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TMC: Exploiting Trajectories for Multicast in
Sparse Vehicular Networks
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Abstract—Multicast is a crucial routine operation for vehicular networks, which underpins important functions such as message
dissemination and group coordination. As vehicles may distribute over a vast area, the number of vehicles in a given region
can be limited which results in sparse node distribution in part of the vehicular network. This poses several great challenges
for efficient multicast, such as network disconnection, scarce communication opportunities and mobility uncertainty. Existing
multicast schemes proposed for vehicular networks typically maintain a forwarding structure assuming the vehicles have a high
density and move at low speed while these assumptions are often invalid in a practical vehicular network. As more and more
vehicles are equipped with GPS enabled navigation systems, the trajectories of vehicles are becoming increasingly available. In
this work, we propose an approach called TMC to exploit vehicle trajectories for efficient multicast in vehicular networks. The
novelty of TMC includes a message forwarding metric that characterizes the capability of a vehicle to forward a given message
to destination nodes, and a method of predicting the chance of inter-vehicle encounter between two vehicles based only on
their trajectories without accurate timing information. TMC is designed to be a distributed approach. Vehicles make message
forwarding decisions based on vehicle trajectories shared through inter-vehicle exchanges without the need of central information
management. We have performed extensive simulations based on real vehicular GPS traces and compared our proposed TMC
scheme with other existing approaches. The performance results demonstrate that our approach can achieve a delivery ratio
close to that of the flooding-based approach while the cost is reduced by over 80%.
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1 INTRODUCTION

Recent advances in short-range radio technology such
as Dedicated Short Range Communications (DSRC)
[1] [2] for inter-vehicle communications have driv-
en significant efforts in investigating and developing
vehicular networks. By sharing information among
moving vehicles, a vehicular network can support
a wide variety of real-world applications, including
emergence alert [3], advertisement, file sharing [4] [5],
data collection [6], etc.

Information and message exchanges through mul-
ticast, where packets are sent from one sender to
a group of receivers, have gained popular use and
serve as a crucial routine operation in vehicular net-
works. For example, the taxis in a city may form
an information network where each taxi may collect
various types of information such as road surface
condition, road closure status due to maintenance
and traffic accidents. For more efficient information
dissemination, a taxi can subscribe for some types

• Manuscript received on Sep 5, 2013, and accepted on Jan 1, 2014.
• Ruobing Jiang and Yanmin Zhu are with the Department of Com-

puter Science and Engineering at Shanghai Jiao Tong University and
Shanghai Key Lab of Scalable Computing and Systems. Xin Wang is
with the Department of Electrical and Computer Engineering at Stony
Brook University. Lionel M. Ni is with the Department of Computer
Science and Engineering at Shanghai Jiao Tong University as well
as Department of Computer Science and Engineering at Hong Kong
University of Science and Technology.

• ∗Yanmin Zhu is the corresponding author, and his email is
yzhu@cs.sjtu.edu.cn.

of information of its interest, while a vehicle that
collects the relevant information can serve as a source
to disseminate the collected data through multicast to
the group of subscribers.

Different from conventional communication net-
works, vehicular networks exhibit many unique char-
acteristics, which pose several great challenges to
efficient multicast. First, as vehicles may distribute
over a vast area, the number of vehicles in a given
region can be very limited. Therefore, a vehicular
network can be sparse and resemble a delay tolerant
network (DTN) [7] that relies on the ”carry-and-
forward” paradigm to exchange information among
vehicles. In a sparse network, it is very difficult to find
a connected path between any pair of vehicles. Second,
as two vehicles can communicate only when they
encounter (i.e., within the communication range of
each other), the encounter opportunities become the
critical network resources, which are usually scarce
[8]. This makes it necessary for a multicast approach
to be cost efficient. Finally, there is great uncertainty
with vehicle mobilities, which makes it difficult to
predict the future location of a given vehicle.

A few approaches [9] [10] [11] have been proposed
for multicast in vehicular networks. However, stem-
ming from multicast schemes proposed for Mobile
Ad Hoc Networks (MANETs), these approaches of-
ten require maintaining a costly forwarding structure
such as a tree or a mesh. They typically assume that
vehicles in the network are densely populated and
move at a lower speed. Both assumptions may be
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invalid in a practical vehicular network which often
has sparse connections in an area, thus making these
multicast approaches inefficient and even fail.

On the other hand, some potential opportunities
have not been exploited for vehicular communica-
tions. Vehicles are increasingly deployed with Global
Positioning System (GPS) enabled navigation systems.
A recent report shows that approximately 300 million
GPS devices have been shipped in 2009 alone [12].
The GPS enabled navigation system can suggest a
path towards a destination. When the future trajectory
of a vehicle is known in advance, its mobility uncer-
tainty is greatly reduced. Two vehicles may potential-
ly encounter each other if their trajectories intersect
with each other. This observation suggests that the
knowledge of trajectories of vehicles may be applied
to predict future encounters, which will in turn bring
valuable information to guide more efficient message
forwarding in vehicular networks. More specifically,
the forwarding may be more efficient if a message is
forwarded to the set of vehicles that can potentially
encounter more destination nodes, i.e., the relay vehi-
cles would have a higher capability of delivering this
message to destination nodes.

Motivated by this observation, we propose
trajectory-based multicast (TMC) which exploits
vehicle trajectories for more efficient multicast
transmissions in sparse vehicular networks. We focus
on information dissemination among public vehicles
such as taxis and buses which run for the most
time of a day. We have conducted empirical study
based on real GPS traces from around 2,000 taxis in
Shanghai, China, and find that there are on average
5.6 encounters between each pair of taxis in one day
when the communication range is 200m.

