
1

Efficiently Inferring Top-k Elephant Flows based on

Discrete Tensor Completion

Kun Xie1, Jiazheng Tian1∗, Xin Wang2, Gaogang Xie3,4, Jigang Wen3, DafangZhang1∗

1 College of Computer Science and Electronics Engineering, Hunan University, Changsha, China
2 Department of Electrical and Computer Engineering, State University of New York at Stony Brook, USA
3 State Key Laboratory of Computer Architecture, Institute of Computing Technology, Chinese Academy of

Sciences
4 The School of Computer and Control Engineering, University of Chinese Academy of Sciences

*Corresponding author

Abstract—Finding top-k elephant flows is a critical task in
network measurement, with applications such as congestion
control, anomaly detection, and traffic engineering. Traditional
top-k flow detection problem focuses on using a small amount
of memory to measure the total number of packets or bytes of
each flow. Instead, we study a challenging problem of inferring
the top-k elephant flows in a practical system with incomplete
measurement data as a result of sub-sampling for scalability
or data missing. The recent study shows it is promising to
more accurately interpolate the missing data with a 3-D tensor
compared to that based on a 2-D matrix. Taking full advantage
of the multilinear structures, we apply tensor completion to
first recover the missing data and then find the top-k elephant
flows. To reduce the computational overhead, we propose a novel
discrete tensor completion model which uses binary codes to
represent the factor matrices. Based on the model, we further
propose three novel techniques to speed up the whole top-k
flow inference process: a discrete optimization algorithm to train
the binary factor matrices, bit operations to facilitate quick
missing data inference, and simplifying the finding of top-k
elephant flows with binary code partition. In our discrete tensor
completion model, only one bit is needed to represent the entry
in the factor matrices instead of a real value (32 bits) needed
in traditional tensor completion model, thus the storage cost
is reduced significantly. Extensive experiments using two real
traces demonstrate that compared with the state of art tensor
completion algorithms, our discrete tensor completion algorithm
can achieve similar data inference accuracy using significantly
smaller time and storage space.

Index Terms—Top-k elephant flow inference, Tensor comple-
tion

I. INTRODUCTION

Finding the largest k flows, also referred to as the top-k

elephant flows, is a fundamental network management func-

tion. Elephant flows contribute to a large portion of network

traffic. Example management applications that can benefit

from the efficient identification of top-k elephant flows include

congestion control to dynamically schedule elephant flows [1],

network capacity planning [2], anomaly detection [3], and

caching of forwarding table entries [4]. The flow of interest

may be defined by a source, a destination, a source-destination

pair, or by the function specified by TCP, WWW, and P2P. In

this paper, we explain our scheme using the flow based on

source-destination pair as an example. Our scheme, however,

is not constrained by this flow definition.

Literature studies [5]–[11] on the detection of top-k elephant

flows attempt to use a small amount of memory to measure

each flow’s cardinality such as the total number of packets

or bytes. Taking a sketch-based algorithm as an example, it

relies on a sketch (e.g., CM sketch [5]) to measure the sizes

of flows when each packet comes, while using a min-heap to

keep track of the top-k flows.

Instead, this paper aims to infer top-k elephant flows that

have the largest traffic volumes among data collected by the

network controller (or SDN controller). If the traffic volumes

of all source-destination flows have been collected in each

time slot, the problem is trivial and can be solved by simply

sorting the measurement data. However, in a practical system,

the traffic measurement data are often incomplete thus sparse

for several reasons: 1) Due to the high network monitoring

and communication cost, it is impractical to collect full traffic

volume information from a very large number of network

nodes. Sample-based traffic monitoring is often applied where

measurements are only taken between some random node

pairs or in some of the periods for a given node pair; 2)

Measurement data may get lost under severe communication

and system conditions, including network congestion, node

misbehavior, monitor failure, a transmission of measurement

information through an unreliable transport protocol. The

inference of top-k elephant flows is made extremely difficult

and challenging as a result of the incompleteness of traffic

measurement data.

With missing data, one possible approach to achieve the

goal is to first recover the missing data, then return the top-k

largest flows after sorting the recovered data. Various studies

have been made to handle and recover the missing traffic data.

Designed based on purely spatial or purely temporal informa-

tion, the data recovery performance of most known approaches

[12]–[14] is low. Recently matrix-completion-based algorithms

are proposed to recover the missing traffic data by exploiting

both spatial and temporal information [15]–[17]. Although the

performance is good when the data missing ratio is low, the

performance suffers when the missing ratio is large.

For more accurate missing data inference, a few recent

studies [18], [19] try to model the traffic data as a 3-way tensor,

and then fill in the missing data of traffic matrices through
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tensor completion. Tensors are the higher-order generalization

of vectors and matrices. Tensor models can take full advantage

of the multilinear structures to achieve higher information

precision for better data understanding. Compared with matrix-

based data recovery, the tensor-based approach can better

handle the missing traffic data and will be used in this paper.

With the capability of more accurate inference of missing

measurement data, tensor completion can facilitate the finding

of top-k elephant flows using partial measurements data. Top-k

elephant flows may be found though three steps: 1) training the

factor matrices through tensor factorization using the partial

measurement samples, 2) recovering un-observed data using

the trained factor matrices, and 3) sorting the complete traffic

data descendingly to identify top-k flows. Although this is a

promising way, given an I × J × K traffic tensor with its

tensor rank equal to R, the time complexity of data inference

and sorting is O(IJKR+IJKlog(k)), which would be a big

bottleneck that prevents efficient finding of top-k flows when

the size of the traffic monitoring tensor is large.

