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Abstract—In cellular networks, it is important to conserve energy while at the same time satisfying different user performance

requirements. In this paper, we first propose a comprehensive metric to capture the user performance cost due to task delay, deadline

violation, different application profiles and user preferences. We prove that finding the energy-optimal scheduling solution while

meeting the requirements on the performance cost is NP-hard. Then we design an adaptive online scheduling algorithm PerES to

minimize the total energy cost on data transmissions subject to user performance constraints. We prove that PerES can make the

energy consumption arbitrarily close to that of the optimal scheduling solution. Further, we develop offline algorithms to serve as the

evaluation benchmark for PerES. The evaluation results demonstrate that PerES achieves average 2.5 times faster convergence speed

compared to state-of-art static methods, and also higher performance than peers under various test conditions. Using 821 million traffic

flows collected from a commercial cellular carrier, we verify our scheme could achieve on average 32%-56% energy savings over the

total transmission energy with different levels of user experience.
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1 INTRODUCTION

THERE is a quick growth of cellular applications in recent
years thanks to the constant increase of the processor

power of mobile devices and the transmission bandwidth
of cellular networks. The capacity of batteries, however,
grows at a much slower speed and the limited battery life
has become the bottleneck that prevents the support of
advanced mobile applications.

Energy conservation is often supported by existing wire-
less MAC protocols. Specifically, with radio resource con-
trol (RRC) in UMTS (Universal Mobile Telecommunications
System) network, a radio does not turn to a low power state
immediately after data transmissions, but instead stays at
the high power state and waits for the expiration of an in-
activity timer. If no transmission occurs during that period,
it will switch to the low power state. This period is defined
as tail time and the corresponding energy consumption is
called tail energy. The tail time is designed in 3G radio access
network to avoid the high signaling overhead [1], [2], and
also introduced in 4G LTE networks [3] recently. A long
duration of tail time, however, will compromise the energy-
efficiency.

Some recent efforts have been made to reduce the tail
time. The under-layer methods utilize the fast dormancy
[4], [5], [6], [7] option proposed in 3GPP specifications
to optimize RRC configurations [8], [9]. Application-layer
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solutions [10], [11], [12], [13] attempt to better schedule data
transmission to reduce the tail energy. The work in [14], [15],
[16], [17] investigate the varying signal impact on the data
transmission energy in the mobile environment through both
experiments and strategy design. Authors in [18], [19], [20]
exploit the heterogeneity of WiFi and 3G network access to
optimize the overall transmission energy. Based on existing
solutions, we identify three major challenges in optimizing
the energy in cellular networks.

First, there exist scheduling conflicts between the tail
energy reduction and data transmission energy optimiza-
tion. Tail energy can be reduced by queuing tasks and
transmitting data in batch, while data transmission energy
may be reduced if data are transmitted upon good channel
condition. It may not be easy to find the optimal waiting
time to meet both requirements and minimize their total en-
ergy. The literature work often focuses on reducing one type
of energy only, while it is important to reduce both types of
energy for an overall lower system energy consumption. We
call the two types of energy together as hybrid energy.

Second, it is difficult to satisfy specific user transmis-
sion requirements while at the same time minimizing the
energy consumption. The attempts to reduce the hybrid
energy often introduce delay in packet transmissions. User
expectation on performance depends on many factors, such
as the task types, application profiles, and user preferences.
Assuming that the delay has exactly the same impact on the
user transmission experience regardless of the application or
time, existing efforts on energy conservation fail to address
specific or dynamic user application requirements. For ex-
ample, a businessman can not tolerate a big Email delay,
while delay is not a big concern for a student. Further, for
a given user, the requirement varies depending on the ap-
plication or time. It remains a challenge to characterize the
flexible user requirements and fully explore the differences
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in user expectations on applications to minimize the hybrid
energy consumption. Moreover, it is critical for a scheduling
scheme to quickly adapt to changing user requirements to
better save energy.

The third issue is the feasibility in real systems. Schemes
that need lower-layer system support such as optimizing the
timer of RRC often require modifying configurations con-
trolled by cellular network carriers, which makes practical
implementation difficult. Also, a transmission scheduling
mechanism often needs to deal with transport layer (e.g., the
congestion control and flow control of TCP) and application
layer (e.g., interfaces exposed to applications) protocols and
configurations.

To the best of our knowledge, this is the first work that
shows how to optimize the hybrid energy consumption
while meeting user transmission requirements on different
applications. Our main contributions are summarized as
follows:

• We model the performance-aware hybrid energy op-
timization problem in mobile cellular networks and
prove its NP-Hardness, and design offline solutions
to serve as the performance benchmarks.

• Based on a novel queueing method, we design an on-
line scheduler to meet varying user requirements on
application performance while ensuring the energy
conservation.

• We propose an adaptive method for the online sched-
uler to converge more quickly to the optimal energy
bound compared to state-of-art static strategies, and
our performance studies demonstrate that a larger
amount of energy can be saved when the user re-
quirements change over time.

• Our scheme can be implemented as an application
for traffic management on mobile devices, thus all
the benefits can be achieved by solely upgrading the
software.

The remainder of this paper is organized as follows.
We introduce the related work in Section 2. Section 3 il-
lustrates our basic problem formulation. In Section 4, we
first present our scheduling analysis and solution design in
the online setting, and then provide offline solutions as the
evaluation benchmarks. We evaluate the performance of our
scheduling algorithms in Section 5, and conclude our work
in Section 6.

2 RELATED WORK

In cellular networks, the tail energy is identified as one of the
key energy problems in data transmission [1], [10], [13], [21]
with three major types of solutions: 1) the timer optimiza-
tion which adapts the RRC configurations to dynamic and
complex traffic patterns [8], [9], but it requires modifying
configurations controlled by cellular network carriers; 2) the
fast dormancy strategy for mobile devices to proactively
demote the transmission to a low power state by optimizing
the inactivity timer based on traffic predication [4], [5],
[7]; and 3) the delayed transmission, where mobile devices
queue tasks and schedule transmission in batch to reduce
the total tail energy [10], [11], [12], [13], [16], [17], [19], [20].

Conventional energy conservation schemes are mostly
based on traffic and signal predication. The high dynamics
in user traffic and wireless link quality as well as the user
mobility [16], [17], however, make these schemes difficult
to apply in a practical wireless network. To overcome the
limitation, the Lyapunov control theory has been introduced
in recent work for non-predication-based online schedul-
ing [19], [20], [22], [23]. SALSA [19] proposes a general multi-
interface online scheduling algorithm based on Lyapunov
optimization, taking into account both the delay impact and
wireless link quality. However, the tail energy in cellular
networks is not modeled. In eTime [20] and eTrain [24], a
similar Lyapunov-based scheduling method is proposed for
3G and WiFi networks with the tail energy embedded in
the 3G power model. Liu et.al. also leverages the cloud
computing in both theory and experiments to manage data
transmissions for mobile applications [25], [26].

Recent Lyapunov-based solutions mainly face two chal-
lenges: 1) A single FIFO (First-In-First-Out) queue is applied
to handle all transmission tasks without considering dif-
ferent task deadlines and application profiles; 2) There is
no consideration of different user requirements on applica-
tion delay and the potential change of requirements over
time. To achieve the balance between energy and delay,
cellular traffic can also be offloaded to WiFi network or
neighbouring nodes through peer-to-peer interfaces (e.g.,
the WiFi direct). Hu et al. [27] first propose to explore
the difference in data throughput between nearby nodes
to offload the traffic. Rebecchi et al. give a comprehensive
survey in [28] on equipping today’s cellular networks with
offloading capabilities.

To address above issues, our work aims to optimize
the hybrid energy while satisfying dynamic user perfor-
mance requirements. We propose a novel method to manage
multiple delay-level queues in the Lyapunov optimization
framework. Generally, a user up-link transmission request is
the key trigger for the subsquent down-link data transmis-
sion [16], which allows the mobile device to control the data
transmissions. Thus, our work focuses on the scheduling of
up-link traffic, as done in previous work [4], [5], [7], [10],
[11], [12], [13], [16], [17], [19], [20], [21].