In TMC, a novel message forwarding metric is
proposed to characterize the capability of a vehicle to
forward a given message to a group of destination n-
odes, which is defined as a vector of delivery potential
of the message to each of the destination nodes. With
this metric, a vehicle can simply forward a message
to a vehicle that has a higher multicast delivery gain
over the vehicle itself. To compute the metric, the
key challenge is to predict the chance of encounter
between two vehicles based only on their trajectories
without accurate timing information. To conquer this
challenge, we model the travel time of a vehicle as a
Gamma-distributed random variable and verify the
modeling with real vehicular GPS traces. Then, a
novel method is designed to predict the chance of
inter-vehicle encounters. The salient feature of TMC is
that it is a fully distributed approach in which vehicle
trajectories are shared through inter-vehicle exchange
and a vehicle makes its message forwarding decision
based on the trajectories it learns instead of relying
on a central point for information management.

To the best of our knowledge, this is the first
work that exploits trajectory information to perform

efficient multicast in sparse vehicular networks. The
main technical contributions are as follows.

• We propose a novel message forwarding metric
for multicast in sparse vehicular networks, which
characterizes the capability for a vehicle to deliv-
er the message to multiple destination nodes.

• We provide a method to predict the chance of
inter-vehicle encounters based on only trajectory
information by modeling the travel time of a
vehicle as a Gamma-distributed random variable.

• We have performed extensive simulations based
on real vehicular GPS traces, and compared our
approach with other existing approaches. Our re-
sults have demonstrated that the proposed TMC
approach can achieve a delivery ratio close to that
of the flooding-based approach while the cost is
reduced by more than 80%.

The remainder of the paper is organized as fol-
lows. Section 2 describes the design of our approach.
We address the two key issues of our approach in
Section 3 and Section 4, respectively. The performance
evaluation is presented in Section 5. Section 6 reviews
related work. We conclude the paper in Section 7.

2 DESIGN OF TMC

In this section we give the design details of TMC.
First, we define the network model. Then, we present
the basic idea of the design. Next, we introduce
the message forwarding metrics and the message
forwarding procedure. Finally, we highlight the key
issues of TMC. Some other design issues are discussed
in the online supplementary file.

2.1 Network Model

We consider a vehicular network consisting of N
nodes. Two vehicles can communicate when they
encounter each other, i.e., when they are within the
communication range of each other. We do not require
that the vehicles are densely populated, thus the
network connectivity can be unavailable.

A message m to multicast has the following at-
tributes: message ID, source node sm, the set Dm

of destination nodes, and the time-to-live (TTL) limit
beyond which the message will be dropped.

As in [13] [14], the future trajectory Ti of a vehicle i
is obtained from the GPS enabled navigation system
when the driver inputs the destination for getting
the driving path. We assume most of the drivers
follow the driving paths suggested by the navigation
system. Trajectory Ti of vehicle i consists of a sequence
of road segments and is associated with a starting
point. Trajectory Ti of each vehicle i and the starting
point are disseminated in the vehicular network by
trajectory sharing when vehicles encounter each other.



3

v
Trajectory of v

Destination 

nodes

d3

Encounters

r1

d1

d2

Message

r2

Candidate relays

Figure 1. Illustration of the basic idea of TMC.

2.2 Basic Idea
The basic idea of TMC is to forward a message to
vehicles with a higher capability of delivering the
message to more destination nodes. In another word,
a relay node of a message should be able to encounter
more destination nodes.

As an example, in Fig. 1, the trajectories of vehicles
v, r1, r2, d1, d2 and d3 are shown. At the intersections
of different trajectories, encounters occur between the
two corresponding vehicles. Vehicle v has a message
to forward to a destination set including vehicle d1, d2
and d3, and it will encounter vehicle r1, r2 and d3.
After encountering v, vehicle r1 will encounter d1 and
d2, and vehicle r2 will encounter d2 and d3. Vehicle
v is able to forward the message to the destination
node d3 when v and d3 encounter each other. As
vehicle r1 can forward the message to both d1 and
d2, v should forward the message to r1. In contrast, v
will not forward the message to r2 in spite that r2 will
encounter d2 and d3 because d2 and d3 have already
been taken care jointly by v and r1.

2.3 Message Forwarding Metrics
For the success of TMC, it is critical to design an
efficient message forwarding metric which characterizes
the capability of a vehicle to deliver a given message
to the set of destination nodes. With the metric, a
vehicle v can compute the multicast delivery gain for
a candidate relay node r based on which v can deter-
mine if it should forward the message to r.

We next give the formal definitions of the two mes-
sage forwarding metrics, the delivery potential vector
of a candidate relay node r to a message m and the
multicast delivery gain of r over vehicle v.

Definition 1 (Delivery Potential Vector). Given a mes-
sage m, the delivery potential vector γ⃗m(v) of a vehicle v
is defined as the vector of delivery probabilities that vehicle
v delivers m to the destination nodes in Dm:

γ⃗m(v) , ⟨p1(v), p2(v), · · · , pk(v)⟩, (1)

where k = |Dm|, the ith position of the vector represents
the ith destination node in Dm sorted in the increasing
order of their IDs, and pi(v) is the corresponding delivery
probability for the ith destination node.

Note that pi(v) is zero when v has no potential of
delivering message m to destination node i.

Definition 2 (Multicast Delivery Gain). Given a mes-
sage m, the multicast delivery gain of vehicle r over vehicle
v, denoted as ϕm(r, v), is defined as,

ϕm (r, v) ,
k∑

i=1

αi,

where αi =

{
pi(r)− pi(v), if pi(r)− pi(v) > 0
0, otherwise ,

(2)

From the definition, we can see that the multicast
delivery gain of r over v reflects the additional benefit
for delivering m to destination nodes if r is selected
as a relay. It is reasonable to ignore the negative
effect of r on delivering m to destination i when
pi(r) − pi(v) ≤ 0. The justification is as follows. In
our multicast routing algorithm, message replication
is used, which indicates that a message remains in
the forwarder vehicle and a copy is replicated on the
relay vehicle. With this in mind, we actually want to
select those relays which can take the message to any
one of the destination nodes with high probability. If
a potential relay has a high delivery probability of
relaying the message to one of the destinations while
has low delivery probabilities for the rest destinations,
this relay is still desirable since it contributes to the
success of the multicast of the message. On the other
hand, if we only forward messages to those relays that
have high delivery probabilities for all destinations,
then the number of such relays would be very small.
As a result, the overall delivery probability of the
message would be very small.

