

Shuttle: Facilitating Inter-Application
Interactions for OS-level Virtualization

Zhiyong Shan, Xin Wang, Tzi-cker Chiueh

Abstract—OS-level virtualization generates a minimal start-up and run-time overhead on the host OS and thus suits
applications that require both good isolation and high efficiency. However, multiple-member applications required for forming a
system may need to occasionally communicate across this isolation barrier to cooperate with each other while they are
separated in different VMs to isolate intrusion or fault. Such application scenarios are often critical to enterprise-class servers,
HPC clusters and intrusion/fault-tolerant systems, etc. We make the first effort to support the inter-application interactions in an
OS-level virtualization system without causing a significant compromise on VM isolation. We identify all interactive operations
that impact inter-application interactions, including inter-process communications, application invocations, resource name
transfers and application dependencies. We propose Shuttle, a novel approach for facilitating inter-application interactions
within and across OS-level virtual machines. Our results demonstrate that Shuttle can correctly address all necessary inter-
application interactions while providing good isolation capability for all sample applications on different versions of Windows OS.

Index Terms—OS-Level Virtual Machines, Inter-application Interactions, Cross-VM Communications, Intrusion/Fault Isolation

—————————— ——————————

1 INTRODUCTION

S-level virtualization partitions the OS name space
to form a number of separated Virtual Machines
(VMs), i.e., containers. VMs on the same OS share a

single OS kernel and the host environment, and each
VM only preserves state changes within its local
environment. Programs in a VM run as normal
applications that directly use the host OS' system call
interface and do not need to run on top of an
intermediate hypervisor. Accordingly, such VMs have a
minimal startup/shutdown cost, low resource
requirement and high scalability. Thus OS-level
virtualization is applicable for the applications that
require both high performance and good isolation
[23][28], including intrusion/fault-tolerance [6][28][22],
server consolidation [19][27], high performance system
[23][26], distributed hosting organizations like PlanetLab
[5][23], as well as cloud computing in the future [3][23].

These system functions often involve a set of member
applications. In this paper, we use the terms application
and program interchangeably. To isolate intrusion or
fault, the member applications are distributed into
different VMs. On the other hand, the member
applications occasionally require inter-application
interactions which are essential for their execution, thus
communications across VM barriers are inevitable.

The challenge is how to correctly and accurately
handle all necessary inter-application interactions while
not significantly affecting the isolation effectiveness of
virtualization. Inter-application interactions represent the
operations between distinct applications, e.g., register,
notify, request, reply, authenticate and launch.

Depending on whether two involved applications are
located in the same VM or the host space, inter-
application interactions can be ascribed into three basic
categories: cross-VM, intra-VM and intra-Host. Intra-
Host interactions represent the original inter-application
interactions in the host environment and thus do not
depend on virtualization technology. Cross-VM
interactions need to penetrate the VM boundaries which
are normally forbidden by the virtualization mechanism.
Cross-VM interactions can be further divided into two
subcategories, VM-Host where two involved
applications run inside a VM and in the host
environment respectively, and VM-VM where two
applications reside in two different VMs.

The VM-Host interactions apply to all forms of OS-
level virtualization technologies due to their nature. As
OS-level VMs co-located on a host share a single OS
kernel and the host environment, in order to access the
essential system services (e.g., authentication,
application initialization) and resources (e.g., Windows
registry) in the host environment, an application in a VM
has to interact across the VM boundary with
applications in the host environment. For example, on
Linux VServer [13], an application running in a VM has
to authenticate itself to processes sshd and getty, which
are run in the host environment. Likewise, on FVM [28],
an application in a VM needs to authenticate itself to a
host-resident process lsass. Since the authentication
operation violates the isolation principle, the
virtualization mechanisms drop the request, which leads
the application in a VM to be suspended.

The VM-VM interactions are needed for cooperating
applications to interact with each other to achieve certain
goals. For example, a high performance computing
software may distribute a group of cooperative programs
into different VMs [9][27] in order to isolate intrusion/
fault/performance/function [28] or concurrently foster

O

————————————————
 Zhiyong Shan is with the Key Laboratory of DEKE and Computer Science

Department, Renmin University of China. E-mail: shanzhiyong@ruc.edu.cn.
 Xin Wang is with the Electrical and Computer Engineering Department,

Stony Brook University, USA. E-mail: xwang@ece.sunysb.edu.
 Tzi-cker Chiueh is with the Computer Science Department, Stony Brook

University, USA. E-mail: chiueh@ cs.sunysb.edu.

multiple instances of the same program in a single OS.
However, the virtualization mechanism will prevent the
required VM-VM conversations from being carried across
VM boundaries. Applications running in separate VMs on
a single OS might choose to exchange data using network
communications to avoid penetrating VM boundaries, but
this would dramatically degrade the performance.

The intra-VM interactions are needed when two
involved applications stay in the same VM and thus do
not need to penetrate VM boundaries. However, the
improper startup sequence of the involved applications
will cause the communications among them to fail.
Accordingly, to prevent these failures, various types of
OS-level virtualization platforms, e.g., Solaris Zones [20],
Linux VServer [23] and FVM [28], invoke many
unnecessary daemons or Windows services when
booting and running a VM. For example, in a VM
dedicated for running a web server, all the daemons not
related to the web-server functions are unnecessary. This
heavily slows down the booting procedure and increases
the runtime overhead of a VM. As a result, it reduces the
scalability of the OS-level virtualization technology, the
main strength against the hardware-level virtualization
[23][28]. Therefore, properly handling intra-VM
interactions is necessary for improving the scalability of
OS-level virtual machines.

In short, cross-VM and intra-VM interactions are
often needed no matter what OS-level virtualization
technology is used. Without a proper treatment, they
will affect the running of the interaction-dependent
applications and the scalability of OS-level VMs.

Moreover, as many interaction-dependent
applications are important, it is necessary to enable their
interactions efficiently. First, some of interaction-
dependent applications are fundamental to the running
of numerous other applications, for example, RPCSS, the
RPC binding service; PlugPlay, the plug and play service;
NetDDE, the distributed clipboard service. Second, some
of interaction-dependent applications are critical to
business organizations, such as web servers, database
servers, high performance grid applications, transaction
processing applications and enterprise-class applications.
When exploiting the OS-level virtualization technology
to consolidate servers or tolerate intrusion/fault, these
interaction-dependent applications are deployed inside
different VMs and need to communicate with other
applications across the VM boundary or within a VM.

However, accurately identifying all possible inter-
application interactions is not easy, as many applications
are complex and their actual interactions vary across a
wide range and are undocumented. Particularly on a
commercial OS, as the OS and applications are close-
sourced and most implementation details are kept
confidential, identifying inter-application interactions
poses a great challenge.

As far as we know, there is no scheme designed to
systematically handle inter-application interactions in
the literature. Existing papers concerning OS-level
virtualization mostly focus on the general architecture of
a specific type of OS-level virtualization

[10][20][23][24][28], or exploit OS-level virtualization to
consolidate servers[17][20], isolate intrusions [28][29] or
build high performance systems [23], but never give a
deep insight on the inter-application interactions. A few
projects investigate how to improve cross-VM
communications for hardware-level virtualization
[6][9][27][25]. However, the cross-VM communications
between hardware-level VMs only involve TCP/UDP-
based network communications instead of inter-process
communications that often occur across OS-level VMs,
e.g., named pipe and event.

In this paper, we first investigate the interactive
operations that affect the inter-application interactions by
tracing various types of potential operations. Based on the
studies, we ascribe the interactive operations into four
types: inter-process communications, application
invocations, resource name transfers, and application
dependencies. To address these issues, we design Shuttle,
a novel approach that aims to facilitate all categories of
inter-application interactions by intelligently handling the
aforementioned four types of interactive operations while
not leading to significant compromise of the isolation
requirement of VMs. To demonstrate its effectiveness, we
implemented Shuttle under the framework of Feather-
weight Virtual Machine (FVM) [28] on different Windows
platforms. The evaluations demonstrate that Shuttle can
successfully support all tested Windows applications that
depend on inter-application interactions with little impact
on the VM isolation.

Shuttle is the first approach to handle inter-
application interactions for OS-level virtualization. With
this approach enforced, multiple instances of the RPCSS,
Dcomlaunch, SQL Server and IIS can concurrently run on
top of a single Windows OS, which are believed almost
impossible previously [28]. As the approach depends
less on a specific operating system or OS-level
virtualization technology, we believe it can also be
generalized and applied to different types of OS or OS-
level virtualization technology.

The paper is structured as follows. The next section
introduces the results of our studies on inter-application
interactions. The approaches to handling cross-VM and
intra-VM inter-application interactions are described in
Section 3 and 4 respectively. Section 5 presents the
implementation of Shuttle on FVM. Section 6 evaluates
the prototype with a group of Windows applications on
different versions of Windows OS. Section 7 compares
this research with other related efforts in the literature.
Section 8 concludes the work.