3 PROBLEM FORMULATION

The principle of our design is to aggregate and schedule the
traffic generated by different applications. By postponing
and batching transmissions judiciously, we can achieve the
performance-aware energy optimization. In this section, we
will elaborate on how we handle the performance and
energy issues and formulate the transmission scheduling
problem.

3.1 Motivating Example

We show an example to illustrate the trade-off between
energy saving and user performance requirement in Fig. 1.
The data rate over 3G network varies over time (every tick
on the x-axis marks a 10 second interval). Three application
tasks (APP1, APP2 and APP3) arrive at ticks 0, 6 and 10
with the data sizes 1.25MB, 0.25MB and 4.25MB respectively.
The power consumption of the 3G interface on the mobile
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Fig. 1: An example of the performance-aware hybrid energy
optimization

phone is set to 1W, and the tail time is 10 seconds with
the tail power being 0.5W. Since a user may have different
expectations on application performance, we call the user
performance requirement as a tolerable delay whose value
is set to be a fraction of the corresponding task deadline.
In this example, we assume the user have the highest
expectation on APP2 and the lowest interest in APP1, i.e.,
the fractions for APP1, APP2 and APP3 are 100%, 50% and
80% respectively.

In Fig. 1, we show the energy and delay performance of
four transmission scheduling strategies. Immediately-Sending
transmits the tasks immediately after they arrive, and thus
achieves the minimum delay. Taking APP1 as an example,
the first 5 ticks are used for data transmission and the tail
energy is consumed in the next 1 tick, so the total energy cost
of APP1 is 0.5W×1tick×10s/tick+1W×5tick×10s/tick=
55J. The energy consumption of other applications are cal-
culated in the same way. The delay for each application is
defined as the duration between the time of the application
arrival and the time of the transmission completion. Greedy-
Sending maintains a FIFO queue to buffer the arriving tasks,
and transmits data only when the rate is larger than 25KB/s
to take advantage of the physical channel conditions to
conserve energy. However, the waiting delay makes APP2
violate its user delay requirement. Energy-Optimal transmits
all the tasks during the highest data rate, and thus achieves
the minimum energy consumption. However, it violates the
task deadlines of both the APP1 and APP2 and also the user
delay requirement on APP3.

The fourth strategy first transmits packets from APP2
ahead of APP1 to satisfy its user delay requirement. When
APP3 arrives, it tries to wait for a better link quality within
the time duration allowed by the user requirement. It meets
the deadline demands of all the tasks and also satisfies the
user performance requirement. Further, its total delay is
half that of Energy-Optimal while obtaining energy saving
comparable to Energy-Optimal, and its energy consumption
is only 32% that of Immediately-Sending.

This example indicates that conventional FIFO-queue-
based scheduling schemes adopted in existing work [19],
[20] can not well address issues associated with different
task delays and deadlines of multiple applications. More-
over, there is a need for the scheduler to effectively react to
the given user performance constraint while conserving the
energy.

3.2 Performance Impact

Motivated by the above example, we first characterize the
performance impact due to the task deadlines, application
profiles and user preferences. Our transmission framework
runs as a daemon to collect the traffic generated by different
applications, and the traffic is scheduled to transmit in the
unit of time slot. The traffic from an application can be
divided into multiple transmission tasks, where typically
a task corresponds to a packet. For a task u, the time slot
it arrives is ta(u), and the slot scheduled for it to send to
the corresponding socket is ts(u). The buffer delay due to
the scheduling is denoted as Db(u) = ts(u) − ta(u), and
the transmission delay cost to transmit a task u is Dt(u). The
ending slot that u is transferred completely is denoted by
te(u) = ts(u) +Dt(u), and the deadline of u is td(u).

We embody the bandwidth of the cellular network with
the capacity of a time slot, i.e., the maximum amount of data
in bytes that can be transmitted between mobile devices and
the base station in one slot. Let c(t) denote the capacity
of a slot t and υu(t) denote the data transfer rate of a
transmission task u in the slot t. The condition

∑

u∈{u|ts(u)=t}

υu(t) ≤ c(t) (1)

should be met for any slot. For clarity, we list all the related
notations in Table 1.

To capture the performance impact, we introduce a per-
formance cost metric φu(·) by taking into account the views
from three parties.

• Task View Different tasks generally have different
delay tolerance. The task performance may degrade
significantly if its delay expectation is violated. For
example, the deadline of downloading video frames
can be found in existing online video applications to
ensure user watching experience [16]. We take the
term deadline as the tolerable bound of the sum of
buffer delay and transmission delay.

• Application View Different application types have
different sensitivity to the delay, and the performance
change with the delay can be captured by a profile.
For example, the performance of an application may
reduce linearly as the delay increases.

• User View Mobile users may have different perfor-
mance expectation on different types of applications,

TABLE 1: Basic Notations and Definitions

Notations Definitions
ta(u) Arrival time of task u
ts(u) Scheduled time of task u
td(u) Deadline of task u
tdd(u) Maximum tolerable delay of task u
te(u) Ending transmission time of task u
Db(u) Buffer delay of task u
Dt(u) Data transmission delay of task u
D(u) Total delay of task u, i.e., Db(u) +Dt(u)
S(u) Data size of task u
wu User preference weight of task u
fp(·) Application profile function
φu(·) Performance degradation function of task u
Psig(·) Average power to generate a given signal
Rsig(·) Rate function that maps a received signal

to the average data transmission rate
ts(U) Scheduled slot set of tasks in U , i.e., {ts(u)|u ∈ U}
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and a weight factor can represent a user’s preference
level.

We can see the delay will impact different parties, and
the design should reduce the delay impact for all. If con-
sidering tasks from only one application, the data size
should be taken into account because delay will increase
with the traffic size. For different types of applications such
as VoIP or photo-uploading, their profiles should capture
their different sensitivity to the task delay. Finally, the user
preference is accounted with an input weight. Hence the
performance degradation function φu can be computed as:

φu(D(u)) = wu · fp(D(u)) · S(u) (2)

where D(u) = te(u) − ta(u) is the task delay, and S(u)
denotes the data size in bytes of the task u. The profile
function fp represents the sensitivity of an application to the
delay, and the weight wu represents the user’s preference on
the application that generates u.

We can easily get the following property:

Property 1. Any φu(·) should satisfy the following proper-
ties:

• φu(0) = 0
• If d1 < d2, then φu(d1) ≤ φu(d2)
• If d1 ≤ td(u)− ta(u) < d2, then φu(d1) < φu(d2)

The first two conditions ensure that the function φu captures
the non-decreasing feature between the performance cost
and task delay. With the performance cost being the weighted
product of delay and data size, the third condition reflects
the cost associated with the deadline violation, i.e., the user
has significantly worse experience thus higher performance
cost.

Let U denote the pending transmission task set, and
ts(U) denote the set of scheduled slots of all the tasks in
U , i.e., ts(U) = {ts(u)|u ∈ U}. Given φu(·) for all the
tasks in U , we can evaluate the total performance cost by
the schedule ts(U) as

∑
u∈U φu(D(u)).

3.3 Energy Consumption for Data Transmission

For any given data size, the data transmission energy depends
on the product of two factors: the transmission power and
the time taken to transmit one bit of data. Previous works
[14], [16], [29] have already illustrated how these factors
vary with the signal strength. We take the RSSI (Received
Signal Strength Indicator) value, i.e., the signal strength
to evaluate the wireless link quality as it can be easily
acquired on modern mobile devices without additional cost.
We define the signal strength as a time-varying function
signal(t). The function Rsig(signal) maps a received signal
strength to the average data rate value, and the power to
generate the signal is denoted by Psig(signal).