Recent studies show that binary coding is a promising

approach for fast similarity search [20], [21]. Specifically,

based on fast bit operations, Hamming distance computation

is extremely efficient. If we can represent factor matrices in

tensor factorization by binary codes, it may only need simple

bit operations to quickly find top-k elephant flows. However,

no prior studies on tensor completion have been performed

based on binary codes, addressing the challenge may open a

new avenue for the tensor-based advanced data processing.

To take advantage of efficient bit operations, we propose a

novel discrete tensor completion model for quickly inferring

the top-k flows with partial measurement data. Our design

includes several novel techniques:

• Discrete tensor completion model. To infer the missing

measurement data, we propose a novel discrete tensor

completion model in which real-valued factor matrices

in traditional tensor completion model are represented by

binary codes. Only using 1-bit binary value to represent

an entry in each factor matrix, the space is largely reduced

compared with traditional tensor completion model which

uses 32 bits real value number to represent each entry of

the factor matrices.

• Discrete optimization algorithm. For discrete tensor

completion, to learn the binary codes, it needs to solve

an optimization problem involving discrete values. This

is generally NP-hard due to the discrete constraints. To

tackle the problem, we develop a discrete optimization

algorithm with the iterative solving of sub-problems of

mixed-integer programming.

• Efficiently inferring missing data through bit opera-

tions Based on the analysis of relationship between CAN-

DECOMP/PARAFAC (CP) decomposition and frontal

slices, we transform the missing data recovery problem

in each time slot to a problem of dot production of

two binary vectors, which is further transformed into

the calculation of Hamming distance through lightweight

XOR bit operations.

• Speed-up of top-k inference with binary code partition

To reduce the computation cost in missing data recovery

as well as the search space for top-k sorting, we propose

to further partition a binary vector into a set of small

sub-vectors with the length of each set to that of one

machine word of today’s CPU. If two binary vectors are

not similar, we can quickly determine that corresponding

entry is definitely not the top-k entry. With the partition,

we only need to compare a small number of sub-vectors

rather than long binary vectors in the factor matrices.

• Extensive experiments We have conducted extensive ex-

periments using two network measurement traces. Com-

pared with the state of art tensor completion algorithms,

our discrete tensor completion algorithm can achieve

similar data inference accuracy using significantly smaller

time and storage space.

The rest of the paper is organized as follows. We introduce

the related work in Section II. The preliminaries of tensor

are presented in Section III. We introduce the problem and

the tensor completion model in Section IV and Section V,

respectively. In Sections VI, VII, and VIII, we present in

details our algorithms for discrete tensor completion, quick

missing data inference, and binary code partition, respectively.

Finally, we evaluate the performance of the proposed algorithm

through extensive experiments in Section IX, and conclude the

work in Section X.

II. RELATED WORK

Network measurements [22], [23] provide critical input for

a wide range of network management applications. Finding

top-k elephant flows is a critical task in network traffic mea-

surement. It can be applied for congestion control, anomaly

detection and traffic engineering. A number of algorithms

have been proposed in recent years, including CM sketch

[5], Frequent [6], Lossy Counting [7], Space-Saving [8],

HeavyKeeper [9], HeavyGuardian [11], and CSS [10]. These

algorithms generally focus on measuring the sizes of flows

and finding top-k flows more accurately with lower space

consumption. Rather than directly measuring flows passing

by a node, we consider the inference of top-k elephant flows

in the practical environment where measurement data can be

incomplete and sparse. This makes the problem much harder.

To address the challenge, we propose a scheme based

on tensor completion to infer the top-k elephant flows.

Compared with compressive sensing and matrix completion,

tensor completion can more accurately recover the missing

data taking advantage of the multidimensional data structure.

Several tensor completion algorithms [24]–[27] are proposed

for recovering the missing data by capturing the global

structure of the data via a high-order decomposition such

as CANDECOMP/PARAFAC (CP) decomposition and Tucker

decomposition. Some recent studies [18], [19] have modeled

the traffic matrices of different time slots/days as a tensor to

recover the missing data through tensor completion.

Although it is promising to take tensor completion algorithm

in the presence of missing measurement data, it would involve

a high computation cost to first recover the data and then find

the top-k elephant flows. We propose a novel discrete tensor

completion model which uses binary codes to represent the

factor matrices. With this model, we propose several novel
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techniques, including a discrete optimization algorithm to train

the binary factor matrices, an algorithm to quickly infer the

missing measurement data with bit operations, and a binary

code partition algorithm to speed up the top-k inference.

III. PRELIMINARIES

In this paper, scalars are denoted by lowercase letters (a, b,

· · · ), vectors are written in boldface lowercase (a, b, · · · ), and

matrices are represented with boldface capitals ( A, B, · · ·
). Higher-order tensors are written as calligraphic letters (X ,

Y , · · · ). The elements of a tensor are denoted by its symbolic

name with indexes in subscript. For example, the i-th entry of

a vector a is denoted by ai, the element (i, j) of a matrix A is

denoted by aij , and the element (i, j, k) of a third-order tensor

X is denoted by xijk . The row (column) vectors of a matrix

are denoted by the symbolic name of the matrix with indexes

in subscript. For example, the i-th row (column) vector of a

matrix A is denoted by ai (a(i)). Besides, we denote ‖•‖F as

the Frobenius norm of a matrix, and sgn (•) : R → {±1} as

the round-off function.

