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ABSTRACT

Among various sparse-array techniques, co-prime array is found
to be more attractive because of its high efficiency and simplic-
ity. In this paper, we propose a scheme that can exploit both sum
and difference co-arrays to form a larger size of continuous vir-
tual array while keeping the conventional co-prime array config-
uration. Compared to the method that needs to extend the sensor
array size to ensure the continuity of virtual array, our scheme
can reduce the number of required physical sensors while still
obtaining the same or even more degrees-of-freedom that can be
exploited in direction-of-arrival (DOA) estimation. Simulation
results demonstrate the effectiveness of our proposed method
in achieving lower-cost, faster, and more accurate DOA estima-
tion.

Index Terms— Co-prime array, direction-of-arrival (DOA)
estimation, sum co-array, difference co-array.

1. INTRODUCTION

As one of the most significant topics in the signal processing
field, array signal processing techniques have been studied ex-
tensively. One basic problem they can solve is to estimate the
unknown parameters of the sources by exploiting the available
temporal and spatial information collected by the sensor arrays.
Specifically, they are often applied to estimate the direction-of-
arrival (DOA) of sources, one major application of antenna ar-
ray. Generally, a Uniform linear array (ULA) with N + 1 el-
ements can identify N sources, and has a degree of freedom
(DOF) of N . To detect a large number of sources, it requires
a large array with big N which would incur a big cost, and the
estimation accuracy also reduces.

To address this challenge, sparse array construction such as
minimum redundancy arrays (MRAs) [1], nested arrays [2] and
co-prime arrays [3] have been proposed. These sparse arrays
use their difference co-arrays to generate a virtual array with
a larger size to increase DOF. Because there is no closed-form
expression for the geometry configuration and no approximate
DOF for MRAs, it is hard to design the MRA system in most
cases. Co-prime array becomes more attractive because of its
high efficiency and simplicity. With the use of co-prime ar-
ray techniques, signal powers become the new sources. How-
ever, they are coherent, while the MUSIC algorithm [4] often
used to estimate the DOA requires sources to be incoherent.
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Although spatial smoothing technique [5] can be used to de-
correlate sources, it is generally applied on the uniform data.
The difference co-array of a conventional co-prime array has
“holes” [3], that is, some virtual array elements are missing. To
solve this problem, Pal et. al in [6] consider using an extended
co-prime construction, which requires 2M +N − 1 sensors to
achieve O(MN) degrees of freedom. The work in [7] uses
proportional frequencies to fill holes in the virtual array. Be-
sides the need of additional frequencies, these frequencies may
not be available at the sources. Other works use compressive
sensing [8] and temporal signal coherence (TCP) in moving co-
prime arrays [9] to fill holes in the virtual array.

The aim of this work is to form a larger size continuous
virtual array using only the configuration of the conventional
co-prime array without the need of additional array elements or
frequencies. Specifically, with a physical array of M + N − 1
elements, we exploit the concurrent use of sum and difference
co-arrays to form a continuous virtual array at low-cost. Com-
pared to [6], this design can save M sensors and can be applied
in systems where the available space and power are limited.

The remainder of the paper is organized as follows. In sec-
tion 2, we review two configurations of co-prime array and their
difference co-arrays. Section 3 introduces the sum co-array and
the benefit of combining the sum and difference co-arrays. In
Section 4, we propose a method to implement the proposed sum
and difference co-array with physical array set to that of the con-
ventional co-prime array. Several supporting simulation results
are provided in Section 5 and conclusions are drawn in Section
6.

2. CO-PRIME ARRAYS AND CORRESPONDING
DIFFERENCE CO-ARRAYS

In this section, we introduce two basic types of co-prime ar-
ray configuration, conventional co-prime array and extended co-
prime array, and their corresponding difference co-arrays.

2.1. Conventional Co-prime Arrays

A conventional co-prime array [3] consists of two uniform lin-
ear sub-arrays with separationMd andNd respectively (Fig. 1).
There are N sensors in the first sub-array and M sensors in
the second sub-array. M and N are co-prime integers, i.e.,
gcd(M,N) = 1, and d is the unit of inter-element spacing.
To avoid spatial aliasing, d is typically set to λ/2, where λ is
the wavelength of impinging narrowband signals. The sensors



Fig. 1: Configuration of a conventional co-prime array

in the conventional co-prime array are positioned at

PC = {Mnd} ∪ {Nmd}, (1)

where 0 ≤ n ≤ N − 1 and 0 ≤ m ≤ M − 1. Since the first
sensors of these two uniform linear sub-arrays are co-located,
the total number of sensors in the conventional co-prime array
is M +N − 1.