Suppose two data units u1 and u2 that already arrived in
buffer are scheduled to transfer one after the other, the total
data transmission time consumed is Dt(u1)+Dt(u2) where
each data unit takes the complete bandwidth resource for
its transmission. Alternatively, the two can be transmitted
concurrently with each using a fraction of the bandwidth.
In this way, the total data transmission time will remain
the same. Since the wireless bandwidth is fully applied to
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Fig. 2: Device Power at Different RRC States

transmit the same amount of bytes in both cases, the total
energy consumption also remains the same. However, the
completion time of the first task gets extended while that of
the second task remains the same. Therefore, with the same
amount of energy consumed, in order to reduce the task
completion time, it is more efficient to transmit all the data
units sequentially. That is, for any feasible schedule ts(U),
when we sort u in U in the ascending order by ts(u), the
current task ui should be scheduled to transmit only after
the previous task ui−1 completes its data transmission, i.e.,
ts(ui) > te(ui−1), 2 ≤ i ≤ n.

Denote τ ∈ N+ as a discrete time slot and ∆t0 as the
time length of one slot. Since the data of u will be transferred
at rate c(τ) in each slot τ from ts(u) to te(u), we have the
data size of the task u as

S(u) =

te(u)
∑

τ=ts(u)

c(τ )∆t0 =

te(u)
∑

τ=ts(u)

Rsig(signal(τ ))∆t0 (3)

In case transmission cannot be carried in some time slots,
for example due to the dramatic drop of signal strength
upon user movement, some slots in the above equation may
have zero-rate transmissions, which naturally increases the
transmission delay.

Let Etrans(t1, t2) denote the data transmission energy
consumed from the slot t1 to t2. If the data is transferred
by consuming the transmission power Psig(signal(τ)) of
the wireless interface in each slot τ from t1 to t2, the data
transmission energy can be computed as

Etrans(t1, t2) =
∑

t1≤τ≤t2

Psig(signal(τ))∆t0 (4)

During time period Γ, the total data transmission energy
to transmit U by a schedule ts(U) can be estimated as

Ẽd(U, ts(U),Γ) =
∑

u∈U

Etrans(ts(u), te(u)) (5)

3.4 Tail Energy Consumption Estimation

In a UMTS network, radio resources are managed through
RRC and a state machine is maintained for the radio. The
state machine has three basic states: IDLE, DCH and FACH.

TABLE 2: Parameters of Different RRC States

DCH FACH PROM1 PROM2

p(mW) 732.826 388.880 557.708 423.625

δ(s) 3.287 4.024 2.114 1.039
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Their radio power is denoted as pI , pD and pF respectively.
The transition among different states is mainly determined
by the data traffic conditions [8]. If the radio is at IDLE or
FACH, the arrival of a data transmission unit will trigger it
to promote to a higher power state DCH (the transitions
IDLE→DCH and FACH→DCH are called PROM1 and
PROM2 respectively, see Fig. 2). If there are no transmission
tasks arriving and the radio remains inactive for a time
duration, it will lead to an instant state demotion, either
DCH→ FACH or FACH→ IDLE. The tail energy wasted
during both the time durations (denoted by δD and δF
respectively) can significantly impact the total energy con-
sumption.

Following the measurement schemes proposed in [8], we
estimate these parameters through experiments in a UMTS
network in China (CHN-CUGSM) using a Google Nexus S
smartphone. Table 2 lists the detailed measurement results.
We take power at the IDLE state as the base in Fig. 2 and
obtain the radio power in Table 2 by excluding the base
power.

Let T denote one complete tail time, i.e, the sum of δD
and δF . Let the set of transmission tasks U = {ui|1 ≤ i ≤ n}
be sorted in the ascending order by ts(u) of each transmis-
sion unit u. The total tail energy consumption during the
transmission of U according to a schedule ts(U) within a
given period Γ can be estimated in a fine-grained way as

Ẽt(U, ts(U),Γ) =
∑

2≤i≤n

Etail(∆ti) + Etail(T ) (6)

where ∆ti = ts(ui)− te(ui−1) and

Etail(∆ti) =











pD∆ti if 0 ≤ ∆ti ≤ δD

pDδD + pF (∆ti−δD) if δD<∆ti≤δD + δF

pDδD + pF δF otherwise.
(7)

3.5 Optimization Problem

We convert the transmission scheduling to an optimization
problem. Given a set of pending transmission tasks U =
{u1, u2, · · · , un}, the purpose of scheduling is to determine
the time slot assignment ts(U)={ts(u1), ts(u2), ..., ts(un)}
to minimize the energy consumption while ensuring the
performance degradation of each transmission task u to be
within the user expectation bound Φ̃(u).

For each task u, we need to guarantee

φu(te(u)− ta(u)) ≤ Φ̃(u). (8)

Based on (5) and (6), the total energy consumption
estimation can be calculated as

E(U, ts(U),Γ) = Ẽd(U, ts(U),Γ) + Ẽt(U, ts(U),Γ). (9)

Therefore, the optimization problem can be formulated
as

minE(U, ts(U),Γ) (10)

subject to Constraints (1), and (8).

Constraints (8) can be translated as te(u) ≤ tdd(u), where
tdd(u) = ta(u) + φ−1

u (Φ̃(u)) denotes the upper bound of
ts(u)+Dt(u). This bound takes into account the application
profile φu and the user requirement Φ̃(u) for a task u.
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Fig. 3: Example of PerES scheduler design

Theorem 1. The performance-aware energy optimization
problem (10) is NP-hard.

Proof: See the detailed proof in our technical re-
port [30].

4 SCHEDULING DESIGN

4.1 Overview

Since the optimization problem is NP-hard, in this section,
we design an online scheduler PerES (Performance-aware
Energy Scheduler) that could easily run in the practical
system. In the example shown in Fig. 3, at the beginning,
the application tasks are added into several queues. The
PerES scheduler will make the transmission decisions in
each slot based on the queue status and user requirements.
The decisions will determine if the data should be sent, and
if yes, how much data to send from each queue.

There are two key differences between the designs of
ours and others. First, we use multiple queues for each
application to explicitly control the task delay. Since the Lya-
punov theory is primarily applied for stabilizing the queue,
following the standard Lyapunov optimization model, most
existing work employs the conventional FIFO queue and
represent the delay performance with the queue length [19].
In reality, the queue length of a conventional FIFO cannot
always capture the delay performance. For example, when
no new tasks are added into a FIFO queue for a long
duration, the queue length does not change but the task
delay will be big. In this work, we propose a novel queue
management method named “delay-level queue” to make it
possible to capture the task delay with the queue length all
the time.

Second, we take the user requirements as the perfor-
mance constraints on multiple applications. In the example
of Section 3.1, we have shown that the conventional FIFO
queue is inefficient to deal with different delay requirements
from multiple applications. In this work, after capturing the
delay, we also need to know how to schedule transmissions
from the proposed “delay-level queues” with respect to the
user requirements.

The problem can be solved with four steps as shown
in Algorithm 1. We first relax the problem from meeting
the performance bound of each application task to meeting
the bound of total task performance (section 4.2). To solve
the relaxed problem, we construct the delay-level queues to
handle the tasks from different applications (section 4.3).
Next, based on the current network status, we allocate
different data rates to each delay-level queue (section 4.4).
Furthermore, we adjust the parameters so the algorithm can
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Algorithm 1 PerES: Performance-aware Energy Sched-
uler

1: Obtain the relaxed problem by meeting the bound of
total task performance cost

2: Construct the delay-level queues to handle the task
delay in different application groups

3: Allocate different rates to each delay-level queue
4: Adaptively adjust the parameters with respect to user

performance requirements

adaptively converge to the optimal energy bound subject to
user performance requirements (section 4.5).

