
1

Distributed Multi-dimensional Pricing for Efficient
Application Offloading in Mobile Cloud Computing

Kun Xie1,2, IEEE, member, Xin Wang2, IEEE, member, Gaogang Xie3, IEEE, member
Dongliang Xie4, IEEE, member, Jiannong Cao5, IEEE, fellow, Yuqin Ji1, Jigang Wen3
1 College of Computer Science and Electronics Engineering, Hunan University, China

2 Department of Electrical and Computer Engineering, State University of New York at Stony Brook, USA
3 Institute of computing technology, Chinese Academy of Science, China

4 State Key Lab of Networking & Switching Technology, Beijing University of Posts and Telecommunications, China
5Department of Computing, The Hong Kong Polytechnic University, Hong Kong

xiekun@hnu.edu.cn, x.wang@stonybrook.edu, xie@ict.ac.cn,
xiedl@bupt.edu.cn, csjcao@comp.polyu.edu.hk, yuqinji@cnsunet.com, wenjigang@ict.ac.cn

Abstract—Offloading computation intensive applications to mo-
bile cloud is promising for overcoming the problems of limited
computational resources and energy of mobile devices. However,
without considering the competition relationship of mobile users
and cloudlets in the mobile cloud computing system, existing studies
lack an incentive mechanism for the system to achieve efficient
application offloading and cloud resource provisioning. In this paper,
we design MPTMG, a Multi-dimensional Pricing mechanism based
on Two-sided Market Game. We propose three types of prices:
a multi-dimensional price corresponding to multi-dimensional re-
source allocation, a penalty price to encourage fair and high quality
cloud services, and a benefit discount factor to motivate more even
provisioning of resources on different dimensions in the cloud.
Based on these prices, we propose a distributed price-adjustment
algorithm for efficient resource allocation and QoS-aware offloading
scheduling. We prove that the algorithm can converge in a finite
number of iterations to the equilibrium core allocation at which the
mobile cloud system achieves the Pareto efficiency by maximizing
the total system benefit. To the best of our knowledge, this is the
first paper that applies economic theories and pricing mechanisms
to manage application offloading in mobile cloud systems. The
simulation results demonstrate that our proposed pricing mechanism
can significantly improve the system performance.

I. INTRODUCTION

Mobile cloud computing system, an emerging mobile com-
puting paradigm, has received a lot of recent interests [1]. To
alleviate the constraints of computational resources and energy of
mobile devices, many efforts have been made in recent years to
consider various ways of offloading computation-intensive appli-
cations to a powerful cloud. For examples, Google Voice Search
and Apple Siri [2], perform compute intensive speech recognition
by exploiting the resources in the cloud, which presents the rich
commercial opportunities. With the technique developments on
context-aware scene interpellation [3] and the support of cloud
resources, we can imagine the emerge of new interactive and
resource-intensive mobile applications such as speech and image
recognition, natural language processing, situational awareness.
These applications will enrich our daily lives with functionalities
that go beyond what today’s Google Voice Search and Apple Siri
can offer.

Despite the potential of offloading computationally expensive
tasks to the powerful cloud to enable mobile devices to conserve
energy and run advanced software and applications, the recent

study in [4] reports an average RTT of 74 milliseconds from
260 global vantage points to the optimal Amazon EC2 instances.
Many individual round trips take hundreds to thousands of
milliseconds, which makes it difficult to run delay sensitive
applications in the remote cloud. The limited wireless network
bandwidth and the high latency in wide-area communications
pose practical challenges to running delay-sensitive or data-
intensive wireless applications in remote cloud servers.

To mitigate these limitations, a new cloud architecture, called
cloudlet [3], [5]–[11] is proposed to reduce the communication
delay by exploiting the local area networks and cloud servers
closeby. As shown in Fig. 1, cloudlets represent the middle tier
of a 3 tier hierarchy (mobile user-cloudlet-cloud). Cloudlet is a
resource-rich server or server cluster that has the Internet access
and is well connected to mobile devices via a high-speed local
area network (LAN). Cloudlets may be deployed along with
access point (APs) by the same or different operators, and cloud
services can be packaged and run in the form of virtual machines
(VMs) in the cloudlet. Cloudlet can be viewed as a ”data center in
a box” whose goal is to ”bring the cloud closer”. As a powerful,
well-connected, one wireless hop away cloud proxy, cloudlets are
the enabling technology for a new genre of resource-intensive but
latency-sensitive mobile applications. Mobile devices will seek
resources from the remote cloud if there are no cloudlets nearby
or the local cloudlets do not have space or resources to support
the service of a device, at the cost of higher delay.

Remote cloud

Internet

Local

cloudlet

Local

cloudlet

Local

cloudlet

Application offloading

AP

Mobile user

Fig. 1. Cloudlet brings the cloud service closer to users

Although promising, compared to a remote cloud, the resources
owned by a cloudlet are much more limited. Therefore, the
focus of our work is to achieve efficient resource provisioning

in cloudlet-based mobile cloud environment.
Existing efforts on application offloading in mobile cloud sys-

tems mainly consider the offloading between a mobile device and
a given cloud/cloudlet, with the research focus on application par-
titioning [12]–[18], prediction [19], [20], and admission control
[21]. Despite their importance, existing studies lack an incentive
mechanism to motivate mobile users and cloud providers to use
the resources more efficiently. Our past studies [22], [23] have
proven that economic incentive is very effective in enabling
efficient resource usage and resolving many problems that cannot
be tackled simply by technical methods. Although some limited
efforts have been made to apply economic theories to manage
resources in the cloud [24]–[28], over-simplified pricing schemes
taken by existing work are far from sufficient for flexible and
efficient management of precious resources in mobile clouds.
Existing pricing schemes have three major constraints:

• Pricing based on limited types of VM. Existing clouds such
as Amazon EC2 often charge users based on predefined lim-
ited types of VM. Each user application has to be matched to
one of the types, and resources are allocated according to the
upper limit of the corresponding VM type. As mobile users
often have different application requirements thus different
resource needs, the allocation based on the upper limit would
result in low cloud resource utilization.