Fig. 2: The difference co-array of a conventional co-prime
array

The corresponding difference co-array generated from this
configuration can be expressed as

DC = {Mnd−Nmd} ∪ {Nmd−Mnd}, (2)

where 0 ≤ n ≤ N − 1 and 0 ≤ m ≤M − 1.
Fig. 2 shows an example of the difference co-array gen-

erated from a conventional co-prime array, with M = 3 and
N = 4. We can see “holes” in the difference co-array, which
prevents its direct application in many practical applications, in-
cluding some DOA estimation cases that use the spatial smooth-
ing technique [5] to de-correlate the coherent signals.

2.2. Extended Co-prime Arrays

Fig. 3: Configuration of an extended co-prime array

To achieve a longer continuous virtual ULA from the differ-
ence co-array, extended co-prime array was proposed in [6]. As
shown in Fig. 3, an extended co-prime array has similar config-
uration as that of the conventional co-prime array, but has more
sensing elements in the second sub-array. The sensor positions
in this modified configuration form the set

PE = {Mnd} ∪ {Nmd}, (3)

where 0 ≤ n ≤ N − 1 and 0 ≤ m ≤ 2M − 1. The number of
sensors in the second sub-array is doubled, so the total number
of sensors in the extended co-prime array is 2M +N − 1.

Similarly, the corresponding difference co-array generated
from the extended co-prime array can be expressed as

DE = {Mnd−Nmd} ∪ {Nmd−Mnd}, (4)

where 0 ≤ n ≤ N − 1 and 0 ≤ m ≤ 2M − 1. Fig. 4 shows the
difference co-array generated from an extended co-prime array
with M = 3 and N = 4.

Fig. 4: The difference co-array of an extend co-prime array

The difference co-array generated from the extended co-
prime array can form a virtual ULA whose continuous elements
are at least located at

PU = {kd}, (5)

where −MN ≤ k ≤ MN . In this case, we can get O(MN)
DOFs using 2M+N−1 physical sensors. Although the virtual
array formulated is continuous, compared to the conventional
co-array, it needs more sensors and increases the array aperture.

3. EXPLORATION OF SUM AND DIFFERENCE
CO-ARRAYS

In this section, we first introduce the basic concept of the sum
co-array and then show why we want to apply the sum co-array
and difference co-array on the co-prime array simultaneously.

With the same configuration of the conventional co-prime
array, i.e., formed with M + N − 1 physical elements as in
Fig. 1, the positive sum co-array can be expressed as

SC+ = {Mnd+Nmd} ∪ {2Mnd} ∪ {2Nmd}, (6)

and the corresponding negative sum co-array generated from the
conventional co-prime array can be expressed as

SC− = {−Mnd−Nmd} ∪ {−2Mnd} ∪ {−2Nmd}, (7)

where 0 ≤ n ≤ N − 1 and 0 ≤ m ≤M − 1.

Fig. 5: Sum and difference co-array of a M = 3, N = 4
Co-Prime array



Fig. 5 shows the physical array structure of a conventional
co-prime array with M = 3 and N = 4 and its positive sum
and difference co-arrays. We can see that the sum co-array and
the difference co-array have different holes. Therefore, we can
exploit the sum and difference co-arrays together based on the
same conventional co-prime array to form a longer continuous
virtual ULA.

Lemma 1. Given that M and N are co-prime integers, the set
{±Mn±Nm} at least contains integers from −MN to MN .

Proof. The Lemma is equivalent to: Given a k in the range 0 ≤
k ≤ MN , we can always find n and m in the ranges −(N −
1) ≤ n ≤ N − 1 and −(M − 1) ≤ m ≤ M − 1, such that
k =Mn−Nm. This follows from the Property 4 in [3].

Now theoretically, we can see that by generating both sum
and difference co-arrays from a conventional (M,N) co-prime
array, we can form a continuous virtual ULA from −MN to
MN so that we can obtain O(MN) degrees of freedom using
only M +N −1 physical sensors. Compared with the extended
co-prime array technique, this allows us to save M sensors. In
practice, this continuous virtual ULA usually can be extended
and range between−MN−M−N+1 andMN+M+N−1,
which means we can obtain a DOF enhancement at the same
time.

