
Accurate Recovery of Internet Traffic Data: A
Tensor Completion Approach

Kun Xie1, Lele Wang1, Xin Wang2, Gaogang Xie3, Jigang Wen3, Guangxing Zhang3
1 College of Computer Science and Electronics Engineering, Hunan University, Changsha, China

2 Department of Electrical and Computer Engineering, State University of New York at Stony Brook, USA
3 Institute of Computing Technology, Chinese Academy of Sciences, Beijing, China

xiekun@hnu.edu.cn, wanglele2012@hnu.edu.cn, x.wang@stonybrook.edu, xie@ict.ac.cn,
wenjigang@ict.ac.cn, guangxing@ict.ac.cn

Abstract—The inference of traffic volume of the whole network
from partial traffic measurements becomes increasingly critical
for various network engineering tasks, such as traffic prediction,
network optimization, and anomaly detection. Previous studies
indicate that the matrix completion is a possible solution for
this problem. However, as a two-dimension matrix cannot suffi-
ciently capture the spatial-temporal features of traffic data, these
approaches fail to work when the data missing ratio is high.

To fully exploit hidden spatial-temporal structures of the
traffic data, this paper models the traffic data as a 3-way
traffic tensor and formulates the traffic data recovery problem
as a low-rank tensor completion problem. However, the high
computation complexity incurred by the conventional tensor
completion algorithms prevents its practical application for the
traffic data recovery. To reduce the computation cost, we propose
a novel Sequential Tensor Completion algorithm (STC) which can
efficiently exploit the tensor decomposition result for the previous
traffic data to deduce the tensor decomposition for the current
data. To the best of our knowledge, we are the first to apply the
tensor to model Internet traffic data to well exploit their hidden
structures and propose a sequential tensor completion algorithm
to significantly speed up the traffic data recovery process. We
have done extensive simulations with the real traffic trace as the
input. The simulation results demonstrate that our algorithm
can achieve significantly better performance compared with the
literature tensor and matrix completion algorithms even when
the data missing ratio is high.

Index Terms—Internet traffic data recovery, Tensor completion

I. INTRODUCTION

Gaining a full knowledge of the traffic data volume between
a set of origin and destination (OD) pairs in the networks
becomes increasingly critical for the network engineering tasks
[1], such as the prediction of future traffic trends, network
optimization, protocol design, and anomaly detection.

Although important, it is impractical to collect measurement
data from a very large number of points in a large network
at the fine time-scales. To reduce the cost, an alternative mea-
surement strategy usually adopted by the network monitoring
system is to take random measurement samples from the full
traffic data. The actual data collected can be even less due
to the unavoidable data loss from the severe communication
conditions. As many network engineering tasks require the
complete traffic information or they are highly sensitive to the

missing data, the accurate reconstruction of missing values
from partial traffic measurements becomes a key problem, and
we refer this problem as the traffic data recovery problem.

Various studies have been made to handle missing traffic
data. As most of the known approaches are designed based
on purely spatial [2]–[4] or purely temporal [5], [6] infor-
mation, their data recovery performance is low. To utilize
both spatial and temporal information, several recent studies
model the traffic data as traffic matrices and propose matrix-
based algorithms to recover the missing traffic data [7]–[12].
Although these approaches present good performance when
the data missing ratio is low, their performance suffers when
the missing ratio is large, especially in the extreme case when
the traffic data on several time intervals are all lost.

To overcome the shortcomings of the matrix-based methods,
we propose to model the traffic data based on the multi-
way tensor, and design an accurate traffic recovery algorithm.
Specifically, our algorithm takes advantage of the tensor pat-
tern to combine and exploit multiple correlation features of the
spatial-temporal information, which helps to preserve multiple
features of the traffic data and extract the underlying factors
in each feature.

Although promising, compared to matrices, tensors have
additional data dimensions. Several tensor completion algo-
rithms [13]–[16] have been proposed for the data recovery with
their core lying in the tensor decomposition. Requiring a large
number of computations, it is difficult to adopt the existing
tensor decomposition methods in the traffic data recovery. It
is important and challenging to reduce the computation cost
and speed up the tensor completion process.

To design an efficient and accurate traffic data recovery al-
gorithm, in this paper, we first analyze a large trace of real traf-
fic data, which reveals that there exist hidden structures in the
data. Structure and redundancy in data are often synonymous
with the sparsity. To fully exploit theses hidden structures
for the data recovery, we model the traffic data as a 3-way
traffic tensor and formulate the traffic data recovery problem
as a low-rank tensor completion problem. Furthermore, we
propose a sequential tensor completion algorithm to quickly
solve the problem with a low computation cost. To the best of
our knowledge, this is the first time that the tensor pattern is
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introduced to model the Internet traffic data. Our model helps
to preserve the multi-way nature of the traffic data and extract
the underlying multi-mode hidden structures in the traffic data.
Our contributions are summarized as follows:

• Based on the analysis of real traffic trace, we reveal that
traffic data have the features of temporal stability, spatial
correlation, and periodicity.

