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Abstract—Finding top-k elephant flows is a critical task in
network measurement, with applications such as congestion
control, anomaly detection, and traffic engineering. Traditional
top-k flow detection problem focuses on using a small amount
of memory to measure the total number of packets or bytes of
each flow. Instead, we study a challenging problem of inferring
the top-k elephant flows in a practical system with incomplete
measurement data as a result of sub-sampling for scalability
or data missing. The recent study shows it is promising to
more accurately interpolate the missing data with a 3-D tensor
compared to that based on a 2-D matrix. Taking full advantage
of the multilinear structures, we apply tensor completion to
first recover the missing data and then find the top-k elephant
flows. To reduce the computational overhead, we propose a novel
discrete tensor completion model which uses binary codes to
represent the factor matrices. Based on the model, we further
propose three novel techniques to speed up the whole top-k
flow inference process: a discrete optimization algorithm to train
the binary factor matrices, bit operations to facilitate quick
missing data inference, and simplifying the finding of top-k
elephant flows with binary code partition. In our discrete tensor
completion model, only one bit is needed to represent the entry
in the factor matrices instead of a real value (32 bits) needed
in traditional tensor completion model, thus the storage cost
is reduced significantly. Extensive experiments using two real
traces demonstrate that compared with the state of art tensor
completion algorithms, our discrete tensor completion algorithm
can achieve similar data inference accuracy using significantly
smaller time and storage space.

Index Terms—Top-k elephant flow inference, Tensor comple-
tion
I. INTRODUCTION
Finding the largest k£ flows, also referred to as the top-k
elephant flows, is a fundamental network management func-
tion. Elephant flows contribute to a large portion of network
traffic. Example management applications that can benefit
from the efficient identification of top-k elephant flows include
congestion control to dynamically schedule elephant flows [1],
network capacity planning [2], anomaly detection [3], and
caching of forwarding table entries [4]. The flow of interest
may be defined by a source, a destination, a source-destination
pair, or by the function specified by TCP, WWW, and P2P. In
this paper, we explain our scheme using the flow based on
source-destination pair as an example. Our scheme, however,
is not constrained by this flow definition.

Literature studies [5]-[11] on the detection of top-k elephant
flows attempt to use a small amount of memory to measure
each flow’s cardinality such as the total number of packets
or bytes. Taking a sketch-based algorithm as an example, it
relies on a sketch (e.g., CM sketch [5]) to measure the sizes
of flows when each packet comes, while using a min-heap to
keep track of the top-%k flows.

Instead, this paper aims to infer top-k elephant flows that
have the largest traffic volumes among data collected by the
network controller (or SDN controller). If the traffic volumes
of all source-destination flows have been collected in each
time slot, the problem is trivial and can be solved by simply
sorting the measurement data. However, in a practical system,
the traffic measurement data are often incomplete thus sparse
for several reasons: 1) Due to the high network monitoring
and communication cost, it is impractical to collect full traffic
volume information from a very large number of network
nodes. Sample-based traffic monitoring is often applied where
measurements are only taken between some random node
pairs or in some of the periods for a given node pair; 2)
Measurement data may get lost under severe communication
and system conditions, including network congestion, node
misbehavior, monitor failure, a transmission of measurement
information through an unreliable transport protocol. The
inference of top-k elephant flows is made extremely difficult
and challenging as a result of the incompleteness of traffic
measurement data.

With missing data, one possible approach to achieve the
goal is to first recover the missing data, then return the top-%
largest flows after sorting the recovered data. Various studies
have been made to handle and recover the missing traffic data.
Designed based on purely spatial or purely temporal informa-
tion, the data recovery performance of most known approaches
[12]-[14] is low. Recently matrix-completion-based algorithms
are proposed to recover the missing traffic data by exploiting
both spatial and temporal information [15]-[17]. Although the
performance is good when the data missing ratio is low, the
performance suffers when the missing ratio is large.

For more accurate missing data inference, a few recent
studies [18], [19] try to model the traffic data as a 3-way tensor,
and then fill in the missing data of traffic matrices through
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tensor completion. Tensors are the higher-order generalization
of vectors and matrices. Tensor models can take full advantage
of the multilinear structures to achieve higher information
precision for better data understanding. Compared with matrix-
based data recovery, the tensor-based approach can better
handle the missing traffic data and will be used in this paper.

With the capability of more accurate inference of missing
measurement data, tensor completion can facilitate the finding
of top-k elephant flows using partial measurements data. Top-k
elephant flows may be found though three steps: 1) training the
factor matrices through tensor factorization using the partial
measurement samples, 2) recovering un-observed data using
the trained factor matrices, and 3) sorting the complete traffic
data descendingly to identify top-k flows. Although this is a
promising way, given an I x J x K traffic tensor with its
tensor rank equal to R, the time complexity of data inference
and sorting is O(IJK R+ I1JKlog(k)), which would be a big
bottleneck that prevents efficient finding of top-k flows when
the size of the traffic monitoring tensor is large.

Recent studies show that binary coding is a promising
approach for fast similarity search [20], [21]. Specifically,
based on fast bit operations, Hamming distance computation
is extremely efficient. If we can represent factor matrices in
tensor factorization by binary codes, it may only need simple
bit operations to quickly find top-k elephant flows. However,
no prior studies on tensor completion have been performed
based on binary codes, addressing the challenge may open a
new avenue for the tensor-based advanced data processing.