Definition 1. A tensor is a multidimensional array, and is

a higher-order generalization of a vector (first-order tensor)

and a matrix (second-order tensor). An N -way or N th-order

tensor (denoted as A ∈ R
I1×I2×···×IN ) is an element of the

tensor product of N vector spaces, where N is the order of

A, also called way or mode.

The element of A is denoted by ai1,i2,··· ,iN , in ∈
{1, 2, · · · , In} with 1 ≤ n ≤ N .

Definition 2. Slices of a 3-way tensor are two-dimensional

sub-arrays, defined by fixing all indexes but two.

�
�

�

Fig. 1. Tensor slices

In Fig.1, a 3-way ten-

sor X has horizontal, lateral

and frontal slices, which are

denoted by Xi::, X:j: and

X::k, respectively. In this

paper, we denote the frontal

slice X::k as Xk.

Definition 3. The outer product of two column vectors a◦b
is the matrix defined by: (a ◦ b)ij = aibj .

Definition 4. The outer product A ◦ B of a tensor A ∈
R

I1×I2×···×IN1 and a tensor B ∈ R
J1×J2×···×JN2 is the tensor

of the order N1 +N2 defined by

(A ◦ B)
i1,i2,··· ,iN1

,j1,j2,··· ,jN2

= ai1,i2,··· ,iN1
bj1,j2,··· ,jN2

(1)

for all values of the indexes.

Since vectors are first-order tensors, the outer product of

three column vectors a ◦ b ◦ c is a tensor given by:

(a ◦ b ◦ c)
ijk

= aibjck (2)

for all values of the indexes.

Definition 5. A 3-way tensor X is a rank one tensor if it

can be written as the outer product of three column vectors,

i.e. X = a ◦ b ◦ c.

Definition 6. The rank of a 3-way tensor is the min-

imal number of rank one tensors, that generate the ten-

sor as their sum, i.e. the smallest R, such that X =∑R

r=1 a(r) ◦ b(r) ◦ c(r) where a(r), b(r), and c(r) are column

vectors.

Definition 7. The idea of CANDECOMP/PARAFAC (CP)

decomposition is to express a tensor as the sum of a finite

number of rank one tensors. A 3-way tensor X ∈ R
I×J×K

can be expressed as

X =
∑R

r=1
a(r) ◦ b(r) ◦ c(r), (3)

with an entry calculated as

xijk =
∑R

r=1
airbjrckr (4)

where R > 0, air, bjr , ckr are the i-th, j-th, and k-th entry

of column vectors a(r) ∈ R
I , b(r) ∈ R

J , and c(r) ∈ R
K ,

respectively.

By collecting the vectors in the rank one components, we

have tensor X ’s factor matrices A =
[
a(1), · · · , a(R)

]
∈

R
I×R, B =

[
b(1), · · · ,b(R)

]
∈ R

J×R, and C =[
c(1), · · · , c(R)

]
∈ R

K×R. Using the factor matrices, we can

rewrite the CP decomposition as follows.

X =
∑R

r=1
a(r) ◦ b(r) ◦ c(r) = [[A,B,C]] (5)

� � �� �

��������
��� ���

���� ������� ���

���� ����
������

��

��

��

��������� ��� �� ������ ��� ��� ���

	
�����
�����

����

� �
�

		�
�

� ������

������

���

����

�

� � � �

�

� � �
�

� � �

�

�

�

�
��

�

Fig. 2. CP decomposition of three-way tensor.

In Fig.2, a three-way tensor can be represented through

CP decomposition as the sum of R outer products (rank one

tensors). That is, X =
∑R

r=1 a(r) ◦ b(r) ◦ c(r), with column

vectors a(r) ∈ R
I , b(r) ∈ R

J , and c(r) ∈ R
K . In addition,

an entry xijk can be calculated as the sum of the dot product

of row vectors ai, bj , and ck. That is, xijk = ai • bj • ck,

where ai •bj •ck =
∑R

r=1 airbjrckr is the dot product of the

three row vectors ai, bj , and ck with ai ∈ R
1×R, bj ∈ R

1×R,

and ck ∈ R
1×R. In this paper, we design traffic data recovery

algorithm based on the CP decomposition.

IV. SYSTEM MODEL AND PROBLEM

�
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Fig. 3. 3-way traffic tensor.

We model the traffic measure-

ment data as a 3-way tensor M ∈
R

I×J×K (Fig.3), where I , J , and

K correspond to the number of

origin nodes, the number of des-

tination nodes, and the number of

time intervals monitored, respec-

tively. Each entry mijk indicates

the end-to-end traffic volume data

from the origin node i to the destination node j in the time

slot k.

As partial node pairs are often monitored to reduce the

measurement load and also there are an unavoidable data

losses upon severe communication conditions, M is generally

a sparse and incomplete tensor. If there are no traffic data

between a pair of nodes in a given time interval, it leaves

the corresponding entry in M empty. All observed entries are

denoted by Ω = {(i, j, k) |mijk is known}.
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The aim of this paper is to efficiently find the top-k elephant

flows in each time interval in the face of partial measurement

data. The sparseness of data makes the problem much harder

to solve.