2 STUDY ON INTER-APPLICATION INTERACTIONS
As most of the interactive applications are close-sourced,
their internal implementation details, for example, the
internal logic, kernel objects created, registry entries
accessed, etc., are rarely documented and open to the
public in the literature. In order to investigate the exact
interactive operations, we have spent several months to
dynamically trace and analyze their behaviors, and
statically reverse-engineer their binaries. Concretely, we
take three investigation methods. First, we trace the

kernel-level and Windows API-level calls that an
application invokes at run time in order to determine the
set of resources an application accesses. Second, we use
the tool ProcessExplorer[15] to find out the inter-
application communication objects an application uses
to interact with other applications. Last, we disassemble
the application’s binary code to identify all hard-coded
resource names and API function calls that transfer the
hard-coded resource names.

We conclude that there are basically four types of
interactive operations affecting inter-application
interactions. Without a proper treatment of these
operations, the interactive applications would fail or
behave abnormally. These operations are as follows:
 Inter-process communications carried between two

applications through IPC (Inter-Process
Communication) objects, which include register,
authenticate, request, reply, notify, exchanging data, etc.

 Application invocations where an application in the
host starts other applications in a VM, which include
daemons, Windows services, COM servers, etc.

 Name transfers needed for transferring resource
names among applications running in different VMs.
These names are hard-coded in application binaries
and thus may escape the renaming mechanism of OS-
level virtualization.

 Application dependencies when the running of an
application (the dependent application) depends on the
running of another application (the master application)
in the same VM. The master application should run
prior to the dependent application.
Table 1 summarizes our investigation results which

associate the failures of inter-application interactions
with the types of interactive operations. From the table,
the former three types of operations might cause cross-
VM interactions to fail while the last type might cause
intra-VM interactions to fail. Further explanations of
these results are presented in Section 3 and 4.

In order to better present the problems and our
solutions, we perform a case study on a classical
enterprise application in our lab using FVM [28]. We
deploy two IIS servers and two SQL Servers in four
distinct VMs on a single OS, as shown in Figure 1 (a). The
two pairs of IIS and SQL Servers form two websites. Only
with such a deployment, two instances of IIS or SQL
Server can be separated without interfering with each

other though they share a single OS kernel. Moreover,
since each application is contained in a separate VM, the
system constructed this way has the capability of
intrusion/fault tolerance. Similar deployments also can be
found from Solaris Zones [20], OpenVZ [17] and Fido on
Xen [6]. An alternative deployment scheme might place
the two pairs of IIS and SQL servers into two VMs
respectively. However, this setup not only can not
completely avoid carrying out inter-application
interactions cross-VM and intra-VM but also is not able to
provide isolation as well as the former scheme.

Figure 1 (b) illustrates the detailed inter-application
interactions across and within OS-level virtual machines,
which only includes VM 1, VM 2 and the host. RPCSS is
a fundamental Windows service on the Windows
platform that provides RPC/COM/DCOM functions to
other Windows services and applications, and is
duplicated in each VM. Windows services are long-
running programs that remain active without interacting
with users, like daemons in a UNIX-style OS. Generally,
there are about 100 services on Windows XP and nearly
half of them depend on RPCSS. An IIS server consists of
five Windows services: W3SVC service for web server,
MSFTPSVC service for FTP server, SMTPSVC service for
SMTP server, NNTPSVC service for network news
server, as well as IISADMIN service for the management
of IIS. DCOM1 and DCOM2 are a pair of DCOM servers
started by DcomLaunch, which act as main and backup
DCOM servers respectively. In Figure 1 (b), various
specific inter-application interactions (e.g., register,
notify, request, reply, launch and authenticate) among
applications are represented by lines among them,
which include cross-VM, intra-VM and intra-host
interactions. The interactions among the applications are
observed as a result of our efforts in tracing the process
and performing reverse-engineering. However, due to

Interaction Categories

Cross‐VM Interactive Operations

VM‐Host VM‐VM

Intra‐

VM

Intra‐

Host

Inter‐process communications √ √ × ×
Application invocations √ × × ×
Name transfers √ √ × ×
Application dependencies × × √ ×

TABLE 1
INTERACTIVE OPERATIONS AFFECT CERTAIN INTER-APPLICATION

INTERACTIONS. CHECKS INDICATE THE AFFECTED INTERACTIONS.

S C M S A M S S

H o s t E n v i r o n m e n t
C r o s s - V M
i n t e r a c t i o n

I n t r a - V M
i n t e r a c t i o n

R P C S S

R P C S SD c o m L a u n c h

D C O M 1

D C O M 2

I I S A D M I N

W 3 S V C
M S F T PS M T P

N N T P

V M 1 V M 2

S Q L
S e r v e r

R P C S S

D c o m L a u n c h

I n t r a - H o s t
i n t e r a c t i o n

V M 1 V M 2 V M 3 V M 4

I I S I I S
S Q L

S e r v e r
S Q L

S e r v e r

H o s t E n v i r o n m e n t

(a) (b)
 Fig. 1. An illustration of inter-application interactions, running two groups of enterprise applications in different VMs on a single OS.

these complex and hidden inter-application interactions,
until now there is no public record showing a successful
approach to making RPCSS or IIS run inside a VM.

3 FACILITATING CROSS-VM INTERACTIONS

3.1 Inter-Process Communications
According to the isolation principle of virtualization, the
cross-VM inter-process communications should be
strictly blocked although some applications may require
interactions between each other. However, exceptions
should be given to some essential cross-VM inter-
process communications as shown in Figure 1 by solid
lines. Hence, a carefully designed mechanism is required
to facilitate these communications. To minimize the
impact on VM isolation, the design should follow a
principle: least penetration, which only allows least
essential cross-VM communications.

3.1.1 Analyzing Cross-VM Inter-Process Communications
Corresponding to the Table 1, two categories of
necessary cross-VM inter-process communications
should not be blocked. One is the VM-Host
communications between applications in a VM and the
host environment, which possibly affect the VM-Host
interactions. Such communications are often utilized by
an application to get necessary services from core-
applications, e.g., authentication and registration. The
core-applications are the ones that provide system critical
services to other applications, e.g., the Service Control
Manager (SCM) on Windows, “launchd” on Mac OS and
the “klogd”on Linux. They are actually the extensions of
the OS kernel and closely tied with the kernel. They can
not be duplicated in every VM and should stay in the
host environment in order to be available to all VMs.
Consequently this type of cross-VM communication is
inevitable whenever an application inside a VM requests
a system critical service.

The other is the VM-VM communications between
applications in different VMs, which possibly affect the
VM-VM interactions. In order to provide fault or
intrusion isolation for individual applications, member
applications belonging to the same system need to be
placed in separate VMs [6][9][11][27][25]. Thus, the
communications among these applications have to be
carried across VM boundaries as exceptions to the basic
isolation principle. For instance, storage systems (e.g.,
NetApp and EMC) may have a group of cooperative
programs running in different VMs that need to
communicate with each other. Similarly, a graphics
rendering application in one VM may need to
communicate with a display engine in another VM. Even
routine inter-VM communications, such as file transfers
or heartbeat messages may need to be performed
frequently across the VM border.

Some of the VM-VM inter-process communications
can be replaced by network communications, for
example, using TCP/UDP communications to substitute
named pipes. However, this will lead to a significant
performance penalty [27] as the communication data

need to go through the whole network stack twice in the
same OS kernel. Therefore, facilitating VM-VM inter-
process communications is indispensable not only for
the successful running but also for better performance of
cooperative programs.

Both categories of cross-VM inter-process
communications are achieved via accessing Inter-Process
Communications (IPC) objects, which have various
types in an OS. For example, IPC objects in Windows
include primitive ones (such as mutexes, events, timers,
semaphores, and LPC) and higher-level ones (such as
RPC and DCOM). Moreover, most actual IPCs between
applications are undocumented and dynamic. For the
interaction-dependent applications that have well
documented IPCs, one can manually give exceptions to
permit the cross-VM communications to penetrate the
boundaries of VMs. This is why existing OS-level
virtualization technologies can successfully virtualize
some interaction-dependent applications [23][28].
However, for the ones without documented IPCs, it is
not feasible to manually identify all the cross-VM
communications, especially for an ordinary user.

