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Abstract—In the estimation of direction-of-arrival (DOA) prob-
lem, traditional array signal processing techniques normally use
linear arrays sampled at Nyquist rate, and the inter-element
distance in the linear array is required to be less than or equal to
half of the wavelength to avoid angular ambiguity. The emerging
Compressive Sensing(CS) theory enables us to use random array
to sample the signal at much lower rate and still be able to
recover it. To use this theory, the spatial signal should be sparse
and it is always the case in practice. In this paper, we propose
to apply the compressive sensing theory to reduce the spatial
samples, i.e., to reduce the number of antenna elements. Instead
of only showing the benefit of using CS theory, we analyze the
performance of the angular estimation using the random array,
i.e., we analyze the performance when the measurement is Fourier
ensemble in terms of support recovery. We provide the sufficient
and necessary conditions for the reliable support estimation.

I. INTRODUCTION

Array signal processing has long been a research interest
due to its wide application in fields such as sonar, radar
and wireless communication. Direction-of-arrival(DOA) esti-
mation is one of the main problems in array signal process-
ing. There are many existing methods for the estimation of
DOA using antenna arrays. Minimum variance distortionless
response(MVDR) and multiple signal classification(MUSIC)
algorithms are two popular ones[1]. These traditional methods
often require sampling the received signal at the Nyquist-rate,
which might be expensive especially for applications that need
a large number of antenna elements such as interferometric
array used for radio astronomy.

With the recent rapid advances of Compressive Sensing(CS)
theory[2], the signal can be sampled at a much lower rate
while it is still able to recover the signal, as long as the signal
is sparse in some domain. In the DOA estimation problem,
there are usually a limited number of sources, which means
the signal is sparse in the angular domain. This naturally brings
compressive sensing into the DOA estimation problem. Some
researchers have already applied CS to DOA estimation[3], [4].
However, none of existing studies investigated the performance
of CS for DOA estimation quantitatively. In this paper, we
focus on the theoretical performance of DOA estimation using
compressive sensing. Different from [3], [5] which exploit
the sparsity of the received signals to reduce the number
of temporal-domain samples similar to the majority of the
work in the field, we exploit CS to reduce the number of
samples in the spatial domain or to improve the angular
domain resolution using a given number of antenna elements.
Instead of using a uniform linear array (ULA)[4], we consider

a random linear array (RLA) where the array is linear and the
elements of the array are randomly distributed following the
uniform distribution within a distance range.

In order to find the DOA through CS, the bearing space will
be discretized into N distinct bearing angles, or called N grids.
A vector signal θ with length N can be formulated, with each
item of the signal corresponding to the amplitude of the signal
strength in each of the N directions. As mentioned above,
with a small number of sources, θ will be sparse with many
elements to be zero. The determination of which elements
of an unknown sparse signal are non-zero based on a set of
noisy linear observations is called support recovery. Obviously,
from the perspective of compressive sensing, the problem of
DOA estimation can be considered as a support recovery
problem. The measurement matrix is Fourier ensemble, i.e.
the rows of the measurement matrix are drawn randomly from
the rows of a Discrete Fourier Transform (DFT) matrix. In
DOA estimation problem, we are more interested in finding the
support thus the corresponding angles than the actual signal
value corresponding to the support. There are some existing
efforts on the problem of the exact support recovery [6], [7],
where the information theoretic limits are given for the exact
support recovery. The error of the support recovery, however,
is simply represented as 0 if there is no error and 1 otherwise.
For the application of antenna arrays for DOA estimation, the
`2-norm support error is of more interest. Inspired by [8] in
which the support recovery for generic measurement matrix
was analyzed, in this work, we study the support recovery
problem when the measurement matrix consists of Fourier
ensembles. The Fourier ensembles are more structured than
general random matrix. Also the matrix is in the complex field,
thus we need to consider complex noise.

The paper is organized as follows. In Section II. we for-
mulate the problem of DOA estimation using the random
array. In Section III, we derive the Hammersley-Chapman-
Robbins(HCR) bound for complex values. In Section IV,
we analyze the unbiased property of the Maximum Likeli-
hood(ML) support estimator and derive the sufficient condition
for support recovery. Section V concludes the work.