4.2 Problem Relaxation

In order to reduce the tail energy associated with the RRC
process, an online scheduler can send the traffic in batch.
However, as the mobile traffic and wireless link quality
can not be accurately predicted, this process will inevitably
introduce some delay in transmission and may even lead to
violation of some given performance bounds, e.g., the task
deadline.

Therefore, it is not possible and practical for an online
scheduler to always satisfy the performance bound for each
task in real-time. Instead, we relax the constraint from
meeting each task’s performance cost bound to meeting
the bound of total task performance cost denoted as Ω. A
higher performance bound is due to a longer tolerable delay
weighted by application profiles and user preference. This
would motivate the scheduler to aggregate the less-urgent
(or less-interested to the user) traffic for lower tail energy
and wait for the better channel condition to transmit.

In our relaxed scheduling problem, the scheduler re-
quires no future information of the traffic, but makes de-
cision in each time slot to obtain the long-term benefits,
i.e., optimizing both the energy and performance in a long
enough time scale (Γ → ∞). We derive the practical opti-
mization model as follows.

Define PW (τ) and PD(τ) as the energy consumed and
performance cost in time slot τ with their average values
PW (τ) and PD(τ) respectively, we have

PW (Γ) =
1

Γ

Γ−1
∑

τ=0

PW (τ ) =
1

Γ
E(U, ts(U),Γ) (11)

PD(Γ) =
1

Γ

Γ−1
∑

τ=0

PD(τ ) =
1

Γ

∑

u∈U

φu(D(u)) (12)

where Γ is the scheduling period. Then the following per-
formance condition should be satisfied:

PD(Γ) ≤ Ω (13)

The online optimization problem is formulated as:
When Γ→∞,

Minimize PW (Γ) (14)

subject to Constraints (1) and (13).

For clarity, we list the related notations in Table 3.

4.3 Delay-level Queue Construction

To take into account the user performance in our scheduling,
we classify the applications into groups and queues based
on the user preferences and application profiles. Then we
need to explicitly control the delay performance for the tasks
in each queue. In the following, we present a novel delay-
level queue to address this problem.

4.3.1 Group Classify

We first classify applications into n groups G =
{G1, G2, ..., Gn} based on two properties: the form of profile
function (decided by application profiles) and the preference
weight (decided by user preference). Two tasks belong to the
same group if they share the same properties. Let Fi(D(u))
denote the performance cost per byte of the task u with a
delay D(u) from group i, i.e., Fi(D(u)) = φu(D(u))/S(u).
Generally, the same type of applications are classified into
one group (e.g., Email applications). In the extreme case,
each application can have its own group.

4.3.2 Queue Update

Generally, the delay sensitivity of a task is reflected by its
deadline. Tasks in one group have the same deadline and
can be inserted into one of m queues (called the delay-
level queues) based on their current delay. A queue qij
corresponds to one delay level j from group i. The delay-level
interval is defined as di/θ where di denotes the deadline
of tasks from group i, and θ is the delay granularity of
dividing the group into queues. Note that m is large enough
so that m × di/θ is the maximum waiting delay that users
can tolerate for any task in the queue.

The scheduler will update the delay-level queues in each
time slot. If the delay value of a task u from group i is
between di/θ × (j − 1) and di/θ × j, it will be put in qij ;
when its delay exceeds di/θ × j, it will be popped out of
qij and be pushed into the next delay-level queue qi(j+1).
This update operation starts from the tasks with the highest
delay to the ones with the lowest delay. Hence after a linear
traversal update from the head task to the end task in each
queue, the ordered property of delay still holds for all the
tasks.

The scheduler takes the delay level as the reference
to determine the transmission sequence and time, i.e., the
delay of tasks in qij is taken as di/θ × j. Define the length
of the minimum time unit as ℓt. If the delay-level interval
di/θ equals ℓt, di/θ×j is equivalent to the accurate queuing
delay. Let ϕij denote the performance cost per byte of queue
qij , i.e., ϕij , F (D(u)) where u is a task in queue qij .

The advantage of above queue management is that the
length of each delay-level queue can effectively reflect the

TABLE 3: Basic Notations for Online Model

Notations Definitions
c(t) bandwidth capacity at slot t

PW (t) energy cost at slot t
PD(t) performance cost at slot t

Ω the threshold of maximum performance cost
qij queue of delay level j at group i
ϕij performance cost per byte of queue qij
V the trade-off parameter between energy and performance

γij(t) average transmission task arriving rate for queue qij
rij(t) average transmission rate allocated for queue qij
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delay impact. Then we are able to generate the following
theorem to directly link the delay-level queues in each group
with the user performance cost caused by queueing tasks.

Theorem 2. Denote PDij(t) as the total user performance
cost of the tasks in queue qij in time slot t. Denote γij(t)
as the average transmission task arriving rate for queue
qij and rij(t) the average transmission rate allocated for
the queue, we have:

PDi(t+ 1) = PDi(t)−
m∑

j=1

ϕijrij(t) + ϕi1γi(t) (15)

where PDi(t),
∑m

j=1 PDij(t) and γi(t),
∑m

j=1 γij(t).
Moreover, for a task u in queue qij , if u is transferred
at the current slot, we have the task delay D(u) counted
as di/θ × j + 1, i.e., ϕij = F (di/θ × j + 1).

Proof: See the detailed proof in our technical re-
port [30].

4.4 Queue Scheduling

After the queue construction, there are two remaining things
to do: obtaining the user requirement input and allocating
data rates for the delay-level queues.

4.4.1 User Requirement Input

Our online scheduler runs as a traffic manager applica-
tion and uses a UI for the input of user requirements. It
lists all the application icons and offers the setting of the
user preference weight and maximum tolerable delay for
each selected application. Thus users can easily change his
preferences on the UI. The task deadlines and application
profile functions (i.e., the application sensitivity to delay) are
provided from application developers by default (through
calling our SDK) to benefit from the energy savings of our
solution. For ease of use, the maximum tolerable delay
can be easily set as a sliding bar so it can be tuned to a
value from 0% to 100% of the deadline to be satisfied. With
different application deadlines, the same fraction refers to
different tolerable delay. The traffic manager will update
the average data arriving rate for each application based
on history traffic statistics. Hence we finally obtain the user

preference weight ŵi, maximum tolerable delay d̂i and the
average data arriving rate γ̂i on each application i. Based
on the performance cost metric defined in equation (2),
the user-defined time-average performance cost bound Ω is

computed as
∑N

i=1 ŵi × fp(d̂i)× γ̂i, where N is the number
of selected applications.

4.4.2 Rate Allocation

In this part, we are able to derive our rate allocation
algorithm (called RAA) in PerES to decide the data rate for
each delay-level queue. Following the Lyapunov framework
[31], our Lyapunov function is defined as:

L(t) ,
1

2

n∑

i=1

(PDi(t))
2 (16)

Denote the vector
−−→
PD(t) , {PDij(t)|1≤i≤n,1≤j≤m} as the

performance cost of each queue at time t. The one-step
Lyapunov drift ∆(t) is defined as:

∆(t) , E{L(t+ 1)− L(t)|
−−→
PD(t)} (17)

Algorithm 2 RAA: Rate Allocation Algorithm

Input: V , t // the current time slot
Output: Rm // the data rate allocation set

1: Update the delay-level queues by (15)
2: for each queue qij do
3: compute Aij by (22)
4: end for
5: Rt ← Rsig(t)
6: Sort qij in the descending order of Aij as Q
7: while Rt > 0 and Q 6= φ do
8: Pop the qij in Q who has the largest Aij

9: rij ← min{Size(qij), Rt}
10: Rt ← Rt − rij
11: end while
12: Get the rate allocation set Rm = {rij} and compute the

objective Dm in (19)
13: if Dm ≤ 0 then
14: Set all the elements in Rm to 0
15: end if
16: return Rm

We add the energy minimization objective into the
Lyapunov drift by the drift-plus-penalty form ∆(t) +

V E{PW (t)|
−−→
PD(t)} and obtain the following lemma:

Lemma 1. Assume that the data arrival process λ̃(t), and the
transmission process ũ(t) have finite expectation, i.e., ∃
constantsA and U such that E{λ̃(t)} < A and E{ũ(t)} <
U . We have

∆(t) + V E{PW (t)|
−−→
PD(t)}

≤ B − E

{

n
∑

i=1

[

PDi(t)E{

m
∑

j=1

ϕijrij(t)|
−−→
PD(t)}

]

− V · PW (t)|
−−→
PD(t)

}

+
n
∑

i=1

[PDi(t) · ϕi1γi] (18)

where B , 1
2
{(
∑n

i=1

∑m

j=1 ϕ
2
ij) · U

2 +(
∑n

i=1 ϕ
2
i1) · A

2} and
ϕij is a positive constant.