To take advantage of efficient bit operations, we propose a
novel discrete tensor completion model for quickly inferring
the top-k flows with partial measurement data. Our design
includes several novel techniques:

o Discrete tensor completion model. To infer the missing
measurement data, we propose a novel discrete tensor
completion model in which real-valued factor matrices
in traditional tensor completion model are represented by
binary codes. Only using 1-bit binary value to represent
an entry in each factor matrix, the space is largely reduced
compared with traditional tensor completion model which
uses 32 bits real value number to represent each entry of
the factor matrices.

o Discrete optimization algorithm. For discrete tensor
completion, to learn the binary codes, it needs to solve
an optimization problem involving discrete values. This
is generally NP-hard due to the discrete constraints. To
tackle the problem, we develop a discrete optimization
algorithm with the iterative solving of sub-problems of
mixed-integer programming.

« Efficiently inferring missing data through bit opera-
tions Based on the analysis of relationship between CAN-
DECOMP/PARAFAC (CP) decomposition and frontal
slices, we transform the missing data recovery problem
in each time slot to a problem of dot production of
two binary vectors, which is further transformed into
the calculation of Hamming distance through lightweight
XOR bit operations.

« Speed-up of top-% inference with binary code partition
To reduce the computation cost in missing data recovery

as well as the search space for top-k sorting, we propose
to further partition a binary vector into a set of small
sub-vectors with the length of each set to that of one
machine word of today’s CPU. If two binary vectors are
not similar, we can quickly determine that corresponding
entry is definitely not the top-k entry. With the partition,
we only need to compare a small number of sub-vectors
rather than long binary vectors in the factor matrices.

« Extensive experiments We have conducted extensive ex-
periments using two network measurement traces. Com-
pared with the state of art tensor completion algorithms,
our discrete tensor completion algorithm can achieve
similar data inference accuracy using significantly smaller
time and storage space.

The rest of the paper is organized as follows. We introduce
the related work in Section II. The preliminaries of tensor
are presented in Section III. We introduce the problem and
the tensor completion model in Section IV and Section V,
respectively. In Sections VI, VII, and VIII, we present in
details our algorithms for discrete tensor completion, quick
missing data inference, and binary code partition, respectively.
Finally, we evaluate the performance of the proposed algorithm
through extensive experiments in Section IX, and conclude the
work in Section X.

II. RELATED WORK

Network measurements [22], [23] provide critical input for
a wide range of network management applications. Finding
top-k elephant flows is a critical task in network traffic mea-
surement. It can be applied for congestion control, anomaly
detection and traffic engineering. A number of algorithms
have been proposed in recent years, including CM sketch
[5], Frequent [6], Lossy Counting [7], Space-Saving [8],
HeavyKeeper [9], HeavyGuardian [11], and CSS [10]. These
algorithms generally focus on measuring the sizes of flows
and finding top-k flows more accurately with lower space
consumption. Rather than directly measuring flows passing
by a node, we consider the inference of top-k elephant flows
in the practical environment where measurement data can be
incomplete and sparse. This makes the problem much harder.

To address the challenge, we propose a scheme based
on tensor completion to infer the top-k elephant flows.
Compared with compressive sensing and matrix completion,
tensor completion can more accurately recover the missing
data taking advantage of the multidimensional data structure.
Several tensor completion algorithms [24]-[27] are proposed
for recovering the missing data by capturing the global
structure of the data via a high-order decomposition such
as CANDECOMP/PARAFAC (CP) decomposition and Tucker
decomposition. Some recent studies [18], [19] have modeled
the traffic matrices of different time slots/days as a tensor to
recover the missing data through tensor completion.

Although it is promising to take tensor completion algorithm
in the presence of missing measurement data, it would involve
a high computation cost to first recover the data and then find
the top-k elephant flows. We propose a novel discrete tensor
completion model which uses binary codes to represent the
factor matrices. With this model, we propose several novel
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techniques, including a discrete optimization algorithm to train
the binary factor matrices, an algorithm to quickly infer the
missing measurement data with bit operations, and a binary
code partition algorithm to speed up the top-k inference.

III. PRELIMINARIES

In this paper, scalars are denoted by lowercase letters (a, b,

- ), vectors are written in boldface lowercase (a, b, - - - ), and
matrices are represented with boldface capitals ( A, B,
). Higher-order tensors are written as calligraphic letters (X',
Y, -+ ). The elements of a tensor are denoted by its symbolic
name with indexes in subscript. For example, the i-th entry of
a vector a is denoted by a;, the element (7, j) of a matrix A is
denoted by a;;, and the element (3, j, k) of a third-order tensor
X is denoted by w;j1. The row (column) vectors of a matrix
are denoted by the symbolic name of the matrix with indexes
in subscript. For example, the i-th row (column) vector of a
matrix A is denoted by a; (a;)). Besides, we denote ||e]| . as
the Frobenius norm of a matrix, and sgn (e) : R — {£1} as
the round-off function.

Definition 1. A tensor is a multidimensional array, and is
a higher-order generalization of a vector (first-order tensor)

Fig. 1. Tensor slices

i1,00, JINg :a‘ilﬂéw“qiNlbjlqu,“ijQ )]

and a matrix (second-order tensor). An N-way or Nth-order
tensor (denoted as A € RIV<I2xXIN) jg aqn element of the
tensor product of N vector spaces, where N is the order of
A, also called way or mode.

