
 

 

Shuttle: Facilitating Inter-Application 
Interactions for OS-level Virtualization 

Zhiyong Shan, Xin Wang, Tzi-cker Chiueh 

Abstract—OS-level virtualization generates a minimal start-up and run-time overhead on the host OS and thus suits 
applications that require both good isolation and high efficiency. However, multiple-member applications required for forming a 
system may need to occasionally communicate across this isolation barrier to cooperate with each other while they are 
separated in different VMs to isolate intrusion or fault. Such application scenarios are often critical to enterprise-class servers, 
HPC clusters and intrusion/fault-tolerant systems, etc. We make the first effort to support the inter-application interactions in an 
OS-level virtualization system without causing a significant compromise on VM isolation. We identify all interactive operations 
that impact inter-application interactions, including inter-process communications, application invocations, resource name 
transfers and application dependencies. We propose Shuttle, a novel approach for facilitating inter-application interactions 
within and across OS-level virtual machines. Our results demonstrate that Shuttle can correctly address all necessary inter-
application interactions while providing good isolation capability for all sample applications on different versions of Windows OS. 

Index Terms—OS-Level Virtual Machines, Inter-application Interactions, Cross-VM Communications, Intrusion/Fault Isolation 
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1 INTRODUCTION

S-level virtualization partitions the OS name space 
to form a number of separated Virtual Machines 
(VMs), i.e., containers. VMs on the same OS share a 

single OS kernel and the host environment, and each 
VM only preserves state changes within its local 
environment. Programs in a VM run as normal 
applications that directly use the host OS' system call 
interface and do not need to run on top of an 
intermediate hypervisor. Accordingly, such VMs have a 
minimal startup/shutdown cost, low resource 
requirement and high scalability. Thus OS-level 
virtualization is applicable for the applications that 
require both high performance and good isolation 
[23][28], including intrusion/fault-tolerance [6][28][22], 
server consolidation [19][27], high performance system 
[23][26], distributed hosting organizations like PlanetLab 
[5][23], as well as cloud computing in the future [3][23]. 

These system functions often involve a set of member 
applications. In this paper, we use the terms application 
and program interchangeably. To isolate intrusion or 
fault, the member applications are distributed into 
different VMs. On the other hand, the member 
applications occasionally require inter-application 
interactions which are essential for their execution, thus 
communications across VM barriers are inevitable. 

The challenge is how to correctly and accurately 
handle all necessary inter-application interactions while 
not significantly affecting the isolation effectiveness of 
virtualization. Inter-application interactions represent the 
operations between distinct applications, e.g., register, 
notify, request, reply, authenticate and launch. 

Depending on whether two involved applications are 
located in the same VM or the host space, inter-
application interactions can be ascribed into three basic 
categories: cross-VM, intra-VM and intra-Host. Intra-
Host interactions represent the original inter-application 
interactions in the host environment and thus do not 
depend on virtualization technology. Cross-VM 
interactions need to penetrate the VM boundaries which 
are normally forbidden by the virtualization mechanism. 
Cross-VM interactions can be further divided into two 
subcategories, VM-Host where two involved 
applications run inside a VM and in the host 
environment respectively, and VM-VM where two 
applications reside in two different VMs. 

The VM-Host interactions apply to all forms of OS-
level virtualization technologies due to their nature. As 
OS-level VMs co-located on a host share a single OS 
kernel and the host environment, in order to access the 
essential system services (e.g., authentication, 
application initialization) and resources (e.g., Windows 
registry) in the host environment, an application in a VM 
has to interact across the VM boundary with 
applications in the host environment. For example, on 
Linux VServer [13], an application running in a VM has 
to authenticate itself to processes sshd and getty, which 
are run in the host environment. Likewise, on FVM [28], 
an application in a VM needs to authenticate itself to a 
host-resident process lsass. Since the authentication 
operation violates the isolation principle, the 
virtualization mechanisms drop the request, which leads 
the application in a VM to be suspended. 

The VM-VM interactions are needed for cooperating 
applications to interact with each other to achieve certain 
goals. For example, a high performance computing 
software may distribute a group of cooperative programs 
into different VMs [9][27] in order to isolate intrusion/ 
fault/performance/function [28] or concurrently foster 
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multiple instances of the same program in a single OS. 
However, the virtualization mechanism will prevent the 
required VM-VM conversations from being carried across 
VM boundaries. Applications running in separate VMs on 
a single OS might choose to exchange data using network 
communications to avoid penetrating VM boundaries, but 
this would dramatically degrade the performance. 

The intra-VM interactions are needed when two 
involved applications stay in the same VM and thus do 
not need to penetrate VM boundaries. However, the 
improper startup sequence of the involved applications 
will cause the communications among them to fail. 
Accordingly, to prevent these failures, various types of 
OS-level virtualization platforms, e.g., Solaris Zones [20], 
Linux VServer [23] and FVM [28], invoke many 
unnecessary daemons or Windows services when 
booting and running a VM. For example, in a VM 
dedicated for running a web server, all the daemons not 
related to the web-server functions are unnecessary. This 
heavily slows down the booting procedure and increases 
the runtime overhead of a VM. As a result, it reduces the 
scalability of the OS-level virtualization technology, the 
main strength against the hardware-level virtualization 
[23][28]. Therefore, properly handling intra-VM 
interactions is necessary for improving the scalability of 
OS-level virtual machines. 

In short, cross-VM and intra-VM interactions are 
often needed no matter what OS-level virtualization 
technology is used. Without a proper treatment, they 
will affect the running of the interaction-dependent 
applications and the scalability of OS-level VMs.  

Moreover, as many interaction-dependent 
applications are important, it is necessary to enable their 
interactions efficiently. First, some of interaction-
dependent applications are fundamental to the running 
of numerous other applications, for example, RPCSS, the 
RPC binding service; PlugPlay, the plug and play service; 
NetDDE, the distributed clipboard service. Second, some 
of interaction-dependent applications are critical to 
business organizations, such as web servers, database 
servers, high performance grid applications, transaction 
processing applications and enterprise-class applications. 
When exploiting the OS-level virtualization technology 
to consolidate servers or tolerate intrusion/fault, these 
interaction-dependent applications are deployed inside 
different VMs and need to communicate with other 
applications across the VM boundary or within a VM. 

However, accurately identifying all possible inter-
application interactions is not easy, as many applications 
are complex and their actual interactions vary across a 
wide range and are undocumented. Particularly on a 
commercial OS, as the OS and applications are close-
sourced and most implementation details are kept 
confidential, identifying inter-application interactions 
poses a great challenge. 

As far as we know, there is no scheme designed to 
systematically handle inter-application interactions in 
the literature. Existing papers concerning OS-level 
virtualization mostly focus on the general architecture of 
a specific type of OS-level virtualization 

[10][20][23][24][28], or exploit OS-level virtualization to 
consolidate servers[17][20], isolate intrusions [28][29] or 
build high performance systems [23], but never give a 
deep insight on the inter-application interactions. A few 
projects investigate how to improve cross-VM 
communications for hardware-level virtualization 
[6][9][27][25]. However, the cross-VM communications 
between hardware-level VMs only involve TCP/UDP-
based network communications instead of inter-process 
communications that often occur across OS-level VMs, 
e.g., named pipe and event.  

In this paper, we first investigate the interactive 
operations that affect the inter-application interactions by 
tracing various types of potential operations. Based on the 
studies, we ascribe the interactive operations into four 
types: inter-process communications, application 
invocations, resource name transfers, and application 
dependencies. To address these issues, we design Shuttle, 
a novel approach that aims to facilitate all categories of 
inter-application interactions by intelligently handling the 
aforementioned four types of interactive operations while 
not leading to significant compromise of the isolation 
requirement of VMs. To demonstrate its effectiveness, we 
implemented Shuttle under the framework of Feather-
weight Virtual Machine (FVM) [28] on different Windows 
platforms. The evaluations demonstrate that Shuttle can 
successfully support all tested Windows applications that 
depend on inter-application interactions with little impact 
on the VM isolation.  