By applying the dynamics of queue performance (15)
into the Lyapunov drift (17), we can obtain the fact of (18).
See the detailed proof in our technical report [30]. Based
on the Lyapunov design principle, the optimal scheduling
decision is to minimize the drift-plus-penalty expression in
each time slot. PerES minimizes the RHS of (18) to guarantee
the performance stability with the minimal power consump-
tion:

Maximize D(t) =
n∑

i=1

[
PDi(t)×

m∑

j=1

{ϕij × rij(t)}
]

− V × PW (t) (19)

s.t.
n∑

i=1

m∑

j=1

rij(t) ≤ c(t) (20)

0 ≤ rij(t) ≤ S(qij) (21)

where c(t) is the bandwidth of the wireless link at time t and
S(qij) is the total data size of tasks in the queue qij . One key
difference between our model and other existing Lyapunov
models (e.g., [19], [20]) is that the rate allocation constraint
(20) models the bandwidth competition among the delay-
level queues of different applications, which is important
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Algorithm 3 SVA: Self-adaptive V Algorithm

Input: Ω, t //the current time slot
Output: Real-time Scheduling Decision

1: if t equals 0 then
2: V (t) = 0
3: else
4: calculate PD(t) by (12)
5: if PD(t) < Ω then
6: V (t) = V (t− 1) + δ
7: else
8: V (t) = V (t− 1)/2
9: end if

10: end if

when considering the differences in application profiles and
user requirements on applications.

As Algorithm 2 illustrates, RAA first updates the perfor-
mance degradation PDi(t) of all the queues by (15) (line
1). RAA achieves the optimal rate allocation set Rm =
{rij |i = 1, 2, 3, ..., n; j = 1, 2, 3, ...,m.} by solving the linear
programming problem (19) with the following procedure.
First, based on Theorem 2, the weight Aij of each queue
is computed to capture the impact of delay on user perfor-
mance (line 2-4):

Aij = PDi(t)× ϕij = PDi(t)× Fi(di/θ × j + 1) (22)

Next, the total bandwidth c(t) = Rsig(t) is allocated
to the queues in the descending order of Aij until it is
completely allocated as lines 5-11 in Algorithm 2.

After rate allocation for each delay-level queue, RAA
computes the objective value Dm by applying the rate
allocation set Rm into the objective function of (19). For a
quick computation for this control decision, according to
(11), PW (t) can be computed as:

PW (t) = Psig(t)× {
n∑

i=1

m∑

j=1

rij(t)/c(t)}+ETail(∆t′) (23)

where ∆t′ = t− tlast and tlast denotes the last time slot that
transfers data. If Dm ≤ 0, the rate allocation set Rm is set to
all zeros.

In Algorithm 2, lines 1-4 perform the update of the delay-
level queues with cost O(k), and then compute Aij for each
qij by O(mn) operations. Line 6 sorts qij by O(mn log(mn))
operations, and it then takes O(mn) operations to allocate
the rate for each qij in lines 7-15. Hence the total time
complexity of RAA (Algorithm 2) is O(mn log(mn) + k),
where n is the number of application groups, m is the
number of delay-level queues per group and k is the number
of tasks in buffer.

4.5 Bound Analysis and Approaching

In this section, we first give the boundness analysis of
PerES and then present an efficient method which adapts
the parameters to efficiently approach the bound.

4.5.1 Bound Analysis

The properties behind the scheduling decision (19) imply
the following theorem:

Theorem 3. Assume that the data arrival rate is strict-
ly within the network capacity region, and the online
scheduling decision (19) is applied by PerES at each time
slot. For any control parameter V of PerES where V > 0,
it generates the time-average power consumption PW∞

and time-average performance cost PD∞ satisfying that:

PW∞ = lim
Γ→∞

sup
1

Γ

Γ−1∑

τ=0

E{PW (τ)} ≤ P ∗ +
B

V
(24)

PD∞ = lim
Γ→∞

sup
1

Γ

Γ−1∑

τ=0

E{PD(τ)} ≤
B + V P ∗

ε
(25)

where B and ε are positive constants. P ∗ is the theoreti-
cal optimal time-average power consumption.

Based on Lemma 1 and the similar method for deriving
Lyapunov bound in [19], [31], we could obtain the fact
of (24) and (25). See the detailed proof in our technical
report [30].

4.5.2 Adaptive Scheme

The parameter V in (19) is the key tradeoff parameter
between the energy cost and the performance cost. In The-
orem 3, following the Lypapunov theory, a fixed V setting
will make the power cost and the performance cost converge
to a stable value close to their corresponding upper-bound.
For example, based on equation (24), a larger V value will
make the energy cost converge to a smaller stable value,
while this will make the stable value of the performance
cost larger based on equation (25). Hence, it is good to use
a large enough V value to reduce the energy cost while
constraining the performance cost to be within Ω.

Inspired by the above analysis, we could solve the online
optimization problem (14) in the following way. For any
given user requirement Ω, if we could find a large-enough
V value that makes the system work with a performance
cost close to but within Ω, then according to (24), the
upper bound of the power consumption is minimized to
its optimal value. However, tuning such a proper V value
is a long-standing problem still without known efficient
solutions. The traditional way of solving this convergency
problem falls into the region of calculating a magic number of
V based on some heuristic information, such as the method
proposed in [19], or assuming a nice range of V that is
possible to apply [20]. However, it is difficult to analyze the
performance and hard to apply these conventional schemes
in a complex mobile environment.

We design a dynamic scheme, called SVA (Self-adaptive
V Algorithm) to handle this tough issue in a practical and
fast way. Rather than figuring out a good V value before the
scheduling, we search for a proper value during the schedul-
ing. Starting from V=0, we increase the V value while the
performance cost is within the required Ω, and reduce the V
value when Ω is exceeded to constrain the performance cost
and satisfy the user requirement. As Algorithm 3 shows,
the SVA monitors the current time-average performance cost
value PD. When it is lower than the user requirement, SVA
increases the V linearly; otherwise, SVA cuts the V value
down to a half. The intuition behind SVA comes from the
congestion avoidance scheme utilized by the TCP protocol.
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The AIMD (Additive Increase Multiplicative Decrease) is
primarily designed for the TCP window to increase to a
value that gets the system work close to but within the
congestion bound, thus the throughput is maximized. Our
experiment validates that using the AIMD scheme in our
system could also enable a fast convergency to the required
performance bound, and thus the time-average power con-
sumption is minimized to its optimal bound.

To summarize, our PerES makes the scheduling decision
in each slot. It determines the control parameter V with
respect to the user performance requirement Ω (Algorithm
3), and then calls RAA (Algorithm 2) to set the rate allocation
Rm. PerES serves all the queues by Rm for data transferring.
If all the elements in Rm equal zero, PerES keeps all the
queues waiting.

4.6 Offline Solutions as Benchmark

To provide a benchmark for the evaluation of the online al-
gorithm, we present an offline algorithm for an approxima-
tion solution of the original NP-hard optimization problem
(Theorem 1).

