is updated

from
�
U(t)

�
(i)

by using each column of the new measure-

ment data matrix
�
M(t+1)

�
(i)

to train
�
U(t+1)

�
(i)

through
operation in (12), which requires solving a least squares
problem in (13). This least squares problem further requires
obtaining r(i) unknowns in

�
�Ωvj

�
� equations, so the com-

plexity is O
��
�Ωvj

�
� r2

(i)


. As each column at most has l(i)

entries and the measurement data matrix
�
M(t+1)

�
(i)

has
(n(t+1))(i) columns, one round of such a training process

requires at most O
�
l(i)r

2
(i)(n(t+1))(i)


. For more accurate

data recovery, the training process is executed in STC
CycleNum rounds. Thus the complexity of the first part is
O

�
CycleNuml(i)r

2
(i)(n(t+1))(i)


.

The least squares problem in (14) is solved in the sec-
ond part of STC. As the measurement data matrix��

M(t)

�
(i)

,
�
M(t+1)

�
(i)

�
including (n(t))(i) + (n(t+1))(i)
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Algorithm 2 Dynamic Sequential Tensor Completion (DSTC)

Input: The orthogonal matrices
�
U(t)

�
(1)

,
�
U(t)

�
(2)

,
�
U(t)

�
(3)

for (M(t))(1), (M(t))(2), and (M(t))(3)
Output: The recovered traffic tensor X
1: for i← 1, . . . , 3 do
2:

�
U(t+1)

�
(i)

=
�
U(t)

�
(i)

, ��0� = 0
3: for each column vector vj in (M(t+1))(i) with its

observed entry set Ωvj do
4: vj = (vj)Ωvj

+ (e)Ω̄vj

5:
�
U(t+1)

�
(i)

=
�
U(t+1)

�
(i)

+
�

(cos (ση)− 1)
p

�p� + sin (ση)
�j

��j�
�

ωtr

�ω� (15)

where

ω = argminω

�
�
�
�
U(t+1)

�
(i)

ω − (vj)
�
�
�

2

2
(16)

p =
�
U(t+1)

�
(i)

ω, residual �j = (vj) − p, and σ =
��j� �p�.

6: if (��j� > α��j−1� then
7:

�
U(t+1)

�
(i)

= [
�
U(t+1)

�
(i)

,
�j

��j� ]
8: end if
9: end for

10: for k ← 1, · · · , CycleNum do
11: for each column vector v in (M(t+1))(i) with its

observed entry set Ωv do
12: Apply Theorem 1 to update the column orthogonal

matrix
�
U(t+1)

�
(i)

=
�
U(t+1)

�
(i)

+
�

(cos (ση)− 1)
p

�p� + sin (ση)
�

���
�

ωtr

�ω� (17)

where ω = argminω

�
�
�
�
U(t+1)

�
(i)Ωv

ω − (v)Ωv

�
�
�

2

2
,

p =
�
U(t+1)

�
(i)

ω, residual � = (v)Ωv
− p, and

σ = ��� �p�.
13: end for
14: end for
15: According to Eq.(10),

�
W(t+1)

�
(i)

can be calculated
from
�
W(t+1)

�
(i)

= argmin
W∈R

n(i)×r(i)

�
�
�
�
�

���
M(t)

�
(i)

,
�
M(t+1)

�
(i)

�

−�
U(t+1)

�
(i)

Wtr

�

Ω

�
�
�
�
�

2

F

(18)

where n(i) = (n(t))(i) + (n(t+1))(i) with (n(t))(i) and
(n(t+1))(i) being the numbers of columns of matrices
(M(t))(i) and (M(t+1))(i), respectively.

16: X�
(i) =

�
U(t+1)

�
(i)

�
W(t+1)

�tr

(i)
17: end for

18: X =
3�

i=1

1
3fold

�
X�

(i)



19: Return traffic tensor X .

columns, according to the complexity of problem in (13),
the complexity of solving problem in (14) is at most
O

�
l(i)r

2
(i)((n(t))(i) + (n(t+1))(i))


.

Therefore, the main operations to train�
U(t+1)

�
(i)

and the matrix
�
W(t+1)

�
(i)

in

STC requires O
�
CycleNuml(i)r

2
(i)(n(t+1))(i)


+

O
�
l(i)r

2
(i)((n(t))(i) + (n(t+1))(i))


.