• To fully exploit the hidden structures for the data re-
covery, we model the traffic data as a 3-way traffic
tensor which can combine and utilize the multi-mode
correlations (for example, OD pair-mode, time-mode, and
day-mode).

• To reduce the computation cost of the traffic recovery,
we propose a sequential tensor completion algorithm to
deduce the tensor decomposition for the current data
based on the tensor decomposition result of the previous
traffic data. Our algorithm does not invoke a real tensor
decomposition procedure (which incurs a high computa-
tion cost) for the current data, so the computation cost
can be significantly reduced.

• To evaluate the performance of our proposed algorith-
m, we have performed extensive simulations based on
real traffic trace. Compared with the state of art ten-
sor completion algorithms as well as the matrix-based
algorithms, our algorithm can achieve significantly better
performance in terms of several metrics, including the
ratio of the recovery error, the ratio of the successful
recovery, and the computation time.

Although we apply the tensor to capture the traffic volume
in this paper, our tensor modeling and the proposed sequential
tensor completion approach are useful for the representation
of other factors of the network, for instance, delay, jitter, loss,
bottleneck-bandwidth, and distance (RTT).

The rest of the paper is organized as follows. We introduce
the related work in Section II. The preliminaries of tensor
are presented in Section III. We present our analyses on the
real traffic data, our system model and problem formulation,
and our sequential tensor completion algorithm in Section IV,
Section V, and Section VI, respectively. Finally, we evaluate
the performance of the proposed algorithm through extensive
simulations in Section VII, and conclude the work in Section
VIII.

II. RELATED WORK

In this section, we review the related work on the recovery
of the missing Internet traffic data, and identify the differences
of our work from the existing work.

A set of studies have been made to handle the missing
traffic data. Designed based on purely spatial [2]–[4] or purely
temporal [5], [6] information, most of the known approaches
have a low data recovery performance.

To capture more spatial-temporal features in the traffic data,
SRMF [7] proposes the first spatio-temporal model of traffic
matrices (TMs). It finds sparse approximations to TMs, and
recovers the missing data with the spatio-temporal operation
and local interpolation. Following SRMF, several other traffic

matrix recovery algorithms [8]–[12] are proposed to recover
the missing data from partial traffic measurements. Compared
with the vector-based recovery approaches, as a matrix could
capture more information and correlation among traffic data,
matrix-based approaches achieve much better recovery perfor-
mance. However, a two-dimension matrix is still limited in
capturing a large variety of correlation features hidden in the
traffic data. For example, although the traffic matrix defined
in [7] can represent the traffic flows in different time slots to
catch the spatial correlation among flows and the small-scale
temporal feature, it can not incorporate other temporal features
such as the feature of the traffic periodicity. Therefore, a matrix
is still not enough to capture the comprehensive correlations
among the traffic data, and the data recovery performance
under the matrix-based approaches is still low.

It is promising to apply the emerging higher-order tensors
to model the data that intrinsically have many dimensions.
Tensor-based missing data recovery methods can capture the
global structure of the data via a high-order decomposi-
tion (named tensor decomposition), and tensor-based methods
prove to be good analytical tools for dealing with the multi-
dimensional data. So far, tensor-based data recovery has been
utilized in various fields (see an in-depth survey by Kolda and
Bader [17]). Several tensor completion algorithms [13]–[16]
are proposed for the data recovery.

The core of the tensor completion lies in the tensor de-
composition, which commonly takes two forms: CANDE-
COMP/PARAFAC (CP) decomposition [18], [19] and Tucker
decomposition [20]. In multilinear algebra, the tensor decom-
position may be regarded as a generalization of the matrix
singular value decomposition (SVD) to tensors. In fact, Tucker
decomposition is also known as a higher-order SVD (HOSVD)
[21]. As the number of elements in a tensor increases expo-
nentially with the number of dimensions, the computational
and memory requirements increase quickly, which becomes
the main challenge of applying the tensor decomposition in
the practical applications.

To the best of our knowledge, we are the first to apply
the tensor pattern to model the Internet traffic data to well
exploit the hidden structures of the traffic data, and propose an
sequential tensor completion algorithm to significantly speed
up the traffic data recovering process. We have performed ex-
tensive simulations with the real traffic trace as the input. The
simulation results show that our sequential tensor completion
algorithm can achieve highly accurate recovery performance
with a short computation time.

III. PRELIMINARIES OF TENSOR

In this section, we introduce some basic concepts related to
the tensor.

Definition 1. Tensor: A tensor, also known as N th-order or
N -way tensor, multidimensional array, N -way or N -mode
array, is a higher-order generalization of a vector (first-order
tensor) and a matrix (second-order tensor), and denoted as
A ∈ RI1×I2×···×IN where N is the order of A, also called



way or mode. The element of A is denoted by ai1,i2,··· ,iN ,in ∈
{1, 2, · · · , In}, 1 ≤ n ≤ N .