Consider the offline scheduler as a black box, which
receives n tasks in their arriving order, and outputs the
tasks in another order following the schedule. Next we
will present an algorithm which can find the local optimal
solution for any fixed output order ω. Intuitively, we can
find the global optimal solution by traversing all the local
optimal solutions under the n! possible output orders. A
fixed output order ω can ensure the optimal substructure
of the DP (Dynamic Programming) solution. This allows us
to design a DP algorithm, Loc-TRES (Local Transimission
Energy Scheduler) to achieve a local optimal solution offline.

To begin with, we sort u ∈ U by order ω. Let gi
denote the optimal objective value for scheduling the
first i tasks, while fi,k denotes the optimal objective val-
ue of the first i tasks if ui is scheduled to transmit in
time slot k. Let Πi define the valid range of ts(ui), i.e,
Πi = {ts(ui)|ts(ui) ≥ ta(ui) and te(ui) ≤ tdd(ui)}. Then
we can build the dynamic programming equations as
fi,k = minj∈Πi−1

{Etrans(k, k + Dr(ui)) + Etail(k − (j +
Dr(ui−1))) + fi−1,j} and gi = mink∈Πi

{fi,k}. Based on the
iterative equations on fi,k and gi, we can easily obtain gn for
the final schedule. Hence the time complexity of Loc-TRES
is O(nR2), where R=max1≤i≤n{tdd(ui)− ta(ui)}.

To give another evaluation benchmark, we also develop
a brute-force-based offline scheme (denoted as Opt-TRES)
to search the global optimal solution, which uses the input
offline information including all the signal traces and ap-
plication task traces. Although its worst-case complexity is
exponential in time due to the NP-hardness, we speed it up
in most cases by using a branch-and-bound search based
on Loc-TRES. Specifically, we employ the solution found by
Loc-TRES following the task arriving order to initialize the
optimal solution, which will contribute to the fast boundary

TABLE 4: Application Settings

App ID 1 2 3 4 5

Deadline (s) 10 200 400 800 1600

Weight 1/10 1/200 1/400 1/800 1/1600

pruning operation during the search. It serves as the optimal
offline scheduler and is compared with both Loc-TRES and
our online algorithm in Section 5.

5 EVALUATIONS

5.1 Evaluation Setup and Methodologies

We implement PerES as a traffic management application
on a smartphone (Google Nexus S). It utilizes IPTABLES
(an existing system tool in Android) to redirect the data
flow of each application to a specific interface of our unified
scheduler so the transmission tasks can be buffered for a
specific time duration on the phone. All the algorithms
compared in this work are implemented inside the traffic
management application on the phone and can be selected
to run based on the UI. All the simulations in this paper
are conducted on the smartphone. We monitor the signal
strength of the cellular network interface and measure the
energy consumption and performance metrics. To acquire
the transmission rate and power under different signal
strength, we take the phone to record 3G signal traces in
20 different places of Tsinghua University. The power value
is measured by the Monsoon Power Monitor device, and we
find that the power Psig (mW) and the data rate Rsig (kBps)
could be fitted as a linear function with the signal strength
[14], [16].

In the first part, to facilitate the study on performance
insights without loss of generality, we simulate the chang-
ing signal as a sine function in the range of −50dbm to
−110dbm with a random interference between −10dBm
and 10dBm. The Rayleigh fading model is also applied to
simulate the dynamics in wireless channels. In the later part,
we further apply real signal traces to validate the energy
efficiency. The task arrives following the Poisson Distribution.
In reality, an application’s task is expected to be transmitted
before the arrival of its next task, hence we set the average
arrival interval of the tasks as their waiting deadline. The
data size of one task is set as a random variable in (0, 500]
Kbytes. The linear coefficient δ of SVA in PerES is set to 0.001,
and the detailed application settings are shown in Table 4.

We first evaluate the performance of the online algorithm
PerES against offline algorithms in different scenarios over
Γ=10000 time slots (one sec as one slot). The offline solu-
tions are obtained by Loc-TRES and Opt-TRES to serve as
a performance reference. Loc-TRES sets the arriving order
of tasks as its initialized order ω, while PerES is evaluated
under different levels of performance loss. PerES-X sched-
uler extends from PerES by allowing for a deadline violation
ratio X . For the offline algorithms, the performance degra-
dation bound Φ̃(u) of each task is set to φu(td(u)− ta(u)) to
make sure that tdd(u) = td(u). It is equivalent to finding the
optimal schedule by constraining the delay of each task to
be within its deadline. In this setting, the offline algorithms
ensure that there is no deadline violation. For the online
scheduler PerES, the user-defined performance bound Ω is
varied to get different levels of deadline violation ratios. The
default scheme Immediately is also included as a reference,
i.e., it transfers the data immediately upon the arrival of
tasks.

Next, four non-predication based online schedulers are
compared in details, i.e., TailEnder [10], SALSA [19], eTime
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[20] and PerES. Table 5 shows their different features. They
represent the consideration for signal strength impact, d-
ifferent granularity of tail energy counting (e.g., “Coarse”
means only one average tail power is counted), deadline
awareness, application profiles, user preference and conver-
gence scheme (e.g., “Static” means the trade-off parame-
ter between energy and performance is set as a constant
value) separately. TailEnder is a const-setting-based online
scheduler while the others are designed under the Lya-
punov framework. We develop the E-P panel to compare the
scheduling optimality for energy consumption E (the sum of
data transmission energy and tail energy) and performance
degradation P (i.e., PD(Γ)). In the E-P panel, each set of
points for schedulers is acquired by linearly increasing the
parameter V of SALSA, eTime and the Ω of PerES in equal
pace, and there is no parameter change in TailEnder.

We evaluate the performance of online schedulers
through simulations over a period of 10000 time slots. We
analyze the impact of various parameters listed in Table 6.
During the simulation, when one factor is changed, other
factors are set to their default values. Each data point record-
ed in our simulation results is the average value over 20
random problem instances. We evaluate four representative
profile functions. All functions satisfy Property 1, but have
different forms before and after the deadline. Specially, we
define two typical changes before and after the deadline:
unchanged (U) or linearly increasing (L), i.e., we have four
forms of the profile function: UU, UL, LU, LL, which corre-
sponds to real-world applications. For example, function UL
captures the feature of the email applications that will not
trigger the users’ concerns until certain user tolerance time is
violated, while a further delay will cause worse experience.

For comparative analysis, we evaluate the tail energy
and data transmission energy for energy metrics, while the
deadline-violation ratio and normalized average delay for
performance metrics. The deadline violation ratio denotes the
size of tasks whose delay exceeds their deadline divided by
the total data size. The normalized average delay D denotes
the sum of weighted (normalized preference weight) delay
of all tasks divided by the total data size of all tasks:

D =
∑

u
{wu×D(u)×S(u)}

∑
u
S(u) .

5.2 Optimality Analysis

As Fig. 4 shows, the total energy consumption and energy
saving of different schedulers increase approximately lin-

TABLE 5: Evaluation Schedulers

Scheduler Signal Tail Deadline Profile Weight Converg.
TailEnder - Coarse X - - -

SALSA X - - - - Static
eTime X Coarse - - - Static
PerES X Fine X X X Dynamic

TABLE 6: Evaluation Parameters Setup

Default Range
Minimum Arrival Interval (s) 10 1 ∼ 100

Minimum Deadline (s) 10 1 ∼ 100
Maximum Preference Weight 1/10 1/100 ∼ 1

Signal Variation Period (s) 500 5 ∼ 1000
Average Signal Strength (dBm) -80 −110 ∼ −50

Profile Function LL {UU, UL,LU,LL}
Delay Granularity (θ) 10 1 ∼ 100
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Fig. 5: Energy Performance
over Different Signal Periods

early as the simulation time increases. Opt-TRES can get on
average 38% energy saving compared to the default strategy.
Compared with Opt-TRES, the energy consumption of Loc-
TRES is within a factor 1.06 of the optimal solution, which
demonstrates its high approximation ratio. It also indicates
that the arriving order works well as the initialized order for
Loc-TRES in real applications. Both offline algorithms Opt-
TRES and Loc-TRES intend to minimize energy while not
violating task deadlines.