The element of 4 is denoted by a;, iy, ,in> in €
{1,2,---,I,} with 1 <n < N.

Definition 2. Slices of a 3-way tensor are two-dimensional
sub-arrays, defined by fixing all indexes but two.

In Fig.1, a 3-way ten-
sor X has horizontal, lateral
and frontal slices, which are 1 Z
denoted by X;., X.;. and
X..x, respectively. In this "umm“hm L:Il'ni]sllm me;]‘slm
paper, we denote the frontal
slice X.., as Xj.

Definition 3. The outer product of two column vectors aob
is the matrix defined by: (aob),; = a;b;.

Definition 4. The outer product Ao B of a tensor A €
RO IxxXIny gnd g tensor B € R71}72X XNz g the tensor
of the order N1 + N defined by

(AoB) Ny 1020
for all values of the indexes.

Since vectors are first-order tensors, the outer product of
three column vectors a o b o ¢ is a tensor given by:
(aoboc),, = aibjck 2)

for all values of the indexes.

Definition 5. A 3-way tensor X is a rank one tensor if it
can be written as the outer product of three column vectors,
iiee X =aoboc

Definition 6. The rank of a 3-way tensor is the min-
imal number of rank one tensors, that generate the ten-
sor as their sum, i.e. the smallest R, such that X =
Zle a(;y o b,y o ¢,y where a(,, b(,), and c(, are column
vectors.

Definition 7. The idea of CANDECOMP/PARAFAC (CP)
decomposition is to express a tensor as the sum of a finite

number of rank one tensors. A 3-way tensor X € RIXJ*K
can be expressed as

R

X = Z7‘:1

with an entry calculated as
R

Lijk = Zr:l ain_jerr (4)

where R > 0, a;r, bj,, cir are the i-th, j-th, and k-th entry

of column vectors ag) € RI, b(r) e R, and cry € RX,

a() o by oy, 3)

respectively.

By collecting the vectors in the rank one components, we
have tensor X’s factor matrices A = [a(l),--- ,a(R)] €
RI*ESB = [bay, - .b] € R and C =

[c(1y, -+ c(ry| € RE*E. Using the factor matrices, we can
rewrite the CP decomposition as follows.

R
X=3"" amobg ocy =[A,B,C] 5)

S R

| ik K
3_____’__2_;:_1_::‘1’_?1_3 ﬂ kg ﬂc kR

K i s _ -
Iy b B B |||R
I X I it g a J: (I ) A
" ali
5 a(l) R
gy obyy o Cay = Ay obg 0, R

R rank one tensors

Fig. 2. CP decomposition of three-way tensor.

In Fig.2, a three-way tensor can be represented through
CP decomposition as the sum of R outer products (rank one
tensors). That is, X = Zil a(,) o b,y o ¢(,, with column
vectors a(,) € RT, by € R7, and c) € RX. In addition,
an entry x;j;, can be calculated as the sum of the dot product
of row vectors a;, bj;, and ci. That is, ;5 = a; e b; e ¢,
where a;ebjec) = Zil @irbjrCry 18 the dot product of the
three row vectors a;, b;, and ¢, with a; € R™E b, € RI*E,
and c; € R In this paper, we design traffic data recovery
algorithm based on the CP decomposition.

IV. SYSTEM MODEL AND PROBLEM
We model the traffic measure-

ment data as a 3-way tensor M € K A7
RIXJ*K (Fig 3), where I, J, and

Origin ro i/}
K correspond to the number of [ Time [-4—1-117
origin nodes, the number of des- et
L. Destination || |
tination nodes, and the number of J
time intervals monitored, respec-
tively. Each entry my;y indicates  Fig 3. 3-way traffic tensor.

the end-to-end traffic volume data
from the origin node ¢ to the destination node j in the time
slot k.

As partial node pairs are often monitored to reduce the
measurement load and also there are an unavoidable data
losses upon severe communication conditions, M is generally
a sparse and incomplete tensor. If there are no traffic data
between a pair of nodes in a given time interval, it leaves
the corresponding entry in M empty. All observed entries are
denoted by Q = {(¢, , k) |m;jx is known }.
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The aim of this paper is to efficiently find the top-k elephant
flows in each time interval in the face of partial measurement
data. The sparseness of data makes the problem much harder
to solve.

V. TENSOR COMPLETION MODEL
Tensor completion is a promising technique to infer the
missing data with a multi-dimensional data structure. Its
versatility and effectiveness have been proven in a variety
of fields, including analysis of web graphs, knowledge bases,
chemometrics, signal processing, and computer vision.

Ofifi’_i_ﬂ unsampled sampled inferred  Top-k
ime
Destination @ ' @ .

—4a; b

——

Tensor factorization Missing data recovery Sort and return Top-k

Fig. 4. Solution overview based on tensor completion.

As shown in Fig.4, based on tensor completion, a straight-
forward way of finding top-k elephant flows includes three
steps: 1) training the factor matrices using the partial mea-
surement samples based on tensor factorization, 2) inferring
missing tensor entries using the trained factor matrices, and 3)
sorting the data entries in each time interval to return the top-k
elephant flows in each time slot using the recovered data. As
mentioned in the introduction, this method could incur a high
computational overhead.

In this section, we first present the real-valued tensor com-
pletion model to infer top-k elephant flows. After analyzing
the complexity of this method, we propose a novel discrete
tensor completion model.