• Single-dimensional pricing. A cloud application generally
requires multiple types of resources, such as CPU, storage,
and network bandwidth. Existing clouds charge each VM
category a single-dimensional aggregate price. Such a single-
dimensional aggregate price is usually set according to the
upper limit of the VM category. As mobile users often
have different resource requirements, the single-dimensional
aggregate price based on the upper limit makes the user
pay more than what it needs. On the other hand, although
multi-dimensional resource provisioning has been well stud-
ied [29]–[31] assuming the full knowledge of user applica-
tion requests, without considering the cost of each resource
type, there is a lack of incentive to motivate users/cloudlets
to efficiently request/provision different resources based
on their individual loads and limits. The dynamic arrivals
of user requests also make conventional multi-dimensional
resource provisioning schemes difficult to apply in cloudlets.

• Unidirectional-charging. Service charges are often made
from the cloud providers (e.g., data center) to users. As a
cloudlet often has much lower capacity than a data center,
it may be overloaded, which would cause a big delay to
the user services. Some mobile users may have higher
expectation on the service quality and would only want
to pay for the resources and services that satisfy their
requirements. Existing pricing schemes fail to encourage the
increase of cloud work efficiency and provide users with
certain performance support. This may make the mobile
cloud system lose its market.

Different from a large cloud which can scale resources more
cost-effectively, cloudlets are faced with more constrained re-
sources and dynamic demands as a result of user mobility and
limited multiplexing from a smaller number of users. In addition
to over simplified pricing, existing VM allocations in cloud
systems are either greedy based on instantaneous user requests
and available resources without considering their impacts on the
long-term performance or optimized assuming the knowledge

of all user requests. The unpredictable and dynamic application
requests may make resource consumption unbalanced along dif-
ferent dimension within cloudlets, thus reducing the number of
applications that can be served by the cloudlets.

To motivate efficient resource usage and ensure higher ser-
vice performance, we design a Multi-dimensional Pricing (MP)
mechanism based on Two-sided Market Game (TMG), and call
it MPTMG. The aim of our work is to maximize the benefit
of the mobile cloud system through both efficient resource
allocation and application offloading scheduling. Specifically,
we propose three types of prices: 1) To quantify the benefit
from multi-dimensional resource allocation, we apply multi-
dimensional price to capture the cost of the cloudlet, and users are
allowed to provide multi-dimensional bidding price to compete
for different types of resources as needed; 2) To fairly schedule
the application offloading and provide better quality support to
the applications, a penalty price is charged to the cloudlet when
an application request is not handled in time; 3) To maximize
resource utilization and accommodate more applications in the
presence of unpredictable request arrivals, a benefit discount
factor is introduced to encourage more even resource provisioning
along different dimensions, which is shown to be effective from
our results.

MPTMG is a distributed pricing mechanism, and has the
following key features:

1) MPTMG aims to find the optimal resource allocation based
on diverse application requirements, and allows mobile
users to flexibly require multi-dimensional resources and
construct diverse types of VMs. Compared with existing
models using fixed types and coarse granularity of VMs,
our general resource model helps to significantly improve
the efficiency of resource usage in cloudlets.

2) MPTMG can charge mobile users based on their cloudlet
resource consumption to meet their application requests.
Unlike prior works that only consider a single-dimensional
price, to obtain the multi-dimensional price, MPTMG mod-
els the mobile cloud system as a VM-cloudlet matching
game based on Two-sided Market Game where there are
multi-buyers (VMs) and multi-sellers (cloudlets).

3) MPTMG imposes a penalty price (either charged directly
or derived from the cost of losing customers) to a cloudlet
when it cannot handle a user’s request in time, based on
which an on-line application-offloading scheduling scheme
is applied to ensure better QoS to the applications. The
penalty price is levied based on the application priority and
waiting time, which serves as an incentive for the cloudlets
to improve their service performance while ensuring some
fairness and quality to application offloading.

4) MPTMG provides a benefit-discount factor to promote load
balanced resource allocation in cloudlets to accommodate
more VMs. This in turn reduces the waiting time and
allows more delay-sensitive mobile users to obtain the
cloud services. With more services supported locally, there
will be a large burden reduction for the remote cloud as
well as the wide-area networks.

5) MPTMG provides a price adjustment algorithm to enable
distributed offloading scheduling and price negotiation a-
mong mobile users and cloudlets for a stable and optimal
resource allocation. We prove that our algorithm allows the
reach of the core allocation in the game where no cloudlet

2

or VM is able to negotiate an agreement that is mutually
more beneficial compared with that of the current, and thus
guarantees the cloud system to achieve the Pareto efficiency
with the maximum total system utility.

The remainder of this paper is organized as follows. Section II
gives an overview of the related work. We introduce our problems
and model in Section III, and present utility functions, our price-
adjustment algorithm and algorithm analysis in Sections IV, V
and VI respectively. We present our simulation results in Section
VII and conclude the work in Section VIII.

II. RELATED WORK

We review the literature work from three perspectives: resource
provisioning, and two-side market game.
A. Cloud Offloading and Resource Provisioning

Existing techniques on application offloading in mobile cloud
systems mainly focus on application partition [12]–[18], appli-
cation prediction [19], [20], application admission control [21],
security issue [32]–[36], and wireless resource allocation for sup-
porting efficient offloading [37], [38]. Compared with offloading
a whole application into the cloud, a partitioning scheme is
able to achieve a finer-granularity offloading of computational
components.

Based on different partitioning algorithms, various offloading
scheduling algorithms are proposed [39]–[43] to optimize the
network performance. The authors in [39] propose to schedule
the computation offloading with a constrained number of cloud
resource elements and partition the computation tasks between
the mobile side and the cloud side to minimize the average
application delay. To minimize the completion time of a user
application, for concurrent tasks, a heuristic algorithm [40] is
further proposed to offload tasks to the cloud such that the
parallelism between the mobile user and the cloud is maximized.
In [41], coalesced offloading is proposed to coordinate application
offloading requests by sending them in bundles to reduce the
period of time that the network interface stays in the high-
power state and save the energy of mobile devices. In [42],
multiple mobile services in workflows can be invoked to fulfill
their complex requirements and determine whether the services
of a workflow should be offloaded. In [43], an application-
layer protocol, AppATP, is proposed to intelligently manage the
mobile-cloud data transmission process to conserve energy.