3.1.2 Cross-VM Access Control Approach
To facilitate the cross-VM communications without
incurring a significant cost on VM isolation, an efficient
method is to enforce access control that checks all cross-
VM communications and only allows predefined ones. To
this end, we design a novel access control approach,
named Cross-VM Access Control (CVAC), which differs
from existing access control approaches. CVAC consists of
double levels of access control, i.e., application level and
VM level. Only when both levels of access control permit,
a cross-VM communication can continue. The application
level access control uses an application access graph that
describes what cross-VM communications are allowed
between a pair of applications. However, if an application
A runs multiple instances in different VMs, an application
B that tries to access the application A would not know
which instance it should contact. Therefore, we introduce
VM level access control to address this issue. It uses a VM
access graph that describes which pair of VMs allows
cross-VM communications between them. Thus, the VM
access graph would only allow the application B to access
the instance of application A that runs in the VM which is
allowed by the graph to communicate with application
B’s VM.

The VM access graph is illustrated in Figure 2 (a). In
the graph, two VMs are allowed to cross-VM
communicate with each other if an edge connects them.
All VMs can access the host, because they need to interact
with the core applications running in the host. All other
cross-VM accesses are denied except the ones specifically
allowed. For example, suppose VM1 is allowed to access
VMn, there would be an edge linking the VMs.

The application access graph is illustrated in Figure
2(b). In the graph, two applications are allowed to cross-
VM communicate with each other if an existing edge
connects them and at the same time their IPC object
matches the IPC object shown on the edge. When more

than one IPC objects serve for a pair of applications, the
corresponding number of edges should be drawn
between the applications. For example, in Figure 2(b),
APP2 and APPn have two IPC objects and thus have two
edge connections between them.

The cross-VM IPC objects in the application access
graph are represented by their types and names. Our
study on cross-VM IPC objects shows that most types of
cross-VM IPC objects (e.g., named pipe, shared memory,
mail slot, mutex, semaphore and socket) act at the server
side of inter-application communications. Hence, these
IPC objects must keep their names static to help the clients
to locate them despite that the Id numbers of the objects
are dynamic. For example, SQL Server prepares a pipe
with static name “\Device\NamedPipe\sql\query” to
wait for the connection request from local clients. In
special situations, the name of an IPC object may partially
change, i.e., with their name strings containing a number
that changes over time. To address this issue, we can use a
wildcard character * to stand for the variable number in
the name string. In addition, a few special types of IPC
objects might change names frequently, e.g., event. We
can use the IPC type and the name of the receiver
application to represent the IPC object.

To formally describe the decision procedure of the
Cross-VM Access Control approach, we record the VM
access graph and application access graph as),(vv EVG
and),(aa EAG respectively. V is the set of VMs. A is the
set of applications. vE is the set of edges connecting VMs.
Each edge in vE is represented as),(21 vvev , where

21,vv are the two connected VMs. aE is the set of edges
connecting applications. Each edge in aE is represented
as),,(21 oaaea , where 21,aa are the two connected
applications and o is the cross-VM IPC object. We record
an IPC object as),,,,(vastno , where no. and to. represent
the name and the type of the IPC object. trueso . means
that the name of the object is static or contains a dynamic
number, while falseso . means that the name of the
object is totally dynamic. ao. represents the application
creating the IPC object. vo. represents the VM adopting
the IPC object. An application is represented as)(na ,
where na. is the name of the application. Accordingly, the
logic to handle cross-VM communications can be formally
described as follows:

);(

);(
))),,((

)),.(((
);(

).(

r

r
rr

r
r

r

otionMCommunicaDenyCrossV
else

oonommunicatiDoCrossVMC
trueoaaionGraphInApplicatEdgeExists

truevvoInVMGraphEdgeExistsifelse
oonommunicatiDoIntraVMC

vvoif

When an application a in a VM v requests to access
an IPC object ro of application ra , Shuttle first
determines whether the required communication is
intra-VM by checking whether the VM of the IPC object

ro is actually the current VM. Then, Shuttle queries the
VM access graph and the application access graph. If
both graphs have required edges, the cross-VM
communication is allowed. Otherwise, it is denied.

),.(vvoInVMGraphEdgeExists r means:
vovevveEGe rvvvvv ..,.,. 21

),,(rr oaaionGraphInApplicatEdgeExists means:
raraaaaa ooeaoaeaaeEGe .,..,.,. 21

ra ooe . means:

The operator represents that the two involved

names are two instances of the same IPC object. For
example, according to the renaming rule in many OS
level virtualization technologies [20][28], a port named p
will be renamed in VM1 as p-VM1 while in VM2 as p-
VM2, thus we say p-VM1 p-VM2.

3.1.3 Generating Access Graphs
The challenge of implementing the technique is how to
generate the application access graph. Given an
application scenario, a natural scheme might be
performing a training procedure that monitors all cross-
VM communications and accordingly generates the
application access graph. However, this requires training
for every specific application scenario, which is not
feasible. Hence, we propose an application-based access-
graph generation method with three steps: (1)
discovering the cross-VM IPC objects created by every
type of applications; (2) describing the cross-VM
dependencies among applications; and (3) generating
the application access graph.

For the first step, as manually discovering the cross-
VM IPC objects is almost impossible, we develop a tool
to complete this task automatically by monitoring and
recording cross-VM IPCs. For every type of application,
we only need to test it once and can use the results in
various application scenarios with different
deployments. To prevent potential security issues (e.g.,
the occurrence of some unexpected cross-VM
communications), we run the application only in a
secure environment and right after the system and
applications are installed. Moreover, to thoroughly
discover all cross-VM IPC objects created by the tested
application, we tried various possible running
conditions during the test. When all possible conditions
were tested and there were no new cross-VM IPC objects
appear, we stopped the test for the application.

For the second step, a cross-VM application
dependency between two applications represents that the
dependent application has to access the cross-VM IPC

))...()...().((
))...()...().((
toetonoenafasleso

toetonoenotrueso
ararr

ararr

Host VM1 VM2 VMn

(a) VM access graph

APP1

(b) Application access graph

APP2 APP3 APPn

IPC1

IPC2 IPC3 IPC4

IPC5

Fig. 2. The access graphs for Cross-Vm Access Control.

IPC6

objects created by the master application in order to cross-
VM communicate with the master application. A pair of
dependent and master applications are actually the client
application and server application of an inter-application
communication respectively. According to our study
mentioned previously, most cross-VM IPC objects are
created by the server side applications of inter-application
communications and wait for connection requests from
client side applications.

The cross-VM dependencies between core-
applications in the host and the applications in VMs are
considered as default. Only the cross-VM dependencies
between the cooperative applications running in
different VMs require configuration. For example, if
running a web server and a database server as a pair in
two separate VMs on a single host, the administrator can
configure a cross-VM dependency between the web
server and database server.

For the last step, the application access graph is
generated by synthesizing the results of the former two
steps. Suppose }{aA is the set of applications on the
host, which form the vertexes in the application access
graph; Oa. is the set of cross-VM IPC objects created by
an application a ; },{ md aaD is the set of cross-VM
application dependencies, each of which consists of a
pair of applications, i.e., a dependent application da and
a master application ma . Accordingly, the edges in the
application access graph can be computed as follows:

In the VM access graph, an edge represents a
cooperation between two corresponding VMs. More
specifically, an application running in one VM will initiate
a communication with the application running in the
other VM. Edges in the VM access graph are generated by
the following two rules: First, when cooperating
applications are deployed into different VMs, these VMs
should have edges among them. For example, in Figure 1,
as the IIS web servers and the SQL database servers are
deployed in four VMs separately, VM 1 should connect to
VM 2 and VM 3 should connect to VM 4 according to the
existing cooperations. Second, the edges between the host
and any VM are considered as default since applications
in any VM require the services provided by the core-
applications run in the host environment.

A question on our cross-VM communications
technique is that the isolation offered by an OS-level VM
might be compromised. There is actually a trade off
between isolation and interaction. That is, virtual
machines require isolation while interactive applications
require cooperating with each other across VM
boundaries. Hence, our technology follows the principle:
least penetration, by only permitting the least necessary
cross-VM communications. As presented above, this
principle is followed by only allowing the specific cross-
VM communications predefined in the application access
graph and VM access graph. This is in accordance with
the basic principle of security protection: least privilege,

which requires that every program of the system should
operate using the least set of privileges necessary to
complete the job [21]. In addition, cross-VM network
communications are not restricted by CVAC because they
are directly allowed by the virtualization layer.

3.2 Application Invocations
As shown in Table 1, cross-VM application invocations
may cause some application failures. More specifically,
some applications need to be cross-VM invocated by
core-processes in the host environment, but the OS-level
virtualization mechanism can not properly handle all of
the cross-VM invocations, and thus such applications fail
to be started inside VMs. Cross-VM invocations are
inevitable as the core-applications responsible for
launching such applications can not be virtualized, i.e.,
be duplicated in each VM. For example, all Windows
services are started by SCM while SCM has to stay in the
host as it is shared by all VMs and tightly related with
the kernel. Linux, FreeBSD and Mac also have core-
applications similar to SCM on Windows, e.g., init, getty
and launchd, which are responsible for launching many
daemons. Having tight relations with the kernel and
providing shared services to many other applications,
these core-applications are not allowed by the kernel to
be duplicated in each VM. Hence, invocating
applications cross-VM is also an issue for the OS-level
VMs built on Linux, FreeBSD and Mac, e.g., Jails [10]
and Linux VServer [23].