A. Real-valued tensor completion model
Completing the tensor M based on its partial measurement
samples can be performed through the factorization based on
the popular CP decomposition method as follows:
Jmin > (i —ai e by e c)’ +al| Al + BI|BI +4//CIP
i,5,k€Q
(6)

where A € RT*E B € R/*E and C € REXE are factor
matrices with a;, b;, and c; being the i-th row vector of
A, the j-th row vector of B, and the k-th row vector of
C. In Eq.(6), o, 3, and ~y are the regularization coefficients.
a||Al|%2+8||BJ|? +7||CJ|? is added in the formulation to pre-
vent an over-fitting problem, where the errors corresponding
to the tensor elements with observed entries are very small
while the errors for the inferred data entries are large.

After getting three factor matrices A, B, and C, the original
traffic tensor can be recovered by

M =[A,B,C] )

with the recovered entry

Mijx = a; e b; e cy. ®)

As the values of the factor matrices A, B, and C are real, we
call Eq. (6) a real-valued tensor completion problem. After
obtaining the complete traffic tensor, top-k elephant flows can
be found with the descending sort of data in each time interval.

Although this straightforward way can be applied to find
the top-k elephant flows in the presence of partial measure-
ments data, the time complexity is O(IJKR + 1JKlog(k)),
where O(IJKR) corresponds to the cost of Eq.(7) and
O(IJKlog(k)) corresponds to the cost of sorting and selecting
top-k elephant flows in each time slot. This will become
a computation bottleneck when the size of the network to
monitor thus the traffic tensor is large.

B. Discrete tensor completion model

In Eq.(8), the entry m;;;, depends on the dot product of a;,
b;, and c;, which obviously corresponds to data of origin 4,
destination j, and time slot k, respectively. In this paper, we
call them factor vectors of origin ¢, destination j, and time
slot k.

Recent studies show that binary coding is a promising
approach for fast similarity search [20], [21]. Based on fast
bit operations, Hamming distance computation is extremely
efficient. If we can represent the factor vectors of origins, des-
tinations, and time slots by binary codes, there is a possibility
of speeding up the missing data recovery process in Eq.(8)
with simple bit operations. This will in turn help expedite the
finding of top-k flows. We will introduce additional procedures
to further increase the speed of top-k finding in Section
VII. Although promising, there are no prior studies on tensor
completion based on the construction of binary codes for factor
matrices.

We would like to represent the factor matrices using bi-
nary codes: A = |aj;ag;---;a;)’ e {x1}7*F, B =
[bisbo;-- by € {21}, C = [erjea; o sek]” €
{:tl}KXR. In this representation, each row vector of the factor
matrix is a length R binary vector. To utilize the partial
measurement samples to train the binary factor matrices,
similar to Eq.(6), we define a novel discrete tensor completion
model, which is formulated as

BB, 2, O — e by e )" ©)

st. A {F1}*F B e {+1}7*F Cc {£1}*F
Different from Eq.(6), as A = J[aj;as;--- ;aI]T €
{(£1}7F B = [by;by;---;by)" e {x1}7*F, C =
[cr;co;- -+ sek]” € {1177 the regularization af|A|[2 +
BIIBIP+9||IClP=axIxR+BxJxR+vyx K x Ris
a constant and hence is discarded from Eq.(9).

For any three binary row vectors a; € {+1}'*%, b, €
{#1}7F and ¢, € {£1}'*F, the dot product of these
vectors a; e b; e ¢, falls into the range of [—R, R]. Before
we use the observed measurement entries to train the binary
factor matrices following Eq.(9), we normalize the traffic data

into the value range [—R, R):
Mijk

(mz‘jk))

(myj1) is the maximum value of all

% max
P\ 1< << T1<k<K

where max
1<i<I,1<j<J1<k<K

the traffic data.
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The operation in Eq.(10) does not impact the correlation
hidden in the traffic data or the value order of the traffic data.
In our performance evaluation, we will study the impact of R,
the dimension of the row vector, on the accuracy and speed
of top-k finding.

VI. DISCRETE TENSOR COMPLETION

Solving the discrete tensor completion problem in Eq.(9)
is challenging, since it is generally NP-hard that involves
O(2U+7+K) ) combinatorial search for the binary codes. To
solve the problem involving binary discrete variables, people
usually resort to a two-stage procedure: first solving a relaxed
optimization algorithm without the discrete constraints, and
then performing direct binary quantization. However, such an
oversimplified two-stage procedure results in large quantiza-
tion loss.

Instead, we directly solve the discrete optimization problem
by alternatingly solving three subproblems: to obtain A, B,
and C. In particular, we show that A, B, and C can be
efficiently updated through the discrete optimization.