Shuttle is the first approach to handle inter-
application interactions for OS-level virtualization. With 
this approach enforced, multiple instances of the RPCSS, 
Dcomlaunch, SQL Server and IIS can concurrently run on 
top of a single Windows OS, which are believed almost 
impossible previously [28]. As the approach depends 
less on a specific operating system or OS-level 
virtualization technology, we believe it can also be 
generalized and applied to different types of OS or OS-
level virtualization technology. 

The paper is structured as follows. The next section 
introduces the results of our studies on inter-application 
interactions. The approaches to handling cross-VM and 
intra-VM inter-application interactions are described in 
Section 3 and 4 respectively. Section 5 presents the 
implementation of Shuttle on FVM. Section 6 evaluates 
the prototype with a group of Windows applications on 
different versions of Windows OS. Section 7 compares 
this research with other related efforts in the literature. 
Section 8 concludes the work. 

2 STUDY ON INTER-APPLICATION INTERACTIONS 
As most of the interactive applications are close-sourced, 
their internal implementation details, for example, the 
internal logic, kernel objects created, registry entries 
accessed, etc., are rarely documented and open to the 
public in the literature. In order to investigate the exact 
interactive operations, we have spent several months to 
dynamically trace and analyze their behaviors, and 
statically reverse-engineer their binaries. Concretely, we 
take three investigation methods. First, we trace the 



 

 

kernel-level and Windows API-level calls that an 
application invokes at run time in order to determine the 
set of resources an application accesses. Second, we use 
the tool ProcessExplorer[15] to find out the inter-
application communication objects an application uses 
to interact with other applications. Last, we disassemble 
the application’s binary code to identify all hard-coded 
resource names and API function calls that transfer the 
hard-coded resource names. 

We conclude that there are basically four types of 
interactive operations affecting inter-application 
interactions. Without a proper treatment of these 
operations, the interactive applications would fail or 
behave abnormally. These operations are as follows: 
 Inter-process communications carried between two 

applications through IPC (Inter-Process 
Communication) objects, which include register, 
authenticate, request, reply, notify, exchanging data, etc. 

 Application invocations where an application in the 
host starts other applications in a VM, which include 
daemons, Windows services, COM servers, etc. 

 Name transfers needed for transferring resource 
names among applications running in different VMs. 
These names are hard-coded in application binaries 
and thus may escape the renaming mechanism of OS-
level virtualization. 

 Application dependencies when the running of an 
application (the dependent application) depends on the 
running of another application (the master application) 
in the same VM. The master application should run 
prior to the dependent application. 
Table 1 summarizes our investigation results which 

associate the failures of inter-application interactions 
with the types of interactive operations. From the table, 
the former three types of operations might cause cross-
VM interactions to fail while the last type might cause 
intra-VM interactions to fail. Further explanations of 
these results are presented in Section 3 and 4. 

In order to better present the problems and our 
solutions, we perform a case study on a classical 
enterprise application in our lab using FVM [28]. We 
deploy two IIS servers and two SQL Servers in four 
distinct VMs on a single OS, as shown in Figure 1 (a). The 
two pairs of IIS and SQL Servers form two websites. Only 
with such a deployment, two instances of IIS or SQL 
Server can be separated without interfering with each 

other though they share a single OS kernel. Moreover, 
since each application is contained in a separate VM, the 
system constructed this way has the capability of 
intrusion/fault tolerance. Similar deployments also can be 
found from Solaris Zones [20], OpenVZ [17] and Fido on 
Xen [6]. An alternative deployment scheme might place 
the two pairs of IIS and SQL servers into two VMs 
respectively. However, this setup not only can not 
completely avoid carrying out inter-application 
interactions cross-VM and intra-VM but also is not able to 
provide isolation as well as the former scheme. 

Figure 1 (b) illustrates the detailed inter-application 
interactions across and within OS-level virtual machines, 
which only includes VM 1, VM 2 and the host. RPCSS is 
a fundamental Windows service on the Windows 
platform that provides RPC/COM/DCOM functions to 
other Windows services and applications, and is 
duplicated in each VM. Windows services are long-
running programs that remain active without interacting 
with users, like daemons in a UNIX-style OS. Generally, 
there are about 100 services on Windows XP and nearly 
half of them depend on RPCSS. An IIS server consists of 
five Windows services: W3SVC service for web server, 
MSFTPSVC service for FTP server, SMTPSVC service for 
SMTP server, NNTPSVC service for network news 
server, as well as IISADMIN service for the management 
of IIS. DCOM1 and DCOM2 are a pair of DCOM servers 
started by DcomLaunch, which act as main and backup 
DCOM servers respectively. In Figure 1 (b), various 
specific inter-application interactions (e.g., register, 
notify, request, reply, launch and authenticate) among 
applications are represented by lines among them, 
which include cross-VM, intra-VM and intra-host 
interactions. The interactions among the applications are 
observed as a result of our efforts in tracing the process 
and performing reverse-engineering. However, due to 

Interaction Categories 

Cross‐VM Interactive Operations 

VM‐Host  VM‐VM 

Intra‐

VM 

Intra‐

Host 

Inter‐process communications  √  √  ×  × 
Application invocations  √  ×  ×  × 
Name transfers  √  √  ×  × 
Application dependencies  ×  ×  √  × 

TABLE 1 
INTERACTIVE OPERATIONS AFFECT CERTAIN INTER-APPLICATION 

INTERACTIONS. CHECKS INDICATE THE AFFECTED INTERACTIONS.
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     Fig. 1. An illustration of inter-application interactions, running two groups of enterprise applications in different VMs on a single OS. 



 

 

these complex and hidden inter-application interactions, 
until now there is no public record showing a successful 
approach to making RPCSS or IIS run inside a VM. 

3 FACILITATING CROSS-VM INTERACTIONS 

3.1 Inter-Process Communications 
According to the isolation principle of virtualization, the 
cross-VM inter-process communications should be 
strictly blocked although some applications may require 
interactions between each other. However, exceptions 
should be given to some essential cross-VM inter-
process communications as shown in Figure 1 by solid 
lines. Hence, a carefully designed mechanism is required 
to facilitate these communications. To minimize the 
impact on VM isolation, the design should follow a 
principle: least penetration, which only allows least 
essential cross-VM communications. 

3.1.1 Analyzing Cross-VM Inter-Process Communications 
Corresponding to the Table 1, two categories of 
necessary cross-VM inter-process communications 
should not be blocked. One is the VM-Host 
communications between applications in a VM and the 
host environment, which possibly affect the VM-Host 
interactions. Such communications are often utilized by 
an application to get necessary services from core-
applications, e.g., authentication and registration. The 
core-applications are the ones that provide system critical 
services to other applications, e.g., the Service Control 
Manager (SCM) on Windows, “launchd” on Mac OS and 
the “klogd”on Linux. They are actually the extensions of 
the OS kernel and closely tied with the kernel. They can 
not be duplicated in every VM and should stay in the 
host environment in order to be available to all VMs. 
Consequently this type of cross-VM communication is 
inevitable whenever an application inside a VM requests 
a system critical service. 

The other is the VM-VM communications between 
applications in different VMs, which possibly affect the 
VM-VM interactions. In order to provide fault or 
intrusion isolation for individual applications, member 
applications belonging to the same system need to be 
placed in separate VMs [6][9][11][27][25]. Thus, the 
communications among these applications have to be 
carried across VM boundaries as exceptions to the basic 
isolation principle. For instance, storage systems (e.g., 
NetApp and EMC) may have a group of cooperative 
programs running in different VMs that need to 
communicate with each other. Similarly, a graphics 
rendering application in one VM may need to 
communicate with a display engine in another VM. Even 
routine inter-VM communications, such as file transfers 
or heartbeat messages may need to be performed 
frequently across the VM border. 