Existing offloading scheduling algorithms are mostly designed
for the traditional mobile cloud with a resource-rich remote data
center, while the resources in cloudlets are more constrained.

Wireless resource allocation can improve the wireless net-
work’s performance [44]–[46]. There are some recent research
studies on the wireless resource allocation for mobile-edge cloud
computing within the radio access network. The work in [37]
considers an MIMO multicell system where multiple mobile users
(MUs) ask for computation offloading to a common cloud server,
and formulates the offloading problem as the joint optimization of
the radio resources and the computational resources to minimize
the overall user energy consumption. Authors in [38] study the
multi-user computation offloading problem for mobile-edge cloud
computing in a multi-channel wireless interference environment.
Different from these studies, our work targets to enable efficient
application offloading with multi-dimensional pricing to achieve
high cloudlet resource utilization and satisfy the user QoS re-
quirements.

Multi-dimensional resources have also been considered in the
conventional cloud environment to place VMs [31] with multi-
dimension resource requirements in the data center while mini-
mizing the number of servers required, and to migrate VMs [29]
across the boundary of servers in the data center to maximize the
resource utilization. Authors in [47] propose a dominate resource
fairness scheduler that achieves the max-min fairness in the data
center by taking into account the heterogeneous demands of
applications.

The above multi-dimension resource management schemes
generally run centrally, which may be suitable to work in the
data center of the traditional cloud systems. However, they cannot
work efficiently in a mobile cloud system. Different from these
schemes, our multi-dimensional pricing scheme is fully distribut-
ed, with a distributed price-adjustment algorithm executed for
users and cloudlets to negotiate resource allocations.
B. Two side Market Game

Our main focus in this paper is to find the match between
VMs and cloudlets to well utilize the resources in the cloudlets.
To achieve it, we model our problem as a VM-Cloudlet matching
game (in Section III), which is based on two-side market game.
In this subsection, we review some related studies on the game.

One of the main functions of many markets and social process-
es is to match one kind of agent with another: e.g. students and
colleges, workers and firms, marriageable men and women. To
study the matching processes, Gale and Shapley [48] introduce
two side market game model which has two distinct player
groups. If a player from one side of the market can be matched
only with a player from the other side, Gale and Shapley proposed
that a matching (of students and colleges, or men and women)
could be regarded as stable only if it left no pair of players on
opposite sides of the market who were not matched to each other
but would both prefer to be.

In the market game [49], each player in the game has its
own preference to select the player on the other side to form
a coalition. Competitions exist among members on the same
side and between groups on the two sides. The competitions
facilitate the game to reach the stable coalition which in turn
maximizes the system benefit. A natural application of two-sided
market game models is to labor markets [50], [51]. Recently,
two side market game has been applied in different fields [52],
[53]. Although effective, current studies for specific applications
with single dimensional pricing can not be directly applied in our
VM-cloudlet matching problem.

To maximize the resource utilization and satisfy the service
requirements of applications, in our VM-Cloudlet matching game,
we design novel utility functions (preference) taking considera-
tion of the load balancing, multi-dimensional resource manage-
ment, and response time requirement. Moreover, to well provision
the multi-dimensional resource in the mobile cloud computing
environment, we design multi-dimension price adjustment algo-
rithms. To the best of our knowledge, we are the first that designs
the VM-Cloudlet matching game based on the theory of two-side
market game to facilitate cloudlet resource management in the
mobile cloud environment.

III. PROBLEM AND MODELS

We consider a mobile cloud system with a set of m cloudlets,
M = {cloudlet1, cloudlet2, . . . , cloudletm}. Each cloudletj ∈
M has limited d-dimensional resources, i.e., storage space in the

3

unit of Gigabytes, bandwidth in the unit of Mbps, and computing
capability of CPU in the unit of MIPS. We use s⃗j (where s⃗j ∈
Rd and s⃗j = {s⃗j [1] , s⃗j [2] , · · · , s⃗j [d]}) to denote d-dimensional
resource capacity vector of cloudletj , s⃗j [1] is the first dimension
capacity of this cloudlet.

Because of the limited resources of mobile users, after parti-
tioning an application and identifying the application computation
component to be offloaded to the cloudlet, a mobile user tends
to offload some of her computation components to cloudlets for
processing in order to save battery energy and/or improve the
computational capability. In this paper, we do not address the
issue of application partitions, while existing partitioning methods
may be leveraged.

We focus on the efficient management of resources of cloudlet-
s, which can better support delay-sensitive or data intensive
applications. The use of the remote data center is not an option
for these kinds of applications. For the applications that are not
sensitive to the delay, the mobile users may choose to offload their
tasks to the remote cloud if the nearby cloudlets are overloaded.

For the convenience of presentation, we use the term appli-
cation to denote both the whole application and a computation
component of the application in this paper.

Each application is associated with a VM request, which
arrives dynamically in the mobile cloud system. Between time
t and t + △t, the set of VM requests is denoted as N =
{VM1, V M2, . . . , V Mn}, with the d-dimensional resource re-
quirement of VMi being v⃗i (where v⃗i ∈ Rd and v⃗i =
{v⃗i [1] , v⃗i [2] , · · · , v⃗i [d]}). Obviously, the resources requested
cannot exceed the limit of the cloudlet, i.e., v⃗i [k]} ≤ s⃗j [k]}
for 1 ≤ j ≤ m, 1 ≤ i ≤ n, 1 ≤ k ≤ d.

Similar to WiFi APs, in a given area there may often exist
multiple cloudlets, which may belong to the same or different
providers. A mobile user that requests VMs needs to pay cloudlets
real money or some credits, while cloudlets will gain benefits by
providing resources to users.