Definition 2. unfolding [21]: For an N th-order
tensor A ∈ RI1×I2×···×IN , the matrix unfolding
A(n)∈ RIn×(In+1In+2···INI1I2···In−1) contains the
tensor element ai1,i2,··· ,iN at the position in the
unfolding matrix with its row index in and column
index equal to (in+1−1) In+2In+3 · · · INI1I2 · · · In−1

+(in+2 − 1) In+3In+4 · · · INI1I2 · · · In−1 + · · · +
(iN−1) I1I2 · · · In−1 +(i1−1) I2I3· · · In−1 +
(i2−1)I3I4 · · · In−1 + · · ·+ in−1.

Fig. 1 shows an unfolding procedure of a 3rd-order tensor,
which involves the tensor dimensions I1, I2, I3 in a cyclic
way. Fig. 2 shows an example of a tensor A ∈ R3×2×3, in
which the matrix unfolding A(2) is given.
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Fig. 1. Unfolding of the (I1 × I2 × I3)− tensor A to the (I1 × I2I3)−
matrix A(1), the (I2 × I3I1)− matrix A(2) , and the (I3 × I1I2)− matrix
A(3)
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Fig. 2. A tensor A ∈ R3×2×3

Definition 3. tensor rank or CP-rank [17], [22]: The rank of
an arbitrary N th-order tensor A, denoted by R =rank(A), is
the minimal number of rank-1 tensors that yield A in a linear
combination. In other words, this is the smallest number of
components in an exact CP decomposition [18], [19].

One major difference between the matrix rank and the
tensor CP-rank is that there is no straightforward algorithm
to determine the CP-rank of a specific given tensor, which is
proven to be NP-hard problem [22].

Definition 4. n-rank [17]): The n-rank of an arbitrary N th-
order tensor A, denoted by Rn = rankn(A), is the tuple

of the ranks of the N unfolding matrices, that is, Rn =(
rank

(
A(1)

)
, rank

(
A(2)

)
, ..., rank

(
A(N)

))
.

IV. EMPIRICAL STUDY WITH REAL TRAFFIC DATA

The literature studies [23], [24] have shown that the sim-
ilarity is one of the factors that impact the interpolation
performance for data recovery. In this section, we perform
a set of experiments with the public traffic trace Abilene [25]
to investigate and discover the Internet traffic features.

A. Temporal stability
Let Υ denote the non-empty set of all origins and destina-

tions in a network and let |Υ| = N . Traffic data are typically
measured over some time intervals, and the value reported is
an average. Therefore, we can denote z(i, j, k) to be the traffic
from origin i to destination j averaged over the time duration
[k, k + τ), where τ denotes the measurement interval.
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Fig. 3. Empirical study with real traffic data

Traffic data usually change slowly over time. To study the
stability of traffic data, we calculate the difference between
each pair of adjacent time measurements at a origin-destination
(OD) pair. The difference for two consecutive time slots (k,
and k − 1) is equal to

gap(i, j, k) = |z(i, j, k)− z(i, j, k − 1)| (1)

where 1 6 i, j 6 N , 2 6 k 6 Γ and Γ is the number of time
intervals of interest. Obviously, gap(i, j, k) = 0 if the traffic
data of OD pair (i, j) does not change from time slot k − 1
to k. The smaller the gap(i, j, k), the more stable the traffic
data for OD pair (i, j) around time slot k.

By computing the normalized difference values between
adjacent time slots, we measure the temporal stability at OD
pair (i, j) and time slot k as

∆gap(i, j, k) =
|z(i, j, k)− z(i, j, k − 1)|

max
16i,j6N,26k6Γ

|z(i, j, k)− z(i, j, k − 1)| (2)

where max
16i,j6N,26k6Γ

|z(i, j, k)− z(i, j, k − 1)| is the maxi-

mal gap between any two consecutive time slots in the traffic
data.

We plot the CDF of ∆gap(i, j, k) in Fig.3(a). The X-axis
represents the normalized difference values between two con-
secutive time slots, i.e., ∆gap(i, j, k). The Y-axis represents
the cumulative probability. We observe that more than 90%
∆gap(i, j, k) are very small (< 0.05). These results indicate
that the temporal stability exists in the real traffic data.



B. Spatial correlation feature

A correlation coefficient is a quantitative measure of some
type of correlation and dependence. Let z(i, j), z(i′, j′) ∈
RT denote the traffic vectors of OD pair(i, j) and OD
pair(i′, j′). The spatial correlation between OD pair(i, j) and
OD pair(i′, j′) can be calculated according to

S ((i, j) , (i′, j′))

=

Γ∑
k=1

(|z(i,j,k)−z̄(i,j)|×|z(i′,j′,k)−z̄(i′,j′)|)√
Γ∑

k=1
(z(i,j,k)−z̄(i,j))2

√
Γ∑

k=1
(z(i′,j′,k)−z̄(i′,j′))2

(3)

where 1 ≤ i, j, i′, j′ ≤ N , z̄(i, j) = 1
Γ

Γ∑
k=1

z(i, j, k),

z̄(i′, j′) = 1
Γ

Γ∑
k=1

z(i′, j′, k).