2.4 Message Forwarding Procedure

When the message forwarding metrics are available,
we are ready to describe the trajectory-based multicast
routing. That is, how does the vehicular network
forward messages to their respective destination ve-
hicles. Essentially, the core of the multicast routing
process is the procedure executed by each vehicle
once it encounters another. Through period beacons
at the MAC layer, a vehicle can discover the presence
of a new neighbor and the departure of an existing
neighbor. Once discovering a new neighbor, a vehicle
executes the procedure in which the vehicle decides
whether to forward its messages to the new neighbor
and the order of these messages being forwarded.

Each vehicle gives forwarding priority to those mes-
sages with higher delivery gains with respect to the
new neighbor. To explain the procedure, without loss
of generality, we consider vehicle v encounters anoth-
er vehicle u. Upon discovering the new neighbor u,
node v should decide whether to forward its messages
to u, and the order of these messages being forwarded.
Consider a message denoted by m in vehicle v. To
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Figure 2. Illustration of the computation of the delivery
probability of v delivering m to a given destination d.

enable u to compute the delivery gain for m, it main-
tains a vector γ⃗m of maximum delivery probabilities
that have been recorded in previous relays to each
destination. The computation of delivery gain requires
encounter probabilities which needs the knowledge
of vehicle trajectories. Such knowledge is obtained by
each vehicle by sharing trajectories and corresponding
starting points each time two vehicles encounter. By v
forwarding γ⃗m to u, u can compute its gain based on
the trajectories it has maintained. Only when u has a
positive delivery gain over γ⃗m, v will forward m to u.

Considering v might have multiple messages to
forward to u while the encounter duration might not
be long enough for all the messages to be transmit-
ted, v should decide the message forwarding order.
The messages are sorted according to their delivery
gains. The pseudo codes of the message forwarding
procedure for both vehicle v and u can be found in
the online supplementary file.

It is possible that in the collision domain of v, there
might be other vehicles contending for the channel in
addition to u. This paper does not focus on the design
of MAC protocols. Note that the adopted MAC pro-
tocols for inter-vehicle communication should include
periodic beacon mechanism for neighbor discovery.

2.5 Key Issues

To implement TMC, it is necessary for each vehicle
v to compute its delivery potential vector γ⃗m(v) for
a given message m. Essentially, v should compute its
delivery probability of delivering m to each destina-
tion node d, pd(v). To compute pd(v), the following
two key issues must be addressed.

• Computation of delivery probability. The deliv-
ery probability pd(v) of vehicle v delivering m to
destination node d is dependent on all the future
inter-vehicle encounters in the network. Section 3
addresses this issue.

• Prediction of inter-vehicle encounters. We need
to compute the encounter probability of two ve-
hicles when their trajectories intersect with each
other. In spite of the knowledge of future trajec-
tories, one does not know the accurate arrival

time of the vehicle at a specific location on the
trajectory, which is critical for estimating the en-
counter probability of two vehicles. This issue is
addressed in Section 4.

3 COMPUTING DELIVERY POTENTIAL VEC-
TOR

To derive γ⃗m(v), there is a need to calculate the
delivery probability pd(v) of delivering m to each
destination d. In this section, we provide the detailed
procedures of deriving pd(v).

We first illustrate the main idea of computing pd(v)
in Fig. 2, where trajectories of several vehicles in-
cluding v and d are shown. There are three possible
forwarding pathes Path 1, Path 2 and Path 3 for the
message m carried by v to reach d. Whether the
message m can be delivered along a path is prob-
abilistic because the encounter at the intersection of
two trajectories is uncertain. Let λi denote the Path i
and P (λi) denote the delivery probability along the
forwarding path i. Then pd(v) can be computed as,

pd(v) = 1−
∏

i=1,2,3

(1− P (λi)) . (3)

As a result, to compute pd(v) we should first obtain
the following two items.

• Item 1: The set of all possible forwarding paths
connecting v and the destination node d, denoted
by Θv(d).

• Item 2: The message delivery probability along
each forwarding path λi ∈ Θv(d), i.e., P (λi).

We propose the trajectory-based encounter graph to
derive the two items in the following.

3.1 Trajectory-based Encounter Graph
We denote the trajectory of a vehicle i by Ti, contain-
ing the geographic information of the driving path of
i and associating with a starting time.

Definition 3 (Trajectory-based Encounter Graph). A
trajectory-based encounter graph G = {V,Eu, Eb} is
constructed based on a set Ψ of vehicular trajectories,
including a vertex set V , a unidirectional edge set Eu and
a bidirectional edge set Eb. Along a trajectory Ti ∈ Ψ, for
each intersection with another trajectory Tj , j ̸= i, there is
a vertex ρij ∈ V which is associated with a random variable
of vehicle i’s arrival time at the intersection. Between two
successive vertices ρij and ρik, k ̸= i along Ti, there is a
unidirectional edge e⃗ ∈ Eu from ρij to ρik. Between any
pair of vertices ρij along Ti and ρji along Tj there is a
bidirectional edge e ∈ Eb which indicates that the two
vehicles i and j can potentially meet and exchange messages
at the intersection .

A vehicle v constructs a trajectory-based encounter
graph G(v) based on the trajectory set Ψ(v) main-
tained by v. Ψ(v) is updated when v encounters
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other vehicles which share the trajectory information
with v. To create the set V (v) of G(v), every two
trajectories Ti, Tj ∈ Ψ(v) are compared for locating
their intersections. Each intersection results in a pair
of vertices ρij and ρji .

Each vertex ρij ∈ V (v) is associated with a random
variable τ ij of i’s arrival time at the intersection of
Ti and Tj . The probability distribution of the random
variable will be discussed in the subsection 4.1. It is
possible that the same pair of trajectories have more
than one intersections, so we attach spatial and tem-
poral information to each vertex for differentiation.