V. TENSOR COMPLETION MODEL

Tensor completion is a promising technique to infer the

missing data with a multi-dimensional data structure. Its

versatility and effectiveness have been proven in a variety

of fields, including analysis of web graphs, knowledge bases,

chemometrics, signal processing, and computer vision.
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Fig. 4. Solution overview based on tensor completion.

As shown in Fig.4, based on tensor completion, a straight-

forward way of finding top-k elephant flows includes three

steps: 1) training the factor matrices using the partial mea-

surement samples based on tensor factorization, 2) inferring

missing tensor entries using the trained factor matrices, and 3)

sorting the data entries in each time interval to return the top-k

elephant flows in each time slot using the recovered data. As

mentioned in the introduction, this method could incur a high

computational overhead.

In this section, we first present the real-valued tensor com-

pletion model to infer top-k elephant flows. After analyzing

the complexity of this method, we propose a novel discrete

tensor completion model.

A. Real-valued tensor completion model

Completing the tensor M based on its partial measurement

samples can be performed through the factorization based on

the popular CP decomposition method as follows:

min
A,B,C

∑
i,j,k∈Ω

(mijk − ai • bj • ck)
2 +α||A||2 + β||B||2 + γ||C||2

(6)

where A ∈ R
I×R, B ∈ R

J×R, and C ∈ R
K×R are factor

matrices with ai, bj , and ck being the i-th row vector of

A, the j-th row vector of B, and the k-th row vector of

C. In Eq.(6), α, β, and γ are the regularization coefficients.

α||A||2+β||B||2+γ||C||2 is added in the formulation to pre-

vent an over-fitting problem, where the errors corresponding

to the tensor elements with observed entries are very small

while the errors for the inferred data entries are large.

After getting three factor matrices A, B, and C, the original

traffic tensor can be recovered by

M̂ = [[A,B,C]] (7)

with the recovered entry

m̂ijk = ai • bj • ck. (8)

As the values of the factor matrices A, B, and C are real, we

call Eq. (6) a real-valued tensor completion problem. After

obtaining the complete traffic tensor, top-k elephant flows can

be found with the descending sort of data in each time interval.

Although this straightforward way can be applied to find

the top-k elephant flows in the presence of partial measure-

ments data, the time complexity is O(IJKR + IJKlog(k)),
where O(IJKR) corresponds to the cost of Eq.(7) and

O(IJKlog(k)) corresponds to the cost of sorting and selecting

top-k elephant flows in each time slot. This will become

a computation bottleneck when the size of the network to

monitor thus the traffic tensor is large.

B. Discrete tensor completion model

In Eq.(8), the entry mijk depends on the dot product of ai,

bj , and ck , which obviously corresponds to data of origin i,

destination j, and time slot k, respectively. In this paper, we

call them factor vectors of origin i, destination j, and time

slot k.

Recent studies show that binary coding is a promising

approach for fast similarity search [20], [21]. Based on fast

bit operations, Hamming distance computation is extremely

efficient. If we can represent the factor vectors of origins, des-

tinations, and time slots by binary codes, there is a possibility

of speeding up the missing data recovery process in Eq.(8)

with simple bit operations. This will in turn help expedite the

finding of top-k flows. We will introduce additional procedures

to further increase the speed of top-k finding in Section

VII. Although promising, there are no prior studies on tensor

completion based on the construction of binary codes for factor

matrices.

We would like to represent the factor matrices using bi-

nary codes: A = [a1; a2; · · · ; aI ]
T

∈ {±1}
I×R

, B =
[b1;b2; · · · ;bJ ]

T
∈ {±1}

J×R
, C = [c1; c2; · · · ; cK ]

T
∈

{±1}
K×R

. In this representation, each row vector of the factor

matrix is a length R binary vector. To utilize the partial

measurement samples to train the binary factor matrices,

similar to Eq.(6), we define a novel discrete tensor completion

model, which is formulated as

min
A,B,C

∑
i,j,k∈Ω

(mijk − ai • bj • ck)
2

s.t. A ∈ {±1}I×R, B ∈ {±1}J×R, C ∈ {±1}K×R
(9)

Different from Eq.(6), as A = [a1; a2; · · · ; aI ]
T

∈
{±1}

I×R
, B = [b1;b2; · · · ;bJ ]

T
∈ {±1}

J×R
, C =

[c1; c2; · · · ; cK ]
T
∈ {±1}

K×R
, the regularization α||A||2 +

β||B||2 + γ||C||2 = α× I ×R+ β × J ×R+ γ ×K ×R is

a constant and hence is discarded from Eq.(9).

For any three binary row vectors ai ∈ {±1}
1×R

, bj ∈

{±1}1×R
, and ck ∈ {±1}1×R

, the dot product of these

vectors ai • bj • ck falls into the range of [−R,R]. Before

we use the observed measurement entries to train the binary

factor matrices following Eq.(9), we normalize the traffic data

into the value range [−R,R]:

mijk =
mijk

1
R

(
max

1≤i≤I,1≤j≤J,1≤k≤K
(mijk)

) (10)

where max
1≤i≤I,1≤j≤J,1≤k≤K

(mijk) is the maximum value of all

the traffic data.
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The operation in Eq.(10) does not impact the correlation

hidden in the traffic data or the value order of the traffic data.