II. PROBLEM FORMULATION

In this paper, we consider the problem of DOA estimation
using a random linear array. For the same array size, a random
linear array whose antenna elements are randomly distributed
within a given distance could potentially use much fewer
number of antennas compared with a conventional uniform



linear array. Let the number of antenna elements be M . In
other words, M is the number of spatial samples. Suppose
the received signal is y = [y1, y2, · · · , yM ]T , where ym is
the signal received by the mth antenna. The receiving steering
vector can be represented as

a(α) =
[
ej2πf0τ1(α), . . . , ej2πf0τM (α)

]T
(1)

where τi(α) is the signal impinging time delay difference
between each antenna element to the reference element when
the target is at the direction α and f0 is the frequency of the
carrier corresponding to the signal received, and α ∈ [0, π]. We
set a virtual element located on the origin as the reference and
assume its τvirtual(α) is zero. Suppose there are K targets.
Then y could be written as

y =

K∑
k=1

a(αk)ηk + z, (2)

where

z ∼ CN (0, σ2I). (3)

ηk denotes the amplitude of the signal from the kth target
and αk denotes the direction of the kth target. We discretize
the angular domain [0, π] into N grids where N � M , and
assume the targets only lie within the N grids. The amplitude
of the signal strength from each direction(i.e., corresponding
to one of the grids) forms the signal θ ∈ CN . Since there are
K targets, the number of non-zero elements in θ is K. We
say that θ is K sparse if K � N . We use s to denote the
indexes of the non-zero elements of θ.

s(θ)
∆
= [n1, n2, · · · , nK ]. (4)

The corresponding non-zero entries of θ are denoted as

θs
∆
= [θn1 , θn2 , · · · , θnK ], (5)

where we assume that 0 ≤ n1 < n2 < · · · < nK ≤ N − 1.
Note that the angle domain [0, π] is not equally discretized.
Instead, we discretize a transformed variable u into N equal
grids, where u = cosα and u ∈ [−1, 1]. By doing this, we
intend to keep the coherence value between every two adjacent
columns of the measurement matrix (in equation (9)) equal to
minimize the maximum coherence of the matrix and therefore
reduce the number of measurements needed for the reliable
recovery of the signal. Note that there is a trade-off between
increasing the angular resolution and reducing the coherence
parameter. For a given number of measurements, a higher
resolution thus a larger N leads to a higher coherence value
and thus reduces the probability of successful recovery. On the
other hand, a lower resolution leads to a higher probability of
successful recovery. Now equation (2) could be rewritten as

y =

K∑
k=1

a(arccos
2nk −N

N
)θnk . (6)

Let cn = n−N/2, where the integer n ∈ [0, N−1]. Thus cn ∈
{−N/2,−N/2 + 1, · · · , N/2 − 1}. Further, we assume the
distance between the mth antenna and the reference antenna

is λ
2 dm, where λ is the wavelength of the carrier frequency

and dm is uniformly distributed in the interval [0, D]. This
means D λ

2 is the array size. Clearly, λ = c
f0

where c is the
speed of light. Then equation (6) can be written as:

ym =

K∑
k=1

exp

(
j2π

dmck
N

)
θnk . (7)

Put it into the matrix form and consider the noise, we obtain

y = x + z (8)

where x = FXθ, FX is called the measurement matrix and

(FX)m,n = exp

(
j

2π

N
cn · dm

)
,

1 ≤ m ≤M, 0 ≤ n ≤ N − 1. (9)

In practice, the array size D λ
2 is given and fixed. So the best

choice for N is N = D so that −N
2

2 ≤ cn · dm ≤ N(N−1)
2 .

This also makes FX a partial Fourier matrix as desired. If N >
D, the number of grids would become too large for the array
to distinguish between grid cells. Intuitively, we also cannot
make N arbitrarily large. Although a higher N would increase
the angular resolution, it would also increase the probability
of recovery failure and result in lower performance. On the
other hand, if we set N < D, we can not fully exploit a given
size of array to obtain a good resolution. In the following
discussion, we assume N = D so we only consider the effect
of N . Our objective is to estimate the support of the signal
s(θ), i.e. the positions of the non-zero elements in the signal
which correspond to the angles of the targets.

In the estimation theory, the Cramér-Rao bound is used to
bound the variance of error of unbiased estimators. However in
this work, we want to estimate values in a predetermined set.
The possible positions are the finite N points. In such a case,
the Hammersley-Chapman-Robbins(HCR) bound[9] provides
a stronger lower bound on unbiased estimators.