A unidirectional edge e⃗ ∈ Eu(v) between ρij and
ρik indicates that a vehicle i first meets the vehicle
j and then meets the vehicle k on its trajectory Ti.
As the message is carried by the vehicle i during its
traveling between the two successive intersections, the
probability of moving the message between the two
intersections is 1. Thus the weight of e⃗, P (e⃗), is set to
1. A bidirectional edge e ∈ Eb(v) between ρij and ρji
indicates that there is an chance for the vehicles i and
j to encounter and exchange messages. The weight
of e, P (e), represents the encounter probability and
is less than 1. The way of estimating the encounter
probability will be introduced in Section 4.

As an example, we show the trajectories of three
vehicles a, b and c in a small road network in Fig. 3.
The corresponding trajectory-based encounter graph
G is shown in Fig. 4. Along the trajectory Tc of vehicle
c, there are two intersections with the trajectory Tb

at road intersections I1 and I4 respectively, and an
intersection with the trajectory Ta on the road seg-
ment r. Thus, there are three corresponding vertices
ρcb(I1), ρ

c
b(I4) and ρca(r) in G. We differentiate the two

intersections between the trajectories of c and b, i.e.,
ρcb(I1) and ρcb(I4), with the geographic positions I1
and I4. Along Tc there are three successive intersec-
tions represented by vertices ρcb(I1), ρ

c
a(r) and ρcb(I4)

respectively. Accordingly, there are two unidirectional
edges in G, one is from ρcb(I1) to ρca(r) and the other
is from ρca(r) to ρcb(I4). There are also two successive
intersections along Tb at I1 and I4, respectively. Corre-
spondingly, there is a unidirectional edge from ρbc(I1)

to ρbc(I4). For the trajectory intersection between Ta

and Tc on the road segment r, there is a bidirectional
edge between vertices ρac (r) and ρca(r).

3.2 Searching for Forwarding Paths
With G(v), an efficient searching algorithm is applied
to find all possible paths from v to each destination.

We next explain the main process of the searching
algorithm with an example trajectory-based encounter
graph shown in Fig. 5. The searching algorithm in-
troduces a parameter of search depth ω ≥ 1, which is
defined as the maximum number of forwarding hops
of all resulting paths. A forwarding hop corresponds
to the message transmission between two vehicles,
and the number of hops on a forwarding path reflects
the number of times the messages are forwarded from
one vehicle to another over the whole path.

The main process of the searching algorithm on
G(v) given a searching depth ω is as follows.

• Initialization: The starting point ρ0 of the search
is the first trajectory intersection along Tv, i.e.,
the first vertex of v. In our example, the starting
vertex is ρva(I1).

• Depth-1 search: The vehicle v looks for the des-
tinations that it can directly reach without need
of another vehicle to forward the message. Thus,
starting from ρ0, v only needs to search along
its unidirectional edges to find the vehicles that
can be encountered in one hop, denoted by β1.
Once encountering these vehicles, v can forward
the message to them. In the example, β1 = {a, b}
because ρva(I1) and ρvb (I2) are found.

• Depth-i search (1 < i ≤ ω): The search goes
along the bidirectional edges from vehicles in
βi−1 to find the vehicles that can be reached
within i hops from ρ0. From a vehicle in βi−1,
same as the Depth-1 search, the search goes along
unidirectional edges to find vehicles that have
not been included by βi−1 to create the set βi of
vehicles to encounter in i hops. In the sample,
β2 = {c} and ∀i > 2, βi = ∅.

• Termination: After the search finishes, the desti-
nation nodes and the forwarding path rooted at
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v are available. In our example, there are two
forwarding pathes from v to the destination node
c, i.e., ρva(I1) → e1 → ρav(I1) → e⃗2 → ρac (I4) →
e3 → ρca(I4) and ρva(I1) → e⃗1 → ρvb (I2) → e2 →
ρbv(I2) → e⃗3 → ρbc(I3) → e4 → ρcb(I3).

According to the searching algorithm, the search
depth ω controls the tradeoff between the estimation
accuracy of the message delivery probability and the
computation complexity. When a larger search depth
is used, more destination nodes and more forwarding
paths from a vehicle to each of the destination nodes
would be included. However, a larger search depth
leads to a higher computation complexity. We know
that the message delivery probability through a for-
warding path quickly decreases with the increasing
number of hops. As a result, a small search depth
suffices in practice, e.g., 3 hops.

3.3 Calculating P (λi)

Suppose λi ∈ Θv(d) is a forwarding path searched
by the previous algorithm and λi contains a set of
bidirectional edges, denoted by Φ(λi), then P (λi) can
be computed as follows,

P (λi) =
∏

e∈Φ(λi)

P (e). (4)

It is possible that when two vehicles, e.g., v and
u, encounter with each other, neither v nor u can
find a forwarding path to deliver a message of v
to one of the destinations, e.g., i. In another word,
both pi(v) and pi(u) are zero. Then, the multicast
delivery gain of forwarding the message from v to u is
computed based only on those destinations to which
u has higher delivery probabilities than v. As a result,
the destination i, to which both v and u have a zero
delivery probability, will be ignored.

4 PREDICTING INTER-VEHICLE ENCOUN-
TERS

The occurrence of an encounter between two vehicles
requires two conditions. First, there is a trajectory
intersection between the two trajectories. Second, the
arrival instants of the two vehicles at the intersection
position are so close that the two vehicles will reside
within the communication range of each other. Based
on the two conditions, we compute the encounter
probability of two vehicles given their trajectories.