Two fundamental questions we will answer in this work are:
1) which applications will be scheduled to offload to which

cloudlet at time t?
2) what are the optimal prices charged for mobile users to use

resources in cloudlets?

Time Progress

VM

1

t t t !

Storage

CPU

Bandwidth

m Cloudlets (sellers)

n Virtual Machines (buyers)

Cloudlet 1 Cloudlet 2 Cloudlet 3

Cloudlet mCloudlet 5Cloudlet 4

Resources

R
es

o
u

rc
e

D
em

a
n

d

C
P

U
S

to
ra

g
e

B
a

n
d

w
id

th

R
es

o
u

rc
e

A
ll

o
ca

ti
o

n
 a

n
d

O
ff

lo
a

d
in

g
 S

ch
ed

u
li

n
g

Price

Interaction

VM

2

VM

4

VM

6

VM

5

VM

3

VM

7

VM

8

VM

9

VM

n

Fig. 2. VM-cloudlet matching game

We consider resource negotiation in mobile cloud systems as
a VM-cloudlet matching game (Fig.2). To maximize the resource
utilization and satisfy the service requirements of applications,
the objective of this research is to design a pricing mechanism

that can maximize the total system benefit. Our model will take
into account both resource availability of cloudlets and user VM
request dynamics so that both resource provisioning and the
sequence of application offloading can be optimally achieved.

In the mobile cloud system, cloudlets and VMs are two distinct
player groups. A cloudlet owns the resources and aims to make
maximum profit by selling resources to its selected users (each
is associated with a VM request) with the basic price set for its
multidimensional resources, while a VM is associated with a user
which intends to maximize its benefit with the minimum possible
payment by selecting the best cloudlet nearby. VMs and cloudlets
can obtain the benefit in the game only when the coalitions are
formed with the interaction between the buyers and sellers. Each
group member sets an appropriate price for a specific resource
to maximize its benefit in the coalitions. In our system model,
there is a platform to provide users an unified interface to enter
the mobile cloud system. Cloudlets need to pay the platform
some management fee to enter the market, while the platform
will provide an incentive payment for cloudlets to reduce the
service delay and thus attract more users to win the market.

To make the presentation concise, we use VMs to represent
consumers thus buyers while cloudlets to represent the cloud
provider thus seller directly in many places.

In the proposed VM-cloudlet matching game, a VM will be
matched with a single cloudlet for resources, while one cloudlet
can be matched with multiple VMs. A cloudlet can run multiple
VMs corresponding to different applications offloaded. We denote
the VM set in cloudletj as Sj . If VMi is associated with
cloudletj , we have VMi ∈ Sj . A cloudlet j and its corresponding
VM set Sj form a coalition Ŝj , j, whose benefit is the summation
of utility from both VM and cloudlet sides:

rSj ,j =
∑

V Mi∈Sj

πt
i (j, p⃗ij) + ut,load

j (Sj , p⃗j) , (1)

where πt
i (j, p⃗ij) and ut,load

j (Sj , p⃗j) are the utilities of VMi and
cloudletj , which are defined in (8) and (10), respectively. p⃗ij ∈
Rd is the d-dimensional bidding price the user of VMi offers for
using the resources of cloudletj , and the vector p⃗j includes the
bidding prices received by cloudletj from the requested users.

The game consists of multiple VM-cloudlet coalitions, and the
system’s benefit is the summation of benefits of all coalitions.∑

1≤j≤m

rSj ,j (2)

Our goal is to find the optimal set of coalitions with optimal
prices that maximize the system’s benefit:

max
∑

1≤j≤m

rSj ,j

s.t.
∑

V Mi∈Sj

v⃗i [k] ≤ s⃗j [k]

1 ≤ k ≤ d.

(3)

where
∑

VMi∈Sj

v⃗i [k] ≤ s⃗j [k] denotes the capacity constraint of

the cloudlet.
Designing such a pricing mechanism is highly nontrivial.

It requires a joint solution of resource allocation and on-line
offloading scheduling while concurrently considering multiple
types of resources. Either of the two problems is a challenging
task by itself. In addition, a price charged from the cloudlet
or a bidding price offered by the mobile user will impact the
willingness to participate in game from the other side. Users
and cloudlets need to well negotiate price to achieve efficient
coalition.

In order to solve the problem in (3), in following two sections,

4

we first design the utility functions that can better capture the user
preference and performance impact, and then develop distributed
algorithm that can solve the problem efficiently through price
negotiation.

IV. UTILITY FUNCTION TO EFFICIENTLY CAPTURE THE USER
PREFERENCES AND PERFORMANCE IMPACTS

The preference of each player in the game is represented by a
utility function. To encourage more efficient cloud resource usage
while achieving a higher service performance, besides modeling
basic utility functions of VMs and Cloudlets, our proposed utility
functions take into account the impact of scheduling on service
delay and resource usage efficiency.
A. Representing Basic Utility Function

The utility function of a cloudlet is related to its benefit, and
depends on VMs it serves and prices it charges the users. The
lowest price a cloudletj would sell its resources to VMi is
represented as σ⃗ij to cover its basic cost, where σ⃗ij ∈ Rd and d
is the total number of resource types in the cloudlet. Denote Sj

as the set of VMs selected to run in cloudletj , the net benefit of
cloudletj can be expressed as

uj(Sj , p⃗j) =
∑

V Mi∈Sj

(
∑

1≤k≤d

p⃗ij [k] · v⃗i[k]−
∑

1≤k≤d

σ⃗ij [k] · v⃗i[k]),

(4)
where

∑
1≤k≤d p⃗ij [k] · v⃗i [k] and

∑
1≤k≤d σ⃗ij [k] · v⃗i [k] denote

the revenue and cost for cloudletj to provide resources to VMi,
respectively. If the prices of cloudlets are very high, users may
choose to use the remote cloud for offloading. In order to win
the services, a cloudlet can take the cost of the remote cloud as
well as its infrastructure cost as guidelines to set its basic prices.