To handle cross-VM invocations, one can modify the
application configuration database (e.g., Windows
registry) or files to logically add a new instance of the
application to be performed in a VM. Every time the core-
application receives a request from a VM, it will fork a
new process in the host, and then move the new process
into the VM. However, as core-applications are not aware
of the OS-level virtualization, it is difficult to decide which
VM the new process should be moved into after the new
process is generated. One can add extra information into
the application configuration database to denote the VM
that is requesting the new process. However, when
multiple VMs simultaneously request to start the same
application, we are still unable to correctly distribute
multiple new processes into corresponding VMs.

To address this issue, we devise a novel mechanism
that is illustrated in Figure 2. First, we prepare a distinct
binary file for each application instance which is located
in a distinct VM space, create a configuration entry
containing the binary file path for each instance in the
configuration database/file, and record the binary file
path and the VM Id into the mapping table. Second, the
core-application in the host environment starts a new
process according to the corresponding configuration
entry after receiving a startup request from a VM. Third,
we intercept a new process and decide which VM the
process should be placed into. The decision is made by
searching the process’ image file path in the mapping
table so as to get the correct VM Id. Finally, we move the
process from the host to the correct VM.

When starting an application from a VM the first time

End
End

graphaccessnapplicatiotheinoaaedgeanAdd
OaOaoobjectIPCVMcrosseachFor

DaadependencyeachFor

md

md
md

;,,
..

,

in response to a user request, Shuttle automatically
prepares the binaries, registry entries and mapping table
entry of the application. Specifically, when a user
requests starting an application from a VM, Shuttle
intercepts the request and checks whether the binaries
and entries for the application running in the VM are
prepared. If not, Shuttle prepares them and then
forwards the request to the core application in the host
to perform the start operation.

For example, an application CiSvc for indexing files
has its image file at C:\WINNT\system32\cisvc.exe. To
achieve cross-VM startup, we copy the file to the path
C:\VMs\VM-Z\C\WINNT\system32\cisvc.exe that is
within the space of VM Z, insert the path into a registry
entry used to store the image path of an application to be
cross-VM started, and record the path and VM Id Z into
the mapping table. When starting a process of CiSvc, we
determine the VM that the new process should belong to
by searching the process’ image path in the mapping
table and getting VM Id Z, and then move the process
into VM Z.

A special case for cross-VM invocation is that a few
applications are in the form of DLL (Dynamic Link
Library). A DLL-based application runs as a thread inside
a host process instead of an independent process as
normal applications do. For example, the DcomLaunch
service is a DLL-based application running as a thread
inside a generic Windows host process called svchost.
However, our mechanism still can handle this special type
of applications. That is, for a DLL-based application, we
record the host process’ image file path in the mapping
table to recognize VM Id rather than the application’s DLL
file path, as the thread of the application and its host
process always live together within the same VM.
However, as multiple host processes with the same image
file often foster different DLL-based applications, it is
difficult to differentiate these applications’ VM Ids based
only on the image file path of the host process. We found
that, to launch a DLL-based application, the host process
has to use an exclusive parameter to indicate the running
of the application. Accordingly, we attach the parameter at
the end of the host process’ image file path in the mapping
table in order to recognize the application. Thus, we can
determine the VM Id by searching both the new process’
parameter and image file path in the mapping table, in
order to place the new process into the correct VM.

For example, the DLL-based application DcomLaunch
runs inside a svchost process with a parameter “-k
dcomlaunch”. To achieve cross-VM startup, we record not

only the host process’ image file path and VM Id but also
the parameter into the mapping table. When starting a
svchost process, we first obtain the Id of the VM that the
new process should belong to by searching the process’
image path and parameter in the mapping table, and then
move the process into the corresponding VM.

3.3 Resource Name Transfers
When an application in a VM performs a cross-VM
communication, it might need to transfer resource
names (e.g., the application’s name) to the receiver
application in another VM or in the host environment. In
some situations, such names are hard-coded and
originated from the application’s binary without being
renamed according to the rules that OS-level
virtualizations often employ [20][28]. When multiple
instances of the same application running in different
VMs simultaneously send a hard-coded name to the
same receiver application, unexpected conflicts or errors
will cause the instances to fail.

For example, the RPCSS service on Windows is such
an application with the hard-coded application name
(i.e., “RPCSS”). In its binary, two hard-coded RPCSS
service name strings are used as input arguments by the
service management function OpenServiceW(). When the
RPCSS is required to start in VM Z, it calls
OpenServiceW() to send a request to the SCM process
running in the host environment, using the hard-coded
RPCSS name as a parameter. OpenServiceW() in turn
communicates across VM boundaries with the SCM
through a named pipe NtControlPipe. The SCM then
checks whether the requested service name is valid and
without conflict. If another instance of RPCSS is running
in the host environment or in another VM, SCM will
refuse the open service request from VM Z since the
hard-coded RPCSS name is already registered in SCM.
As a result, the RPCSS process in the VM Z will fail.

The basic reason is that, the original developers did
not anticipate that a program may be replicated with
multiple application names. They simply hard-coded a
fixed application name in the program codes and used it
as an argument in subsequent calls to Win32 API
functions, which send the name across VM boundary
through an IPC channel.

On further investigation, we find hard-coded
resource names in binary files on other OS platforms,
e.g., Linux and FreeBSD. As OS-level virtualization
technologies often rely on resource renaming to separate
VM spaces [20][28], this issue is not exclusive on
Windows OS or FVM. However, existing OS-level
virtualization technologies are not aware of this issue, let
alone provide any solution.

A possible solution to this issue is to intercept the
related API functions and change the parameters that
are originated from hard-coded names following the
virtualization rules. However, one can not intercept all
the related API functions which use hard-coded names.
If an application in a VM invokes a function that uses a
hard-coded name but is not intercepted, the solution will
not be able to rename the parameters.

Path 1 VM 1
Path 2 VM 2
Path 3 VM 3

……

Instance 1(binary file path 1)

VM 1 VM 2 VM 3

Host Environment

Core-Application

ConfigurationsMapping Table

Instance 1 Instance 2 Instance 3

Binary
file 2

Binary
file 1

Binary
file 3

Instance 2(binary file path 2)
Instance 3(binary file path 3)

Fig. 2. The mechanism for invocating applications cross-VM. It
leverages a mapping table to help distribute multiple instances of
the same application into multiple VMs.

A better solution is to intercept only IPC related
system calls that have a limited number in an OS. Once
capturing a resource name in its original form in an
inter-process communication, Shuttle changes it
following the renaming rules, e.g., appending a VM Id to
the name. However, filtering the contents of the inter-
process communications to find the names might
significantly slow down the system as the
communications are often frequent and contain a fair
amount of content. Fortunately, Shuttle can differentiate
cross-VM from intra-VM inter-process communications
by checking whether the IPC object is in the application
access graph. Thus, we can focus on the cross-VM inter-
process communications. As they represent a very small
fraction of the entire inter-process communications in a
system, monitoring cross-VM inter-process
communications only imposes little overhead on the
system. Moreover, transferring hard-coded name across
VM boundaries can be only pursued through IPC objects.
Therefore, the monitoring of IPC in Shuttle is general
and can be extended to apply in other type of OS.

In the previous example, Shuttle monitors the pipe
NtControlPipe and changes the application name string
that the RPCSS writes into the pipe. Then SCM will
permit the open service request with the service name
containing the VM Id, as the changed name will no
longer conflict with those used in other RPCSS instances
running in the host environment or other VMs.

4 FACILITATING INTRA-VM INTERACTIONS
Although intra-VM communications between
applications are permitted by OS-level virtualization
technology, incorrect startup sequence of the
applications would cause an intra-VM communication to
fail. This is due to the dependencies among applications
in the same VM as shown in the Table 1. In other words,
as some applications (say dependent applications) depend
on the running of other applications (say master
applications) in the same VM, the master applications

should be started prior to the dependent ones.
This seems to be a standard OS design issue i.e.,

arranging for the startup scripts to start applications in
the right order to satisfy their dependencies. However,
to achieve VM scalability and thus increase the number
of VMs that can be activated concurrently on a single OS,
OS-level virtualization has an extra high requirement on
resolving this issue compared to that of a standard OS.
That is, the solution of this issue should help to speed up
the booting procedure or reduce system resource
occupation of a VM to the minimum degree.