The CDF of S ((i, j) , (i′, j′)) is plotted in Fig. 3(b). The X-
axis represents value of S ((i, j) , (i′, j′)), the Y-axis represents
the cumulative probability. From the figure, we can see that
the value S ((i, j) , (i′, j′)) < 0.3 is less than 30%, the value
S ((i, j) , (i′, j′)) > 0.5 is nearly about 60%, which indicates
that real Internet traffic data have strong spatial correlation.

C. Traffic periodic pattern

As we know, users usually have similar Internet visiting
behaviors at the same time of different days, such as the similar
traffic mode in working hours and sleeping hours. To study the
traffic periodic pattern in a day, we calculate the gap between
each pair of measurements in two consecutive days at an OD
pair. In Abilene [25], traffic measurements are taken every 5
minutes, one day have 288 time intervals. Therefore, the gap
between each pair of measurements in adjacent days captured
in two time slots (k, and k + 288) is equal to

day(i, j, k) = |z(i, j, k)− z(i, j, k + 288)| (4)

where 1 6 i, j 6 N and 1 6 k 6 Γ − 288 and Γ is time
intervals present. Obviously, the smaller the day(i, j, k), the
more similar the traffic data for OD pair (i, j) around the same
time slot of adjacent days .

By computing the normalized difference values between
adjacent days, we measure the traffic similarity at OD pair
(i, j) and time slot k according to

∆day(i, j, k)=
|z(i, j, k)− z(i, j, k + 288)|

max
16i,j6N,16k6Γ−288

|z(i, j, k)− z(i, j, k + 288)|
(5)

where max
16i,j6N,16k6Γ−288

|z(i, j, k)− z(i, j, k + 288)| is the

maximal gap between any two adjacent days in the traffic
data.

We plot the CDF of ∆day(i, j, k) in Fig.3(c). The X-
axis represents the normalized difference values between t-
wo adjacent days, i.e., ∆day(i, j, k). The Y-axis represents
the cumulative probability. We observe that more than 90%
∆day(i, j, k) are very small (< 0.05). These results indicate
that traffic periodic pattern exists in real Internet traffic trace.

V. SYSTEM MODEL AND PROBLEM FORMULATION

In this section, we first present our traffic tensor model, and
then formulate the traffic data recovery problem.

A. Traffic tensor model

Current traffic interpolation approaches usually model the
traffic data with a traffic matrix X ∈ Ro×Γ (o = N × N ),
where a column of X represents the traffic data of all OD pairs
at one time slot, while a row of X represents the time evolution
of a single OD pair. As discussed in the introduction, mod-
eling the traffic data in the matrix format cannot sufficiently
capture spatial and temporal characteristics of the traffic data.
Therefore, although matrix-based approaches work well when
the ratio of the missing data is low, their performances degrade
significantly when the data missing ratio becomes large.

To address the issues of the matrix-based methods men-
tioned above, we propose to apply the tensor to model traffic
data. As a straightforward way of modeling, traffic tensor may
be formed with a 3-way tensor Z ∈ RN×N×Γ, corresponding
respectively to the origin, destination and the total number
of time intervals to consider. However, such a 3-way tensor
model can not fully exploit the similarity structures hidden in
the traffic data.

3-way tensor

D(Day)

T(Time)

O(OD) Trace Abilene 

168 day of 144 OD pairs 

Measurement strategy

collecting traffic data every 5 minuteso=144

t=
288

d=168

Fig. 4. Traffic tensor model

To fully exploit the
traffic features of tem-
poral stability, spatial
correlation, as well as
the periodicity pattern,
we model the traffic da-
ta as a 3-way tensor
X ∈ Ro×t×d (as shown

in Fig.4), where o corresponds to N ×N OD pairs, and there
are d days to consider with each day having t time intervals.
Obviously, we have Γ = t × d. For the Abilene trace [25],
t = 288, o = 144, and d = 168.

B. Problem formulation

Let Ω be the set of indices of the observed entries in X .
We define a measurement tensor, M ∈ Ro×t×d, to record the
raw measurement data. M is generally an incomplete tensor
due to sample-based traffic monitoring and the unavoidable
data loss resulted from severe communication conditions. We
define the operation MΩ = XΩ as

mijk =

{
xijk if (i, j, k) ∈ Ω
0 otherwise

(6)

If there are no traffic data between a particular pair of nodes
in a given time interval, of course, it leaves the corresponding
entry in M to be empty. In our study, we use zero as a
placeholder to replace the empty entry.