4.1 Modeling of Travel Time
When predicting inter-vehicle encounters, it is neces-
sary to have the knowledge of a vehicle’s arrival time
at an intersection on its trajectory. However, vehicular
trajectories do not provide such arrival times. Fortu-
nately, the vehicular travel time over a route of urban
roads follows the Gamma distribution, as suggested
in some prior research [15] [16].
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The probability density function (PDF) of the Gam-
ma distribution can be expressed in terms of the
gamma function parameterized in terms of a shape
parameter κ and a scale parameter θ. The equation
defining the PDF of a gamma-distributed random
variable τ , representing the vehicular travel time, is

f (τ ;κ,θ)= 1
θκ

1
Γ(κ)τ

κ−1e−
τ
θ ,

τ ≥ 0, and κ,θ>0.
(5)

To verify that the vehicular travel time follows
Gamma distribution, we have conducted empirical
study based on real vehicular GPS traces from around
2,058 taxis in Shanghai, China. For a randomly select-
ed road segment, we compute the travel time of about
1,000 vehicles which forms a sample set. Based on the
sample set, we first plot a histogram in Fig. 6 which
shows the distribution of all the samples. Then we
estimate the two parameters of the PDF of the Gamma
distribution by conducting the maximum likelihood
estimation over the sample set. With the estimated
parameters, we plot the PDF of this specific Gamma
distribution in Fig. 6, too. The Kolmogorov-Smirnov
(K-S) test shows that the sample set follows Gamma
distribution with a significance level of 95%.

As a result, we model the travel time over a path as
a random variable following the Gamma distribution
in which there are two parameters. We derive the
two parameters We estimate the two parameters by
conducting statistics on the real vehicular GPS traces
as follows. First, travel time samples for the driving
path are collected, which include both the time on
road segments along the path and the time at cor-
responding intersections. Then, maximum likelihood
estimation is conducted based on the travel time
samples to achieve the parameters.

4.2 Calculation of Encounter Probabilities
The rationale behind the computation of encounter
probabilities is as follows. Suppose the trajectories of
vehicle v and u intersect at position I . The arrival
time of v at I , denoted by τvu(I), has been introduced
in the construction of encounter graphs (Section 3.1).
τvu(I) can be modeled as a Gamma distributed random
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variable. This is because the starting time instant of
v’s trajectory is known and the vehicular travel time
until v arrives at I can be modeled as a Gamma
distributed random variable as introduced in the pre-
vious subsection. Similarly, the arrival time of u at I ,
τuv (I), is also a random variable. We denote the time
difference between τvu(I) and τuv (I) by ∆(τvu(I), τ

u
v (I)).

To ensure that u and v can encounter at position
I , ∆(τvu(I), τ

u
v (I)) has an upper bound, denoted by

δ. When ∆(τvu(I), τ
u
v (I)) is larger than δ, u and v

cannot encounter because they will be out of the
communication range of each other when they arrive
at I . δ can be determined based on the transmission
range and the relative moving speed of two vehicles.

We consider two types of inter-vehicle encounters.
We next explain the computation of the encounter
probability for each type. The first type of encoun-
ters occur at a road intersection, e.g., the encounter
between b and c at I1 in Fig. 3. Denoting the PDF of
a random variable τ by fτ , the encounter probability
can be computed as,

Pr{b encounters c at I1}
= Pr{∆(τ bc (I1), τ

c
b (I1)) < δ} (6)

=

∫ ∞

0

∫ t+δ

t−δ

fτb
c (I1)

(t)× fτc
b (I1)

(t′)dt′dt. (7)

Eq. 6 means the probability that b and c encounter at
I1 is the probability that the time difference between
the arrival time of b and c at I1 is shorter than δ.

The second type of encounters take place when
two vehicles move in different directions on the same
road, e.g., the encounter between vehicles a and c
on road r in Fig. 3. Denoting the arrival time of a
at road intersections I2 and I3 by τa(I2) and τa(I3),
respectively, and those of c at I2 and I3 as τ c(I2) and
τ c(I3), respectively, we have

Pr{a encounters c on road r}
= Pr{τa(I3) < τ c(I3) ∩ τ c(I2) < τa(I2)} (8)

=

∫ ∞

0

∫ ∞

t

fτa(I3)(t)× fτc(I3)(t
′)dt′dt

×
∫ ∞

0

∫ ∞

t

fτc(I2)(t)× fτa(I2)(t
′)dt′dt. (9)

This means that vehicles a and c encounter each other
when both the time a entering r (τa(I3)) is earlier than
the time c leaving r (τc(I3)) and the time c entering r
(τc(I2)) is earlier than the time a leaving r (τa(I2)).

5 PERFORMANCE EVALUATION

We evaluate the performance of TMC in this section.
More evaluation results can be found in the online
supplementary file.

5.1 Methodology and Experimental Setup
We have conducted extensive simulations based on
real vehicular GPS traces, and compared our approach

with three state-of-the-art related approaches. The
GPS traces are collected from 2,058 taxis in Shanghai,
China during a period of 32 days, covering the urban
area of 130 km in length and 69 km in width.

To evaluate the routing performance, we use three
metrics: delivery ratio, transmission overhead, and de-
livery delay. The metric of transmission overhead is
an average over all the multicast sessions. For a
single multicast session, the transmission overhead is
the number of all the transmissions of data packets
over the number of reached destination vehicles. The
delivery delay is the average value of all the success-
fully delivered packets. The default value of system
parameters in all the simulations are shown in Table 1.

Each multicast session has a source node generating
a message with the TTL of two hours. The set of
destination nodes are randomly selected and recorded
in message header.

5.2 Compared Algorithms
• Epidemic [17]. The source node floods the message

throughout the network to reach all multicast
destination nodes.

• RAPID [18]. RAPID is originally designed for u-
nicast in delay-tolerant networks. With RAPID, a
message is forwarded to a relay who has a shorter
expected delay to the destination. We have re-
vised RAPID where a relay node is selected if
it has a shorter delay to any of the destination
nodes. Message replication is adopted.

• STDF [19]. This algorithm is initially designed
for unicast in vehicular networks. It assumes the
availability of real-time trajectories of all the vehi-
cles. Encounters of two vehicles traveling on the
same road segment and along opposite directions
are considered. For fair comparison, STDF is also
extended to support efficient multicast.