To avoid a possible application failure resulted from
an intra-VM dependency, existing OS-level
virtualization technologies [20][23][28] start many
system applications that often serve as master
applications when booting a VM through manual
configuration, e.g., Linux daemons and Windows
services. These applications then wait for the intra-VM
communications initiated by other applications. This
will significantly slow down the booting procedure of
the VM and occupy extra system resources, e.g., CPU

Algorithm 1. Start-on-demand

INPUT: application A to be started

 1: FOR each one-to-one edge drawn from the vertex of application A in

the dependency graph
 2: IF(the master application of the edge does not start)
 3: Start the master application;
 4: ELSE
 5: Increase the reference count of the master

application;
 6: END
 7: END

8: FOR each one-to-group edge drawn from the vertex of application A in
the dependency graph

 9: IF(all applications in the master application group of the edge
does not start)

10: Start the most recently stopped master application
in the group;

11: ELSE
12: Increase the reference count of all started master

applications in the group;
13: END
14: END

Algorithm 2. Stop-on-idle

INPUT: application A to be stopped

 1: FOR each one-to-one edge drawn from the vertex of application A in

the dependency graph
 2: IF(the master application of the edge is running)
 3: Decrease the reference count of the master

application;
 4: IF(the reference count of the master application is

zero and the application does not need to always
keep active)

 5: Stop the master application;
 6: END
 7: END
 8: END
 9: FOR each one-to-group edge drawn from the vertex of application A in

the dependency graph
10: FOR each running application in the master application group

of the edge
11: Decrease the reference count of the master

application;
12: IF(the reference count of the master application is

zero and the application does not need to always
keep active)

13: Stop the master application;
14: END
15: END
16: END

RPCSSDcomLaunch

IISADMIN

W3SVC MSFTPSMTP NNTP

RPCSSDcomLaunch

SQL Server

(a) In-VM Dependency Graph of VM 1 and 3 in Figure 1

(b) In-VM Dependency Graph of VM 2 and 4 in Figure 1

NetBIOSGroupRPCSS

RemoteAccess

(c) In-VM Dependency Graph having a one-to-group edge

One-to-one edge One-to-group edge

Fig. 3. Examples of intra-VM dependency graph.

time and memory space. On the other hand, the system
applications not being manually configured to start at
the time of booting VM might later be required by some
dependent applications, which thus causes unexpected
failures of the dependent applications.

To address these issues, we propose a technique that
starts master applications only on demand and stop
master applications upon system idle, so that the master
applications no longer slow down the VM booting
procedure and unnecessarily occupy system resources at
run time, as well as cause the failure of the dependent
applications. This will improve the performance and
scalability of OS-level virtualization technology.

As a core part, the technique uses an intra-VM
dependency graph, which consists of a set of vertices and
a set of directed edges connecting the vertices. A vertex
represents an application. An edge between two vertices
represents a dependency between a dependent
application and a master application. The edge is drawn
from the dependent application to the master application.
There are two types of edges: one-to-one and one-to-
group. A one-to-one edge represents that the running of
an application depends on the running of another
individual application. A one-to-group edge represents
that the running of an application depends on the running
of any one of a corresponding group of applications. As
an example, Figure 3 (a), (b) and (c) depict three example
intra-VM dependency graphs.

Based on the intra-VM dependency graphs, the start-
on-demand and stop-on-idle policies can be specified as
Algorithm 1 and 2 respectively. The start-on-demand
policy starts a master application and increases it’s
reference count at the time a corresponding dependent
application starts. The stop-on-idle policy decreases the
reference count of a master application when a
corresponding dependent application stops. Once the
last dependent application of a master application stops,
the policy stops the master application if it does not need
to always remain active.

The intra-VM dependency graph can be generated
from application configuration files or database. For

example, the registry entries DependOnService and
DependOnGroup on Windows describe the dependencies
between services and thus can be used to generate one-
to-one edges and one-to-group edges respectively. To
automate the graph creation procedure, we develop a
program to discover intra-VM dependencies among
related applications by scanning the related entries in
the Windows registry.

With these two policies enforced, an OS-level virtual
machine does not need to start system applications at the
booting time but only upon requests. Meanwhile, a VM
does not need to foster the idle system applications.
Accordingly, the overhead of booting and running an
OS-level virtual machine can be significantly reduced,
and the potential application failures incurred by the
intra-VM dependencies can be avoided.

5 SHUTTLE PROTOTYPE
We have implemented Shuttle on FVM [28][22] to
facilitate inter-application interactions within a VM or
across VMs. Figure 4 shows the Shuttle architecture. All
inter-application interactions, cross- and intra-VM, are
captured by intercepting system calls in the kernel and
Win32 APIs in Windows system libraries. Shuttle mainly
intercepts system calls related to IPC, file, registry and
process as they are often invoked for inter-application
interactions. Some inter-application interactions that
involve a few IPCs (e.g., message) and services can not
be identified by intercepting system calls, we thus
intercept the corresponding Win32 APIs.

To intercept the system calls, we modify the system
call entry point in the System Service Dispatch Table (SSDT)
within the kernel. To intercept the Win32 APIs, we
modify the library function entry point in the Import
Address Table (IAT) of the application process. Shuttle
adds and changes about 10k lines of code on FVM at
both application level and kernel level.

The intercepted interaction requests are posted to
four kernel modules to make decisions based on five
types of information, which are presented as follows.

The Cross-VM Communication Module handles

Fig. 4. Shuttle architecture consists of four modules and five types of information in the kernel, as well as a management tool at the
application level. The four modules handle the four types of interactive operations respectively based on the five types of information.

 W i n 3 2 A P I I n t e r c e p t i o n

 S y s t e m C a l l I n t e r c e p t i o n

W i n d o w s O S K e r n e l

C r o s s - V M C o m m u n i c a t i o n M o d u l e

C r o s s - V M N a m e M o d u l e

C r o s s - V M I n v o c a t i o n M o d u l e

I n t r a - V M D e p e n d e n c y M o d u l e

V M A c c e s s
G r a p h

C o n f i g u r a t i o n
D a t a b a s e

I n t r a - V M
D e p e n d e n c y

G r a p h

V M - 1 V M - n

V M A p p l i c a t i o n s V M A p p l i c a t i o n sH o s t A p p l i c a t i o n sC r o s s - V M
I n v o c a t i o n

M a n a g e m e n t
T o o l

U s e r M o d e

K e r n e l M o d e

A p p l i c a t i o n
A c c e s s G r a p h

M a p p i n g
T a b l e

cross-VM inter-process communications based on the
VM access graph and application access graph. The
Cross-VM Name Module handles name transfers across
VMs. It checks cross-VM IPCs to rename the hard-coded
resource names derived from applications’ binaries. The
Cross-VM Invocation Module watches the processes that
are cross-VM started and moves them into the
corresponding VMs. Based on the intra-VM dependency
graph, the Intra-VM Dependency Module suspends the
processes to be started and starts their master
applications first. It also monitors the processes to be
stopped and requests to stop the master applications.
For example, to stop a Windows service, Shuttle calls
ControlServiceEx() with a control code SERVICE_
CONTROL_STOP to request SCM to stop the service.

The five types of information used by the modules are
VM access graph, application access graph, intra-VM
dependency graph, mapping table and configuration
database (i.e., Windows registry). We have four key data
structures to represent the former four types of
information. The application access graph is generated by
the Cross-VM Communication Module and management
tool based on the cross-VM IPC objects of each type of
application, and cross-VM application dependencies
using the method presented in Section 3.1. The VM access
graph is generated by the management tool. The mapping
table is automatically prepared by the Cross-VM
Invocation Module when starting an application in a VM
for the first time. The intra-VM dependency graph is
generated by the Intra-VM Dependency Module and
management tool by scanning certain registry entries, e.g.,
DependOnService and DependOnGroup.

Shuttle was implemented in two different versions of
Windows OS, i.e., Windows 2000 and Windows XP, as
FVM was implemented in these two versions. We
believe with minor changes Shuttle also can be
implemented in a newer version of Windows, e.g., Vista,
because the architecture of Shuttle does not contain
technical details about specific version of Windows OS.

6 EVALUATION
In this section, we present details on the experimental
evaluations of our Shuttle prototype which consists of
three parts. First, we investigate the effectiveness of
Shuttle approach using a number of interaction-
dependent applications and an enterprise application as
the case to study. Second, we test whether Shuttle will
cause a significant degradation of the isolation capability
of an OS-level virtualization system. Third, we evaluate
the performance overhead of our Shuttle prototype. The
test-bed used in the evaluation consists of two machines.
Machine A contains a Pentium-4 2.8GHz CPU with 1GB
memory running both Windows 2K and XP and
machine B contains an Intel Core 2 Duo 2GHz CPU with
2GB memory running both Windows 2K and XP. We
installed FVM and Shuttle on both machines.