In Section IV, the empirical studies reveal that there exist
hidden structures (such as temporal stability, spatial correla-
tion feature, and traffic periodic pattern) in the traffic data.
Structure and redundancy in data are often synonymous with
the data sparsity. As the rank of a tensor is a good metric
to indicate its sparsity level, the traffic data recovery problem
can be transformed into the mathematical task of finding a low
rank tensor that can represent the original data well. Therefore,
the traffic data recovery problem can be formulated as a tensor
completion problem with the goal of finding its missing entries



through the minimization of the tensor rank as
min
X

rank (X )

s.t. XΩ = MΩ

(7)

According to the definition of n-rank, the n-rank of a given
n-way tensor can be analyzed by means of matrix techniques.
Therefore, the tensor completion problem defined in (7) can
be further transformed to

min
X

3∑
i

rank
(
X(i)

)
s.t. XΩ = MΩ

(8)

VI. TRAFFIC DATA RECOVERY

The main challenge for the tensor completion is that the
tensor decomposition requires a large number of computations.
Focusing on reducing the computation cost, in this section, we
propose a sequential tensor completion algorithm to quickly
recover the traffic data.

Obviously, the transformed problem in (8) considers the
tensor as multiple matrices and force the unfolding matrix
along each mode of the tensor to be low rank. Therefore,
the tensor completion problem is transformed to the low-rank
matrix completion problem along each mode, and then the
final recovered data can be obtained by folding the recovered
data of each mode.

Current studies usually solve the matrix completion task
by searching for a matrix with the minimum nuclear norm
assuming that the matrix satisfies the incoherence condition
and sufficient number of entries are observed. However, it may
bring long computation time and even not converge when the
sample data is not sufficient. Different from current studies,
in this paper, the matrix completion task is accomplished by
searching for a column space on the Grassmann manifold that
matches the incomplete observations.

For the ith-mode unfolding matrix X(i), we denote the
number of rows and columns of X(i) as m(i) and n(i). To find
a rank-r(i) matrix X′

(i) that is consistent with the observations
(M(i))Ω, the column space searching problem for the matrix
completion can be expressed as

min
U(i)∈Um(i)r(i)

∥∥∥(M(i) −U(i)W
tr
(i)

)
Ω

∥∥∥2
F

(9)

where U(i) is the column orthogonal matrix of matrix
M(i). Um(i)r(i) denotes the vector space of the matrices
∈ Rm(i)×r(i) , i.e., Um(i)r(i) := Rm(i)×r(i) . ∥·∥F denotes the
Frobenius norm, and Wtr

(i) denotes the transpose of W(i).
Given a U(i), the W(i) in Eq.(9) can be calculated through
the following function:

W(i) = argmin
W(i)∈Rn(i)×r(i)

∥∥∥(M(i) −U(i)W
tr
(i)

)
Ω

∥∥∥2
F

(10)

The low-rank matrix completion is transformed to the
column space searching problem with the aim of finding a
column space consistent with the observed entries. After we
obtain the column orthogonal matrix U(i), through U(i)W

tr
(i),

the incomplete ith-mode matrix M(i) can be recovered and
the X′

(i) = U(i)W
tr
(i) is the resulted recovery matrix.

In the following contents, we will further utilize the good
feature of the column orthogonal matrix to propose a sequen-
tial tensor completion approach to significantly speed up traffic
recovery process.
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(b) Traffic tenor and its unfolding matrices obtained at time t+1

 

 

(1)X

(2)X

(3)X

Fig. 5. Sequence tensor completion tasks at time t and t+ 1

Traffic measurement data generally come in sequence. To
obtain the complete traffic data for the advanced network
management, the tensor completion task will be invoked
periodically or upon the request of the network operators. It
would involve a large computation cost if we directly solve
the problem (9) to find the column space of each unfolding
matrix when the tensor completion task is invoked.

Fig. 5 shows the sequence of the tensor completion tasks at
time t and time t+1. Comparing the Fig.5 (a) with the Fig.5(b),
the major parts of the traffic data (undertone color data) are
the same in both figures, where the traffic data are recovered
from the previous measurements. The only difference is that
the tensor in Fig.5(b) has more traffic data than the tensor
in Fig. 5(a), and consequently more columns and rows in the
unfolding matrices. The additional data are obtained from the
new measurements. This relationship provides us an opportu-
nity to reuse the previous result of tensor decomposition to
deduce the tensor decomposition for the current data so the
data can be quickly recovered.

For a rank-r matrix X = [X{1,...,n−1}, x{n}] ∈ Rm×n,
where X{1,...,n−1} is the submatrix of X by removing the last
column from X, and x{n} is the last column of X with its
observed entry set Ωn. Let M be the observation matrix of X,
that is, MΩ = XΩ and

(
m{n}

)
Ωn

=
(
x{n}

)
Ωn

. To recover



matrix X from M, before we present our sequential tensor
completion algorithm in Algorithm 1, the following theorem
will illustrate how to calculate the column orthogonal matrix
of M = [M{1,...,n−1},m{n}] ∈ Rm×n based on the obtained
column orthogonal matrix of M{1,...,n−1}.