Different from STC, in Algorithm 2, DSTC need one
more round to train

�
U(t+1)

�
(i)

by testing whether new

measurement data will change the rank of
�
U(t+1)

�
(i)

in
line 1-9 in Algorithm 2. The main operation in this round
requires solving a least squares problem in (16) which is
slightly different from (13) in STC. The problem in (16)
requires obtaining r(i) unknowns in l(i) equations, which

results in O
�
l(i)r

2
(i)


complexity. As the measurement matrix

�
M(t+1)

�
(i)

has (n(t+1))(i) columns, one round of such train-

ing process requires O
�
l(i)r

2
(i)(n(t+1))(i)


.

Different from STC and DSTC, directly solving the col-
umn space searching problem for matrix completion requires
solving the least squares minimizations (9) and (10) itera-
tively with all measurement data. Solving the two problems
involves the complexity O(((n(t))(i) +(n(t+1))(i))r2

(i)l(i)) and
O(l(i)(r(i))2((n(t))(i) + (n(t+1))(i))), respectively. Obviously,
O(((n(t))(i) + (n(t+1))(i))r2

(i)l(i)) = O(l(i)(r(i))2((n(t))(i) +
(n(t+1))(i))). Assuming the total number of iteration rounds is
INum, the total computation complexity under the direct solu-
tion is O

�
2INum× l(i)

�
r(i)

�2
��

n(t)

�
(i)

+
�
n(t+1)

�
(i)


.

In our STC and DSTC, only the matrix
�
U(t+1)

�
(i)

is
trained multiple rounds, where only new measurement data
are involved in the calculations in each round. While in the
direct solution, both

�
U(t+1)

�
(i)

and
�
W(t+1)

�
(i)

are trained
multiple rounds using all the measurement data. Therefore,
compared with the direct solution, our STC and DSTC have
much smaller computation complexity. Moreover, although
DSTC needs one more round of training process for the matrix�
U(t+1)

�
(i)

, compared with STC, our simulation results show
that DSTC can achieve better recovery performance.

VII. PERFORMANCE EVALUATIONS

We evaluate the performance of our proposed algorithm
using the public traffic trace data Abilene [46]. The met-
rics we consider include: Error Ratio, Successful Recovery
Ratio, Recovery Loss, Mean Absolute Error (MAE), Root
Mean Square Error (RMSE), and Recovery Computation
Time.

As mentioned in Section VI, traffic measurement data gen-
erally come in sequence. In the simulation, in each sequential
step, we add one more day measurement data. Then we apply
the tensor completion to the measurement data to recover the
full data. Finally, we calculate the error ratio by comparing
the recovered data with the raw data trace. In this paper, one
sequence recovery step in the simulations includes the above
three operations.

Definition 5 (Error Ratio): a metric for measuring the
recovery error of entries in the tensor after the interpolation,

which can be calculated as
√�

i,j,k=d (xijk−x̂ijk)2√�
i,j,k=d x2

ijk

. where 1 ≤
i ≤ o, 1 ≤ j ≤ t and k = d. xijk and x̂ijk denote the
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Fig. 7. One sequence step with different sampling ratio. (a) Error ratio. (b) MAE. (c) Recovery loss. (d) RMSE. (e) Successful recovery ratio. (f) Recovery
computation time.

raw data and the recovered data at (i, j, k)-th element of X ,
respectively.

Definition 6 (Successful Recovery Ratio): a metric for
measuring the successful recovery of entries in the tensor
after the interpolation, which can be calculated as:

�
i,j,k=d ρijk

o× t
where ρijk =

	
1

�
�
�
x̂ijk−xijk

xijk

�
�
� ≤ λ

0 otherwise.
(19)

where 1 ≤ i ≤ o, 1 ≤ j ≤ t and k = d. xijk and x̂ijk in
(19) denote the raw data and the recovered data at (i, j, k)-th
element of X , respectively.

In this paper, we set λ = 0.1. Note that k = d in
definition 5 and 6, that is, only the last measurement data in
the last day is counted into the performance metric calculation.

Definition 7 (Recovery Loss): is defined as Loss =��
(i,j,k)∈Ω,k=d (xi,j,k − x̂i,j,k)2 where 1 ≤ i ≤ o, 1 ≤ j ≤

t and k = d. Only entry observed (i.e., (i, j, k) ∈ Ω) is counted
in Recovery Loss.

Definition 8 (MAE): is an average of the absolute errors
after the interpolation, which can be calculated as MAE =
1
T

�

i,j,k

|xijk − x̂ijk|, where 1 ≤ i ≤ o, 1 ≤ j ≤ t and k = d.

T is the total number of data entries in the day corresponding
to k = d, that is, T = o× t.