Some of the VM-VM inter-process communications 
can be replaced by network communications, for 
example, using TCP/UDP communications to substitute 
named pipes. However, this will lead to a significant 
performance penalty [27] as the communication data 

need to go through the whole network stack twice in the 
same OS kernel. Therefore, facilitating VM-VM inter-
process communications is indispensable not only for 
the successful running but also for better performance of 
cooperative programs. 

Both categories of cross-VM inter-process 
communications are achieved via accessing Inter-Process 
Communications (IPC) objects, which have various 
types in an OS. For example, IPC objects in Windows 
include primitive ones (such as mutexes, events, timers, 
semaphores, and LPC) and higher-level ones (such as 
RPC and DCOM). Moreover, most actual IPCs between 
applications are undocumented and dynamic. For the 
interaction-dependent applications that have well 
documented IPCs, one can manually give exceptions to 
permit the cross-VM communications to penetrate the 
boundaries of VMs. This is why existing OS-level 
virtualization technologies can successfully virtualize 
some interaction-dependent applications [23][28]. 
However, for the ones without documented IPCs, it is 
not feasible to manually identify all the cross-VM 
communications, especially for an ordinary user.  

3.1.2 Cross-VM Access Control Approach 
To facilitate the cross-VM communications without 
incurring a significant cost on VM isolation, an efficient 
method is to enforce access control that checks all cross-
VM communications and only allows predefined ones. To 
this end, we design a novel access control approach, 
named Cross-VM Access Control (CVAC), which differs 
from existing access control approaches. CVAC consists of 
double levels of access control, i.e., application level and 
VM level. Only when both levels of access control permit, 
a cross-VM communication can continue. The application 
level access control uses an application access graph that 
describes what cross-VM communications are allowed 
between a pair of applications. However, if an application 
A runs multiple instances in different VMs, an application 
B that tries to access the application A would not know 
which instance it should contact. Therefore, we introduce 
VM level access control to address this issue. It uses a VM 
access graph that describes which pair of VMs allows 
cross-VM communications between them. Thus, the VM 
access graph would only allow the application B to access 
the instance of application A that runs in the VM which is 
allowed by the graph to communicate with application 
B’s VM. 

The VM access graph is illustrated in Figure 2 (a). In 
the graph, two VMs are allowed to cross-VM 
communicate with each other if an edge connects them. 
All VMs can access the host, because they need to interact 
with the core applications running in the host. All other 
cross-VM accesses are denied except the ones specifically 
allowed. For example, suppose VM1 is allowed to access 
VMn, there would be an edge linking the VMs. 

The application access graph is illustrated in Figure 
2(b). In the graph, two applications are allowed to cross-
VM communicate with each other if an existing edge 
connects them and at the same time their IPC object 
matches the IPC object shown on the edge. When more 



 

 

than one IPC objects serve for a pair of applications, the 
corresponding number of edges should be drawn 
between the applications. For example, in Figure 2(b), 
APP2 and APPn have two IPC objects and thus have two 
edge connections between them. 

The cross-VM IPC objects in the application access 
graph are represented by their types and names. Our 
study on cross-VM IPC objects shows that most types of 
cross-VM IPC objects (e.g., named pipe, shared memory, 
mail slot, mutex, semaphore and socket) act at the server 
side of inter-application communications. Hence, these 
IPC objects must keep their names static to help the clients 
to locate them despite that the Id numbers of the objects 
are dynamic. For example, SQL Server prepares a pipe 
with static name “\Device\NamedPipe\sql\query” to 
wait for the connection request from local clients. In 
special situations, the name of an IPC object may partially 
change, i.e., with their name strings containing a number 
that changes over time. To address this issue, we can use a 
wildcard character * to stand for the variable number in 
the name string. In addition, a few special types of IPC 
objects might change names frequently, e.g., event. We 
can use the IPC type and the name of the receiver 
application to represent the IPC object. 

To formally describe the decision procedure of the 
Cross-VM Access Control approach, we record the VM 
access graph and application access graph as ),( vv EVG   
and ),( aa EAG   respectively. V is the set of VMs. A is the 
set of applications. vE  is the set of edges connecting VMs. 
Each edge in vE  is represented as ),( 21 vvev  , where 

21,vv  are the two connected VMs. aE  is the set of edges 
connecting applications. Each edge in aE  is represented 
as ),,( 21 oaaea  , where 21,aa  are the two connected 
applications and o  is the cross-VM IPC object. We record 
an IPC object as ),,,,( vastno  , where no. and to. represent 
the name and the type of the IPC object. trueso . means 
that the name of the object is static or contains a dynamic 
number, while falseso . means that the name of the 
object is totally dynamic. ao.  represents the application 
creating the IPC object. vo.  represents the VM adopting 
the IPC object. An application is represented as )(na  , 
where na. is the name of the application. Accordingly, the 
logic to handle cross-VM communications can be formally 
described as follows: 
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When an application a  in a VM v requests to access 
an IPC object ro of application ra , Shuttle first 
determines whether the required communication is 
intra-VM by checking whether the VM of the IPC object 

ro is actually the current VM. Then, Shuttle queries the 
VM access graph and the application access graph. If 
both graphs have required edges, the cross-VM 
communication is allowed. Otherwise, it is denied.  

),.( vvoInVMGraphEdgeExists r  means:  
vovevveEGe rvvvvv ..,.,. 21   

),,( rr oaaionGraphInApplicatEdgeExists  means: 
raraaaaa ooeaoaeaaeEGe  .,..,.,. 21  

ra ooe . means: 
 

 
The operator  represents that the two involved 

names are two instances of the same IPC object. For 
example, according to the renaming rule in many OS 
level virtualization technologies [20][28], a port named p 
will be renamed in VM1 as p-VM1 while in VM2 as p-
VM2, thus we say p-VM1  p-VM2.  

3.1.3 Generating Access Graphs 
The challenge of implementing the technique is how to 
generate the application access graph. Given an 
application scenario, a natural scheme might be 
performing a training procedure that monitors all cross-
VM communications and accordingly generates the 
application access graph. However, this requires training 
for every specific application scenario, which is not 
feasible. Hence, we propose an application-based access-
graph generation method with three steps: (1) 
discovering the cross-VM IPC objects created by every 
type of applications; (2) describing the cross-VM 
dependencies among applications; and (3) generating 
the application access graph. 

For the first step, as manually discovering the cross-
VM IPC objects is almost impossible, we develop a tool 
to complete this task automatically by monitoring and 
recording cross-VM IPCs. For every type of application, 
we only need to test it once and can use the results in 
various application scenarios with different 
deployments. To prevent potential security issues (e.g., 
the occurrence of some unexpected cross-VM 
communications), we run the application only in a 
secure environment and right after the system and 
applications are installed. Moreover, to thoroughly 
discover all cross-VM IPC objects created by the tested 
application, we tried various possible running 
conditions during the test. When all possible conditions 
were tested and there were no new cross-VM IPC objects 
appear, we stopped the test for the application. 

For the second step, a cross-VM application 
dependency between two applications represents that the 
dependent application has to access the cross-VM IPC 
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Fig. 2. The access graphs for Cross-Vm Access Control.  

IPC6 



 

 

objects created by the master application in order to cross-
VM communicate with the master application. A pair of 
dependent and master applications are actually the client 
application and server application of an inter-application 
communication respectively. According to our study 
mentioned previously, most cross-VM IPC objects are 
created by the server side applications of inter-application 
communications and wait for connection requests from 
client side applications. 