4. IMPLEMENTATION OF SUM AND DIFFERENCE
CO-ARRAY

Our proposed Sum and Difference Co-Array only requiresM+
N − 1 physical sensors, the same as that of the conventional
co-prime configuration. Although promising, there is a chal-
lenge of actually forming the continuous virtual array with the
proposed array technique.

Usually, a difference co-array can be obtained by comput-
ing the covariance matrix of the observed data and the sum co-
array arises naturally as the virtual array in active sensing [10].
However, this sum co-array contains only cross-sum terms and
misses self-sum terms. Following we will present another ap-
proach to generate the sum and difference co-arrays for detect-
ing the DOAs of a group of incoherent real-valued source sig-
nals.

Assuming D narrowband real-valued sources with pow-
ers [σ2

1 σ2
2 · · · σ2

D] impinge on the array from directions
[θ1 θ2 · · · θD], the signals received at the array elements can be
expressed as

x[k] = As[k] + n[k] (8)

where A is the array manifold matrix of the form
A = [a(θ1) a(θ2) · · · a(θD)]

=



1 1 · · · 1
ej(2πd/λ)M sin θ1 ej(2πd/λ)M sin θ2 · · · ej(2πd/λ)M sin θD

...
ej(2πd/λ)(N−1)M sin θ1 ej(2πd/λ)(N−1)M sin θ2 · · · ej(2πd/λ)(N−1)M sin θD

ej(2πd/λ)N sin θ1 ej(2πd/λ)N sin θ2 · · · ej(2πd/λ)N sin θD

...
ej(2πd/λ)(M−1)N sin θ1 ej(2πd/λ)(M−1)N sin θ2 · · · ej(2πd/λ)(M−1)N sin θD


s[k] = [s1(k) s2(k) · · · sD(k)]T denotes the kth snapshot of
the source signal vector, and n[k] is the noise vector which is

assumed to be temporally and spatially white and uncorrelated
from the source.

In array signal processing, the difference co-array is formed
naturally in the computation of the second order moments such
as the autocorrelation between the received data,

Rxx1 = E[x(k)x(k)H ] = ARssAH + σ2
DI, (9)

where Rss is the source autocorrelation matrix, with

Rss = diag([σ2
1 σ

2
2 · · · σ2

D]. (10)

In practice, the autocorrelation matrix can be computed with
the following sample average

R̂xx1 =
1

L

L∑
k=1

x(k)x(k)H , (11)

where L is the total number of snapshots. In order to build the
new model using the difference co-array as the new array man-
ifold matrix, we vectorize the autocorrelation matrix and get

z1 = vec(Rxx1) = B1 · p + σ2
nvec(I), (12)

where B1 = [Bθ1 Bθ2 · · ·BθD ] = A∗ � A (Khatri-Rao product
of A∗ and A) and p = [σ2

1 σ
2
2 · · · σ2

D].
We consider the vector z1 to be the new received data, B1

to be the new array manifold matrix and p to be the new source
signal. Similarly, we can apply autocorrelation-like computa-
tion to achieve the positive sum co-array Rxx2 and the negative
sum co-array Rxx3 as

Rxx2 = E[x(k)x(k)T ] = AssTAT + nnT (13)

z2 = vec(Rxx2) = B2 · p2 + vec(nnT ) (14)

Rxx3 = E[x(k)∗x(k)H ] = A∗s∗sHAH + n∗nH (15)

z3 = vec(Rxx3) = B3 · p3 + vec(n∗nH) (16)

Since the source signals are real-valued,

p2 = p3 = p = [σ2
1 σ

2
2 · · · σ2

D]
T (17)

We can then easily integrate the three newly generated re-
ceived data vectors:

z = [zT1 zT2 zT3 ]
T (18)

Thus, we get a larger corresponding array manifold matrix:

B = [BT1 BT2 BT3 ]
T (19)

As there exist redundant and out-of-order elements in the
vector, we have to drop and reorder some elements to rebuild
z to form a new vector z′ so that its corresponding B′ has the
same expression as the manifold of a continuous virtual ULA.
The rebuilt vector z′ can be expressed as

z′ = B′ · p + n′. (20)

Since the new source signal p and the new noise vector n′
are no longer incoherent, we use spatial smoothing technique



[5] to build the rank of a positive semi-definite matrix from this
new model. We divide the new received data vector z′ into mul-
tiple vectors z

′

i so that its corresponding virtual ULA array is
divided into multiple overlapping sub-arrays. Then we com-
pute the autocorrelation-like matrix of each divided received
data vector z

′

i

Rzi , z′iz
′H
i (21)

Taking the average of the autocorrelation matrices of all sub-
arrays, we can get the final spatial smoothed matrix Rzz as

Rzz =
1

DOF

DOF∑
i=1

Rzi (22)

where DOF equals the number of sub-arrays and denotes the
maximum number of detectable sources.