6.1 Effectiveness
The objective of the Shuttle approach is to facilitate inter-
application interactions cross- and intra-VM so that the

applications depending on these interactions can
perform inside VMs without failures. To demonstrate
the effectiveness of the Shuttle approach, we have run 22
interaction-dependent applications in the Shuttle
prototype. Many of the sample applications have failed
to perform inside a VM without the support of Shuttle so
far, e.g., RPCSS, IIS, SQL Server, Ntsvcs, AutoCAD,
Adobe installation and MS Office assistant. To
sufficiently test all potential interferences among
separate instances of the same application, each sample
application at least runs three instances simultaneously
on a single host. One instance runs in the host
environment and the other two run in two different VMs
respectively. Table 2 shows the evaluation results. Each
row presents an application and the interactive
operations appeared when running the application
inside a VM. With these interactive operations resolved
by Shuttle, all samples tested can successfully run three
instances simultaneously on a single host.

Moreover, the sample applications running in VMs
behaved correctly, which was verified as follows. RPCSS,
Dcomlaunch and Ntsvcs were verified by the successful
running of many other tested samples that depend on
these three applications. IIS, Apache, Mysql and SQL
Server were verified by building and operating websites.
Tlntsvr was verified by supporting a telnet site. The
installation programs were verified by the successful
messages appeared at the end of installation procedures.
StraceNT, Regcmd, CiSvc and ProcessMonitor were
verified by checking whether they can work properly.
The remaining samples were verified by opening and
editing corresponding type of files.

As a case study, we further set up an enterprise
application scenario that runs two pairs of web server
and database server in four VMs respectively on a single
Windows XP OS, as presented in Section 2. The
applications worked properly and quickly. In the VMs,
we performed various operations including browsing
web pages, submitting web forms filled, downloading
and uploading files. To handle some operations, the web
servers cross-VM accessed the backend database server
deployed in another VM.

Therefore, Shuttle can successfully support all four
types of interactive operations summarized in Table 1,
which in turn supports all necessary cross-VM interactions.

6.2 Isolation
In order to evaluate the impact on the isolation
capability of FVM caused by Shuttle, we prepared 19
pairs of small programs to test all possible forms of
cross- and intra-VM operations. Each pair of programs is
responsible for testing one type of Windows OS object,
which consists of a client and a server. The testing
results are shown in Table 3. The Intra-VM column
indicates the results of the accesses from a client to a
server both of which are placed within the same VM. All
Intra-VM accesses are permitted. The VM-VM and VM-
Host columns indicate the access results from a VM to
another VM and from a VM to the host, which mostly
are refused. In other words, cross-VM operations are

correctly blocked and thus the VM isolation is preserved.
There are two exceptions in the table. One is at the

rows for socket, which allows connect and send
operations to cross VM boundary, because network
communications should be permitted. The other is at the
rows for file, registry and device, which allows read
operations to be carried from a VM to the host. This is
the result of the copy-on-write policy of FVM which
aims to avoid duplicating a huge volume of OS objects
from the host to each VM environment. However, this
should not affect the isolation since any write result is
saved separately within the corresponding VM. In
addition, for many types of objects, e.g., event, we test
open operation instead of read and write, because read
and write operations need object handles that are
obtained by open operations.

We also tested 30 more individual applications. Every
application can smoothly run three instances
simultaneously in two VMs and the host environment
separately. The applications are as follows: Google
Chrome, Windows command prompt, Internet Explorer,
Microsoft Clip Organizer, MS Outlook Express, MS
Messenger, mIRC, Visual C++, Firefox, Adobe Reader,
Bitcomet, Foxmail, Windows Media Player, Putty SSH
client, WinRAR, Skype, Windows FTP client, Beyond
Compare, Source Insight, Calculator, Utility Manager,
Notepad, Minesweeper, Hearts, WebBench Client,
Winamp, Internet Backgammon, Diffutils Installation,
Registry Commander, fvmsetup.

Moreover, our former test in Section 6.1 also shows
that Shuttle can provide enough isolation even when
facilitating cross-VM interactions, as multiple instances

of the same application can simultaneously perform
inside different VMs and the host.

In short, the three serials of testing results above show
that, Shuttle can successfully offer isolation functionality
while providing necessary exceptions for essential cross-
VM interactions. The major reason lies in our principle
of least penetration. That is, we only allow the cross-VM
communications with specific IPC object names between
predefined applications run in predefined VMs.
Therefore, the chance of compromising the isolation of a
VM is reduced to the minimum level.

6.3 Performance
In this section, we show the impact of Shuttle on the
performance of virtualized applications and virtual
machines. As the performance overhead of Shuttle results
mainly from executing additional instructions when
intercepting system calls and API functions, we measure
specifically the interception overhead of the
corresponding system calls and API functions. First we
disable the FVM layer, run a group of applications
natively in the host environment, and count the average
number of CPU cycles spent in each system call and API
function with the rtdsc instruction. Then, we enable the
FVM layer without Shuttle, run the same applications in a
VM and take the same measurements. Finally, we enable
the FVM layer with Shuttle, run the same applications and
take the same measurements. Each of the reported
numbers shown in Table 4 is an average of the results of
100 runs on machine A running Windows 2K.

Table 4 shows the interception overheads in terms of
CPU cycles of a set of intercepted system calls and
Win32 API functions, including four file-related system
calls, three IPC-related system calls and five service
related API functions. The new FVM with Shuttle
enforced takes up to 31% more CPU cycles than the
native configuration for file-related system calls, up to
132% for IPC-related system calls and 1.8% for service
related API functions. Although the per-system call
overhead seems to be significant for IPC-related system
calls, the end-to-end impact on the overall system
performance is much smaller, because IPC-related
system calls account for lower than 0.2% of all invoked
system calls in our test applications. Moreover,
compared with old FVM without Shuttle, the current
implementation of the proposed Shuttle approach adds
less than 14.2% extra CPU cycles for file-related system
calls and less than 10.7% for IPC-related system calls. For
most service related API functions, the new FVM is
actually as fast as the old one or even slightly faster,
because service names used in API functions do not
need to be renamed when Shuttle is in place. From these
results, we can conclude that the performance cost of
Shuttle is quite acceptable.

To verify the effectiveness of the start-on-demand and
stop-on-idle policies presented in Section 4, we performed
a test to calculate the startup and stop time of VMs with
and without the enforcement of the policies. Every tested
VM contains the instances of three Windows services:
RPCSS, DcomLaunch and Tlntsvr, as well as other

Interactive Operations

Samples Cross‐VM Inter‐
Process

Communications

Cross‐VM
Name

Transfers

Cross‐VM
Application
Invocations

Intra‐VM
Application
Dependencie

s

RPCSS on Windows 2000 √ √ √

IIS on Windows 2000 √ √ √ √

RPCSS on Windows XP √ √ √ √

Dcomlaunch on Windows XP √ √ √

IIS on Windows XP √ √ √ √

Mysql on Windows XP √ √ √ √

Apache on Windows XP √ √

Tlntsvr on Windows XP √ √ √

CiSvc on Windows XP √ √ √

ImapiService on Windows XP √ √ √ √

SQL Server on Windows XP √ √ √ √

Ntsvcs on Windows XP √ √ √ √

MS Word on Windows XP √

MS PowerPoint on Windows XP √

MS Excel on Windows XP √

MS Office Assistant on XP √

AutoCAD on Windows XP √ √

Adobe installation on Windows XP √ √

MS Office 2003 installation on XP √ √

Regcmd installation on XP √ √

StraceNT on Windows XP √

ProcessMonitor on Windows XP √

TABLE 2
TESTING RESULTS OF RUNNING INTERACTION-DEPENDENT APPLICATIONS

IN VMS WITH THE SUPPORT OF SHUTTLE. AFTER ADDRESSING THE

INTERACTIVE OPERATIONS MARKED, ALL THE APPLICATIONS CAN

PERFORM INSIDE VMS AND COOPERATE ACROSS VMS CORRECTLY.

applications that depend on the services. In the VMs
without the policies, these services should be started at
the VM booting time in order to prevent the application
failures caused by intra-VM dependencies. As shown in
Figure 5, the booting up speed of VMs with the start-on-
demand policy are 8~14 times faster than that of the VMs
without the policy. Meanwhile, as shown in Figure 6, the
stopping time of VMs with the stop-on-idle policy is 5~7
times faster than that of the VMs without the policy. This
implies that the three services are active in the VMs
without the stop-on-idle policy when stopping the VMs,
and hence such VMs occupy more system resources than
the VMs with the policy. Moreover, along with the
increasing number of the concurrent VMs, the
startup/stop times of the VMs with the policies increase
slightly while the startup/stop times of the VMs without
the policies increase significantly. This demonstrates that
the VMs enforced with the start-on-demand and stop-on-
idle policies have better scalability than those not enforced
with the policies.