PerES-0 is the online scheduler that adjusts the perfor-
mance bound Ω of PerES to meet the same constraint that
zero deadline violation is satisfied. On average, PerES-0 is
seen to achieve 13% energy saving compared to the default
strategy without deadline violation. Compared with Opt-
TRES, it is within a factor 1.4 of the optimal total energy
consumption and within a factor 1.1 of the optimal energy
saving. If mobile users can tolerate more performance loss,
PerES could obtain much higher energy efficiency. When
deadline violation ratio is 0.02, PerES-0.02 achieves twice
energy saving that of PerES-0. When the deadline violation
ratio is 0.23, PerES-0.23 can achieve performance compara-
ble to Opt-TRES. It even achieves a little more energy saving
than Opt-TRES at the cost of some deadline violation.

5.3 Parameter Analysis

5.3.1 Impact of Signal Period

As Fig. 5 shows, we test the energy performance of PerES
and Immediately over different variation periods of the signal
strength. We can see that the total energy consumption of
both PerES and Immediately increase with the signal vari-
ation period. When the period is smaller, there are more
opportunities to use good signal points for transmitting
data, which helps reduce the data transmission energy. For
a small variation period as 5 seconds, the tail energy of
PerES is the highest among all periods studied while that of
Immediately changes little. This is because when the period
is comparable to the length of tail time, there are more good
signal points for PerES to transfer data with small intervals,
which incurs an additional high tail energy between two
neighboring good signal points. Immediately does not react
to the change of signal and thus has similar tail energy
performance.

5.3.2 Impact of Deadline Range and Dynamic V

As a default setting, our scheduler is designed for delay-
tolerant applications generally with deadlines in the unit of
minutes, such as uploading video clips [19] or the periodic
background updates like the news and emails application-
s [24], [32]. The work in [32] shows that a typical deadline set
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on smartphone is 1 minute. However, to make a complete
comparison, in this section we also test the performance of
our scheduler when deadlines are generally much smaller
than 1 minute. As Fig. 6 shows, we evaluate the performance
of Immediately and PerES with different deadline ranges for
all the tested applications. We can see that with the smallest
deadline larger than 3 seconds, the energy savings of PerES
compared to Immediately is about 28% to 54%.

However, for the extreme setting with the smallest dead-
line as 1 second, PerES has little energy savings over Im-
mediately. Obviously, such a small delay tolerance provides
little scheduling opportunity to optimize the energy. It is
impossible to delay the tasks whose deadlines are only 1
second (which can be considered as real-time tasks), as our
scheduler runs once per second and any additional delay
would violate its deadline. Since we set the tasks to arrive
with their average intervals as deadlines, the ones with the
smallest deadline contribute to most of the traffic and thus
create the final energy impact. Moreover, we can see that the
tail energy increases when the smallest deadline increases,
which is contributed by longer idle intervals between two
successive arrival tasks. The tail energy of PerES is about
37% lower than Immediatelly when the deadline range
becomes larger because PerES gets more opportunity to
batch the packets when the tasks are more delay-tolerant.

Rather than updating the value of V in each time slot
as in Algorithm 3, we studied the performance of PerES
over different V update intervals in Fig. 7. When the update
interval of V parameter is less than 10 slots, the performance
of energy and delay is similar. The energy consumption
increases gradually when the update interval is further in-
creased. This indicates that we can reduce the computation
overhead by updating the V value every 10 slots with little
performance degradation.

5.3.3 Delay-granularity Setup

As Fig. 8 shows, we test four levels of accuracy setting
for the E-P panel. As θ increases, the delay granularity
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Fig. 10: The E-P Panels for Different Profile Functions

for scheduling decreases. We can find that, from θ = 5
to 10, the performance has a big improvement, and the
energy consumption decreases faster when the performance
degradation is set as θ = 10. When the granularity further
decreases, i.e., θ = {10, 50, 100}, the performance does not
have significant change. The reason is that the smallest
deadline of the tested applications is 10 seconds, which
reaches the finest granularity of its delay levels as the mini-
mum division granularity is one second (i.e., one time slot).
Since in this study the average task arrival interval is the
same as the deadline, the tasks with the smallest deadline
arrive more frequently than other application tasks, and
thus generate more traffic and have the main effect on the
performance. In the following, we set θ = 10 to achieve the
best balance between the overhead of queue management
and the good performance of scheduling.

5.3.4 Dynamic vs. Static Schemes

As Fig. 9 shows, we set four levels of time-average per-
formance requirement Ω between 0.2 and 0.8. Existing s-
trategies normally pre-compute a static V value by some
heuristic method [19] or obtain empirical values in exper-
iments [20]. In our study, for a given Ω setting, the static
strategy uses the optimal static V value obtained by adjust-
ing the V value in the experiment to make the time-average
performance degradation converge to Ω exactly, and keeps
the V value as a constant during the scheduling. We find
that SVA (dynamic strategy) converges to the performance
target 2-5 times faster than that of the static strategy. We can
see that larger performance requirement Ω implies larger
room for energy optimization. Furthermore, for the same
performance requirement, a faster convergence speed of S-
VA results in higher energy efficiency than the static strategy
during a specified scheduling period. Therefore, our scheme
can react fast to the change of user requirements.

5.3.5 Profile Functions

As Fig. 10 shows, we evaluate schedulers in E-P panels with
four different profile functions. We could observe the obvi-
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Fig. 11: Scheduling Overhead on CPU Power and Delay
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Fig. 12: Performance over Different Arrival Interval

ous tradeoffs between the energy consumption and perfor-
mance degradation for all other schemes except TailEnder,
where the faster dropping of energy with the degradation of
performance indicates a better performance. eTime performs
better than SALSA by embedding the tail energy into its
control decision. Our PerES performs the best for all the
profile functions tested. On average its energy efficiency is
2 times that of the eTime and TailEnder, and 4 times that
of the SALSA for a given performance. TailEnder’s results
are constrained within a small range, as it schedules the
transmission mostly around the deadline. This helps to
improve its performance but limits the room for its energy
optimization.

5.3.6 Scheduling Overhead

While saving energy for data transmissions, it is also impor-
tant for the scheduler itself to introduce low overhead for
computation and batch scheduling. We measure the average
CPU power consumption and scheduling delay of running
our PerES scheduler application. To exclude the power con-
sumed by data transmission, we run the experiments by not
actually transmitting the data but only executing exactly the
same algorithm procedures as if the data were transferred.
We further subtract the system base power of not running
any application to obtain the pure scheduling overhead on
CPU power. The scheduling delay is measured by recording
the time stamps in each round of scheduling.

We first show the impacts of scheduling frequency on en-
ergy in Fig. 11a. By decreasing the scheduling interval from
1000ms to 10ms, the average CPU power on computation is
doubled while the total energy consumption is decreased by
23%. Obviously, a more frequent scheduling would increase
the computation overhead, but the real-time and fine-gained
task handling also contributes to higher transmission energy
efficiency. However, a frequent scheduling may keep CPU
busy which would degrade the performance of other ap-
plications on the device. Considering the tradeoff between

energy and performance, the scheduling interval is suggest-
ed to be between 100ms and 1000ms.