The cross-VM dependencies between core-
applications in the host and the applications in VMs are 
considered as default. Only the cross-VM dependencies 
between the cooperative applications running in 
different VMs require configuration. For example, if 
running a web server and a database server as a pair in 
two separate VMs on a single host, the administrator can 
configure a cross-VM dependency between the web 
server and database server. 

For the last step, the application access graph is 
generated by synthesizing the results of the former two 
steps. Suppose }{aA   is the set of applications on the 
host, which form the vertexes in the application access 
graph; Oa.  is the set of cross-VM IPC objects created by 
an application a ; },{  md aaD  is the set of cross-VM 
application dependencies, each of which consists of a 
pair of applications, i.e., a dependent application da  and 
a master application ma . Accordingly, the edges in the 
application access graph can be computed as follows: 

In the VM access graph, an edge represents a 
cooperation between two corresponding VMs. More 
specifically, an application running in one VM will initiate 
a communication with the application running in the 
other VM. Edges in the VM access graph are generated by 
the following two rules: First, when cooperating 
applications are deployed into different VMs, these VMs 
should have edges among them. For example, in Figure 1, 
as the IIS web servers and the SQL database servers are 
deployed in four VMs separately, VM 1 should connect to 
VM 2 and VM 3 should connect to VM 4 according to the 
existing cooperations. Second, the edges between the host 
and any VM are considered as default since applications 
in any VM require the services provided by the core-
applications run in the host environment. 

A question on our cross-VM communications 
technique is that the isolation offered by an OS-level VM 
might be compromised. There is actually a trade off 
between isolation and interaction. That is, virtual 
machines require isolation while interactive applications 
require cooperating with each other across VM 
boundaries. Hence, our technology follows the principle: 
least penetration, by only permitting the least necessary 
cross-VM communications. As presented above, this 
principle is followed by only allowing the specific cross-
VM communications predefined in the application access 
graph and VM access graph. This is in accordance with 
the basic principle of security protection: least privilege, 

which requires that every program of the system should 
operate using the least set of privileges necessary to 
complete the job [21]. In addition, cross-VM network 
communications are not restricted by CVAC because they 
are directly allowed by the virtualization layer. 

3.2 Application Invocations 
As shown in Table 1, cross-VM application invocations 
may cause some application failures. More specifically, 
some applications need to be cross-VM invocated by 
core-processes in the host environment, but the OS-level 
virtualization mechanism can not properly handle all of 
the cross-VM invocations, and thus such applications fail 
to be started inside VMs. Cross-VM invocations are 
inevitable as the core-applications responsible for 
launching such applications can not be virtualized, i.e., 
be duplicated in each VM. For example, all Windows 
services are started by SCM while SCM has to stay in the 
host as it is shared by all VMs and tightly related with 
the kernel. Linux, FreeBSD and Mac also have core-
applications similar to SCM on Windows, e.g., init, getty 
and launchd, which are responsible for launching many 
daemons. Having tight relations with the kernel and 
providing shared services to many other applications, 
these core-applications are not allowed by the kernel to 
be duplicated in each VM. Hence, invocating 
applications cross-VM is also an issue for the OS-level 
VMs built on Linux, FreeBSD and Mac, e.g., Jails [10] 
and Linux VServer [23]. 

To handle cross-VM invocations, one can modify the 
application configuration database (e.g., Windows 
registry) or files to logically add a new instance of the 
application to be performed in a VM. Every time the core-
application receives a request from a VM, it will fork a 
new process in the host, and then move the new process 
into the VM. However, as core-applications are not aware 
of the OS-level virtualization, it is difficult to decide which 
VM the new process should be moved into after the new 
process is generated. One can add extra information into 
the application configuration database to denote the VM 
that is requesting the new process. However, when 
multiple VMs simultaneously request to start the same 
application, we are still unable to correctly distribute 
multiple new processes into corresponding VMs. 

To address this issue, we devise a novel mechanism 
that is illustrated in Figure 2. First, we prepare a distinct 
binary file for each application instance which is located 
in a distinct VM space, create a configuration entry 
containing the binary file path for each instance in the 
configuration database/file, and record the binary file 
path and the VM Id into the mapping table. Second, the 
core-application in the host environment starts a new 
process according to the corresponding configuration 
entry after receiving a startup request from a VM. Third, 
we intercept a new process and decide which VM the 
process should be placed into. The decision is made by 
searching the process’ image file path in the mapping 
table so as to get the correct VM Id. Finally, we move the 
process from the host to the correct VM. 

When starting an application from a VM the first time 
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in response to a user request, Shuttle automatically 
prepares the binaries, registry entries and mapping table 
entry of the application. Specifically, when a user 
requests starting an application from a VM, Shuttle 
intercepts the request and checks whether the binaries 
and entries for the application running in the VM are 
prepared. If not, Shuttle prepares them and then 
forwards the request to the core application in the host 
to perform the start operation. 

For example, an application CiSvc for indexing files 
has its image file at C:\WINNT\system32\cisvc.exe. To 
achieve cross-VM startup, we copy the file to the path 
C:\VMs\VM-Z\C\WINNT\system32\cisvc.exe that is 
within the space of VM Z, insert the path into a registry 
entry used to store the image path of an application to be 
cross-VM started, and record the path and VM Id Z into 
the mapping table. When starting a process of CiSvc, we 
determine the VM that the new process should belong to 
by searching the process’ image path in the mapping 
table and getting VM Id Z, and then move the process 
into VM Z. 

A special case for cross-VM invocation is that a few 
applications are in the form of DLL (Dynamic Link 
Library). A DLL-based application runs as a thread inside 
a host process instead of an independent process as 
normal applications do. For example, the DcomLaunch 
service is a DLL-based application running as a thread 
inside a generic Windows host process called svchost. 
However, our mechanism still can handle this special type 
of applications. That is, for a DLL-based application, we 
record the host process’ image file path in the mapping 
table to recognize VM Id rather than the application’s DLL 
file path, as the thread of the application and its host 
process always live together within the same VM. 
However, as multiple host processes with the same image 
file often foster different DLL-based applications, it is 
difficult to differentiate these applications’ VM Ids based 
only on the image file path of the host process. We found 
that, to launch a DLL-based application, the host process 
has to use an exclusive parameter to indicate the running 
of the application. Accordingly, we attach the parameter at 
the end of the host process’ image file path in the mapping 
table in order to recognize the application. Thus, we can 
determine the VM Id by searching both the new process’ 
parameter and image file path in the mapping table, in 
order to place the new process into the correct VM. 

For example, the DLL-based application DcomLaunch 
runs inside a svchost process with a parameter “-k 
dcomlaunch”. To achieve cross-VM startup, we record not 

only the host process’ image file path and VM Id but also 
the parameter into the mapping table. When starting a 
svchost process, we first obtain the Id of the VM that the 
new process should belong to by searching the process’ 
image path and parameter in the mapping table, and then 
move the process into the corresponding VM. 

3.3 Resource Name Transfers 
When an application in a VM performs a cross-VM 
communication, it might need to transfer resource 
names (e.g., the application’s name) to the receiver 
application in another VM or in the host environment. In 
some situations, such names are hard-coded and 
originated from the application’s binary without being 
renamed according to the rules that OS-level 
virtualizations often employ [20][28]. When multiple 
instances of the same application running in different 
VMs simultaneously send a hard-coded name to the 
same receiver application, unexpected conflicts or errors 
will cause the instances to fail. 