7 RELATED WORK
As far as we know, there is no such a project that can
successfully handle all types of inter-application
interactions across and within OS-level VMs in the
literature. There are three categories of projects related to
our work.

The first category is OS-level virtualization projects
that include FreeBSD Jail [10], Linux-VServer [23], Solaris
Zones [20], Open VZ [24], FVM[28], Zap [16], PDS [1] and
Cells [2] etc. These projects successfully partition a single
OS environment into multiple VMs. However, very
limited efforts have been made on application interactions
cross-VM and intra-VM, although they are required by
many cooperative applications. FVM [28] hard-codes a
few IPC object names as exceptions in its virtualization
layer, so that it can partially support the cross-VM
communications between applications in a VM and in the
host environment. However, it can not flexibly support
the types of cross-VM communications that are not hard-

Objects Operations VM‐VM VM‐Host Intra‐VM Objects Operations VM‐VM VM‐Host Intra‐VM

Read × √ √ Create × × √
Write × × √ Open × × √

File/

Directory
Create × × √

Service

Start × × √
FileMapping Open × × √ Window Find × × √
Data Copy Send × × √ Mutant Open × × √

Read × √ √ Create × × √
Write × × √

Semaphore
Open × × √Registry

Create × × √ Read × × √
RPC Send × × √

Named Pipe
Write × × √

Read × √ √ Get Data × × √
Write × × √

Clipboard
Set Data × × √Device

Create × × √ Bind × × √
Process Open × × √ Connect √ √ √
Mailslot Open × × √

Socket

Send √ √ √
Event Open × × √ Message Send × × √
COM Request × × √ Connect × × √
Timer Open × × √

Port
Request × × √

System calls and Win32 API functions Native
(CPU Cycles)

FVM
(CPU Cycles)

Shuttle
(CPU Cycles)

Overhead
(%)

NtCreateFile 334,492 401,931 (20%) 403,413 (21%) 0.4%

NtOpenFile 167,620 216,895 (29%) 218,544 (30%) 0.8%

NtCreateNamedPipeFile 183,574 223,960 (21%) 240,691 (31%) 7.5%

File

NtCreateMailslotFile 40,790 42,015 (3%) 48,002 (18%) 14.2%

NtOpenSemaphore 30,234 64,286 (113%) 70,047 (132%) 9%

NtCreatePort 37,241 72,309 (94%) 80,026 (115%) 10.7% IPC

NtOpenSection 38,134 72,742 (91%) 80,425 (111%) 10.6%

StartService 2,166,808,231 2,166,819,311 (<0.1%) 2,166,818,157 (<0.1%) <0.1%

RegisterServiceCtrlHandlerEx 2,865,374 2,865,609 (<0.1%) 2,865,481 (<0.1%) <0.1%

QueryServiceStatusEx 2,011,945 2,011,960 (<0.1%) 2,011,959 (<0.1%) <0.1%

CreateService 8,264,623 8,406,775 (1.7%) 8,264,803 (<0.1%) ‐1.7%

Service

OpenService 5,490,443 5,490,570 (<0.1%) 5,589,401 (1.8%) 1.8%

TABLE 3
TESTING RESULTS OF THE ISOLATION CAPABILITY OF FVM ENFORCED WITH SHUTTLE, WHICH CAN CORRECTLY BLOCK GENERAL CROSS-VM INTERACTIONS

INCLUDING BOTH VM-VM AND VM-HOST INTERACTIONS. × AND √ REPRESENT BLOCKED AND ALLOWED OPERATIONS, RESPECTIVELY.

TABLE 4
INTERCEPTION OVERHEAD OF SYSTEM CALLS AND WIN32 API FUNCTIONS. COMPARED WITH OLD FVM WITHOUT SHUTTLE, THE NEW FVM
ENFORCED WITH SHUTTLE ADDS LESS THAN 13.8% EXTRA CPU CYCLES FOR FILE-RELATED SYSTEM CALLS, LESS THAN 10.5% FOR IPC-

RELATED SYSTEM CALLS, AND LESS THAN 1.8% FOR SERVICE RELATED API FUNCTIONS.

coded. Moreover, it can not support other types of
interactive operations, e.g., cross-VM names and intra-VM
dependencies. Zap [16] introduces pods, which are
groups of processes that are provided a consistent,
virtualized view of the system. Processes outside a pod
can only interact with processes inside the pod using
network communication and shared files instead of IPC.
Shuttle provides a possible solution to facilitate inter-
application interactions across pod boundary when
pursuing a better performance. Cells [2] is a virtualization
architecture for enabling multiple virtual smartphones to
run simultaneously on the same physical cellphone. It sets
up IPC sockets to facilitate communication between VM
and the host. Shuttle, however, also address issues related
to VM-VM communication, cross-VM invocation and
transferring hard-coded names. These extended functions
may allow Cells to work in more application scenarios.

The techniques in this paper should be useful when
resolving the issues in the above OS-level virtualization
systems that are based on other OSes, e.g., Linux. This is
because these issues are irrelevant to specific OS or
virtualization technique. They are derived from the nature
of OS-level virtualization or applications, and thus also
occur in Linux-based virtualization systems. As some
concrete examples, there is a list of programs that have
problems with Linux-VServer [14]. Some of the problems
correspond to the issues resolved in this paper, for
example, the problem “OpenLDAP Startup” is caused by
application dependency, “rndc” is caused by hard-coded
name and “Links inside screen inside a V-Server” is
caused by cross-VM invocation.

The second category of projects similar to our work
focuses on how to achieve inter-VM communications for a
hardware-level virtualization system. For example, the
Xen [4] platform enables applications to transparently
communicate across VM boundaries using standard
TCP/IP sockets and traversing the network
communication path via Dom0. In order to improve the
performance of cross-VM communications, XenSocket
[25], IVC [9], XWay [11], XenLoop [27] and Fido [6] have
exploited the inter-domain shared memory provided by
the Xen hypervisor. Different from these projects, Shuttle
focuses on facilitating IPCs between OS-level VMs instead
of hardware-level VMs. Moreover, it handles not only
cross-VM communications but also cross-VM names and
startups, as well as intra-VM dependencies, which mainly
results from the characteristic of OS-level virtualization
when multiple VMs share the single OS kernel.

The third category of projects is library operating
systems [7][8][12]. The idea is that the entire personality
of the OS on which an application depends runs in its
address space as a library. A recent project, Drawbridge
[19], shows the library OS can offer better system
security and more rapid independent evolution of OS
components. As a structuring principle, Drawbridge
identifies three categories of services in OS
implementations: hardware services, user services, and
application services. Then, it uses these service
categories to drive the refactoring of Windows into the
Drawbridge library OS. Drawbridge packages

application services into the library OS and leaves user
and hard-ware services in the host OS. The scheme of
Shuttle to handle inter-process interactions across VM
boundary can be useful to resolve the multi-process
applications problem in Drawbridge.

Finally, our former work [18] proposes a scheme for
inter-application interactions on OS-level virtualization.
In this paper, we add some valuable and novel contents.
First, we propose a novel access control approach to
better resolve the cross-VM inter-process
communication problem, which is the first and most
important problem when facilitating inter-application
interactions for OS-level VMs. Second, we design two
new algorithms to implement the start-on-command and
stop-on-idle policies. Third, we have discovered and
included a new type of application dependency, i.e.,
one-to-group dependency, which is essential because
without properly handling this type of dependency the
related applications might fail in the future.

8 CONCLUSION
Advances in OS-level virtualization technology have
strengthened the isolation between VMs. However,
many interaction-intensive applications require
penetrating the isolation boundaries to cooperate with
the applications in other VMs. In this paper, we make
the first step towards supporting the application
interactions in an OS-level virtualization system by
facilitating four types of interactive operations,
including cross-VM inter-process communications,
cross-VM name transfers, cross-VM application
invocations and intra-VM application dependencies.
Specifically, we design a novel approach, Shuttle, that
consists of four techniques, each of which intends to

Fig. 5. The startup time of the VMs enforced with and without the
start-on-demand policy. Without the policy, a VM has 8~14 times
the delay to boot up itself compared to that when using the policy.

Fig. 6. The stop time of the VMs enforced with and without the
stop-on-idle policy. Without the policy, a VM has 5~7 times the
delay to shutdown itself compared to that when using the policy.