We further analyze the scheduling overhead on both
power and delay under various network loads. As Fig. 11b
shows, both the scheduling power and delay increase with
the number of queues. In Fig. 11c, we vary the average task
arrival interval to change the number of tasks to handle
in buffer. As expected, the scheduling power and delay
decrease when the task arrival interval increases. As our
previous analysis illustrates, the computation overhead of
PerES is O(mn log(mn) + k) where mn is the total number
of queues and k is the number of tasks in buffer, which
matches the results in Fig. 11. In both cases, the average CPU
power is around 10mW, which is an order of magnitude
lower than both the system base power (160mW) and the da-
ta transmission power (730mW) (see Fig. 11b and Fig. 11c).
Moreover, the average scheduling delay per round is within
30ms, which is sufficiently low to run our scheduler per slot
(i.e., one second in this study).

5.4 Comparative Analysis

We compare the performance metrics for different sched-
ulers listed in Table 5. The black part of the energy metric
represents the tail energy part while the non-black part
represents the data transmission energy part in Fig. 12a,
Fig. 13a, Fig. 14a and Fig. 15a.

5.4.1 Impact of Arrival Pattern

In Fig. 12, as expected, heavier traffic results in larger energy
cost (Fig. 12a) and performance cost (Fig. 12b and Fig. 12c).
However, the distributions of the tail energy and data
transmission energy have big difference among different
schedulers. The tail energy of SALSA is on average twice
that of eTime, PerES and TailEnder. This is because SALSA
does not consider the tail energy in its decision. Further,
because TailEnder is not aware of the signal variation, its
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Fig. 14: Performance over Different Signal Strength

data transmission energy is on average twice that of other
schedulers. PerES’s energy efficiency is similar to eTime and
performs the best under different traffic conditions. Since
both PerES and TailEnder are aware of the task deadline
when scheduling, they have less normalized average delay
than eTime and SALSA.

5.4.2 Impact of Task Deadline

In Fig. 13, we can see that PerES has the best energy
efficiency. When increasing the minimum task deadline,
the energy consumption of TailEnder increases significantly
while SALSA gets an unstable energy output. Moreover, as
Fig. 13b shows, when the deadline is small, both TailEnder
and PerES achieve smaller average delay. However, when
the deadline is large enough, they will generate larger
average delay than SALSA and eTime. SALSA and eTime
are not deadline-aware, while TailEnder and PerES intend
to transfer tasks closer to their deadline to increase the
energy efficiency at the cost of higher delay. The delay of
PerES increases much slower than that of TailEnder. The
deadline violation ratio of four schedulers decreases with
increasing task deadline as expected. PerES achieves the
lowest deadline violation ratio when the deadline is small
and keeps a stable output when it turns large.

5.4.3 Impact of Signal Strength

In Fig. 14, the increase of average signal strength leads to
performance improvement for all schedulers. Better signal
leads to lower power and larger bandwidth for transmission
and thus helps to reduce the energy and delay (Fig.14a and
Fig.14b). PerES achieves the lowest energy and performance
cost. Specially, for all schedulers, we can see that the trans-
mission energy is reduced when the signal gets better while
the tail energy does not have much change. A better signal
requires a lower transmission power, which does not impact
the tail power. However, it is also possible to obtain a lower
tail energy when the signal turns better, e.g., -60dBm for

PerES. This is because a better signal contributes to less
transmission time and thus less possibility of violating the
deadline (Fig.14c). Then it would provide more opportunity
for a smart scheduler to aggregate the traffic.

5.4.4 Impact of User Preference Weight

The impact of user preference is shown in Fig. 15. Since
the user preference weight does not influence the schedul-
ing procedure of SALSA, eTime and TailEnder, their energy
consumption varies little while PerES achieves the best
energy efficiency. The normalized average delay represents
the delay from the user preference view. In Fig. 15b, the
normalized average delay of SALSA, eTime and TailEnder
increases with the maximum preference weight while PerES
keeps a low and stable value. This is because they do not
consider the user preference in different tasks. Since the
average delay is normalized by the preference weights, with
same task delay, the normalized average delay of these
schemes will increase with the maximum preference weight.
Further, PerES keeps the lowest deadline violation ratio.

5.5 Real-Traffic Application

We analyzed a large traffic flow trace from 99 collection
points by a 3G UMTS carrier in China on January 10, 2013.
The trace data capture about 821 million flow records (1.2
Terabytes). Each record corresponds to the information of
one flow which contains the user IP, server IP, flow time
stamps, uploading and downloading data size but without
any user data. Normally, the same user IP corresponds to
one specific user within some time window. To simplify the
process, we set the time window as one day. We consider
the uploading data in one flow as one task generated from
network applications on mobile devices and the same server
IP as the server of one specific application.

As Fig. 16a shows, we first analyze the task size distribu-
tion in the traffic trace. We randomly choose one collection
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Fig. 16: Performance over Real Traffic Trace of 100 Users

point and pick the top 5 users that have the largest number
of flows in one day for user-specific distribution. We further
derive the flows of all users collected by all collection points
in one day for a general distribution. We can find that, most
users have the similar task size distribution, and small-size
data account for a major portion of the trace, i.e., above
90% of tasks have their data size smaller than 6 Kbytes.
This gives us the insight that most users have frequent task
arrivals with a small data size, which will lead to a large
fraction of tail energy.

As Fig. 16b shows, we randomly select 20 collection
points and pick the top 5 users who own the largest number
of flows in each collection point in one day. For each user,
we select the top 5 applications that have the largest number
of flows communicated with the user, and randomly select
the signal trace in one day from the traces collected by
real mobile users for 10 days. For the task flows of each
user, we run both the default scheme Immediately and our
PerES with different levels of performance requirements Ω
on the phone for 100000 time slots. On average for each
user, in the case Ω = 0.01, PerES achieves totally 32%
energy saving over the total transmission energy (tail energy
reduction by 32.5%) with the normalized average delay as
20s and the deadline violation ratio as 0.22. In the other case
Ω = 0.04, PerES achieves totally 56% energy saving over the
total transmission energy (tail energy reduction by 60.7%)
with the normalized average delay as 57s and the deadline
violation ratio as 0.31.

To further validate the performance of PerES over recent
LTE networks, we apply the LTE energy model proposed
in [6] to replace the previously utilized 3G energy model.
The energy models in both networks are similar except the
explicit parameter setting of the power and time of different
radio states. To match the high throughput of LTE network,
we equally increase the user traffic size by ten times and
adjust the user performance bound Ω so that the user
performance of LTE is comparable to that of 3G. As Fig. 16c

shows, on average for each user, in the case Ω = 0.04, PerES
achieves 23.5% energy saving over the total transmission
energy (reducing tail energy by 24.8%) with the normalized
average delay to be 16s and the deadline violation ratio to
be 0.08. In the other case Ω = 0.12, PerES achieves 41.3%
energy saving over the total transmission energy (with the
tail energy reduced by 43.3%) with the normalized average
delay to be 49s and the deadline violation ratio to be 0.13.

We can see that for comparable user performance, the
energy saving percentage of LTE is reduced by about 10%
compared to 3G. Further, we find that the percentage of the
tail energy over the total LTE transmission energy is 10%
larger than that of 3G. The reason is that the tail time of
LTE (about 11 seconds) is longer than that of 3G and the
tail power of LTE is also higher than 3G [3], [6]. Therefore,
despite the presence of the DRX designed for energy saving,
LTE is less energy efficient during the idle state and for
transferring a small amount of data [3], which matches the
feature of our trace in Fig. 16a.

6 CONCLUSION

In this paper, we propose adaptive scheduling algorithms to
improve the energy efficiency of mobile devices in cellular
networks while also considering user performance needs
on multiple applications. Different from existing work, we
formulate the hybrid energy optimization together with the
performance degradation on user experience. We develop
a practical online scheduler that can self-adapt to better
meet user performance requirements and converge more
than two times faster to the optimal energy consump-
tion bound than that of state-of-art static schemes. Evalu-
ation results demonstrate the effectiveness of our proposed
schemes in achieving high energy approximation ratio to
offline solutions and better performance compared to peer
schemes. We further validate the energy efficiency of our
proposed scheduling algorithm under different user experi-
ences through a large amount of trace data collected.
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