In our performance evaluation, we will study the impact of R,

the dimension of the row vector, on the accuracy and speed

of top-k finding.

VI. DISCRETE TENSOR COMPLETION

Solving the discrete tensor completion problem in Eq.(9)

is challenging, since it is generally NP-hard that involves

O(2(I+J+K)R) combinatorial search for the binary codes. To

solve the problem involving binary discrete variables, people

usually resort to a two-stage procedure: first solving a relaxed

optimization algorithm without the discrete constraints, and

then performing direct binary quantization. However, such an

oversimplified two-stage procedure results in large quantiza-

tion loss.

Instead, we directly solve the discrete optimization problem

by alternatingly solving three subproblems: to obtain A, B,

and C. In particular, we show that A, B, and C can be

efficiently updated through the discrete optimization.

A-subproblem: In this subproblem, we update A with B

and C fixed. We can rewrite the function Eq. (9):

min
A,B,C

∑
i,j,k∈Ω

(m2
ijk − 2mijk(ai • bj • ck) + (ai • bj • ck)

2)

s.t. A ∈ {±1}I×R, B ∈ {±1}J×R, C ∈ {±1}K×R

(11)

Since the objective function in Eq. (11) is based on summing

over ai, we can update A by updating each ai according to

min
ai∈{±1}R

∑
i,j,k∈Ω

(−2mijk(ai • bj • ck) + (ai • bj • ck)
2) (12)

The update of different row vectors are independent and can be

executed in parallel. Due to the binary constraints, the above

minimization in Eq.(12) is generally NP-hard, we propose to

update binary code ai bit by bit. Denoting aih as the h-th bit

of ai and aih̄ as the rest codes excluding aih, we update aih
while fixing aih̄.

Without loss of generality, let

ai = [aih̄ aih],bj = [bjh̄ bjh], ck = [ckh̄ ckh] (13)

Then Eq.(12) can be rewritten as:
min

ai∈{±1}R
2

∑

i,j,k∈Ω

(aihbjhckh)(aih̄ • bjh̄ • ckh̄)−2aih

∑

i,j,k∈Ω

mijkbjhckh

= min
ai∈{±1}R

−2aih

∑

i,j,k∈Ω

(bjhckh(mijk − aih̄ • bjh̄ • ckh̄))

(14)

Let

âih =
∑

i,j,k∈Ω

(bjhckh)(mijk − aih̄ • bjh̄ • ckh̄) (15)

then Eq.(14) is equal to

min
ai∈{±1}R

−2aihâih (16)

It’s easy to see, the expressions in âih are all known as we fix

B and C (thus bjh and ckh) and aih̄ when we update aih, so

âih is also known. From min
ai∈{±1}R

−2aihâih, the value of aih

is related to the symbol of âih. So, we just need to consider

symbol of âih.

Finally, the update rules of aih is:

aih ← sgn(K(âih, aih)) (17)

where K (x, y) =

{
x if x �= 0
y otherwise

and sgn (x) =

{
1 x > 0
−1 x < 0

.

In Eq.(17), when âih �= 0, we update aih with aih =
sgn(âih); otherwise, we don’t update it. B-subproblem, C-

subproblem can be solved similar to A-subproblem. Through

alternating optimization, the complete discrete tensor comple-

tion algorithm can be shown in Algorithm 1.

Algorithm 1 Discrete tensor completion

Input: {mijk |(i, j, k) ∈ Ω}: observed entries
R: code length

Output: A ∈ {±1}I×R, B ∈ {±1}J×R, C ∈ {±1}K×R

1: Initialization: A, B, C
2: while not converge do
3: for i = 1 to I do
4: while not converge do
5: for h = 1 to R do
6: âih =

∑
i,j,k∈Ω

(bjhckh)(mijk − aih̄ • bjh̄ • ckh̄)

7: aih ← sgn(K(âih, aih))
8: end for
9: end while

10: end for
11: for j = 1 to J do
12: while not converge do
13: for h = 1 to R do
14: b̂jh =

∑
i,j,k∈Ω

(aihckh)(mijk − aih̄ • bjh̄ • ckh̄)

15: bjh ← sgn(K(b̂jh, bjh))
16: end for
17: end while
18: end for
19: for k = 1 to K do
20: while not converge do
21: for h = 1 to R do
22: ĉkh =

∑
i,j,k∈Ω

(aihbjh)(mijk − aih̄ • bjh̄ • ckh̄)

23: ckh ← sgn(K(ĉkh, ckh))
24: end for
25: end while
26: end for
27: end while
28: Return A, B, and C.

Denote the objective function

(
∑

i,j,k∈Ω

(mijk − ai • bj • ck)
2
) of problem Eq.(9) as

L(A,B,C), the convergence of the proposed Algorithm 1 is

guaranteed by the following theorem.

Theorem 1. The sequence
{
A

(t),B(t),C(t)
}

generated by

Algorithm 1 monotonically decreases the objective function

L(A,B,C) of Eq.(9) where t denotes the iteration step; the

objective function sequence
{
L
(
A

(t),B(t),C(t)
)}

converges;

the sequence
{
A

(t),B(t),C(t)
}

converges.