III. NECESSARY CONDITION

In this section, we will provide the necessary condition for
the support recovery. That is, we will find a lower bound on
the number of measurements needed for the reliable support
recovery. We first give the HCR bound for the unbiased
estimation of the support, which helps to derive the necessary
condition. Suppose δ is the vector of unknown parameters and
we are only interested in estimating the subset of the unknown
parameters. Assume δ = [δ1, δ2], where only the estimation of
δ1 is of interest but not the estimation of δ2. Let δ̂1(y) denote
the unbiased estimator of δ1. P(y; δ) denotes the probability
density function of y conditioning on δ. Then the HCR bound
says the trace of the covariance matrix of δ̂1(y) is bounded
by

tr
[
cov(δ̂1)

]
≥ sup

δ′ 6=δ

‖δ1 − δ′1‖2∫
CM

P2(y;δ′)
P(y;δ′)

dy − 1
(10)

in which δ′ is in a set specified according to the a priori
information. In our case, δ1 corresponds to the support of



θ, which is denoted by s here. It belongs to the parameter
set of integer numbers. δ2 corresponds to the values on the
support. The density function P(y; δ) is Gaussian. Note that
if the support is known, the value on the support can be
determined by minimum mean square error method and x can
be obtained by projecting the noisy observation y into the
subspace specified by the support. Consequently, we have the
following theorem.

Theorem III.1. Assume ŝ(y) is an unbiased estimator of the
support s, the HCR lower bound on the covariance of ŝ(y) is
given by

tr [cov(ŝ)] ≥ sup
s′:s′ 6=s

‖s− s′‖2

e2‖x−x′‖2/σ2 − 1
(11)

where s′ and x′ denote the support value other than s and the
projection of x into the subspace specified by s′, respectively.

Proof: Due to the complex gaussian noise, the likelihood
probability can be written as

P(y|x) =
1

πnσ2n
exp

(
−‖y − x‖2

σ2

)
. (12)

Then we have

P2(y|s′)
P(y|s)

=

M∏
i=1

1

πσ2
exp

(
− (yi − 2x′i + xi)

2 − 2(x′i − xi)2

σ2

)
(13)

where M is the length of vector y. Then the denominator of
the right hand side of (10) becomes∫

Cn

P2(y|s′)
P(y|s)

dy − 1 = exp

(
2‖x− x′‖2

σ2

)
− 1. (14)

Therefore, we obtain the inequality (11).
The support recovery is considered to be reliable [8] if

lim
N→∞

‖s(θ)− s(θ̂)‖ = 0. (15)

For unbiased estimators, this is equivalent to

lim
N→∞

tr
[
cov

(
s(θ̂)

)]
= 0. (16)

Next we will derive the necessary condition for the reliable
support recovery. Intuitively, the recovery performance will
depend on the value of the minimum element in θ, since the
larger the value is, the easier it is to distinguish the measured
signals from the noise. We assume the minimum element in
θ is θmin. We need to use Bernstein’s inequality[10] to prove
the next theorem.

Lemma III.1. (Bernstein’s inequality) Let Zl, l = 1, · · · ,M
be a sequence of independent real-valued random variables
with mean zero and variance E[Z2

l ] ≤ v for all l = 1, ...,M .
Assume that |Zl| ≤ B almost surely. Then

P

(
M∑
l=1

Zl ≥ x

)
≤ exp

(
−1

2

x2

Mv +Bx/3

)
(17)

Theorem III.2. Let the measurement matrix be Fourier en-
semble FX ∈ CM×N . Let θmin denote the minimum none-zero
entry of θ. Then a support recovery is unreliable if

M < max

{
K,

σ2 log((N −K)2K)

4K2|θmin|2

}
(18)

Proof: Assuming the correct support is s =
(0, 1, 2, ...,K − 1), the maximum `2-norm error will happen
when the incorrect one is s′ = (N − K, ..., N − 2, N − 1).
Thus ‖s− s′‖2=(N −K)2K. On the other hand

x− x′ = FX(θ − θ′) (19)

=

K−1∑
l=0

θnl(φl − φN−K+l) (20)

> Kθmin(φl − φN−K+l) (21)

where φl denotes the lth column of the measurement matrix
FX . Taking the norm and multiplying both sides by 2/σ2, we
have

2‖x− x′‖2

σ2
>

2K2|θmin|2

σ2
‖φk − φl‖2 (22)

Note that it is impossible to achieve the reliable
support recovery if the right hand side of (11),
‖s− s′‖2/(e2‖x−x′‖2/σ2 − 1) stays away from zero as
N →∞. This implies that

lim
N→∞

P

(
2‖x− x′‖2

σ2
< log((N −K)2K)

)
= 1. (23)

By (22) we have

lim
N→∞

P

(
‖φk − φl‖2 <

σ2 log((N −K)2K)

2K2|θmin|2

)
= 1. (24)

Therefore the complement of the event

lim
N→∞

P

(
‖φk − φl‖2 >

σ2 log((N −K)2K)