Theorem 1. Let U1 = argmin
U∈Umr

∥(M−UWtr)Ω∥
2

F , and
define

U′=U0+

(
(cos (ση)− 1)

p

∥p∥
+sin (ση)

ℓ

∥ℓ∥

)
ωtr

∥ω∥
(11)

where U0 is an m× r matrix whose orthogonal column-
s span M{1,...,n−1}, and η > 0 is a small stepsize,

ω = argminω

∥∥∥(U0)Ωn
ω −

(
m{n}

)
Ωn

∥∥∥2
2

is the least-squares

weight, p = U0ω, ℓ =
(
m{n}

)
Ωn

− p is the residual vector,
and σ = ∥ℓ∥ ∥p∥. Then U1 and U′ are identical with a specific
choice for step size η.

Proof: According to the orthonormal columns of U0

which spans M{1,...,n−1}, we can get
U0 = argmin

U∈Umr

∥∥(M{1,...,n−1} −UWtr
)
Ω

∥∥2
F

From m{n} = U0w + ℓ, we have

m{n} =
[
U0

ℓ
∥ℓ∥

] [ w
∥ℓ∥

]
.

And then, we can get

[M{1,...,n−1},m{n}]=
[
U0

ℓ
∥ℓ∥

] [
I w
0 ∥ℓ∥

] [
W 0
0 1

]tr
.

Furthermore, we have[
U0

ℓ
∥ℓ∥

]
= argmin

U∈Umr+1

∥(M−UWtr)Ω∥
2

F

Taking the SVD of the center matrix to be[
I w
0 ∥ℓ∥

]
= ŨΣ̃Ṽ

tr
; Σ̃ =


δ1

. . .
δr

δr+1

.

To find a matrix ∈ Umr by catching most
energy of the first r singular values of matrix M,
set Ut+1 =

([
U0

ℓ
∥ℓ∥

]
Ũ
)
{1,...,r}

, Wt+1 =([
W 0
0 1

]
ṼΣ̃

)
{1,...,r}

, only the top r singular vectors

are needed.
According the ISVD algorithm in [26], we can get Ut+1 =

argmin
U∈Umr

∥∥([M{1,...,n−1},m{n}]−UWtr
)
Ω

∥∥2
F

It was shown in [27] that updating U0 to Ut+1

is equivalent to GROUSE for a specific step size η,
which performs the gradient descent directly on the Grass-
mann manifold, that is, Ut+1 = U′ = U0 +(
(cos (ση)− 1) p

∥p∥ + sin (ση) ℓ
∥ℓ∥

)
ωtr

∥ω∥ , which completes
the proof.

According to Theorem 1, when a new column vector v is
appended to the matrix M, we do not need a new column space
searching procedure to calculate the orthogonal column matrix
U′ for the matrix [M,v]. Instead, U′ can be derived from

U and v only, where U is the orthogonal column matrix of
M whose orthogonal columns span M. Therefore, Theorem 1
provides a good approach to reuse the column space found for
the previous traffic data to quickly recover the current traffic
data.

Fig. 6. Sequential tensor completion for traffic data

To design our sequential tensor completion algorithm, we
first provide some notations. As shown in Fig.6, the undertone
color data are processed in the previous tensor completion
procedure, while the dark color data are newly obtained. The
three unfolding matrices of the traffic tensor (in Fig. 6 (a))
are shown in Fig. 6 (e), Fig. 6(f), and Fig. 6(g), which can
be further transformed into Fig. 6(h), Fig. 6(i), and Fig.6(j),
respectively. Note that, the traffic matrices in Fig. 6(h) and (i)
are the elementary transformation of matrices in Fig. 6(e) and
(f), the traffic matrix in Fig. 6(j) is the transpose of the matrix
in Fig. 6(g).

As shown in Fig. 6(h), Fig. 6(i), and Fig. 6(j), we
denote undertone color data as (M(t))(1), (M(t))(2), and
(M(t))(3), and the remainder dark color data as (M(t+1))(1),
(M(t+1))(2), and (M(t+1))(3), respectively. According to
Theorem 1, by utilizing the column space of (M(t))(1),
(M(t))(2), and (M(t))(3) to calculate the column space of the
whole

[(
M(t)

)
(1)

,
(
M(t+1)

)
(1)

]
,
[(
M(t)

)
(2)

,
(
M(t+1)

)
(2)

]
,

and
[(
M(t)

)
(3)

,
(
M(t+1)

)
(3)

]
, we design our Sequential Ten-

sor Completion algorithm (SCT), as shown in Algorithm 1.
As shown on lines 2-5 in Algorithm 1, for the newly

coming traffic data in (M(t+1))(i) (1 ≤ i ≤ 3), we add
each column in (M(t+1))(i) sequentially to existing data,
and update the corresponding column space by utilizing the
previous

(
U(t)

)
(i)

and the new column to add.
Then according to Eq.(10), calculate the optimal(

W(t+1)

)
(i)

and set X′
(i) =

(
U(t+1)

)
(i)

(
W(t+1)

)tr
(i)

as
the recovery matrix for this unfolding matrix. After folding
each recovered unfolding matrix X′

(1), X′
(2), and X′

(3), the
recovered traffic tensor can obtained as shown on line 9.