Due to limited space, the proof is abbreviated.

VII. QUICK INFERENCE OF MISSING DATA BASED ON

HAMMING DISTANCE

After we obtain the factor matrices A, B, and C by applying

Algorithm 1, the traffic tensor can be recovered by M̂ =
[[A,B,C]] with m̂ijk = ai • bj • ck as shown in Eq.(7) and

Eq.(8). Using the recovered traffic tensor, after sorting the data

entries in each time interval descendingly , the top-k elephant

flows can be returned. Although it is promising, as discussed
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in Section V-A, the computation cost is large.

In our tensor model, each frontal slice records the volumes

of traffic data among all origins and destinations in a time slot.

In this section, we first investigate the relationship between

tensor CP decomposition and the decomposition of a frontal

slice of the tensor, then present our algorithm of quickly

inferring top-k elephant flows based on simple bit operations

to get the Hamming distance.

A. Relationship between CP decomposition and frontal slice

decomposition
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Fig. 5. The relationship between tensor CP decomposition and frontal slice
matrix decomposition.

In Fig.5, according to Eq.(5), the CP decomposition of a

3-way tensor X can be written as follows.

X =
∑R

r=1
a(r) ◦ b(r) ◦ c(r) = [[A,B,C]] (18)

where matrices A ∈ {±1}I×R, B ∈ {±1}J×R, C ∈
{±1}K×R are the binary factor matrices in the CP decompo-

sition. According to the CP decomposition, in Fig.5, a frontal

slice Xk can be written as

Xk = ck1a(1) ◦b(1) + · · ·+ ckRa(R) ◦b(R) =
∑R

i=1
ckia(i) ◦ b(i)

(19)

where ck1, ck2, · · · , ckR are the entries of the k-th row of the

factor matrix C.

Eq. (19) shows that each frontal slice Xk can be ex-

pressed as a superposition of R rank-1 matrices a(i) ◦ b(i)

(1 ≤ i ≤ R). That is, the traffic data Xk is represented by

the linear combination of R rank-1 matrices a(i) ◦ b(i). As

A =
[
a(1), · · · , a(R)

]
∈ {±1}I×R, B =

[
b(1), · · · ,b(R)

]
∈

{±1}J×R, according to (19), Xk can be rewritten as

Xk = AΣkB
T

(20)

where A ∈ {±1}I×R and B ∈ {±1}J×R are the binary factor

matrices in the CP decomposition, Σk = diag (Ck:), and Ck:

is the k-th row of the binary factor matrix C.

B. Inferring top-k elephant flows through hamming distance

Let D = AΣk, we have Xk = DB
T . As A ∈ {±1}I×R

and C ∈ {±1}K×R, we have D ∈ {±1}I×R.

To recover the traffic data entry mijk , the straightforward

strategy is mijk = di • bj , which still results in a high

computation cost. Now we will show di • bj can be derived

using the Hamming distance between di and bj at a much

smaller computation cost. Let

sim(i, j) =
1

R

R∑
t=1

II(dit = bjt) (21)

where II() is the indicator function that returns 1 if the

statement is true and 0 otherwise. We can easily verify that

sim(i, j) = 0 if all bits of di and bj are different and

sim(i, j) = 1 if di = bj .
R∑

t=1
II(dit = bjt) represents the total

number of bit locations that have the same bit value in vectors

di and bj ,
R∑
t=1

II(dit �= bjt) is the number of bit locations that

have different bit values. Therefore, we have

sim(i, j) =
1

2R

(
R∑

t=1

II(dit = bjt) +R −

R∑
t=1

II(dit �= bjt)

)
(22)

As di ∈ {±1}
1×R

and bj ∈ {±1}
1×R

, when two bit locations

are different, we have II(dit �= bjt) = 1 and ditbjt = −1.

When two bit locations are the same, we have II(dit = bjt) =
ditbjt = 1. We further have

sim(i, j) =
1

2R

(
R +

R∑
t=1

ditbjt

)
=

1

2
+

1

2R
di • bj (23)

Eq.(23) indicates that when di and bj are binary vectors,

the order of di • bj is the same as the order of sim(i, j),
that is, if di •bj > di′ •bj′ , we have sim(i, j) > sim(i′, j′).
Hamming distance between two codes di and bj is simply the

number of bits that are different, which can be computed at

extreme efficiency using bit-wise XOR operations. Obviously,

sim(i, j) = R− hamming distance(di,bj).

VIII. TOP-K INFERRING SPEEDUP THROUGH BINARY CODE

PARTITION

To infer the top-k elephant flows, the Hamming distances

of di and bj for all 1 ≤ i ≤ I and 1 ≤ j ≤ J should first

be computed, then after sorting I × J entries, top-k largest

entries will be returned. The computation cost is still high for

large I and J .

To solve our problem, we only need to know values of

large entries rather than all entry values. To speed up the

top-k inferring procedure, we can divide each R-bit code di

and bj into p sub-codes, denoted by di =
{
d
1
i ,d

2
i , · · · ,d

p
i

}
and bj =

{
b
1
j ,b

2
j , · · · ,b

p
j

}
, respectively. We then test the

Hamming distance of each sub-codes one by one. If the total

Hamming distance of the beginning set of sub-code pairs

exceeds a threshold ε, obviously, these two di and bj will

not be similar and should not be counted as the candidate

top-k largest entry. We can stop comparing the remaining

bit strings and discard this entry without need of further

sub-code comparison and the sorting of this entry. For more

efficient calculation, we set the length of the sub-code to be

the length of the machine code as in today’s CPUs, the read
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and XOR operation on one machine word can be done within

one memory access.