Definition 9 (RMSE): represents the sample standard devi-
ation of the differences between recovered values and
raw values, which can be calculated as RMSE =�

1
T

�

i,j,k

(xijk − x̂ijk)2 where 1 ≤ i ≤ o, 1 ≤ j ≤ t, k = d,

and T = o× t.
Definition 10 (Recovery Computation Time): a metric for

measuring the average number of seconds of one sequence
recovery step.

All simulations are run on a Microstar workstation, which
is equipped with two Intel (R) Xeon (R) E5-2620 CPUs
(2.00GHz) (totaliy 24 Cores) and 32.00GB RAM. To measure
the recovery computation time, we insert a timer to all the
implemented approaches.

A. Comparison With Other Tensor Completion Algorithms

Besides our STC, we implement other four tensor comple-
tion algorithms.

2) CPopt [25]: CPopt addresses the problem of fitting the
CP model to incomplete data sets by solving a least-
squares (ALS) optimization problem ([25, eq. 2]) with
a gradient-based optimization approach.

1) CPwopt [24]: different from CPopt, CPwopt

(CP Weighted Optimization) addresses the problem of
fitting the CP model to incomplete data sets by solving
a weighted least squares problem ([24, eq. 2]).

3) CPals: CPals addresses the problem of fitting the CP
model to incomplete data sets by solving an alternat-
ing least-squares problem. It is implemented using the
Tensor Toolbox [54].

4) TKals: TKals addresses the problem of fitting the
Tucker model to incomplete data sets by solving an alter-
nating least-squares problem. It is implemented using the
Tensor Toolbox [54].

Among the four peer tensor completion algorithms, the first
three CPwopt, CPopt, and CPals are designed based on CP
model, the last TKals is designed based on the Tucker model.
As all the tensor completion approaches are executed itera-
tively to train the parameters needed, for a fair comparison,
we adopt the same two stop conditions: 1) The difference in
the recovery loss between two consecutive iterations is smaller
than a given threshold value, set to 10−4 in this paper; 2) The
maximum number of iterations is reached, set to 50 in this
paper. The iteration process will continue until either of the
two stop conditions is satisfied.

Fig.7 shows the performance results under different sam-
pling ratio for one sequence step. Obviously, Fig.8(a), Fig.8(b),
Fig.8(c), Fig.8(d), and Fig.8(e) show that our algorithms STC,
DSTC can achieve the highest recovery performance with the
least error ratio, MAE, recovery loss, RMSE, and the highest
successful recovery ratio. The recovery ratio is very high
even with a small sampling rate 0.3, which demonstrates the
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Fig. 8. Multiple sequence steps. (a) Error ratio. (b) MAE. (c) Recovery loss. (d) RMSE. (e) Successful recovery ratio. (f) Recovery computation time.

effectiveness of our algorithm in supporting high accuracy
and low cost traffic monitoring. This good performance
demonstrates that our STC, DSTC algorithms have the good
ability of capturing the global information in the traffic data to
recover the missing data with a high accuracy. Moreover, the
performance of DSTC is slightly better than that of STC, as it
can dynamically change the rank of orthogonal matrix and add
new column to the matrix when needed to more accurately
capture the feature of the traffic data dynamics to recover
the data.

Fig.8(f) compares the computation time under different
algorithms. All the tensor completion approaches execute
iteratively to train the parameters needed for data recovery
until either of the two stop conditions is satisfied. We observe
that CPals and TKals usually stop their iterations quickly,
much before reaching the iteration limit, thus their speeds
are fast and close to STC and DSTC. However, they have
high error ratios in data recovery as shown in Fig.8(a).
CPwopt adopts an approach similar to CPopt in training the
parameters but involves additional weight calculation, thus its
computation time is larger than CPopt. Compared with STC,
as DSTC requires one more round to train

�
U(t+1)

�
(i)

by
testing whether new measurement data will change the rank
of

�
U(t+1)

�
(i)

, its time consumption for missing data recovery
is slightly larger. This is consistent with the computation
complexity analyzed in Section VI-E.

Fig. 8 shows the recovery performance under multiple
sequential steps by fixing the sampling ratio to 50%. The
results are consistent with those in Fig.7. Among all the
algorithms implemented, our DSTC achieves the best recovery
performance with the least error ratio, MAE, recovery loss,
RMSE, and the highest successful recovery ratio. Although
different sequential steps involve different newly coming traf-
fic data, DSTC achieves more accurate data recovery than
the static algorithm STC in all the steps as DSTC has the
ability to change the rank upon needed according the dynamic
data changes. Besides having the same training phase as STC,
DSTC will add new column to the orthogonal matrix when
needed, thus the speed of STC is slightly faster than DSTC.