VII. PERFORMANCE EVALUATIONS

We evaluate the performance of our proposed algorithm
using the public traffic trace data Abilene [25]. The metrics we



Algorithm 1 Sequential Tensor Completion (STC)
Input: The orthogonal matrices

(
U(t)

)
(1)

,
(
U(t)

)
(2)

,
(
U(t)

)
(3)

for
(M(t))(1), (M(t))(2), and (M(t))(3)

Output: The recovered traffic tensor X
1: for i← 1, ..., 3 do
2:

(
U(t+1)

)
(i)

=
(
U(t)

)
(i)

3: for each column vector v in (M(t+1))(i) with its observed
entry set Ωv do

4: Apply theorem 1 to update the column orthogonal matrix(
U(t+1)

)
(i)

=
(
U(t+1)

)
(i)
+(

(cos (ση)− 1)
p

∥p∥ + sin (ση)
ℓ

∥ℓ∥

)
ωtr

∥ω∥
(12)

where ω = argminω

∥∥∥(U(t+1)

)
(i)Ωv

ω − (v)Ωv

∥∥∥2
2
, p =(

U(t+1)

)
(i)
ω, residual ℓ = (v)Ωv

− p, and σ = ∥ℓ∥ ∥p∥ .
5: end for
6: According to Eq.(10),

(
W(t+1)

)
(i)

can be calculated from

(
W(t+1)

)
(i)
= argmin

W∈Rn(i)×r(i)

∥∥∥∥∥∥
( [(

M(t)

)
(i)
,
(
M(t+1)

)
(i)

]
−
(
U(t+1)

)
(i)
Wtr

)
Ω

∥∥∥∥∥∥
2

F
(13)

7: X′
(i) =

(
U(t+1)

)
(i)

(
W(t+1)

)tr
(i)

8: end for
9: X =

3∑
i=1

1
3
fold

(
X′

(i)

)
10: Return traffic tensor X .

consider include: Error Ratio and the Recovery Computation
Time.

As mentioned in Section VI, traffic measurement data gen-
erally come in sequence. In the simulation, in each sequential
step, we add one more day measurement data. Then we apply
the tensor completion to the measurement data to recover the
full data. Finally, we calculate the error ratio by comparing
the recovered data with the raw data trace. In this paper, one
sequence recovery step in the simulations includes the above
three operations.

Definition 5. Error Ratio: a metric for measuring the recov-
ery error of entries in the tensor after the interpolation, which
can be calculated as√∑

i,j,k=d (xijk − x̂ijk)
2√∑

i,j,k=d x
2
ijk

, (14)

where 1 ≤ i ≤ o, 1 ≤ j ≤ t and k = d. xijk and x̂ijk in
(14) denote the raw data and the recovered data at (i, j, k)-th
element of X , respectively.

Note that k = d in Eq.(14), that is, only the last mea-
surement data in the last day is counted into the performance
metric calculation.

Definition 6. Recovery Computation Time: a metric for
measuring the average number of seconds of one sequence
recovery step.

All simulations are run on a Microstar workstation, which
is equipped with two Intel (R) Xeon (R) E5-2620 CPUs
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Fig. 7. Sample ratio

(2.00GHz) (totaliy 24 Cores) and 32.00GB RAM. To measure
the recovery computation time, we insert a timer to all the
implemented approaches.

A. Comparison with other tensor completion algorithms

Besides our STC, we implement other four tensor comple-
tion algorithms.

1) CPwopt [14]: CPwopt (CP Weighted Optimization) ad-
dresses the problem of fitting the CP model to incomplete
data sets by solving a weighted least squares problem ( [14]
Eq.(2)) with a first-order optimization approach.

2) CPopt [15]: different from CPwopt, CPopt addresses
the problem of fitting the CP model to incomplete data sets
by solving a least-square (ALS) optimization problem ( [15]
Eq.(2)) with a gradient-based optimization approach.

3)CPals: CPals addresses the problem of fitting the CP
model to incomplete data sets by solving an alternating least-
square problem. It is implemented using the Tensor Toolbox
[28].

4) TKals: TKals addresses the problem of fitting the Tucker
model to incomplete data sets by solving an alternating least-
squares problem. It is implemented using the Tensor Toolbox
[28].

Among the four peer tensor completion algorithms, the first
three CPwopt, CPopt, and CPals are designed based on CP
model, the last TKals is designed based on the Tucker model.

Fig.7 shows the performance results under different sam-
pling ratio for one sequence step. Obviously, Fig.7(a) shows
that our algorithm can achieve the highest recovery perfor-
mance with the least error ratio. This good performance
demonstrates that our STC algorithm has the good ability of
capturing the global information in the traffic data to recover
the missing data with a high accuracy.