The utility function of a VM is related to its net benefit, which
depends on the resources provided and the price charged by a
selected cloudlet. The benefit of a VM increases as it obtains
more resources, and decreases if the resource price is higher.
The benefit of VMi when associating with cloudletj can be

πi (j, p⃗ij) =
∑

1≤k≤d

wi · aik · v⃗i [k]−
∑

1≤k≤d

p⃗ij [k] · v⃗i [k] (5)

where the constant aik represents the unit gain of resource
dimension k of VMi. We introduce the weight factor wi to
capture the priority of a VM’s application so that higher priority
application can have better resource access. The payment from
VMi to cloudletj for resources is

∑
1≤k≤d p⃗ij [k] · v⃗i [k].

B. Incorporating the Impact of Service Delay
Generally, the overall service delay includes the response time

for an application request, the time consumed for data transmis-
sion and the time for executing the tasks on a cloud/cloudlet. The
request response time ti for an application i is the time duration
between the arrival of the application request at a cloudlet and
time that the requested application is offloaded to the cloudlet for
resources.

With only the basic utility, a cloudlet would prefer to serve
applications with higher resource requests to make more profit,
without motivation to serve users with higher delay. Thus the
VM requests with larger resource requirements are usually se-
lected first, resulting in an unfair VM schedule and consequently
significant performance degradation for applications with lower
resource requirements. Specifically, the offloading sequence di-
rectly impacts the application performance. For example, in Fig.3,
VM2 request arrives much earlier and should be executed first
although it has lower resource requirement; otherwise, the long
waiting will significantly impact its satisfaction.

VM1

VM3

VM2

Arrive Time

Time

Time

Time

t t t

Waiting time of VM2

Waiting time of VM1

Waiting time of VM3

VM2 VM3 VM1

Resource requirement

Fig. 3. An example of request arrivals.

If a job requested by a user is delayed in response, the benefit
from the job may reduce even if it is executed in the end. The
longer the waiting time, the larger the benefit loss. In this paper,
we use g (ti) = ϖi ·wi · ti to represent the benefit loss of VMi,
where wi is the weight reflecting the priority of VMi and ϖi is
a constant that represents the lost gain per unit time. ϖi can be
determined by the mobile user i according to its lost perceived
quality due to the job delay.

As mentioned in the system model in Section III, to reduce the
response time, the platform would provide an incentive payment
to encourage a cloudlet to provide resources to delayed VMs. We
apply p (ti) = θi · wi · ti to represent the encouragement benefit
paid by the platform to the cloudlet to serve VMi, where θi is a
constant that represents the price per unit of waiting time.

In turn, to encourage a delayed VM to utilize the resources
of a cloudlet, the cloudlet will give the VM some refund, called
penalty cost in this paper. We use fj (ti) = ϑij ·wi ·ti to represent
the penalty cost paid by cloudletj to VMi if there is a service
delay, where ϑij represents the price per unit of waiting time.

Therefore, we extend the utility functions of cloudlet and VM
to incorporate the response time for a VM request:

ut
j (Sj , p⃗j) =

∑
V Mi∈Sj

(∑
1≤k≤d

p⃗ij [k] · v⃗i [k]−
∑

1≤k≤d

σ⃗ij [k] · v⃗i [k]

−fj (ti) + p (ti)

)
(6)

and
πt
i (j, p⃗ij) =

∑
1≤k≤d

wi · aik · v⃗i [k]−
∑

1≤k≤d

p⃗ij [k] · v⃗i [k] + fj (ti)− g (ti)

(7)

On the cloudlet side, as cloudlets are selfish and rational,
they tend to serve the VMs that can maximize their benefits.
To encourage the cloudlets in the game to serve the delayed
application requests first, we have p (ti) ≥ fj (ti) thus θi ≥ ϑij .
On the VM side, as mobile users are also selfish and rational, a
mobile user usually offloads its delayed application to the cloudlet
which brings it the maximum benefit. As a cloudlet can make
profit only when serving the mobile user, in our system, the
cloudlet will set the ϑij to a large value to cover the mobile user’s
cost due to job delay in order to attract more users and win the
market. That is fj (ti) ≥ g (ti), thus, ϑij ≥ ϖi. Therefore, for
the parameter setting, we have θi ≥ ϑij ≥ ϖi. In the simulation
part, we will show that the control of application waiting time
helps to support fair resource allocation and scheduling.

Besides the response time, the transmission delay and execu-
tion delay should also be incorporated into the utility function.
Let RTTi,j denote the RTT delay between the mobile user of
VMi and the cloudletj , and eij denote the delay for cloudletj
to complete the application i. The RTT delay may be estimated

5

from the transmission time of the request and acknowledgement
with the response delay at the cloudlet deducted, and the re-
sponse message from a cloudlet j can include the estimated
application execution time (normalized for comparison across
cloudlets), which depends on the load and capacity of the server.
A delay-sensitive application, especially the one with the frequent
interaction with the cloud, will not select a server far away.

To reflect the whole service delay, we update the utility
function in (5) by incorporating these delay cost f (RTTi,j , eij)
πt
i (j, p⃗ij) =

∑
1≤k≤d

wi · aik · v⃗i[k]−
∑

1≤k≤d

p⃗ij [k] · v⃗i[k] + fj (ti)− g (ti)

+f (RTTi,j , eij)
(8)

As an example, f (RTTi,j , eij) can be defined as
f (RTTi,j , eij) =

{
γi(e

RTTi,j+eij) delay sensitive application
γi(RTTi,j + eij) otherwise (9)

where γi is a constant weight.
C. Enabling Efficient Offloading Scheduling in the Presence of

Dynamic Request Arrivals

2

6

Cloudlet 1 Cloudlet 2 Cloudlet 3

100%

50%

1

B CPU S B CPU S B CPU S

3

4

5

10

(a) An inefficient allocation

5

6

1
3

7

9

4

10

2

8

1

2

3

9

4

5

10

7

6

8

Cloudlet 1 Cloudlet 2 Cloudlet 3

100%

50%

B CPU S B CPU S B CPU S

(b) An efficient allocation

Fig. 4. An example of multi-dimensional resource balancing.