A-subproblem: In this subproblem, we update A with B
and C fixed. We can rewrite the function Eq. (9):

min Y (mi;; — 2mik(a; ebjecy) + (a; e bj e ci)?)
AB.C ke

st. A e {£1}*F B e {#£1}7*F, C e {£1}*F
arn
Since the objective function in Eq. (11) is based on summing
over a;, we can update A by updating each a; according to
Z (—2mj,(a; e b; e c) + (a; e bjecy)?) (12)
i,7,k€Q
The update of different row vectors are independent and can be
executed in parallel. Due to the binary constraints, the above
minimization in Eq.(12) is generally NP-hard, we propose to
update binary code a; bit by bit. Denoting a;j, as the h-th bit
of a; and a,; as the rest codes excluding a;,, we update a;p,
while fixing a;j,.
Without loss of generality, let

min
a;e{x1}F*

13)

a; = [a;5 ain], b = [byf, bjnl, cr = [cR crnl

Then Eq.(12) can be rewritten as:

min 2 37 (aipbjncrn)(a;p @ bjp @ cpp) —2ain 35 Mijrbincin
a;e{+1}R i j ke i,j kEQ
= min  —2a;, > (bjncrn(mije —a;; @ bip @ ki)
a;e{£1} R i,J, REQ
(14)
Let
ain="Y_ (bjnckn)(mijk — az; @ bjs @ cir) (15)
i,J,kEN
then Eq.(14) is equal to
min  —2aindin (16)
a;e {1}

It’s easy to see, the expressions in a;;, are all known as we fix
B and C (thus bj;, and cyp,) and a,; when we update a;p,, so
a;p is also known. From min  —2a;pa,n, the value of a;p,
aiE{:tl}R
is related to the symbol of ;5. So, we just need to consider
symbol of a;y,.
Finally, the update rules of a;j is:
ain + sgn(K (ain, ain))
x ifx#0

y otherwise

a7

where K (z,y) = { and sgn(z) =

1 >0

-1 <0’

In Eq.(17), when a;, # 0, we update a;;, with a;;, =
sgn(a;p); otherwise, we don’t update it. B-subproblem, C-
subproblem can be solved similar to A-subproblem. Through
alternating optimization, the complete discrete tensor comple-
tion algorithm can be shown in Algorithm 1.

Algorithm 1 Discrete tensor completion

Input: {m;x |(i,7,k) € Q}: observed entries
R: code length
Output: A € {1}/ B e {£1}7*F, C e {£1}*F
1: Initialization: A, B, C
2: while not converge do
33 fori=1tol do

4 while not converge do
5: for h =1 to R do
6: ain =Y, (bjncrn)(mijr — a; @ bip @ cip)
i,J,kEQ
7: a;n < sgn(K (ain, ain))
8: end for
9: end while
10: end for
11:  for j=1to J do
12: while not converge do
13: for h =1 to R do
14: bin = > (ainckn)(Mijx — a;, @ byj, ® cip,)
ig,kEQ
15: bjh — sgn(K(b]-h,bjh))
16: end for
17: end while
18: end for
19: for k=1to K do
20: while not converge do
21: for h =1 to R do
22: ern = 3. (@inbjn)(mijr — a;p ® by @ cxp)
0,5, kEQ
23: Cih Sgn(K(ékh,ckh))
24: end for
25: end while
26: end for

27: end while
28: Return A, B, and C.

Denote the objective function
(> (mjjx—a;ebj;e ck)2) of problem Eq.(9) as
i,5,ke

L(A,B, C), the convergence of the proposed Algorithm 1 is
guaranteed by the following theorem.

Theorem 1. The sequence {A®) B C®} generated by
Algorithm 1 monotonically decreases the objective function
L(A,B,C) of Eq.(9) where t denotes the iteration step; the
objective function sequence {L (A(t), B®), C(t)) } converges;
the sequence {A(t), B®), C(t)} converges.

Due to limited space, the proof is abbreviated.

VII. QUICK INFERENCE OF MISSING DATA BASED ON
HAMMING DISTANCE

After we obtain the factor matrices A, B, and C by applying
Algorithm 1, the traffic tensor can be recovered by M =
[A,B, C] with 1, = a; e b; e c; as shown in Eq.(7) and
Eq.(8). Using the recovered traffic tensor, after sorting the data
entries in each time interval descendingly , the top-k elephant
flows can be returned. Although it is promising, as discussed
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in Section V-A, the computation cost is large.

In our tensor model, each frontal slice records the volumes
of traffic data among all origins and destinations in a time slot.
In this section, we first investigate the relationship between
tensor CP decomposition and the decomposition of a frontal
slice of the tensor, then present our algorithm of quickly

inferring top-k elephant flows based on simple bit operations
to get the Hamming distance.
A. Relationship between CP decomposition and frontal slice

decomposition
xa=ashee ¢ R
b b o K 2 K 2. K
. gy g gy
e [ R
[ s S ]
a‘1 aiR I { a0
i K
oy ) i .
J A ' R P
! H R h P
X:tllob °c|+|l +0R°bR°CR:fz:1” ob C‘r: b
) ! ; I d
A i
K > Ca g \\\_E"R g
__@ H | !
X, | =y af G |
I & b, b [ b b
7 AN 1 LA
7 a, Dip
ag, I

_ _ /
Xox = Cudy oy 0+ Cirliny 0 by z,-:lckr%)"bm Y

)

Fig. 5. The relationship between tensor CP decomposition and frontal slice
matrix decomposition.

In Fig.5, according to Eq.(5), the CP decomposition of a
3-way tensor X’ can be written as follows.

R
X=3"" apoby ocy =[A,B,C] (18)

where matrices A € {+1}/*E B e {£1}/*fF C €
{£1}5%" are the binary factor matrices in the CP decompo-
sition. According to the CP decomposition, in Fig.5, a frontal
slice X, can be written as
R
= Zi:l Ckia(i) [e] b(z)
(19)

cir are the entries of the k-th row of the

Xy = criagy oba) +- -+ +ceracr) ob(r)

where cg1, cr2, -,
factor matrix C.