5 10 15 20 25 30 35 40

10
-2

10
-1

10
0

Sequence recovery step

E
rr

o
r 

ra
ti

o

 

 

CPwopt CPopt CPals TKals STC

(a) Error ratio

5 10 15 20 25 30 35 40

10
0

10
2

10
4

Sequence recovery step

C
o

m
p
u

ta
ti

o
n

 t
im

e(
s)

 

 

CPwopt CPopt CPals TKals STC

(b) Computation time

Fig. 8. Multiple sequence steps

From Fig.7(a), among all the implemented tensor comple-
tion algorithms, STC and CPwopt are the top two algorithms
that can recover data with low error ratio. While as shown in
Fig.7(b), the computation time under CPwopt is much larger
than that under STC. Although the computation time under
CPals and TKals is smaller than our STC (Fig.7(b)), CPals

and TKals fail to recover data with high error ratio as shown
in Fig. 7(a).

Fig. 8 shows the recovery performance under multiple
sequence steps by fixing the sampling ratio to 50%. The results
are consistent with those in Fig.7. It is worth noticing that, the
computation time of the recovery under our STC remains the
same for each sequential step, while the computation time is
not stable under CPwopt. Therefore CPwopt is sensitive to the
data added in each step. This simulation results demonstrate
that our STC is a good tensor recovery algorithm that is not
sensitive to the data needed to recover.

B. Comparison with matrix completion algorithms

Among all the current traffic inferring studies, the matrix-
completion-based recovery algorithm is proven to achieve
the best performance. In this part, we further implement
other seven matrix completion algorithms for the performance
comparison.

1) NMF [29]: NMF performs non-negative matrix fac-
torization, where the non-negative matrix factorization is a
recently developed technique for finding part-based, linear
representations of non-negative data. Given a non-negative
matrix V, the goal of NMF is to find the non-negative matrix
factors W and H such that V = WHtr.

2) SRMF [7]: SRMF is a matrix interpolation technique
which uses an alternating least squares procedure to find the
global sparse, low-rank approximation of the traffic matrix that
accounts for the spatial and temporal properties.

3) SRSV D [7]: SRSV D is a matrix interpolation tech-
nique which uses an alternating least squares procedure to
find the sparse, low-rank approximation of the traffic matrix.

4) SV T [30]: SV T approximates the matrix with the mini-
mum nuclear norm obeying a set of convex constraints. SV T
has two remarkable features: one is that the soft-thresholding
operation is applied to a sparse matrix, and the other is that
the rank of the matrix obtained in the iterates is empirically
non decreasing.

5) OptSpace [31]: OptSpace is designed based on the
singular value decomposition followed by the local manifold
optimization, for solving the low-rank matrix completion prob-
lem.

6) SET [32]: SET is proposed for solving the consistent
matrix completion problem. The SET algorithm consists of
two parts, subspace evolution and subspace transferring.

7) LMaFit [33]: LMaFit is based on a nonlinear successive
over-relaxation (SOR) method that only requires solving a
linear least squares problem per iteration. Following the idea of
the nonlinear SOR technique, LMaFit uses a weighted average
between the current updated data and data from the previous
iteration to achieve a faster convergence.

All the seven matrix completion algorithms are applied to
the traffic matrix which is defined in SRMF [7].

Fig.9(a) shows the error ratio under sample ratio=50% for
a sequence of recovery step. Obviously, our STC achieves the
best recovery performance among all the algorithms studied.
Moreover, among the one day measurement data in the sequen-
tial step, we let consecutive measurements over 50 minutes
all lost, and then calculate the error ratio on the 50 minutes
data, as shown in Fig.9(b). The consecutive data missing,
obviously, results in the consecutive column missing in the
traffic matrix. From the literature work, we know that the
conventional matrix completion algorithms can only recover
data if there is no row or column to be completely empty. If
a row or a column is missing, matrix completion algorithms
do not have effect on these missing entries. Because we use
zero as a placeholder to replace the empty entry, the error
ratio on this kind of consecutive missing is 1 under all the
matrix completion algorithms. While the error ratio on the
consecutive missing data is only 0.3 under our STC. STC
utilizes the information along three dimensions, while the
matrix completion only considers the constraints along two
particular dimensions. This is the key reason why the our STC
outperforms the matrix completion-based algorithms.

VIII. CONCLUSION

In this paper, we apply the emerging concept of tensor
completion to the recovery of the missing Internet traffic
data. To well capture the spatial-temporal features inherent in
the traffic data, we first analyze a large trace of real traffic
data, and our studies reveal that the traffic data have the
features of temporal stability, the spatial correlation, and the
periodicity. To fully exploit theses hidden structures for the
data recovery, we model the traffic data as a traffic tensor
which can combine and utilize the multi-mode correlations.
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Fig. 9. Performance comparison with matrix completion algorithms

To reduce the computation cost for the the tensor completion,
we propose a novel Sequential Tensor Completion algorith-
m (STC) to quickly recover the missing traffic data. We
have done extensive simulations to evaluate the performance
of our proposed STC algorithm, and the simulation results
demonstrate that our algorithm can achieve significantly better
performance compared with current of state tensor and matrix
completion algorithms.
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