For example, the RPCSS service on Windows is such 
an application with the hard-coded application name 
(i.e., “RPCSS”). In its binary, two hard-coded RPCSS 
service name strings are used as input arguments by the 
service management function OpenServiceW(). When the 
RPCSS is required to start in VM Z, it calls 
OpenServiceW() to send a request to the SCM process 
running in the host environment, using the hard-coded 
RPCSS name as a parameter. OpenServiceW() in turn 
communicates across VM boundaries with the SCM 
through a named pipe NtControlPipe. The SCM then 
checks whether the requested service name is valid and 
without conflict. If another instance of RPCSS is running 
in the host environment or in another VM, SCM will 
refuse the open service request from VM Z since the 
hard-coded RPCSS name is already registered in SCM. 
As a result, the RPCSS process in the VM Z will fail.  

The basic reason is that, the original developers did 
not anticipate that a program may be replicated with 
multiple application names. They simply hard-coded a 
fixed application name in the program codes and used it 
as an argument in subsequent calls to Win32 API 
functions, which send the name across VM boundary 
through an IPC channel.  

On further investigation, we find hard-coded 
resource names in binary files on other OS platforms, 
e.g., Linux and FreeBSD. As OS-level virtualization 
technologies often rely on resource renaming to separate 
VM spaces [20][28], this issue is not exclusive on 
Windows OS or FVM. However, existing OS-level 
virtualization technologies are not aware of this issue, let 
alone provide any solution. 

A possible solution to this issue is to intercept the 
related API functions and change the parameters that 
are originated from hard-coded names following the 
virtualization rules. However, one can not intercept all 
the related API functions which use hard-coded names. 
If an application in a VM invokes a function that uses a 
hard-coded name but is not intercepted, the solution will 
not be able to rename the parameters.  

Path 1  VM 1 
Path 2  VM 2 
Path 3  VM 3 

…… 

Instance 1(binary file path 1)

VM 1 VM 2 VM 3 

Host Environment 

Core-Application 

ConfigurationsMapping Table 

Instance 1 Instance 2 Instance 3 

Binary 
file 2 

Binary 
file 1 

Binary 
file 3

Instance 2(binary file path 2)
Instance 3(binary file path 3)

Fig. 2. The mechanism for invocating applications cross-VM. It 
leverages a mapping table to help distribute multiple instances of 
the same application into multiple VMs.  



 

 

A better solution is to intercept only IPC related 
system calls that have a limited number in an OS. Once 
capturing a resource name in its original form in an 
inter-process communication, Shuttle changes it 
following the renaming rules, e.g., appending a VM Id to 
the name. However, filtering the contents of the inter-
process communications to find the names might 
significantly slow down the system as the 
communications are often frequent and contain a fair 
amount of content. Fortunately, Shuttle can differentiate 
cross-VM from intra-VM inter-process communications 
by checking whether the IPC object is in the application 
access graph. Thus, we can focus on the cross-VM inter-
process communications. As they represent a very small 
fraction of the entire inter-process communications in a 
system, monitoring cross-VM inter-process 
communications only imposes little overhead on the 
system. Moreover, transferring hard-coded name across 
VM boundaries can be only pursued through IPC objects. 
Therefore, the monitoring of IPC in Shuttle is general 
and can be extended to apply in other type of OS.  

In the previous example, Shuttle monitors the pipe 
NtControlPipe and changes the application name string 
that the RPCSS writes into the pipe. Then SCM will 
permit the open service request with the service name 
containing the VM Id, as the changed name will no 
longer conflict with those used in other RPCSS instances 
running in the host environment or other VMs. 

4 FACILITATING INTRA-VM INTERACTIONS 
Although intra-VM communications between 
applications are permitted by OS-level virtualization 
technology, incorrect startup sequence of the 
applications would cause an intra-VM communication to 
fail. This is due to the dependencies among applications 
in the same VM as shown in the Table 1. In other words, 
as some applications (say dependent applications) depend 
on the running of other applications (say master 
applications) in the same VM, the master applications 

should be started prior to the dependent ones. 
This seems to be a standard OS design issue i.e., 

arranging for the startup scripts to start applications in 
the right order to satisfy their dependencies. However, 
to achieve VM scalability and thus increase the number 
of VMs that can be activated concurrently on a single OS, 
OS-level virtualization has an extra high requirement on 
resolving this issue compared to that of a standard OS. 
That is, the solution of this issue should help to speed up 
the booting procedure or reduce system resource 
occupation of a VM to the minimum degree.  

To avoid a possible application failure resulted from 
an intra-VM dependency, existing OS-level 
virtualization technologies [20][23][28] start many 
system applications that often serve as master 
applications when booting a VM through manual 
configuration, e.g., Linux daemons and Windows 
services. These applications then wait for the intra-VM 
communications initiated by other applications. This 
will significantly slow down the booting procedure of 
the VM and occupy extra system resources, e.g., CPU 

Algorithm 1. Start-on-demand
 
INPUT: application A to be started 
 
 1: FOR each one-to-one edge drawn from the vertex of application A in 

the dependency graph 
 2:  IF(the master application of the edge does not start) 
 3:   Start the master application; 
 4:  ELSE 
 5:  Increase the reference count of the master 

application; 
 6:  END 
 7:  END 

8: FOR each one-to-group edge drawn from the vertex of application A in 
the dependency graph 

 9:  IF(all applications in the master application group of the edge 
does not start) 

10:  Start the most recently stopped master application
in the group; 

11:  ELSE 
12:  Increase the reference count of all started master 

applications in the group; 
13:  END 
14:  END 
 
 
Algorithm 2. Stop-on-idle 
 
INPUT: application A to be stopped 
 
 1: FOR each one-to-one edge drawn from the vertex of application A in 

the dependency graph 
 2:  IF(the master application of the edge is running) 
 3:  Decrease the reference count of the master 

application; 
 4: IF(the reference count of the master application is 

zero and the application does not need to always 
keep active) 

 5:   Stop the master application; 
 6:   END 
 7:   END 
 8: END 
 9: FOR each one-to-group edge drawn from the vertex of application A in 

the dependency graph 
10:  FOR each running application in the master application group

of the edge 
11:  Decrease the reference count of the master 

application; 
12: IF(the reference count of the master application is 

zero and the application does not need to always 
keep active) 

13:   Stop the master application; 
14:   END 
15:   END 
16: END 

RPCSSDcomLaunch

IISADMIN

W3SVC MSFTPSMTP NNTP

RPCSSDcomLaunch

SQL Server

(a) In-VM Dependency Graph of VM 1 and 3 in Figure 1

(b) In-VM Dependency Graph of VM 2 and 4 in Figure 1

NetBIOSGroupRPCSS

RemoteAccess

(c) In-VM Dependency Graph having a one-to-group edge

One-to-one edge One-to-group edge

Fig. 3. Examples of intra-VM dependency graph. 



 

 

time and memory space. On the other hand, the system 
applications not being manually configured to start at 
the time of booting VM might later be required by some 
dependent applications, which thus causes unexpected 
failures of the dependent applications. 

To address these issues, we propose a technique that 
starts master applications only on demand and stop 
master applications upon system idle, so that the master 
applications no longer slow down the VM booting 
procedure and unnecessarily occupy system resources at 
run time, as well as cause the failure of the dependent 
applications. This will improve the performance and 
scalability of OS-level virtualization technology. 

As a core part, the technique uses an intra-VM 
dependency graph, which consists of a set of vertices and 
a set of directed edges connecting the vertices. A vertex 
represents an application. An edge between two vertices 
represents a dependency between a dependent 
application and a master application. The edge is drawn 
from the dependent application to the master application. 
There are two types of edges: one-to-one and one-to-
group. A one-to-one edge represents that the running of 
an application depends on the running of another 
individual application. A one-to-group edge represents 
that the running of an application depends on the running 
of any one of a corresponding group of applications. As 
an example, Figure 3 (a), (b) and (c) depict three example 
intra-VM dependency graphs.  