The application offloading sequence directly impacts the re-
source utilization thus the benefits of both sides, cloudlets and
users. Fig.4 has 10 VM requests and three cloudlets. VM1, VM2,
and VM3 arrive first, which are followed by VM4, VM5, and
VM6, and then VM7, VM8, VM9 and VM10. Each cloudlet
has limited three dimensional resources, including Bandwidth
(B), CPU and Storage (S). If a cloudlet only seeks to obtain
high profit in the short term, it would select VMs with the total
largest resource requirement, which may result in an inefficient
resource allocation as shown in Fig.4(a). Although the storage,
CPU, and bandwidth utilizations in cloudlets 1, 2 and 3 are high,
the bandwidth utilization in cloudlet 1, and storage utilizations in
cloudlets 2 and 3 are only 40%, 70% and 60%, respectively.

Ideal scheduling may be performed if the resource request-
s of all applications are known in advance. However, in a
practical system, applications arrive dynamically. The greedy
service scheduling would lead to extremely unbalanced resource
utilization in different dimensions (Fig.4(a)), thus only 7 VMs
can be served while leaving the other 3 waiting for resources.
As an alternative, with balanced resource utilization in Fig.4(b),
the utilizations of all three resources are nearly 100% and all
the 10 VMs are served. Therefore, without knowing application
offloading requests in advance, balancing resource utilization in
multi-dimensions may be an option for cloudlets to accommodate
more VMs. The increase of resource usage efficiency not only
allows cloudlets to make more profits, but also allows more VMs
to run concurrently, which helps reduce the response time of
applications and energy consumption of mobile devices.

Therefore, balancing the resource allocation across different
dimensions helps cloudlets to obtain higher benefit in the long
run. To take into account the impact of multi-dimensional load
for more balanced resource provisioning, we introduce a benefit

discount factor f index
Sj ,j

into the utility function of cloudlet:
ut,load
j (Sj , p⃗j) = ut

j (Sj , p⃗j) · f index
Sj ,j . (10)

where f index
Sj ,j

is the benefit discount factor designed based on
Jain’s fairness index [54]. Jain’s fairness index is a widely utilized
metric to evaluate the fairness resource allocation in network field
[55]. f index

Sj ,j
is calculated as

f index
Sj ,j =

(∑
1≤k≤d

(∑
V Mi∈Sj

vi [k]

))2

d ·
∑

1≤k≤d

(∑
V Mi∈Sj

vi [k]

)2 (11)

Obviously, f index
Sj ,j

is a function of all the offloaded VM
resource requirements in the cloudletj . A higher value f index

Sj ,j

indicates the resource consumptions among multiple dimensions
of all the VMs offloaded on the cloudlet are more balanced
distributed. The f index

Sj ,j
is 1 if all resource dimension has equal

load, and is 1/d if all resource usages are associated with only one
dimension and all other dimensions are idle. Obviously, f index

Sj ,j

is bounded between 1/d and 1. According to the bound of the
the benefit discount factor, we have

ut
j (Sj , p⃗j) · 1

d
≤ ut,load

j (Sj , p⃗j) ≤ ut
j (Sj , p⃗j) · 1 (12)

ut,load
j (Sj , p⃗j) = ut

j (Sj , p⃗j) if a VM-cloudlet matching makes
balanced utilization of all d-dimensional resources in cloudletj ,
that is, f index

Sj ,j
= 1.

V. DISTRIBUTED ALGORITHM FOR EFFICIENT RESOURCE
NEGOTIATION

In this section, we first present the proposed price-adjustment
algorithm, and then provide our solution to fairly allocate cloud
resources to mobile users in a dynamic mobile environment.
A. Price-Adjustment Algorithm

For the incentive framework to function, there needs an algo-
rithm to facilitate price negotiation between cloudlets and users
for efficient resource provisioning and offloading scheduling.
Different from a traditional auction-based pricing mechanism
which requires a central auctioneer, we develop a distributed
algorithm to facilitate the price negotiation between cloudlets and
users and match user VM requests with nearby cloudlets.

The algorithm is executed iteratively. In each iteration, there
are two phases, including cloudlet selection and user request
update as shown in Algorithm 1. When a user wants to offload
its application to mobile cloud, the user first broadcasts its VM
request for an application, nearby cloudlets will send back their
basic charges based on their system cost and also the current
average execution time of a task measurement unit. Cloudlet
cannot accept a price smaller than its basic cost. The initial
bidding price each VMi offers to one cloudletj could be set
to p⃗ij = σ⃗ij . After a user ascertains the candidate cloudlets, the
user will send an offloading request to its selected cloudlet. A
cloudlet that receives the VM requests from the customers can
reject all but its preferred VMs based on the bidding prices. A
mobile user is allowed to offload its application to a cloudlet
only when its corresponding VM is selected by the cloudlet. The
requests rejected in one iteration by one cloudlet may be repeated
in the next iteration where the user can increase its VM bidding
price for this cloudlet by a unit price vector δ⃗.

In step 9 of Algorithm 1, the number of favorite VMs admitted
by a cloudletj is nj

(
p⃗j(t)

)
=

⌊
ζ
(
p⃗j(t) − σ⃗j

)
+ 1

⌋
, where p⃗j(t)

is the average bidding price received by the cloudletj at the
iterative step t (i.e.,p⃗j(t)), σ⃗j is the basic price of cloudletj , and

6

ζ is a constant. The value 1 in nj

(
p⃗j(t)

)
is added to guarantee

that at least one VM is admitted to use the cloud resource in an
iteration.