5.3 Overhead of Trajectory Sharing
In TMC, when two vehicles encounter each other, each
of the vehicles will share with the other vehicle the
information of currently maintained trajectories that
the other vehicle does not have. As a result, the tra-
jectory sharing process incurs transmission overhead.
To learn how much the actual transmission overhead
for sharing trajectories is incurred throughout the

TABLE 1
Default Settings of System Parameters

Parameter Default Value
# of vehicles 1,000

# of multicast groups 50
# of destination nodes 20
Communication range 100 meters

Search depth ω 3
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Figure 7. Delivery Ratio vs. Num-
ber of Vehicles.
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Figure 8. Transmission Overhead
vs. Number of Vehicles.
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Figure 9. Delivery Delay vs. Num-
ber of Vehicles.

whole process, we have conducted trace driven simu-
lations to study the overhead. We emphasize that the
transmission overhead studied in this subsection only
counts the amount of transmitted data for exchanging
trajectories each time two vehicles encounter.

The experimental simulations are conducted based
on the real vehicular GPS traces. We simulated the
vehicular network for 3 hours (8:00am-11:00am). The
amount of transmitted data on each encounter for
exchanging trajectories was recorded each time two
vehicles encounter each other. The number of vehicles
is varied from 200 to 1,800. The communication range
of vehicles is 100 meters. We use 140 bytes to store one
vehicle trajectory because of the following analysis of
the real traces. First, we can use four bytes to represent
a road segment because there are less than 35,000
road segments in Shanghai, the largest city in China.
Second, a trajectory of 10 hours contains about 34.2
road segments. As a result, 140 bytes are sufficient to
represent a vehicle trajectory used in TMC.

Fig. 10 plots both the total transmission overhead of
trajectory sharing of the whole network and the aver-
age overhead per vehicle in log scale as the number
of vehicles in the network is varied. From the figure,
we can find that the overhead of trajectory sharing
is as low as hundreds of kilobytes per vehicle and
increases with the number of vehicles. Therefore, the
transmission overhead caused by sharing trajectories
in TMC is very low. The main reason is that when
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Figure 10. Trajectory sharing overhead vs. number of
vehicles.

two vehicles encounter, only the trajectories that the
other vehicle does not have are actually exchanged.
Thus, it is practical to share trajectories for efficient
multicast routing in vehicular networks.

In the rest of performance evaluation, the reported
transmission overhead values all include the overhead
caused by sharing trajectories among vehicles.

5.4 Impact of Number of Vehicles

We evaluate the performance of various schemes as
the number of vehicles is varied from 200 to 1,800.
Fig. 7, Fig. 8, and Fig. 9 plot the evaluation results.

In Fig. 7, we can see that TMC has a delivery ratio
close to those of Epidemic and STDF and better than
that of RAPID. For example, when there are 1,800
vehicles, the delivery ratio of TMC is only 6.4% and
8.0% lower than that of Epidemic and STDF, respec-
tively. The delivery ratio of each scheme increases
as the number of vehicles becomes larger because
more nodes lead to a higher delivery capability of the
network. STDF performs best because of the adoption
of real-time vehicular trajectories. With the knowledge
of real-time trajectories, inter-vehicle encounters are
better estimated and and contribute to high delivery
ratio. On the other hand, Epidemic floods data packets
blindly. Thus, transmission chances cannot be effi-
ciently used to achieve high delivery ratio. For TMC,
the reason that the delivery ratio is lower than STDF
is that the trajectories are shared through inter-vehicle
transmissions. Thus, trajectories are not completely
available to all the vehicles. For RAPID, it performs
worst because it estimates the expected delay of relays
based on less efficient statistic results of encounter
history instead of real-time information.

As expected, in Fig. 8, TMC has the lowest trans-
mission overhead among the compared algorithms.
As TMC estimates not only the encounters between
two vehicles on the same road segment, but also
around road intersections which is ignored by STDF,
TMC can find better sequences of relays with higher
encounter probabilities. As a result, TMC deliver
packets much more efficiently than STDF. When there
are 1,800 vehicles in the network, the transmission
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ber of Multicast Sessions.
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vs. Number of Multicast Sessions.
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overhead of TMC is 85.2%, 90.2% and 90.9% lower
than that of STDF, RAPID and Epidemic, respectively.
We can also find that trajectory based routing al-
gorithms perform better than algorithms not using
trajectories. This is because, with the knowledge of
trajectories, packet transmissions to those vehicles
with less probabilities to delivery the packet are re-
duced and precious encounter chances can be more
efficiently used.

Fig. 9 shows that the delivery delay of four algo-
rithms decrease as the number of vehicles decreases
and TMC has the shortest delivery delay among
all the compared algorithms. As mentioned above,
the average delivery delay is computed over all the
successfully delivery packets. In other words, for a
multicast packet, the delivery delay for the packet to
reach each received destination should be taken into
computation. We can find that the trajectory based
algorithms, i.e., TMC and STDF, have shorter delay
than other algorithms. This is also because that, with
the knowledge of trajectories, relay sequences with
higher delivery probabilities are selected which avoid-
s blind transmissions. When there are 600 vehicles, the
delivery delay of TMC and STDF are 10.7% and 6.2%
shorter than that of Epidemic, respectively.

5.5 Impact of Number of Multicast Sessions
In order to illustrate the sparse property with precious
transmission chances in vehicular networks and to
emphasize the importance of high efficient routing
algorithms, we explore the impact of traffic load by
varying the number of concurrent multicast sessions.
Fig. 11, Fig. 12 and Fig. 13 show the results.

In Fig. 11, the delivery ratio of all the algorithms
decrease as more concurrent multicast sessions exist.
The most important feature in the figure is that the de-
livery ratio of Epidemic decreases dramatically with
heavier traffic load. When there are 200 concurrent
multicast sessions, Epidemic has the lowest delivery
ratio which is 35% lower than that of STDF. As Epi-
demic blindly floods packets in the network without
efficiently using the precious transmission chances,
traffic loads higher than the transmission capacity of
the network necessarily result low delivery ratio.