Eq. (19) shows that each frontal slice Xj; can be ex-
pressed as a superposition of R rank-1 matrices ag;) o by
(1 <i < R). That is, the traffic data Xj, is represented by
the linear combination of R rank-1 matrices a(;) o b;). As
A = lag), - ap)] € (ELE B = [bay, - by €
{£1}7*E according to (19), X}, can be rewritten as

r = AXB”

where A € {+1}7*F and B € {£1}7*% are the binary factor
matrices in the CP decomposition, 3y, = diag (Cy.), and Cy.
is the k-th row of the binary factor matrix C.

(20)

2

B. Inferring top-k elephant flows through hamming distance

Let D = AXy, we have X, = DB, As A € {+1}/*F
and C € {+1}5%% we have D € {+1}/*F,

To recover the traffic data entry myj, the straightforward
strategy is m;j; = d; e b;, which still results in a high
computation cost. Now we will show d; e b; can be derived
using the Hamming distance between d; and b; at a much

smaller computation cost. Let

@n

sim(i, 7)

Zn(dt = bjt)

where II() is the indicator functlon that returns 1 if the

statement is true and O otherwise. We can easily verify that
sim(i,j) = 0 if all bits of d; and b, are different and

R
sim(i, j) = 1if d; = bj. > II(d; = bj;;) represents the total
t=1
number of bit locations that have the same bit value in vectors
d; and b;, Z I1(d; # bji) is the number of bit locations that

=1
have dlfferent bit values. Therefore, we have

sim(i, j) = 55 (Z I1(di = bjs) + R — ZH (dir # bjt)>

(22)
Asd; € {+1}"*® and b; € {£1}"", when two bit locations
are different, we have I1(dy # bj) = 1 and djbjy = —1.
When two bit locations are the same, we have I1(d;; = bj;) =
dibj; = 1. We further have

R
L 1
sim(i, J) = 55 <R+ > ditbje

t=1
Eq.(23) indicates that when d; and b; are binary vectors,
the order of d; e b; is the same as the order of sz‘m(i 7)s
that is, if d; eb; > d; @b/, we have sim(i,j) > sim(i/, j).
Hamming dlstance between two codes d; and b; is simply the
number of bits that are different, which can be computed at
extreme efficiency using bit-wise XOR operations. Obviously,
sim(i, j) = R — hamming_ distance(d;, b;).
VIII. TOP-K INFERRING SPEEDUP THROUGH BINARY CODE
PARTITION

To infer the top-k elephant flows, the Hamming distances
of d; and bj forall 1 < ¢ < I and 1 < j < J should first
be computed, then after sorting I x J entries, top-k largest
entries will be returned. The computation cost is still high for
large [ and J.

To solve our problem, we only need to know values of
large entries rather than all entry values. To speed up the
top-k inferring procedure, we can divide each R-bit code d;
and b; into p sub-codes, denoted by d; = {d},d?,---,d"}
and b; {b1 b2 7bﬁ-’ }, respectively. We then test the
Hammmg dlstance of each sub-codes one by one. If the total
Hamming distance of the beginning set of sub-code pairs
exceeds a threshold e, obviously, these two d; and b; will
not be similar and should not be counted as the candidate
top-k largest entry. We can stop comparing the remaining
bit strings and discard this entry without need of further
sub-code comparison and the sorting of this entry. For more
efficient calculation, we set the length of the sub-code to be
the length of the machine code as in today’s CPUs, the read

1 1
) _§+Edi.bj (23)
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and XOR operation on one machine word can be done within
one memory access.

This partition-based comparison not only helps speed up the
phase of missing data inference but also cut short the sorting
phase. Fig.6 shows an example, where we set ¢ = 2. We divide
the binary code into four parts. After comparing the first two
parts, we find the total Hamming distance reaches 3, which is
larger than € = 2. Therefore, these two binary codes are not
similar and the corresponding entry should not be considered
as the candidate top-k entries.

|threshold re=2 |01 D—1|
I I

,_u | | L_Ll :total distance =3 > ¢
A
[ [P T 0 (1 B P 0
T | | ITI I @
| | | I |
Jisance =2 distance =1
(@) ® ()

Fig. 6. Binary code partition.

There is a tradeoff to set €. Small ¢ will result in that
more entries are discarded while increase the risk of missing
the top-k entries, large € will increase the computation cost
while decrease the risk of missing the top-k entries. In
the experiment, we will set appropriate £ according to the
parameter k and R.

IX. PERFORMANCE EVALUATION

Although we use network traffic monitoring as an example
to illustrate our scheme (denoted as discrete CP (DCP)), our
scheme is a general and can also be applied to infer top-
k Origin-Destination (OD) pairs with other network perfor-
mance data. Therefore, we use two real network monitoring
traces (WS-DREAM [28] and Harvard226 [29]) to evaluate
our proposed DCP. WS-DREAM records the traffic volume
between 142 users and 4,500 Web services over 64 consecutive
time slices, at an interval of 15 minutes. Harvard226 contains
measurement data of application-level RTTs, with timestamps,
between 226 Azureus clients collected in 72 hours. Two
performance metrics are utilized to evaluate the proposed DCP,
which are defined as follows.