To reduce the payment, when being rejected by a cloudlet,
a user has the option of increasing its price bid for one type
of resource corresponding to one price dimension at a time.
That is, δ⃗ is in the set {{0, 0, δ}, {δ, 0, 0}, {0, δ, 0}}, where δ
is the unit price-step. As a simple strategy, an un-bias price
strategy can be taken, with the price vector for a given cloudlet
increasing with the unit price vector δ⃗ following the sequence,
{{0, 0, δ}, {δ, 0, 0}, {0, δ, 0}}, {{0, 0, δ}, {δ, 0, 0}, {0, δ, 0}}, · · · .
Alternatively, users could increase price for multiple dimensions
at the same time to reduce the time of negotiation at higher
payment.

Essentially, prices are negotiated among users and cloudlets.
As cloudlets need little information from the users, its naturally
reduces the complexity of the algorithm and the overhead for
implementation.

Algorithm 1 The Distributed Price-Adjustment Algorithm
1: Initialization (For every user VM request)
2: The user broadcasts its VM request, nearby cloudlets will send back their

basic charges, then the user sets its initial bidding prices p⃗ij = σ⃗ij for all
nearby cloudlets.

3: Compute its waiting time according to its arriving time.
4: Calculate the utility values in Eq.(8) based on the bidding prices and its

waiting time.
5: Identify the cloudlet that makes the VM’s utility value larger than 0 as the

VM’s available cloudlet.
6: Select its favorite cloudlet from the set of available cloudlets according to

the utility values, and send its offloading request to this cloudlet.
7: while user’s offloading request or cloudlet’s reject is issued, do
8: Cloudlet side: Cloudlet Selection (For cloudlet which receives the

offloading requests from users)
9: Select its favorite VMs according to its utility value calculated by Eq.(10)

and under the constraint of its remaining resources.
10: Reject all but its selected favorite VMs.
11: User side: User Requesting Update (For user whose offloading request

is rejected by one cloudlet)
12: if VMi’s request is rejected by cloudletj , then
13: VMi must raise the bidding price by δ⃗ to cloudletj , that is p⃗ij =

p⃗ij + δ⃗.
14: else
15: For other cloudletj′ , VMi’s bidding price remain the same, that is

p⃗ij′ = p⃗ij′ .
16: end if
17: Calculate the utility values in Eq.(8) and identify the set of its available

cloudlets.
18: if no available cloudlet exists, then
19: No offloading request is sent out.
20: else
21: Select its favorite cloudlet from the set according to the utility values,

and send offloading request with new bidding price to the selected
cloudlet.

22: end if
23: end while

B. Handling Dynamic Offloading Request and User Mobility
In mobile wireless networks, applications may generate of-

floading requests dynamically at uncertain time. As resources in
cloudlets are limited, to prevent a cloudlet from being occupied
by some users for a very long period of time, we divide the
service time into reasonable size of slots taking into account the
overhead of VM uploading and service fairness.

At the beginning of a time slot, the distributed price-adjustment
algorithm is executed for users and cloudlets to negotiate resource
allocations and settle the prices. If a VM of an application is
scheduled to execute in a time slot, the application arriving time

is updated to the end of the time slot, and the VM will compete
with others to utilize the resources in the next time slot; otherwise,
the application arriving time will not change and the increase of
the waiting time will allow an application a higher chance of
being scheduled in future time slots with the incentive payment
to the cloudlets in Eq.(6). Our performance studies indicate that
our design can constrain the maximum response time even when
the application arriving rate is large, which demonstrates the
effectiveness of our fair scheduling design.

After offloading his applications to a cloudlet associated with
an AP nearby, a user may move out of the communication range
of its current AP. The cloudlet can transmit the results to the
mobile user to a new AP through Inter-AP communications. A
user with additional application tasks can also negotiate resources
for the new tasks with the available cloudlets at the new location.
The user mobility also contributes to the unpredictable VM
arrivals to a cloudlet, and our algorithm is designed to encourage
balanced resource provisioning to accommodate more VMs in
the presence of dynamic VM requests.

VI. GAME ANALYSIS
In this section, we first analyze the properties of the proposed

game and utility, then prove that the proposed price-adjustment
algorithm makes the VM-cloudlet matching game converge to an
equilibrium at which the matching between VMs and cloudlets is
stable. Finally, we prove that this equilibrium is a core allocation
at which the mobile cloud system obtains the maximum system
benefit.
1) Service Delay Effect to the Game

In the extended utility function of Eq.(6), we have added a
penalty payment from the cloudlet to the delayed VM and an
encouragement payment from the platform to the cloudlet to
provide an incentive for the cloudlet to schedule a VM with
a longer waiting time earlier. In the example shown in Fig. 3,
the cloudlet will have an incentive to schedule VM2 to execute
as soon as possible as otherwise it needs to pay a high penalty
charge to VM2. As a result, our game can provide an efficient
VM execution schedule to reduce the response time to VMs.

Besides considering the request response time, we also in-
corporate the transmission delay and execution delay into the
extended user utility function Eq.(8).
2) Multi-dimensional Load Effect to the Game

To obtain higher resource utilization in cloudlets, we have
added a load aware benefit discount factor in the utility function
of cloudlet in Equ.(10) as the incentive for the cloudlet to
select VMs that can make resource utilization among different
dimensions more evenly distributed.

(a) VM1 to
cloudlet1

(b) VM2 to
cloudlet1

Fig. 5. Multi-dimensional load effect to the game.

Given that two VM1 and VM2 compete in using the resources
of cloudlet1 as in Fig.5, if the cloudlet could make the same profit
by serving either of them, the cloudlet will prefer to choose VM1

7

to use its resources in a balanced way. As a result, with a well-
designed benefit discount factor in (10), our game encourages the
cloudlet to balance its load across multiple dimensions, which in
turn allows the cloudlet to accommodate more VMs with dynamic
and unpredicted application requests in the longer term.

A. The Core of Game
Our VM-cloudlet matching game is designed based on the

two-sided market game. The two-sided market game is one of
the coalitional games that usually use the term core instead of
equilibrium to denote the steady state when no buyer or seller is
able to negotiate an agreement that is mutually more beneficial
compared with that of the current. Therefore, we use the term
core instead of equilibrium in this paper. To analyze the game,
we first give the definition on the core of our game.