2K2|θmin|2

)
= 0. (25)

To see the distribution of ‖φk − φl‖2, first we have

‖φk − φl‖2

=

M∑
i=1

∣∣∣ej 2πckdi
N − ej

2πcldi
N

∣∣∣2
=

M∑
i=1

(
2− ej

2π(ck−cl)di
N − e−j

2π(ck−cl)di
N

)
=

M∑
i=1

(
2− 2 cos

(
2πdi(ck − cl)

N

))
. (26)

Suppose ui = cos
(

2πdi(ck−cl)
N

)
where di is uniformly dis-

tributed in [0, D]. Suppose D′ = D(ck − cl). To obtain the
probability density function of ui, we need to discuss two
cases separately. The first case is when kN ≤ D′ < (k+ 1

2 )N
and the second case is when (k + 1

2 )N ≤ D′ < (k + 1)N .



It is not difficult to show that when D′ thus k are large
enough, the remainder D′%N plays a less role and can be
ignored, and both cases can be approximated to

Var[ui] ≈
1

2
(27)

E[ui] ≈ 0 (28)

When D′ = N or more generally D′ = kN (D′%N = 0),
the two cases would also have the exactly the same results.
Intuitively, when D = N , the impact of random placement
of antennas is equivalent to the case of random selection of
rows from a DFT matrix. If D′ = kN , this is equivalent to
selecting rows from a matrix which is formed by concatenating
k identical DFT matrices vertically. In the case when D′%N 6=
0, as D′ and k go to infinity, the effect will be similar to the
case D′ = kN , and therefore can be approximated by (27)
and (28).

Combine (26), (27) and (28) using (17), we have

P

(
M∑
i=1

ui ≥
σ2 log((N −K)2K)

4K2|θmin|2
−M

)

≤ exp

−1

2

(
σ2 log((N −K)2K)

4K2|θmin|2
−M

)2

M

2
+

1

3

(
σ2 log((N −K)2K)

4K2|θmin|2
−M

)
 (29)

where B in (17) is set to 1 since ui ≤ 1, and v is 1/2 as
derived above. Therefore according to (25), to make the right
hand side of (29) go to zero, the exponential component must
go to negative infinity. So

lim
N→∞

1

2

(
σ2 log((N −K)2K)

4K2|θmin|2
−M

)2

M

2
+

1

3

(
σ2 log((N −K)2K)

4K2|θmin|2
−M

)
 =∞.

(30)

Therefore, if

M <
σ2 log((N −K)2K)

4K2|θmin|2
, (31)

reliable recovery is not possible. This completes the proof.
Obviously, it is a necessary condition for the reliable support

recovery. In another word, if the support can be reliably
recovered, the following condition will be satisfied:

M ≥ σ2 log((N −K)2K)

4K2|θmin|2
. (32)

This provides the lower bound on the number of measurements
M necessary for the successful support recovery. From the
derivation above, when there is a need to increase N for
a higher angular resolution or the signals are sparse with a
smaller K or when there are weak signal sources, the spatial
number of samples or equivalently the number of antenna
elements need to be large. Note, the objective here is to
estimate the support instead of the values on the support. As
an extreme example, if K = N , any estimation of K will be
correct since n1, n2, · · · , nK in (4) is arranged in ascending

order. In a practical situation, K � N , thus K has less impact
on M than N .

IV. SUFFICIENT CONDITION

Before analyzing the sufficient condition for the reliable
support recovery, we first consider the performance of the
Maximum Likelihood (ML) estimator for `2-norm support re-
covery, and find the condition for the estimator to be unbiased.
The ML estimator should be equivalent to the least squares
solution in the Gaussian noise setting. That is

ŝML = arg min
s:|s|=K

‖y − Psy‖2 (33)

where Ps indicates the projection matrix which projects the
signal to the subspace spanned by the columns whose positions
are s. We use s′ to denote the support other than s and Fs to
denote the subspace spanned by s. We say the estimation is
unbiased if E(ŝ) = s. As long as the ML estimator becomes
unbiased, the HCR bound will be achievable. The following
results are derived along the same lines as [8]. We provide
them here for the completeness of the work.