Based on the intra-VM dependency graphs, the start-
on-demand and stop-on-idle policies can be specified as 
Algorithm 1 and 2 respectively. The start-on-demand 
policy starts a master application and increases it’s 
reference count at the time a corresponding dependent 
application starts. The stop-on-idle policy decreases the 
reference count of a master application when a 
corresponding dependent application stops. Once the 
last dependent application of a master application stops, 
the policy stops the master application if it does not need 
to always remain active. 

The intra-VM dependency graph can be generated 
from application configuration files or database. For 

example, the registry entries DependOnService and 
DependOnGroup on Windows describe the dependencies 
between services and thus can be used to generate one-
to-one edges and one-to-group edges respectively. To 
automate the graph creation procedure, we develop a 
program to discover intra-VM dependencies among 
related applications by scanning the related entries in 
the Windows registry. 

With these two policies enforced, an OS-level virtual 
machine does not need to start system applications at the 
booting time but only upon requests. Meanwhile, a VM 
does not need to foster the idle system applications. 
Accordingly, the overhead of booting and running an 
OS-level virtual machine can be significantly reduced, 
and the potential application failures incurred by the 
intra-VM dependencies can be avoided.  

5 SHUTTLE PROTOTYPE 
We have implemented Shuttle on FVM [28][22] to 
facilitate inter-application interactions within a VM or 
across VMs. Figure 4 shows the Shuttle architecture. All 
inter-application interactions, cross- and intra-VM, are 
captured by intercepting system calls in the kernel and 
Win32 APIs in Windows system libraries. Shuttle mainly 
intercepts system calls related to IPC, file, registry and 
process as they are often invoked for inter-application 
interactions. Some inter-application interactions that 
involve a few IPCs (e.g., message) and services can not 
be identified by intercepting system calls, we thus 
intercept the corresponding Win32 APIs. 

To intercept the system calls, we modify the system 
call entry point in the System Service Dispatch Table (SSDT) 
within the kernel. To intercept the Win32 APIs, we 
modify the library function entry point in the Import 
Address Table (IAT) of the application process. Shuttle 
adds and changes about 10k lines of code on FVM at 
both application level and kernel level. 

The intercepted interaction requests are posted to 
four kernel modules to make decisions based on five 
types of information, which are presented as follows. 

The Cross-VM Communication Module handles 

Fig. 4. Shuttle architecture consists of four modules and five types of information in the kernel, as well as a management tool at the 
application level. The four modules handle the four types of interactive operations respectively based on the five types of information.
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cross-VM inter-process communications based on the 
VM access graph and application access graph. The 
Cross-VM Name Module handles name transfers across 
VMs. It checks cross-VM IPCs to rename the hard-coded 
resource names derived from applications’ binaries. The 
Cross-VM Invocation Module watches the processes that 
are cross-VM started and moves them into the 
corresponding VMs. Based on the intra-VM dependency 
graph, the Intra-VM Dependency Module suspends the 
processes to be started and starts their master 
applications first. It also monitors the processes to be 
stopped and requests to stop the master applications. 
For example, to stop a Windows service, Shuttle calls 
ControlServiceEx() with a control code SERVICE_ 
CONTROL_STOP to request SCM to stop the service. 

The five types of information used by the modules are 
VM access graph, application access graph, intra-VM 
dependency graph, mapping table and configuration 
database (i.e., Windows registry). We have four key data 
structures to represent the former four types of 
information. The application access graph is generated by 
the Cross-VM Communication Module and management 
tool based on the cross-VM IPC objects of each type of 
application, and cross-VM application dependencies 
using the method presented in Section 3.1. The VM access 
graph is generated by the management tool. The mapping 
table is automatically prepared by the Cross-VM 
Invocation Module when starting an application in a VM 
for the first time. The intra-VM dependency graph is 
generated by the Intra-VM Dependency Module and 
management tool by scanning certain registry entries, e.g., 
DependOnService and DependOnGroup. 

Shuttle was implemented in two different versions of 
Windows OS, i.e., Windows 2000 and Windows XP, as 
FVM was implemented in these two versions. We 
believe with minor changes Shuttle also can be 
implemented in a newer version of Windows, e.g., Vista, 
because the architecture of Shuttle does not contain 
technical details about specific version of Windows OS. 

6 EVALUATION 
In this section, we present details on the experimental 
evaluations of our Shuttle prototype which consists of 
three parts. First, we investigate the effectiveness of 
Shuttle approach using a number of interaction-
dependent applications and an enterprise application as 
the case to study. Second, we test whether Shuttle will 
cause a significant degradation of the isolation capability 
of an OS-level virtualization system. Third, we evaluate 
the performance overhead of our Shuttle prototype. The 
test-bed used in the evaluation consists of two machines. 
Machine A contains a Pentium-4 2.8GHz CPU with 1GB 
memory running both Windows 2K and XP and 
machine B contains an Intel Core 2 Duo 2GHz CPU with 
2GB memory running both Windows 2K and XP. We 
installed FVM and Shuttle on both machines. 

6.1 Effectiveness 
The objective of the Shuttle approach is to facilitate inter-
application interactions cross- and intra-VM so that the 

applications depending on these interactions can 
perform inside VMs without failures. To demonstrate 
the effectiveness of the Shuttle approach, we have run 22 
interaction-dependent applications in the Shuttle 
prototype. Many of the sample applications have failed 
to perform inside a VM without the support of Shuttle so 
far, e.g., RPCSS, IIS, SQL Server, Ntsvcs, AutoCAD, 
Adobe installation and MS Office assistant. To 
sufficiently test all potential interferences among 
separate instances of the same application, each sample 
application at least runs three instances simultaneously 
on a single host. One instance runs in the host 
environment and the other two run in two different VMs 
respectively. Table 2 shows the evaluation results. Each 
row presents an application and the interactive 
operations appeared when running the application 
inside a VM. With these interactive operations resolved 
by Shuttle, all samples tested can successfully run three 
instances simultaneously on a single host. 

Moreover, the sample applications running in VMs 
behaved correctly, which was verified as follows. RPCSS, 
Dcomlaunch and Ntsvcs were verified by the successful 
running of many other tested samples that depend on 
these three applications. IIS, Apache, Mysql and SQL 
Server were verified by building and operating websites. 
Tlntsvr was verified by supporting a telnet site. The 
installation programs were verified by the successful 
messages appeared at the end of installation procedures. 
StraceNT, Regcmd, CiSvc and ProcessMonitor were 
verified by checking whether they can work properly. 
The remaining samples were verified by opening and 
editing corresponding type of files. 

As a case study, we further set up an enterprise 
application scenario that runs two pairs of web server 
and database server in four VMs respectively on a single 
Windows XP OS, as presented in Section 2. The 
applications worked properly and quickly. In the VMs, 
we performed various operations including browsing 
web pages, submitting web forms filled, downloading 
and uploading files. To handle some operations, the web 
servers cross-VM accessed the backend database server 
deployed in another VM. 

Therefore, Shuttle can successfully support all four 
types of interactive operations summarized in Table 1, 
which in turn supports all necessary cross-VM interactions. 

6.2 Isolation 
In order to evaluate the impact on the isolation 
capability of FVM caused by Shuttle, we prepared 19 
pairs of small programs to test all possible forms of 
cross- and intra-VM operations. Each pair of programs is 
responsible for testing one type of Windows OS object, 
which consists of a client and a server. The testing 
results are shown in Table 3. The Intra-VM column 
indicates the results of the accesses from a client to a 
server both of which are placed within the same VM. All 
Intra-VM accesses are permitted. The VM-VM and VM-
Host columns indicate the access results from a VM to 
another VM and from a VM to the host, which mostly 
are refused. In other words, cross-VM operations are 



 

 

correctly blocked and thus the VM isolation is preserved. 
There are two exceptions in the table. One is at the 

rows for socket, which allows connect and send 
operations to cross VM boundary, because network 
communications should be permitted. The other is at the 
rows for file, registry and device, which allows read 
operations to be carried from a VM to the host. This is 
the result of the copy-on-write policy of FVM which 
aims to avoid duplicating a huge volume of OS objects 
from the host to each VM environment. However, this 
should not affect the isolation since any write result is 
saved separately within the corresponding VM. In 
addition, for many types of objects, e.g., event, we test 
open operation instead of read and write, because read 
and write operations need object handles that are 
obtained by open operations. 