0

2000

4000

6000

8000

10000

12000

14000

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Number of Concurrent VMs

Mi
l
li

se
co

n
d

Start-on-Demand Without Start-on-Demand

0

1000

2000

3000

4000

5000

6000

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Number of Concurrent VMs

Mi
ll

is
e
co

nd
Stop-on-Idle Without Stop-on-Idle

handle a corresponding interactive operations. As a
result, a number of interaction-depending applications
that can not run within a VM previously, e.g., RPCSS, IIS,
can now run under the support of Shuttle. Empirical
performance measurements on the prototype
implementation of the proposed Shuttle approach show
that the compromise on isolation are negligible and the
additional performance overhead is rather minor, when
compared with that of the original version of FVM.

ACKNOWLEDGEMENT

We would like to thank our shepherd Dr. Galen Hunt
from Microsoft Research and all the anonymous
reviewers for their insightful comments and feedbacks.
This work is supported by Natural Science Foundation
of China under grants No. 60703103 and No. 60833005,
US National Science Foundation under grantsCNS-
0751121,ECCS 1231800, and CNS-1247924.

REFERENCES
[1] B. Alpern, J. Auerbach, V. Bala, T. Frauenhofer, T. Mummert, and M.

Pigott, “Pds: A virtual execution environment for software
deployment,” in Proceedings of the 1st International Conference on Virtual
Execution Environments, 2005.

[2] J. Andrus, C. Dall, A. V. Hof, O. Laadan, and J. Nieh. Cells: a virtual
mobile smartphone architecture. In Proceedings of the Twenty-Third
ACM Symposium on Operating Systems Principles (SOSP '11). ACM,
New York, NY, USA, 173-187.

[3] M. Armbrust, A. Fox, R. Griffith et al., Above the Clouds: A Berkeley
View of Cloud Computing, Unversity of California, Berkeley,
Berkeley, CA, 2009.

[4] P. Barham, B. Dragovic, K. Fraser, S. Hand, T. Harris, A. Ho, R.
Neugebauer, I. Pratt, and A. Warfield. Xen and the art of
virtualization. In Proceedings of the 19th ACM Symposium on Operating
Systems Principles, pages 164–177. ACM Press, 2003.

[5] A. Bavier , M. Bowman , B. Chun , D. Culler , S. Karlin, S. Muir, L.
Peterson, T. Roscoe, T. Spalink, M. Wawrzoniak, Operating system
support for planetary-scale network services, Proceedings of the 1st
conference on Symposium on Networked Systems Design and
Implementation, p.19-19, March, 2004, California.

[6] A. Burtsev, K. Srinivasan, P. Radhakrishnan, L. N. Bairavasundaram,
K. Voruganti, and G. R. Goodson, “Fido: Fast inter-virtual-machine
communication for enterprise appliances,” in Proceedings of the
USENIX Annual Technical Conference, San Diego, USA, 2009.

[7] D. R. Cheriton and K. J. Duda. A Caching Model of Operating
System Kernel Functionality. In Proceedings of the 1st USENIX
Symposium on Operating Systems Design and Implementation, 1994.

[8] D. R. Engler, M. F. Kaashoek, and J. O'Toole, Jr.. 1995. Exokernel: an
operating system architecture for application-level resource
management. In Proceedings of the fifteenth ACM symposium on
Operating systems principles (SOSP '95), Michael B. Jones (Ed.). ACM,
New York, NY, USA, 251-266.

[9] W. Huang, M. Koop, Q. Gao, and D.K. Panda. Virtual machine
aware communication libraries for high performance computing. In
Proceedings of SuperComputing, Reno, NV, Nov. 2007.

[10] P.-H. Kamp and R. N. M. Watson. Jails: Confining the omnipotent
root. In Proceedings of the 2nd International SANE Conference, 2000.

[11] K. Kim, C. Kim, S.-I. Jung, H.-S. Shin, and J.-S. Kim. Inter-domain
socket communications supporting high performance and full binary
compatibility on Xen. In Proceedings of the fourth ACM International
Conference on Virtual Execution Environments, 2008.

[12] I. Leslie, D. McAuley, R. Black, T. Roscoe, P. Barham, D. Evers, R.
Fairbairns, and E. Hyden. The Design and Implementation of an
Operating System to Support Distributed Multimedia Applications.
IEEE Journal on Selected Areas In Communications, 14 (7), 1996.

[13] Linux VServer, http://linux-vserver.org/Documentation, 2010.
[14] Linux VServer, http://linux-vserver.org/Problematic_Programs, 2011
[15] Microsoft. Process Explorer. http://technet.microsoft.com/en-us/

sysinternals/bb896653.aspx
[16] S. Osman, D. Subhraveti, G. Su, and J. Nieh. The Design and

Implementation of Zap: A System for Migrating Computing
Environments. In Proceedings of the 5th USENIX Symposium on
Operating Systems Design and Implementation (OSDI02), pages 361–376,
Boston, MA, Dec 2002.

[17] P. Padala, X. Zhu, Z.Wang, S. Singhal, and K. Shin. Performance
Evaluation of Virtualization Technologies for Server Consolidation.
Technical Report HPL-2007-59, HP Labs, April 2007.

[18] Z. Shan, X. Wang, T. Chiueh, and X. Meng. 2012. Facilitating inter-
application interactions for OS-level virtualization. In Proceedings of
the 8th ACM SIGPLAN/SIGOPS conference on Virtual Execution
Environments (VEE '12). ACM, New York, NY, USA, 75-86.

[19] D. E. Porter, S. Boyd-Wickizer, J. Howell, R. Olinsky, and G. C. Hunt.
2011. Rethinking the library OS from the top down. In Proceedings of
the sixteenth international conference on Architectural support for
programming languages and operating systems (ASPLOS '11). ACM,
New York, NY, USA, 291-304.

[20] D. Price and A. Tucker. Solaris Zones: Operating system support for
consolidating commercial workloads. In Proceedings of the 18th Large
Installation System Administration Conference (LISA), USENIX, 2004.

[21] J.H. Saltzer and M.D. Schroeder. The protection of information in
computer systems. In Proceedings of the IEEE, 63(9):1278-1308, 1975.

[22] Z. Shan, X. Wang, T. Chiueh. Safe Side Effects Commitment for OS-
Level Virtualization. In Proc. of the 8th ICAC, June 2011.

[23] S. Soltesz , H. Pötzl , M. E. Fiuczynski, A. Bavier, L. Peterson,
Container-based operating system virtualization: a scalable, high-
performance alternative to hypervisors, In Proceedings of the 2nd ACM
SIGOPS/EuroSys European Conference on Computer Systems, March 21-
23, 2007, Lisbon, Portugal.

[24] SWSoft, “OpenVZ - Server Virtualization,” 2006, http://www.
openvz.org/.

[25] X. Zhang, S. McIntosh, P. Rohatgi, and J.L. Griffin. Xensocket: A high-
throughput interdomain transport for virtual machines. In
Proceedings of Middleware, 2007.

[26] P. Walters, V. Chaudhary, M. Cha, S. Guercio Jr., S. Gallo, "A
Comparison of Virtualization Technologies for HPC," In Proceedings
of the 22nd International Conference on Advanced Information Networking
and Applications (AINA 2008), pp.861-868.

[27] J. Wang, K.-L. Wright, and K. Gopalan. Xenloop: A transparent high
performance inter-VM network loopback. In Proceedings of HPDC’08.

[28] Y. Yu, F. Guo, S. Nanda, L. Lam, T. Chiueh, `̀ A Feather-weight
Virtual Machine for Windows Applications'', in Proceedings of VEE'06.

[29] Z. Shan, X. Wang, T. Chiueh, "Malware Clearance for Secure
Commitment of OS-Level Virtual Machines," IEEE Trans. on
Dependable and Secure Computing, Nov. 2012

Zhiyong Shan is an associate professor in the department of
Computer Science of the Renmin University of China. He was a
postdoctoral research associate in the department of computer
science of the Stony Brook University. He received the PhD
degree in computer science from Chinese Academy of Science.
Dr. Shan won president award of Chinese Academy of Science in
2004 and Beijing Science & Technology Achievement Award in
2005. His research interests include operating system and
computer security.
Xin Wang is an associate professor in the department of Electrical
and Computer Engineering and an affiliated professor in the
department of Computer Science of the Stony Brook University.
She received the PhD degree in electrical and computer
engineering from Columbia University. Her interests include
wireless networks, mobile and distributed computing, computer
security. She won NSF career award in 2001.
Tzi-cker Chiueh is a professor in the department of Computer
Science of the Stony Brook University. He received the PhD
degree in computer science from UC Berkeley. His research
interests include computer security and storage system. He
received an NSF CAREER award in 1995, a Best Paper Award
from 2005 Annual Computer Security Applications Conference.