Definition 8. Denote by y € {1,--- ,h} a vector of entries
of the monitoring data in a time slot and 7 a permutation
of the vector. 7; denotes the position of i-th element in the
permutation. 7, sorts y in decreasing order. Let positive integer
k be a truncation threshold. The Discounted Cumulative Gains
(DC'GQE) score and its normalized variant (N DC'GQFk) are
defined respectively as DCGQk(y, ) = Zle i:éﬁ and
NDCG@k(y,m) = Gigariesy: ’

DCGQE is maximized when m = 7. In this paper, the
truncation threshold k reflects how many elephant flows are
inferred. NDCG is a normalized version of DCG so that the
score is bounded by [0,1].

Definition 9. Denote by y € {1,--- ,h} a vector of entries
and let positive integer k£ be a truncation threshold. (k)
represents the set of entries inferred to be top-k and W(k)
represents the set of top-k entries of y. The Precision is defined

s _ E) NPk
as PrecisionQk = MO

We empirically set & = 10. As we want to infer
the top-k elephant flows in each time slot, the resulted
NDCG@10 and Precision@10 are the average N DCGQ10
and Precision@10 of all time slots monitored.

A. Impact of dimension R

According to the Section V-B, we use Eq.(10) to normalize
the monitoring data. The dimension R of the binary vector
(i.e., the row vector of factor matrices) directly impacts
the normalized value range and thus the resolution of the
recovered data, which further impacts the top-k inference
accuracy. In Fig.7, with the increase of R, NDCG@10 and
Precision@10 increase quickly when R is small value. After
R reaches 128 in WS-DREAM and 160 in Harvard226, our
DCP converges and achieves the stable accuracy performance.
Therefore, we set R = 128 for WS-DREAM and R = 160
for Harvard226 respectively in our rest experiments.

= =
— — | —!

@ fh'/ \go‘,ro-o-( @0.5 ’E‘:/ . 7?

Qo5 . &} 7‘ S

: : e

Z. 32 128 224 32088 32 128 224 320% 9 128 224 320 & % 128 224 320

Dimension Dimension Dimension Dimension
(a)WS-DREAM (b)Harvard226

Fig. 7. Impact of dimension R.

B. Impact of threshold ¢

In Section VIII, we propose a binary code partition algo-
rithm to speedup the top-k inferring procedure, in which the
long binary code is partitioned into several sub-codes. Sub-
code pairs are compared one by one until the total Hamming
distance of the beginning set of sub-code pairs exceeds a
threshold ¢, then we are sure the corresponding entry is not
top-k and stop the comparison further. Given k£ = 10, we
investigate the inference accuracy under different . In Fig.8,
we find that with the increase of ¢, as more data entries are
utilized to act as the candidate entries to calculate the top-
k flows, the inference accuracy increases initially. After ¢
reaches a value point, the inference accuracy becomes stable
and will not change with the further increase of €. On the
other hand, with the increase of ¢, more candidate entries are
involved to infer the top-k flows, which results in the increase
of computation time. Therefore, we set ¢ to be the value point,
that is ¢ = 49 for WS-DREAM and ¢ = 65 for Harvard226,
respectively.

7
128bits
r‘d/ (2)0.6*

.g 0.4 8 0.3
502 ;0.1
45 50 55 604 45 50 55 60Z

Threshold Threshold
(a)WS-DREAM

160bits
0.1T
0.05

60 65 70 75& 60 65 70 75

Threshold = Threshold
(b)Harvard226

128bits_ © _160bits

m\;ﬂ

ecision@]1(

0

NDCG@10

Fig. 8. Threshold ¢ study.

C. Performance comparison
Besides DCP, we implement other three schemes based on
tensor completion to infer top-k elephant flows. The first is
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CP in which the tensor completion is achieved though CP
decomposition using real valued factor matrices. We use CP
as a baseline to show the performance gap between real values
and binary codes. CP is the scheme following Section V. The
second is DCP-No-Partition which adopts all algorithms in
DCP except binary code partition in Section VIII. The third
is DCP-Dot in which for the missing data recovery, it directly
calculates the missing data through dot operations instead of
XOR bit operations adopted in our DCP.
1) Computation time

All the four schemes includes three steps. Step 1: train the
factor matrices using the observed entries, Step 2: recover
the missing data, Step 3: sort the complete data and return
the top-k elephant flows. We denote the computation time of
each step as Train time, Recovery time, and Sorting time. The
computation time is measured as average number of seconds
taken to complete corresponding operations. All experiments
are run on a Microstar workstation, which is equipped with
two Intel (R) Xeon (R) E5-2620 CPUs with 2GHz processor,
24 Cores and 32 GB RAM. We insert a timer to all schemes
implemented .

[*CP=DCP-Dot + DCP-No-Partition +~DCP)|

seconds seconds

gm ;ES;B"‘*S / 15

g 200 20 A
£ 44?“:”% ST

2 128 224 320 32
Dimension

1

0.

Sorting time

128 224 320 32
Dimension

s seconds
nnnnnn conds

1500) H 10 /8] A
glo(}u XE /ﬁ 50.1
i so0—#1 2 55 Y g -

A,/ y‘j g et ———1
9 8 224 320 2 s o224 320 B2 28 224 320
Dimension Dimension Dimension
(d)Harvard226 (e)Harvard226  (f)Harvard226

Fig. 9. Computation time.