Lemma IV.1. Let y = x + z, where x = FXθ ∈ Fs, z ∼
CN (0, σ2I) and s′ be a support vector that is different from
s. Then the probability that ML estimator selects the incorrect
support, which is denoted by PML(s′) satisfies

P(s′)
ML

< P

(
‖z‖ ≥ ‖x− Ps′x‖

2

)
(34)

Proof: ML chooses s′ over s if and only if

min
t′∈F′s

‖y − t′‖ = min
t∈Fs

‖y − t‖ (35)

Assume that ‖z‖ < ‖x− Ps′x‖/2. Then for any t′ ∈ Fs, we
have

‖y − t′‖2 = ‖x− t′ + z‖2 (36)

≥ ‖z‖2 + ‖x− t′‖2 − 2‖x− t′‖‖z‖ (37)

> ‖z‖2 (38)

= ‖y − x‖2 (39)

≥ min
t∈Fs

‖y − t‖2. (40)

Lemma IV.2. Suppose r =
‖x− Ps′x‖2

2σ2
, then

P(s′)
ML

< e−r/2
M−1∑
t=0

(r/2)t

t!
(41)

Proof: The random variable
‖z‖2
1
2σ

2
is distributed according

to the chi-square distribution with 2M degrees of freedom. By
using the cdf of the Chi-square distribution, we obtain

P
ML

(s′) < 1− γ(M, r/2)

Γ(M)
(42)



where Γ(M) is the Gamma function and γ(M,x) is the lower
incomplete Gamma function. Then we have

γ(M, r/2)

Γ(M)
= exp(−r/2)

∞∑
t=M

(r/2)t

t!
(43)

By using Taylor expansion er/2 =
∑∞
t=0

(r/2)t

t! , we obtain

γ(M, r/2)

Γ(M)
= 1− exp(−r/2)

M−1∑
t=0

(r/2)t

t!
(44)

which completes the proof.

Lemma IV.3. Let r = αM for some constant α > 1. Then
we have

P(s′) <
r

α
c(α)−r (45)

where

c(α) =

exp

(
α− 2

2α

)
(α

2

)1/α
(46)

Proof:

P(s′)
ML

<e−r/2
M−1∑
t=0

(r/2)t

t!
(47)

<e−r/2M
(r/2)M

M !
(48)

<e−r/2M
(r/2)M

(M/e)M
due to M ! > (M/e)M (49)

=
r

α

exp

(
α− 2

2α

)
(α

2

)1/α


−r

(50)

Let dmin , min
s′:s′ 6=s

‖x−Ps′x‖, β = d2
min/2Mσ2 and rmin =

βM . Then we have the following two theorems.

Theorem IV.1. For β > 1, the performance of the ML
estimator is upper bounded as

tr (cov(ŝ)) <
KMN2

2
c(β)−rmin (51)

where c(·) is defined by (46).

Theorem IV.2. Under the conditions M ≥ (1 +
ε) log(N)/β log c(β), for some fixed ε > 0 and β bounded
away from 1, the ML estimator is asymptotically unbiased as
N →∞.

The proof of theorem IV.1 and IV.2 are exactly the same
as in [8]. Theorem IV.1 provides an upper bound on the
performance of the ML estimator and theorem IV.2 proves
the unbiased property of the ML estimator, which indicates the
error of the ML estimator is lower bounded by the HCR bound.
The following theorem shows the sufficient number of mea-
surements for reliable support recovery with the partial Fourier
measurement matrix. We use Θ(·) to indicate a function is

bounded both above and below asymptotically. Formally, if
f(n) ∈ Θ(g(n)), then |g(n)| · k1 ≤ |f(n)| ≤ |g(n)| · k2 for
some constant k1 and k2 as n → ∞. We use o(·) to indicate
a function is dominated by another function asymptotically.
That is if f(n) ∈ o(g(n)), then |f(n)| ≤ |g(n)| · ε for any ε
as n→∞.

Theorem IV.3. If the minimum value θmin = Θ(1), then
M = Θ(K log(N − K)) will be the sufficient number of
measurements to ensure reliable `2-norm support recovery.

The proof is omitted due to the limited space, and can be
found in [11]. Sufficient conditions for different trends of K
are listed in Table IV.

Necessary Sufficient
conditions conditions

K = Θ(N) Θ(logN) *
θmin = Θ( 1

K
)

K = Θ(N) ∗ Θ(N)
θmin = Θ(1)
K = o(N) Θ(log((N −K)2K)) *

θmin = Θ( 1
K

)

K = o(N) Θ(
log((N−K)2K)

K2 ) Θ(K log(N −K))
θmin = Θ(1)

V. CONCLUSION

In this paper, we apply compressive sensing theory to reduce
the number of antennas by using random linear array while
achieving the similar performance of angular estimation as
the whole uniform linear array. We analyze the necessary and
sufficient conditions that the number of measurements should
satisfy thus the number of antennas needed in order to achieve
reliable support recovery for reliable estimation of angles.
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