This partition-based comparison not only helps speed up the

phase of missing data inference but also cut short the sorting

phase. Fig.6 shows an example, where we set ε = 2. We divide

the binary code into four parts. After comparing the first two

parts, we find the total Hamming distance reaches 3, which is

larger than ε = 2. Therefore, these two binary codes are not

similar and the corresponding entry should not be considered

as the candidate top-k entries.
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Fig. 6. Binary code partition.

There is a tradeoff to set ε. Small ε will result in that

more entries are discarded while increase the risk of missing

the top-k entries, large ε will increase the computation cost

while decrease the risk of missing the top-k entries. In

the experiment, we will set appropriate ε according to the

parameter k and R.

IX. PERFORMANCE EVALUATION

Although we use network traffic monitoring as an example

to illustrate our scheme (denoted as discrete CP (DCP)), our

scheme is a general and can also be applied to infer top-

k Origin-Destination (OD) pairs with other network perfor-

mance data. Therefore, we use two real network monitoring

traces (WS-DREAM [28] and Harvard226 [29]) to evaluate

our proposed DCP. WS-DREAM records the traffic volume

between 142 users and 4,500 Web services over 64 consecutive

time slices, at an interval of 15 minutes. Harvard226 contains

measurement data of application-level RTTs, with timestamps,

between 226 Azureus clients collected in 72 hours. Two

performance metrics are utilized to evaluate the proposed DCP,

which are defined as follows.

Definition 8. Denote by y ∈ {1, · · · , h} a vector of entries

of the monitoring data in a time slot and π a permutation

of the vector. πi denotes the position of i-th element in the

permutation. πs sorts y in decreasing order. Let positive integer

k be a truncation threshold. The Discounted Cumulative Gains

(DCG@k) score and its normalized variant (NDCG@k) are

defined respectively as DCG@k(y, π) =
∑k

i=1
2yπi−1
log(i+2) and

NDCG@k(y, π) = DCG@k(y,π)
DCG@k(y,πs)

.

DCG@k is maximized when π = πs. In this paper, the

truncation threshold k reflects how many elephant flows are

inferred. NDCG is a normalized version of DCG so that the

score is bounded by [0,1].

Definition 9. Denote by y ∈ {1, · · · , h} a vector of entries

and let positive integer k be a truncation threshold. Φ(k)
represents the set of entries inferred to be top-k and Ψ(k)
represents the set of top-k entries of y. The Precision is defined

as Precision@k = |Ψ(k)|∩|Φ(k)|
|Ψ(k)| .

We empirically set k = 10. As we want to infer

the top-k elephant flows in each time slot, the resulted

NDCG@10 and Precision@10 are the average NDCG@10
and Precision@10 of all time slots monitored.

A. Impact of dimension R

According to the Section V-B, we use Eq.(10) to normalize

the monitoring data. The dimension R of the binary vector

(i.e., the row vector of factor matrices) directly impacts

the normalized value range and thus the resolution of the

recovered data, which further impacts the top-k inference

accuracy. In Fig.7, with the increase of R, NDCG@10 and

Precision@10 increase quickly when R is small value. After

R reaches 128 in WS-DREAM and 160 in Harvard226, our

DCP converges and achieves the stable accuracy performance.

Therefore, we set R = 128 for WS-DREAM and R = 160
for Harvard226 respectively in our rest experiments.
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Fig. 7. Impact of dimension R.

B. Impact of threshold ε

In Section VIII, we propose a binary code partition algo-

rithm to speedup the top-k inferring procedure, in which the

long binary code is partitioned into several sub-codes. Sub-

code pairs are compared one by one until the total Hamming

distance of the beginning set of sub-code pairs exceeds a

threshold ε, then we are sure the corresponding entry is not

top-k and stop the comparison further. Given k = 10, we

investigate the inference accuracy under different ε. In Fig.8,

we find that with the increase of ε, as more data entries are

utilized to act as the candidate entries to calculate the top-

k flows, the inference accuracy increases initially. After ε

reaches a value point, the inference accuracy becomes stable

and will not change with the further increase of ε. On the

other hand, with the increase of ε, more candidate entries are

involved to infer the top-k flows, which results in the increase

of computation time. Therefore, we set ε to be the value point,

that is ε = 49 for WS-DREAM and ε = 65 for Harvard226,

respectively.
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Fig. 8. Threshold ε study.

C. Performance comparison

Besides DCP, we implement other three schemes based on

tensor completion to infer top-k elephant flows. The first is
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CP in which the tensor completion is achieved though CP

decomposition using real valued factor matrices. We use CP

as a baseline to show the performance gap between real values

and binary codes. CP is the scheme following Section V. The

second is DCP-No-Partition which adopts all algorithms in

DCP except binary code partition in Section VIII. The third

is DCP-Dot in which for the missing data recovery, it directly

calculates the missing data through dot operations instead of

XOR bit operations adopted in our DCP.