In Fig.9(a) and Fig.9(d), as DCP, DCP-No-Partition, DCP-
Dot adopt same Algorithm 1 to train factor matrices, the
training time under these three schemes are same. As a
result, we only draw CP and DCP in the figure. Benefited
by Algorithm 1, our discrete tensor completion algorithm has
good convergence behavior which makes the training time
much smaller than that under CP which uses real valued tensor
completion.

Fig.9(b) and Fig.9(e) show the recovery time. Among all
schemes implemented, our DCP achieves the lowest recovery
time. As CP uses real valued factor matrix, for each entry
T;jk, recovering it needs the dot product upon real valued row
vectors a;, b;, and ¢, with x;;;, = a;eb;ec. Such operations
are costly, thus the recovery time under CP is the largest one.
Our DCP, DCP-No-Partition, and DCP-Dot adopt binary based
factor matrices. Recovering entries using DCP and DCP-No-
Partition is based on the calculation of Hamming distance
through XOR bit operation, thus the recovery time under DCP,
DCP-No-Partition are much smaller than that under DCP-
Dot, as DCP-Dot adopts dot operation on the binary code.
These results demonstrate that missing data inference based on

Hamming distance operation is very efficient. The speed gain
obtained by binary code partition is different under different
traces. In WS-DREAM, the speed gain is larger than that under
Harvard226. This is because the threshold € in WS-DREAM
is smaller than that in Harvard226 according to Fig.8, thus the
speed gains are different for different traces.

Fig.9(c) and Fig.9(f) show sorting time. The sorting time is
independent from the dimension R. Therefore, the curves in
Fig.9(c) and Fig.9(f) are parallel to the x-axis. Obviously, the
sorting time under CP is the largest one, then the DCP-No-
Partition and DCP-Dot, and finally the DCP. Sorting algorithm
under CP operates on the real valued entries, while our DCP,
DCP-No-Partition, and DCP-Dot operate on integers within
the range [-R, R]. Therefore, the sorting time under DCP,
DCP-No-Partition, and DCP-Dot is much smaller than that
under CP. Moreover, as binary code partition can not only
speed up missing data recovery but also reduce the sorting
space in step 3, the sorting time under DCP is only half that
under DCP-No-Partition and DCP-Dot.

2) Inference accuracy

Fig.10 shows inference accuracy of all the implemented
schemes. For fair comparison, the dimension of all tensor
completion algorithms are set to 128 for WS-DREAM and
160 for Harvard226. Obviously, the inference accuracy that our
DCP, DCP-No-Partition, and DCP-Dot can achieve is similar
to that of CP. In Fig.11, we will show that our DCP achieves
the accuracy similar to that of CP, but uses significantly smaller
storage.

[JcPEDCP-Dot [JDCP-No-Partition liDCP

o 2 o 2

- 1 1 —

® @g) ®05) @,:) 0.1

0 0.5 205 Q -2 0.0s

Q @ Q 70

2 oLl 8 ol L 2 oL LM 8 oL
1mension- 1mension- 1mension- mension-

Zz D 128 £ 'D 128 2 "D 160 & "D 160

(a)WS-DREAM (b)Harvard226
Fig. 10. Inference accuracy.
3) Storage

For the top-k inference with tensor completion, we first
utilize the observed data to train the factor matrices, then
sort the recovered missing data plus the observed data to find
the top-k flows. In the whole process, the factor matrices,
the observed sample data, and the recovered data should be
stored. We show the storage cost of each part for all schemes
in Fig.11.

For the real valued tensor completion, at least 32 bits are
needed to store a real number. As only one bit is needed
in our scheme to represent one entry in the factor matrices,
the storage cost is 1/32 that required in current real valued
tensor completion, as shown in Fig.11(a) and Fig.11(d). For all
the schemes implemented, we use the same observed sample
data to train the factor matrices, therefore, in Fig.11(b) and
Fig.11(e), the storage of the sampling data under different
schemes are the same.

Under CP, the recovered data are also real numbers, which
use 32 bits for each entry. Under DCP, DCP-Dot, and DCP-
No-Partition, the recovered data are integers falling into the
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range [—R, R] with R = 128 and R = 160 for traces WS-
DREAM and Harvard226, respectively. We can use a short
integer which occupies 16 bits to store the recovered entry.
Therefore, the recovery data storage under DCP-Dot and DCP-
No-Partition is only the half of that under CP. Compared with
DCP-Dot and DCP-No-Partition, the recovery storage under
our DCP is much lower because our binary partition algorithm
in DCP largely reduces the number of entries needed to be
recovered.

[icP MDCP-Dot [ IDCP-No-Partition lIDCP|

=l 3
£ 2" 8 "0
= 14 E 1 5‘:; 3 ocr
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es FU bytes —c les
£ 2 o’ 5"
= 4 gs e
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|Q 6450
S " Harvard226 EO Harvard226 go Harvard226
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Fig. 11. Storage.

X. CONCLUSION

We propose a novel discrete tensor completion model to
facilitate inferring the top-k elephant flows in the practical
environment where measurement data are incomplete and
sparse. Several novel techniques are proposed in the model,
including a discrete optimization algorithm to train the binary
factor matrices, significant cost reduction with bit operations
for quick missing data inference, binary code partition to
simplify the finding of top-k elephant flows. We have done
extensive experiment based on two real measurement traces.
The experiment results demonstrate that the computation cost
and storage cost is significantly reduced compared with current
real valued tensor completion model.
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