In Fig. 12, algorithms keep stable transmission over-
head to successfully deliver a packet under different
traffic loads. From the figure, we can find that trajecto-
ry based algorithms are more efficient than Epidemic
and RAPID. For example, when there are 150 mul-
ticast sessions, the transmission overhead of TMC is
85.9% lower than that of Epidemic. We can also find
than TMC is much more efficient than STDF. There
are two reasons. First, TMC considers more encounter
types than STDF. Thus, TMC can select better relays
with higher delivery probabilities. Second, TMC is
designed for multicast. TMC evaluates the delivery
ability of a candidate relay based on its integrated
delivery probabilities for all the destinations of a
multicast packet. While STDF selects a relay only if it
has a higher delivery probability for any destination.

As shown in Fig. 13, the average delivery delay of
TMC for successfully delivery packets is the shortest.
When the traffic load increases, the delivery delays of
the three compared algorithms only increase slightly.
This is because only a small ratio of packets are
successfully delivered under heavy traffic load.

6 RELATED WORK

We review related work in this section. Additional
discussion on other related work including multicast
algorithms in mobile ad hoc networks and previous
studies in vehicular ad hoc networks are provided in
the online supplementary file.

6.1 Multicast in Vehicular Networks

A few algorithms have been designed for multicast
routing in vehicular networks, but most of them are
extended from typical multicast routing protocols for
MANETs, which makes them inappropriate for sparse
vehicular networks.

ROVER [9] is a tree-based geographical multicast
routing algorithm for vehicular networks. Vehicles in
the zone of forwarding (ZOF) discover a forwarding
tree reaching all the nodes in the zone of relevance
(ZOR) rooted at the source node. It is clear that a high
density of nodes is necessary for this protocol.
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MDDV [11] is also a dissemination tree based al-
gorithm. For each forwarding path to a specific des-
tination region, a dynamically maintained group of
nodes which locate closest to the destination region
are forwarders.

6.2 Trajectory-based Routing in Vehicular Net-
works
Vehicular trajectories have been exploited for packet
delivering in vehicular networks [20] since the avail-
ability of future trajectories significantly reduces the
uncertainty with vehicular mobility.

TBD [14] is a routing approach for using trajectories
to forward data from vehicles to a given roadside
access point (AP) in a light traffic vehicular network.
Each node estimates the delivery delay to the AP
based on its trajectory, which is then used as the
metric for making forwarding decisions. Wu et al. [21]
propose to predict the future location of a vehicle
by modelling the mobility of a vehicle as a multi-
order Markov chain, and then estimate the encounter
probability of each pair of vehicles. TSF [22] makes
use of road side units (RSUs) and trajectories to
forward data from a fixed roadside unit (RSU) to a
moving vehicle.

In our work we also exploit vehicular trajectories
for data delivery, but consider a different problem, i.e.,
multicast routing in sparse vehicular networks. Thus,
our work is complementary to existing approaches.

7 CONCLUSION

In this paper we have presented an approach called
TMC for efficient multicast in sparse vehicular net-
works. TMC employs a forwarding metric which
characterizes the capability for a candidate relay n-
ode to deliver a message to each destination node
in the multicast group. We predict the pairwise en-
counters of a vehicle with other vehicles to evaluate
its delivery probability. TMC is a fully distributed
approach, with which vehicles share their trajectories
as they encounter each other. This makes TMC ap-
pealing for practical use in real vehicular networks.
Our performance results demonstrate that TMC can
achieve the packet delivery ratio close to that of a
broadcast scheme with a much lower transmission
overhead. We introduce our future work in the online
supplementary file.
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APPENDIX A
PSEUDO CODES OF THE MESSAGE FOR-
WARDING PROCEDURE

The pseudo codes of the message forwarding pro-
cedure are shown in Algorithm 1 and Algorithm 2.
The procedure in Algorithm 1 is executed by every
vehicle each time it discovers a new neighbor u.
The procedure in Algorithm 2 is triggered by the dis-
covering vehicle. The procedure includes the process
for sharing trajectories between node v and u. The
departure of the neighbor prematurely terminates the
execution of the procedure.

APPENDIX B
ADDITIONAL PERFORMANCE EVALUATION
ON THE IMPACT OF COMMUNICATION RANGE

In this set of simulations, we vary the communication
range from 50 m to 250 m. Fig. 14, Fig. 15, and Fig. 16
plot the delivery ratio, transmission overhead and
delivery delay, respectively.

As expected, in Fig. 14, the delivery ratio of each al-
gorithm increases when larger communication range
is adopted. This is because a larger communication
range results more inter-vehicle contacts and a larger
network capacity of packets delivery. Same as previ-
ous simulations, STDF has the best performance and
TMC has a delivery ratio close to those of Epidemic
and STDF. When the communication range is 150 m,
the delivery ratio of TMC is only 12.2% lower than
that of Epidemic, and 27.5% higher than that of
RAPID. We can also find that STDF has similar de-
livery ratio as Epidemic. However, they use different
schemes to achieve the best delivery ratio among all
the approaches. Epidemic floods the messages over
the network, taking full advantage of inter-vehicle
encounters. Thus, Epidemic achieves high delivery
ratio but with high transmission overhead, which will
be shown later. While STDF relays messages in a more
efficient way by assuming that each vehicle has the
access to all the vehicular trajectories. Thus, STDF can
largely reduce the transmission overhead.

In Fig. 15, Epidemic and RAPID keep stable trans-
mission overhead under different communication
ranges while trajectory based algorithms have slightly
higher transmission overhead when the communica-
tion range increases. For example, the transmission
overhead of TMC when the communication range is
150 m is 20.6% higher than that when the communi-
cation range is 100 m. The reason that trajectory based
algorithms have higher transmission overhead under
larger communication range is as follows. When larg-
er communication range is adopted, more potential
relays are available each time when a packet holder
encounters with other vehicles. Before the best re-
lay sequence is found, vehicles with higher delivery
probabilities are selected as relays to improve the

Algorithm 1: Message Forwarding Procedure Ex-
ecuted on v

Notations Mi: the set of messages of vehicle i
Ψi: the set of trajectories maintained by vehicle i
I : maximum number of retransmissions

1: for iter=1, iter< I do
2: ∀m ∈ Mv , broadcast IDm, Dm, and γ⃗m
3: Share trajectories Ψv with u
4: if Receive delivery gains from u then
5: Decide the message forwarding order
6: Broadcast messages in order
7: ∀m ∈ Mv , update γ⃗m,
8: return
9: end if

10: end for

Algorithm 2: Corresponding Procedure Executed
on u

Notations Mi: the set of messages of vehicle i
Ψi: the set of trajectories maintained by vehicle i

1: if Receive message information from v then
2: Share trajectories Ψu with v
3: Compute delivery gains to messages involved in the

received message information
4: Broadcast delivery gains
5: if Receive messages from v then
6: Update Mu and γ⃗m, ∀m ∈ Mu

7: end if
8: end if

delivery ratio. Thus, more unnecessary transmissions
are generated when larger communication range is
adopted.