Finally, we can accomplish DOA estimation by applying
MUSIC algorithm [4] on Rzz .

5. PERFORMANCE EVALUATION

In this section, we evaluate the performance of our proposed
sum and difference co-prime array (SD-CPA) technique through
simulations over matlab. We run MUSIC algorithm to detect the
DOAs of a group of uniformly distributed sources. We compare
the performance of SD-CPA with those of three other reference
methods which exploit the dual-frequency co-prime array (DF-
CPA), the extended co-prime array (E-CPA) and uniform linear
array (ULA) respectively.

In the first study, we consider a conventional co-prime array
configuration with M = 4 and N = 5, so the total number of
physical sensors is M + N − 1 = 8. The total number of sum
and difference items generated is 2MN +2M +2N − 1 = 57.
After using the spatial smoothing technique, the available DOF
is MN + M + N = 29. We generate 25 sinusoidal sources
with SNR = 0dB, and angles θi uniformly distributed within
the range−60◦ to 60◦. The covariance matrix is estimated using
2000 snapshots. From the MUSIC spectrum in Fig. 6, we can
see that SD-CPA can identify all sources in the spectrum, which
demonstrates its effectiveness in identifying a larger number of
sources using a much smaller number of physical sensors.
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Fig. 6: MUSIC spectrum

We then compare the root mean squared error (RMSE) of
the DOA estimation among the four different methods, with

the covariance matrices estimated using 2400 snapshots and the
number of target sources set to D = 9. Fig. 7 (a) shows the
result when all methods use the same number of physical sen-
sors, which is 12. Compared to DF-CPA, E-CPA and ULA, our
proposed method reduces the RMSE over 50%, 60% and 90%,
respectively. When using the same number of physical sensors,
our method has much larger number of DOFs. Thus, when de-
tecting the same number of sources, our method has a better
detection performance. Fig. 7 (b) shows the comparison result
when all methods have the same or similar number of DOFs,
and the numbers of physical sensors are respectively 6, 9, 9 and
13. We can see that ULA has the best performance, because
all other methods use the ideal virtual ULA which still suffers
from some information loss. Compared to the peer schemes,
our method has a comparable detection performance but uses
the fewest physical sensors.
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(a) Same number of sensors
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Fig. 7: RMSE versus SNR

In Fig. 8, we investigate the impact of snapshots instead of
SNR. All conditions are same as the previous study, except that
we vary the number of snapshots and the SNR is set to 5dB.
Fig. 8 (a) shows that, when using the same number of physical
sensors and under the same number of snapshots, our method re-
duces RMSE over 50%, 60% and 70% compared to those of DF-
CPA, E-CPA and ULA. In other words, if we want to achieve
the same RMSE, our method can save over 60%, 75% and 90%
snapshots. Our method thus can have much faster estimation
speed while reducing the cost. The reason is the same as that in
the previous study, that our method has a larger DOF. Fig. 8 (b)
shows our method has the detection performance comparable to
DF-CPA and E-CPA, however we use much fewer number of
physical sensors.
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Fig. 8: RMSE versus number of snapshots

Finally, we compare the maximum number of detectable
sources using the four different methods, each having 12 phys-
ical sensors. The threshold of RMSE is set to T = 0.5 and the
number of snapshots is 2000. From Fig. 9, we can see that our



method can detect over 1.5 times, 2 times and 3 times the num-
ber of sources compared to DF-CPA, E-CPA and ULA method,
respectively.
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Fig. 9: Maximum number of detectable source

6. CONCLUSION

We have proposed a technique SD-CPA which concurrently ex-
ploits the sum and different co-array to form a larger size of
continuous virtual array using only the conventional co-prime
array infrastructure. The proposed method enhances the maxi-
mum number of detectable sources and improves the detection
performance. More importantly, it reduces the number of re-
quired physical sensors thus the array aperture, and the number
of required snapshots thus increasing the detection speed. This
shows the high efficiency of our method in both space domain
and temporal domain.
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