B. Comparison With Matrix Completion Algorithms

Among all the current traffic inferring studies, the matrix-
completion-based recovery algorithm is proven to achieve the
best performance. In this part, we further implement other five
matrix completion algorithms for the performance comparison.

1) NMF [55]: NMF performs non-negative matrix fac-
torization, where the non-negative matrix factorization
is a recently developed technique for finding part-based,
linear representations of non-negative data. Given a non-
negative matrix V, the goal of NMF is to find the non-
negative matrix factors W and H such that V = WHtr.

2) SRMF [12]: SRMF is a matrix interpolation tech-
nique which uses an alternating least squares procedure
to find the global sparse, low-rank approximation of the
traffic matrix that accounts for the spatial and temporal
properties.

3) SRSV D [12]: SRSV D is a matrix interpolation tech-
nique which uses an alternating least squares procedure
to find the sparse, low-rank approximation of the traffic
matrix.

4) SET [56]: SET is proposed for solving the consistent
matrix completion problem. The SET algorithm consists
of two parts, subspace evolution and subspace transfer-
ring.

5) LMaFit [57]: LMaFit is based on a nonlinear succes-
sive over-relaxation (SOR) method that only requires
solving a linear least squares problem per iteration.
Following the idea of the nonlinear SOR technique,
LMaFit uses a weighted average between the current
updated data and data from the previous iteration to
achieve a faster convergence.

All the seven matrix completion algorithms are applied to the
traffic matrix which is defined in SRMF [12].

Fig.9(a), Fig.9(b), Fig.9(c), Fig.9(d), Fig.9(e) shows the
error ratio, MAE, recovery loss, RMSE, and successful recov-
ery ratio under sample ratio = 50% for a sequence of
recovery step. Obviously, our DSTC achieves the best recovery
performance among all the algorithms studied.
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Fig. 9. Performance comparison with matrix completion algorithms. (a) Error ratio (sampling ratio 50%). (b) MAE (sampling ratio 50%). (c) Recovery loss
(sampling ratio 50%). (d) RMSE (sampling ratio 50%). (e) Successful recovery ratio (sampling ratio 50%). (f) Error ratio on consecutive data missing.

Moreover, among the one day measurement data in
the sequential step, we let consecutive measurements over
50 minutes all lost, and then calculate the error ratio on the
50 minutes data, as shown in Fig.9(f). The consecutive data
missing, obviously, results in the consecutive column missing
in the traffic matrix. From the literature work, we know that the
conventional matrix completion algorithms can only recover
data if there is no row or column to be completely empty. If a
row or a column is missing, matrix completion algorithms
do not have effect on these missing entries. Because we use
zero as a placeholder to replace the empty entry, the error
ratio on this kind of consecutive missing is 1 under all the
matrix completion algorithms, while the error ratios on the
consecutive missing data are only 0.37 and 0.33 under STC
and DSTC, respectively. STC and DSTC exploit the informa-
tion along three dimensions, while the matrix completion only
considers the constraints along two particular dimensions. This
is the key reason why STC and DSTC outperform the matrix
completion-based algorithms.

VIII. CONCLUSION

In this paper, we apply the emerging concept of tensor
completion to the recovery of the missing Internet traffic data.
To well capture the spatial-temporal features inherent in the
traffic data, we first analyze a large trace of real traffic data,
and our studies reveal that the traffic data have the features
of the temporal stability, the spatial correlation, and the peri-
odicity. To fully exploit theses hidden structures for the data
recovery, we model the traffic data as a traffic tensor which can
combine and utilize the multi-mode correlations. To reduce the
computation cost for tensor completion, we propose two novel
Sequential Tensor Completion algorithms STC and DSTC
to quickly recover the missing traffic data. We have done
extensive simulations to evaluate the performance of our pro-
posed algorithms, and the simulation results demonstrate that
our algorithms can achieve significantly better performance
compared with current of state tensor and matrix completion
algorithms.

Although we apply the tensor to capture the traffic volume
in this paper, our tensor modeling and the proposed sequential
tensor completion approach are useful for the representation
of other factors of the network, for instance, delay, jitter, loss,
bottleneck-bandwidth, and distance (RTT). In our future work,
we will evaluate the performance of our proposed algorithms
on other network monitoring data. Moreover, as data missing
is more severe in mobile and wireless sensor networks due
to interference, user movement, and link unreliability [58]
thus network dis-connectivity [59]–[62], in our future work,
we will extend our proposed algorithms to infer the missing
data when the information is gathered by mobile and wireless
sensor networks [63]–[66] and other systems of IOT (Internet
of things) [67]–[70].
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