In Fig. 16, we can find that a larger communication
range results in a shorter delivery delay for each
algorithm. And when the communication range is
large enough, the delivery delay of all the compared
algorithms are close. When the communication range
is 250 m, the delivery delay of Epidemic is only 3.7%
and 6.7% higher than that of STDF and TMC, re-
spectively. This is because a larger communication
range leads to more inter-vehicle contacts and a larger
network capacity of data delivery. Thus, the efficiency
of algorithms becomes less important.

APPENDIX C
MULTICAST IN MANETS

Multicast routing in mobile ad hoc networks
(MANETs) has been extensively studied. The major-
ity of multicast protocols can be classified into four
categories, i.e., tree-based, mesh-based, cluster-based
and stateless multicast routing.

A tree-based protocol constructs a forwarding tree
[23] from the source to all multicast receivers. The
routing performance will be significantly affected
when network nodes are highly dynamic which re-
sults in frequent route failures. At the same time, a
large number of control messages are generated to
construct and maintain the forwarding tree, leading
to a high overhead. MAODV [23] and its successor
SRMAODV [24] are examples of tree-based protocol.
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Figure 14. Delivery Ratio vs. Com-
munication Range.
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Figure 15. Transmission Overhead
vs. Communication Range.
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Figure 16. Delivery Delay vs. Com-
munication Range.

Instead of constructing a tree which has a single
path to each destination node, a mesh-based multicast
protocol [25] [26] has more than one paths between
the source node and each multicast receiver. The
mesh topology thus can better cope with link failure
[27], and mesh-based routing has a higher delivery
ratio and lower delivery delay. However, redundancy
forwarding paths bring heavy traffic load in a sparse
network with constrained communication chance.

A cluster-based multicast protocol [28] builds local
clusters or cohorts [29] of connected nodes to efficient-
ly make multicast routing decisions.

Different from the previous categories, the stateless
category of multicast protocols [30] [31] [32] does not
rely on routing structures, thus minimizing the over-
head for constructing and maintaining these routing
structures. This category of protocols are especially
suitable for highly dynamic networks.

APPENDIX D
VEHICULAR NETWORKS

Many research efforts have been devoted to different
aspects of vehicular networks. In [33], vehicle mobility
in urban environments has been studied by looking
at the inter-contact time which is reported to be
exponentially distributed. Lu et al. [34] analyze the
asymptotic capacity and delay performance of social-
proximity urban vehicular networks with inhomoge-
neous vehicle density.

Some work focus on the link layer performance of
vehicular networks. In [35], the performance of a C-
SMA based broadcast protocol in vehicular networks
has been analyzed. And in [36], Martelli et al. study
the beaconing performance of IEEE 802.110 based ve-
hicular networks by analyzing the real measurements
collected from field tests.

Many approaches for data delivery in vehicular
networks have been proposed. In [5], a cooperative
content distribution system called CCDSV is present-
ed, which is based on a network of infrastructure
APs to collaboratively distribute contents to vehicles.
Zhu et al. find that there is temporal dependency
for inter-vehicle contacts between vehicles and then

design a prediction method to predict the next contact
for a given pair of vehicles. with predicted contacts,
vehicles can make better forwarding decisions. In [37],
the optimal replication strategy has been studied for
packet delivery in vehicular networks. In [6], sensor
data fusion algorithms are developed to aggregate
data collected vehicles.

In [38], Li et al. consider service scheduling prob-
lems in which a vehicle may not be able to obtain
more than one service within a short period of time,
and scheduling algorithms have been proposed. And
urban vehicular networks are vulnerable to Sybil at-
tacks and attack detection techniques are reported in
[39].

APPENDIX E
DISCUSSION

In the real world, vehicles may change their future
trajectories. The possible reasons are traffic jams or
accidents on their previous trajectories. When a vehi-
cle changes its trajectory, the outdated ones that have
been distributed in the network should be updated.
Otherwise, the estimated delivery probabilities of a
vehicle based on the information of the outdated
trajectory would be inaccurate.

However, the impact of trajectory changes on the
performance of our approach is limited. The main
reasons are as follows. First, the outdated trajectories
can be replaced quickly through our trajectory sharing
mechanism. When a vehicle has a new trajectory,
it shares its new trajectory with vehicles it will en-
counter. Gradually, the new trajectory will spread
over the whole network to replace the outdated ones.
We have conducted trace-driven simulations on the
spread speed of trajectories sharing based on our real
vehicular traces. The setting of the simulations follows
the default values, as specified in our main file. The
simulation results show that it only takes half an hour
to spread 70% of all the trajectories to more than 73.2%
of the vehicles in the network. Second, according to
the computation of the message delivery probability
(as described in the main file), this probability of a
vehicle is determined by all the forwarding paths. If
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only one forwarding path is changed, the message
delivery probability is only slightly changed. Finally,
the fraction of vehicles which change their trajectories
is usually small.

APPENDIX F
FUTURE WORK

We will carry our future work by investigating the
privacy issue that may arise in our approach. The
trajectory of a vehicle may disclose some sensitive
privacy information of the vehicle driver. The cur-
rent design does not consider the privacy issue in
sharing vehicular trajectories. We will study privacy
protection for individual trajectory in future work.
Possible solutions include anonymization of vehicle
trajectories [40] and restricted sharing among autho-
rized vehicles [41].