We also tested 30 more individual applications. Every 
application can smoothly run three instances 
simultaneously in two VMs and the host environment 
separately. The applications are as follows: Google 
Chrome, Windows command prompt, Internet Explorer, 
Microsoft Clip Organizer, MS Outlook Express, MS 
Messenger, mIRC, Visual C++, Firefox, Adobe Reader, 
Bitcomet, Foxmail, Windows Media Player, Putty SSH 
client, WinRAR, Skype, Windows FTP client, Beyond 
Compare, Source Insight, Calculator, Utility Manager, 
Notepad, Minesweeper, Hearts, WebBench Client, 
Winamp, Internet Backgammon, Diffutils Installation, 
Registry Commander, fvmsetup. 

Moreover, our former test in Section 6.1 also shows 
that Shuttle can provide enough isolation even when 
facilitating cross-VM interactions, as multiple instances 

of the same application can simultaneously perform 
inside different VMs and the host. 

In short, the three serials of testing results above show 
that, Shuttle can successfully offer isolation functionality 
while providing necessary exceptions for essential cross-
VM interactions. The major reason lies in our principle 
of least penetration. That is, we only allow the cross-VM 
communications with specific IPC object names between 
predefined applications run in predefined VMs. 
Therefore, the chance of compromising the isolation of a 
VM is reduced to the minimum level. 

6.3 Performance 
In this section, we show the impact of Shuttle on the 
performance of virtualized applications and virtual 
machines. As the performance overhead of Shuttle results 
mainly from executing additional instructions when 
intercepting system calls and API functions, we measure 
specifically the interception overhead of the 
corresponding system calls and API functions. First we 
disable the FVM layer, run a group of applications 
natively in the host environment, and count the average 
number of CPU cycles spent in each system call and API 
function with the rtdsc instruction. Then, we enable the 
FVM layer without Shuttle, run the same applications in a 
VM and take the same measurements. Finally, we enable 
the FVM layer with Shuttle, run the same applications and 
take the same measurements. Each of the reported 
numbers shown in Table 4 is an average of the results of 
100 runs on machine A running Windows 2K. 

Table 4 shows the interception overheads in terms of 
CPU cycles of a set of intercepted system calls and 
Win32 API functions, including four file-related system 
calls, three IPC-related system calls and five service 
related API functions. The new FVM with Shuttle 
enforced takes up to 31% more CPU cycles than the 
native configuration for file-related system calls, up to 
132% for IPC-related system calls and 1.8% for service 
related API functions. Although the per-system call 
overhead seems to be significant for IPC-related system 
calls, the end-to-end impact on the overall system 
performance is much smaller, because IPC-related 
system calls account for lower than 0.2% of all invoked 
system calls in our test applications. Moreover, 
compared with old FVM without Shuttle, the current 
implementation of the proposed Shuttle approach adds 
less than 14.2% extra CPU cycles for file-related system 
calls and less than 10.7% for IPC-related system calls. For 
most service related API functions, the new FVM is 
actually as fast as the old one or even slightly faster, 
because service names used in API functions do not 
need to be renamed when Shuttle is in place. From these 
results, we can conclude that the performance cost of 
Shuttle is quite acceptable. 

To verify the effectiveness of the start-on-demand and 
stop-on-idle policies presented in Section 4, we performed 
a test to calculate the startup and stop time of VMs with 
and without the enforcement of the policies. Every tested 
VM contains the instances of three Windows services: 
RPCSS, DcomLaunch and Tlntsvr, as well as other 
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RPCSS on Windows 2000  √  √  √ 

IIS on Windows 2000  √  √  √  √

RPCSS on Windows XP  √  √  √  √

Dcomlaunch on Windows XP  √  √  √   

IIS on Windows XP  √  √  √  √

Mysql on Windows XP  √  √  √  √

Apache on Windows XP  √    √   

Tlntsvr on Windows XP  √    √  √

CiSvc on Windows XP  √    √  √

ImapiService on Windows XP  √  √  √  √

SQL Server on Windows XP  √  √  √  √

Ntsvcs on Windows XP  √  √  √  √

MS Word on Windows XP        √

MS PowerPoint on Windows XP        √

MS Excel on Windows XP        √

MS Office Assistant on XP        √

AutoCAD on Windows XP  √      √

Adobe installation on Windows XP  √      √

MS Office 2003 installation on XP  √      √

Regcmd installation on XP  √      √

StraceNT on Windows XP        √

ProcessMonitor on Windows XP        √

TABLE 2 
TESTING RESULTS OF RUNNING INTERACTION-DEPENDENT APPLICATIONS 

IN VMS WITH THE SUPPORT OF SHUTTLE. AFTER ADDRESSING THE 

INTERACTIVE OPERATIONS MARKED, ALL THE APPLICATIONS CAN 

PERFORM INSIDE VMS AND COOPERATE ACROSS VMS CORRECTLY. 



 

 

applications that depend on the services. In the VMs 
without the policies, these services should be started at 
the VM booting time in order to prevent the application 
failures caused by intra-VM dependencies. As shown in 
Figure 5, the booting up speed of VMs with the start-on-
demand policy are 8~14 times faster than that of the VMs 
without the policy. Meanwhile, as shown in Figure 6, the 
stopping time of VMs with the stop-on-idle policy is 5~7 
times faster than that of the VMs without the policy. This 
implies that the three services are active in the VMs 
without the stop-on-idle policy when stopping the VMs, 
and hence such VMs occupy more system resources than 
the VMs with the policy. Moreover, along with the 
increasing number of the concurrent VMs, the 
startup/stop times of the VMs with the policies increase 
slightly while the startup/stop times of the VMs without 
the policies increase significantly. This demonstrates that 
the VMs enforced with the start-on-demand and stop-on-
idle policies have better scalability than those not enforced 
with the policies. 

7 RELATED WORK 
As far as we know, there is no such a project that can 
successfully handle all types of inter-application 
interactions across and within OS-level VMs in the 
literature. There are three categories of projects related to 
our work.  

The first category is OS-level virtualization projects 
that include FreeBSD Jail [10], Linux-VServer [23], Solaris 
Zones [20], Open VZ [24], FVM[28], Zap [16], PDS [1] and 
Cells [2] etc. These projects successfully partition a single 
OS environment into multiple VMs. However, very 
limited efforts have been made on application interactions 
cross-VM and intra-VM, although they are required by 
many cooperative applications. FVM [28] hard-codes a 
few IPC object names as exceptions in its virtualization 
layer, so that it can partially support the cross-VM 
communications between applications in a VM and in the 
host environment. However, it can not flexibly support 
the types of cross-VM communications that are not hard-

Objects  Operations  VM‐VM  VM‐Host  Intra‐VM  Objects  Operations VM‐VM  VM‐Host  Intra‐VM

Read  × √  √ Create ×  ×  √
Write  × ×  √ Open ×  ×  √

File/ 

Directory 
Create  × ×  √

Service 

Start ×  ×  √
FileMapping  Open  × ×  √ Window Find ×  ×  √
Data Copy  Send  × ×  √ Mutant Open ×  ×  √

Read  × √  √ Create ×  ×  √
Write  × ×  √

Semaphore 
Open ×  ×  √Registry 

Create  × ×  √ Read ×  ×  √
RPC  Send  × ×  √

Named Pipe 
Write ×  ×  √

Read  × √  √ Get Data ×  ×  √
Write  × ×  √

Clipboard 
Set Data ×  ×  √Device 

Create  × ×  √ Bind ×  ×  √
Process  Open  × ×  √ Connect √  √  √
Mailslot  Open  × ×  √