1) Computation time

All the four schemes includes three steps. Step 1: train the

factor matrices using the observed entries, Step 2: recover

the missing data, Step 3: sort the complete data and return

the top-k elephant flows. We denote the computation time of

each step as Train time, Recovery time, and Sorting time. The

computation time is measured as average number of seconds

taken to complete corresponding operations. All experiments

are run on a Microstar workstation, which is equipped with

two Intel (R) Xeon (R) E5-2620 CPUs with 2GHz processor,

24 Cores and 32 GB RAM. We insert a timer to all schemes

implemented .
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Fig. 9. Computation time.

In Fig.9(a) and Fig.9(d), as DCP, DCP-No-Partition, DCP-

Dot adopt same Algorithm 1 to train factor matrices, the

training time under these three schemes are same. As a

result, we only draw CP and DCP in the figure. Benefited

by Algorithm 1, our discrete tensor completion algorithm has

good convergence behavior which makes the training time

much smaller than that under CP which uses real valued tensor

completion.

Fig.9(b) and Fig.9(e) show the recovery time. Among all

schemes implemented, our DCP achieves the lowest recovery

time. As CP uses real valued factor matrix, for each entry

xijk , recovering it needs the dot product upon real valued row

vectors ai, bj , and ck with xijk = ai•bj•ck. Such operations

are costly, thus the recovery time under CP is the largest one.

Our DCP, DCP-No-Partition, and DCP-Dot adopt binary based

factor matrices. Recovering entries using DCP and DCP-No-

Partition is based on the calculation of Hamming distance

through XOR bit operation, thus the recovery time under DCP,

DCP-No-Partition are much smaller than that under DCP-

Dot, as DCP-Dot adopts dot operation on the binary code.

These results demonstrate that missing data inference based on

Hamming distance operation is very efficient. The speed gain

obtained by binary code partition is different under different

traces. In WS-DREAM, the speed gain is larger than that under

Harvard226. This is because the threshold ε in WS-DREAM

is smaller than that in Harvard226 according to Fig.8, thus the

speed gains are different for different traces.

Fig.9(c) and Fig.9(f) show sorting time. The sorting time is

independent from the dimension R. Therefore, the curves in

Fig.9(c) and Fig.9(f) are parallel to the x-axis. Obviously, the

sorting time under CP is the largest one, then the DCP-No-

Partition and DCP-Dot, and finally the DCP. Sorting algorithm

under CP operates on the real valued entries, while our DCP,

DCP-No-Partition, and DCP-Dot operate on integers within

the range [-R, R]. Therefore, the sorting time under DCP,

DCP-No-Partition, and DCP-Dot is much smaller than that

under CP. Moreover, as binary code partition can not only

speed up missing data recovery but also reduce the sorting

space in step 3, the sorting time under DCP is only half that

under DCP-No-Partition and DCP-Dot.

2) Inference accuracy

Fig.10 shows inference accuracy of all the implemented

schemes. For fair comparison, the dimension of all tensor

completion algorithms are set to 128 for WS-DREAM and

160 for Harvard226. Obviously, the inference accuracy that our

DCP, DCP-No-Partition, and DCP-Dot can achieve is similar

to that of CP. In Fig.11, we will show that our DCP achieves

the accuracy similar to that of CP, but uses significantly smaller

storage.
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Fig. 10. Inference accuracy.

3) Storage

For the top-k inference with tensor completion, we first

utilize the observed data to train the factor matrices, then

sort the recovered missing data plus the observed data to find

the top-k flows. In the whole process, the factor matrices,

the observed sample data, and the recovered data should be

stored. We show the storage cost of each part for all schemes

in Fig.11.

For the real valued tensor completion, at least 32 bits are

needed to store a real number. As only one bit is needed

in our scheme to represent one entry in the factor matrices,

the storage cost is 1/32 that required in current real valued

tensor completion, as shown in Fig.11(a) and Fig.11(d). For all

the schemes implemented, we use the same observed sample

data to train the factor matrices, therefore, in Fig.11(b) and

Fig.11(e), the storage of the sampling data under different

schemes are the same.

Under CP, the recovered data are also real numbers, which

use 32 bits for each entry. Under DCP, DCP-Dot, and DCP-

No-Partition, the recovered data are integers falling into the
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range [−R,R] with R = 128 and R = 160 for traces WS-

DREAM and Harvard226, respectively. We can use a short

integer which occupies 16 bits to store the recovered entry.

Therefore, the recovery data storage under DCP-Dot and DCP-

No-Partition is only the half of that under CP. Compared with

DCP-Dot and DCP-No-Partition, the recovery storage under

our DCP is much lower because our binary partition algorithm

in DCP largely reduces the number of entries needed to be

recovered.
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Fig. 11. Storage.

X. CONCLUSION

We propose a novel discrete tensor completion model to

facilitate inferring the top-k elephant flows in the practical

environment where measurement data are incomplete and

sparse. Several novel techniques are proposed in the model,

including a discrete optimization algorithm to train the binary

factor matrices, significant cost reduction with bit operations

for quick missing data inference, binary code partition to

simplify the finding of top-k elephant flows. We have done

extensive experiment based on two real measurement traces.

The experiment results demonstrate that the computation cost

and storage cost is significantly reduced compared with current

real valued tensor completion model.
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