Socket 

Send √  √  √
Event  Open  × ×  √ Message Send ×  ×  √
COM  Request  × ×  √ Connect ×  ×  √
Timer  Open  × ×  √

Port 
Request ×  ×  √

System calls and Win32 API functions Native 
(CPU Cycles) 

FVM 
(CPU Cycles) 

Shuttle 
(CPU Cycles) 

Overhead 
(%) 

NtCreateFile  334,492  401,931  (20%)  403,413  (21%)  0.4% 

NtOpenFile  167,620  216,895  (29%)  218,544  (30%)  0.8% 

NtCreateNamedPipeFile  183,574  223,960  (21%)  240,691  (31%)  7.5% 

File 

NtCreateMailslotFile  40,790  42,015    (3%)  48,002  (18%)  14.2% 

NtOpenSemaphore  30,234  64,286  (113%)  70,047  (132%)  9% 

NtCreatePort  37,241  72,309   (94%)  80,026  (115%)  10.7% IPC 

NtOpenSection  38,134  72,742  (91%)  80,425  (111%)  10.6% 

StartService  2,166,808,231  2,166,819,311 (<0.1%)  2,166,818,157  (<0.1%)  <0.1% 

RegisterServiceCtrlHandlerEx  2,865,374  2,865,609  (<0.1%)  2,865,481  (<0.1%)  <0.1% 

QueryServiceStatusEx  2,011,945  2,011,960  (<0.1%)  2,011,959  (<0.1%)  <0.1% 

CreateService  8,264,623  8,406,775  (1.7%)  8,264,803  (<0.1%)  ‐1.7% 

Service 

OpenService  5,490,443  5,490,570  (<0.1%)  5,589,401  (1.8%)  1.8% 

TABLE 3
TESTING RESULTS OF THE ISOLATION CAPABILITY OF FVM ENFORCED WITH SHUTTLE, WHICH CAN CORRECTLY BLOCK GENERAL CROSS-VM INTERACTIONS 

INCLUDING BOTH VM-VM AND VM-HOST INTERACTIONS. × AND √ REPRESENT BLOCKED AND ALLOWED OPERATIONS, RESPECTIVELY. 

TABLE 4
INTERCEPTION OVERHEAD OF SYSTEM CALLS AND WIN32 API FUNCTIONS. COMPARED WITH OLD FVM WITHOUT SHUTTLE, THE NEW FVM 
ENFORCED WITH SHUTTLE ADDS LESS THAN 13.8% EXTRA CPU CYCLES FOR FILE-RELATED SYSTEM CALLS, LESS THAN 10.5% FOR IPC-

RELATED SYSTEM CALLS, AND LESS THAN 1.8% FOR SERVICE RELATED API FUNCTIONS. 



 

 

coded. Moreover, it can not support other types of 
interactive operations, e.g., cross-VM names and intra-VM 
dependencies. Zap [16] introduces pods, which are 
groups of processes that are provided a consistent, 
virtualized view of the system. Processes outside a pod 
can only interact with processes inside the pod using 
network communication and shared files instead of IPC. 
Shuttle provides a possible solution to facilitate inter-
application interactions across pod boundary when 
pursuing a better performance. Cells [2] is a virtualization 
architecture for enabling multiple virtual smartphones to 
run simultaneously on the same physical cellphone. It sets 
up IPC sockets to facilitate communication between VM 
and the host. Shuttle, however, also address issues related 
to VM-VM communication, cross-VM invocation and 
transferring hard-coded names. These extended functions 
may allow Cells to work in more application scenarios. 

The techniques in this paper should be useful when 
resolving the issues in the above OS-level virtualization 
systems that are based on other OSes, e.g., Linux. This is 
because these issues are irrelevant to specific OS or 
virtualization technique. They are derived from the nature 
of OS-level virtualization or applications, and thus also 
occur in Linux-based virtualization systems. As some 
concrete examples, there is a list of programs that have 
problems with Linux-VServer [14]. Some of the problems 
correspond to the issues resolved in this paper, for 
example, the problem “OpenLDAP Startup” is caused by 
application dependency, “rndc” is caused by hard-coded 
name and “Links inside screen inside a V-Server” is 
caused by cross-VM invocation.  

The second category of projects similar to our work 
focuses on how to achieve inter-VM communications for a 
hardware-level virtualization system. For example, the 
Xen [4] platform enables applications to transparently 
communicate across VM boundaries using standard 
TCP/IP sockets and traversing the network 
communication path via Dom0. In order to improve the 
performance of cross-VM communications, XenSocket 
[25], IVC [9], XWay [11], XenLoop [27] and Fido [6] have 
exploited the inter-domain shared memory provided by 
the Xen hypervisor. Different from these projects, Shuttle 
focuses on facilitating IPCs between OS-level VMs instead 
of hardware-level VMs. Moreover, it handles not only 
cross-VM communications but also cross-VM names and 
startups, as well as intra-VM dependencies, which mainly 
results from the characteristic of OS-level virtualization 
when multiple VMs share the single OS kernel. 

The third category of projects is library operating 
systems [7][8][12]. The idea is that the entire personality 
of the OS on which an application depends runs in its 
address space as a library. A recent project, Drawbridge 
[19], shows the library OS can offer better system 
security and more rapid independent evolution of OS 
components. As a structuring principle, Drawbridge 
identifies three categories of services in OS 
implementations: hardware services, user services, and 
application services. Then, it uses these service 
categories to drive the refactoring of Windows into the 
Drawbridge library OS. Drawbridge packages 

application services into the library OS and leaves user 
and hard-ware services in the host OS. The scheme of 
Shuttle to handle inter-process interactions across VM 
boundary can be useful to resolve the multi-process 
applications problem in Drawbridge. 

Finally, our former work [18] proposes a scheme for 
inter-application interactions on OS-level virtualization. 
In this paper, we add some valuable and novel contents. 
First, we propose a novel access control approach to 
better resolve the cross-VM inter-process 
communication problem, which is the first and most 
important problem when facilitating inter-application 
interactions for OS-level VMs. Second, we design two 
new algorithms to implement the start-on-command and 
stop-on-idle policies. Third, we have discovered and 
included a new type of application dependency, i.e., 
one-to-group dependency, which is essential because 
without properly handling this type of dependency the 
related applications might fail in the future. 

8 CONCLUSION 
Advances in OS-level virtualization technology have 
strengthened the isolation between VMs. However, 
many interaction-intensive applications require 
penetrating the isolation boundaries to cooperate with 
the applications in other VMs. In this paper, we make 
the first step towards supporting the application 
interactions in an OS-level virtualization system by 
facilitating four types of interactive operations, 
including cross-VM inter-process communications, 
cross-VM name transfers, cross-VM application 
invocations and intra-VM application dependencies. 
Specifically, we design a novel approach, Shuttle, that 
consists of four techniques, each of which intends to 

Fig. 5. The startup time of the VMs enforced with and without the 
start-on-demand policy. Without the policy, a VM has 8~14 times 
the delay to boot up itself compared to that when using the policy.

Fig. 6. The stop time of the VMs enforced with and without the 
stop-on-idle policy. Without the policy, a VM has 5~7 times the 
delay to shutdown itself compared to that when using the policy.
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handle a corresponding interactive operations. As a 
result, a number of interaction-depending applications 
that can not run within a VM previously, e.g., RPCSS, IIS, 
can now run under the support of Shuttle. Empirical 
performance measurements on the prototype 
implementation of the proposed Shuttle approach show 
that the compromise on isolation are negligible and the 
additional performance overhead is rather minor, when 
compared with that of the original version of FVM.  
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