We use µ : {1, 2, · · · , n} → {1, 2, · · · ,m} to denote the
assignment function, where µ (i) represents the cloudlet to which
the VMi is assigned and Sj = {i |j = µ (i)} is the set of VMs
which use the resources in cloudletj .

Definition 1: An individual rational allocation(
µ; p⃗1µ(1), · · · , p⃗iµ(i), . . . , p⃗nµ(n)

)
is defined as a matching

µ between VMs and cloudlets with a price vector
p⃗1µ(1), · · · , p⃗iµ(i), . . . , p⃗nµ(n) such that,

p⃗iµ(i) ≥ σ⃗iµ(i) (13)
πt
i (j, p⃗ij) ≥ 0 (14)

Eq.(13) means that a seller (cloudlet) will only accept the request
with the bidding price larger than its basic price, so its benefit can
be positive. Eq.(14) means a buyer (VM) will not buy resources
with prices that make its benefit negative.

Definition 2: A discrete core allocation is an individual
rational allocation

(
µ; p⃗1µ(1), · · · , p⃗iµ(i), . . . , p⃗nµ(n)

)
, such that

there is no VM-cloudlet coalition Ŝ, j with price vector r⃗j =
r⃗1j , · · · , r⃗ij , . . . , r⃗nj that satisfies:

πt
i (j, r⃗ij) ≥ πt

i

(
µ (i) , p⃗iµ(i)

)
for all i ∈ S (15)

ut,load
j (S, r⃗j) ≥ ut,load

j

(
Sµ
j , p⃗j

)
(16)

where Sµ
j denotes the set of VMs assigned to cloudletj by µ.

The first inequality in (15) says that every VMi in the set S
prefers to buy resource from cloudletj at price r⃗ij rather than
buy resource from cloudletµ(i) at p⃗iµ(i). The second inequality
in (16) says that cloudletj can make a higher profit by selling
its resource to VMs in S with price r⃗j = r⃗1j , · · · , r⃗ij , . . . , r⃗nj ,
than by selling resources to VMs in Sµ

j assigned by µ at the
current price p⃗1µ(1), · · · , p⃗iµ(i), . . . , p⃗nµ(n). The p⃗j in Eq.(16) is
the current bidding prices received by cloudletj . If these two
inequalities are satisfied for a coalition Ŝ, j at price r⃗j , then
this coalition is said to be capable of improving upon its current
allocation with the assignment according to µ.

We assume the price in this paper is a discrete value, and the
core in our VM-cloudlet matching game is called the discrete
core. From the Definition 2, obviously, we can conclude that
the discrete core allocation is stable and not any VM-cloudlet
coalition can improve upon the allocation. In the following
section, we will show an important property of our VM-cloudlet
game that the core allocation in the game achieves the Pareto
efficiency in terms of the total profit of the system (i.e., bringing
together the utility values of all players).

B. Properties of the Algorithm
Theorem 1. The algorithm will converge in a finite number of
iterations to a discrete core allocation.

Before we prove the Theorem 1, we give the following two
lemmas.

Lemma 1. After a finite number of iterations, no requests are
sent by VMs till the algorithm stops.

Proof: In our algorithm, a cloudlet in one iteration can
receive multiple VMs’ requests and only admit some of them.
If a VM request is rejected, it will increase its price. As the price
is a certain discrete value, after a finite number of iterations, a
VM will not increase its bidding price for a cloudlet any more as
an extremely high price would make its utility corresponding to
the cloudlet to be negative, and consequently the VM will stop
sending the request to the cloudlet. After a period of time, no
VMs will issue the requests to any cloudlets regardless that a
VM is admitted or rejected.

Lemma 2. The algorithm converges to an individually rational
allocation.

Proof: Let l∗ be the step at which the process stops,
and let µ denote the assignment to which it converges. Then
p⃗iµ(i) (l

∗) ≥ σ⃗iµ(i) is held for all cloudlets at step l∗, as a cloudlet
will never admit VMs that cannot cover its basic cost. The
VM can’t indefinitely raise the price and gain a negative utility
value in (8), then we get πt

i (µ (i) , p⃗ij (l
∗)) ≥ 0 immediately.

Therefore, both the inequities in (13) and (14) are satisfied, which
completes the proof.

Based on above two lemmas, we prove the Theorem 1.
Proof: By Lemma 1 and Lemma 2, the algorithm stop-

s in a finite number of steps to an individually rational al-
location denoted as

(
µ; p⃗1µ(1), · · · , p⃗iµ(i), . . . , p⃗nµ(n)

)
, where

µ : {1, 2, · · · , n} → {1, 2, · · · ,m} is the matching func-
tion defined above. Let Sµ

j denote the set of VMs assigned
to cloudletj by µ. Suppose, by way of contradiction, that(
µ; p⃗1µ(1), · · · , p⃗iµ(i), . . . , p⃗nµ(n)

)
is not a discrete core alloca-

tion, there must exist a VM-cloudlet coalition Ŝ, j with price
vector r⃗j = r⃗1j , · · · , r⃗ij , . . . , r⃗nj that satisfies:

πt
i (j, r⃗ij) ≥ πt

i

(
µ (i) , p⃗iµ(i)

)
for all i ∈ S (17)

ut,load
j (S, r⃗j) ≥ ut,load

j

(
Sµ
j , p⃗j

)
(18)

Because the algorithm converges to(
µ; p⃗1µ(1), · · · , p⃗iµ(i), . . . , p⃗nµ(n)

)
and the cloudlet only

admits its favorite VMs in the algorithm, by (18), we can
conclude that cloudletj must never have received (and therefore
never have rejected) the request from VMi at r⃗ij or greater.
Since permitted prices never fall, then p⃗iµ(i) ≤ r⃗ij for all VMi

in S. This contradicts (17), which completes the proof.
In Theorem 1, we have proven that our price-adjustment

algorithm converges in a finite number of iterations. In each
iteration step, a cloudlet can receive multiple VM requests and
only nj

(
p⃗j(t)

)
favorable VMs are admitted to use the resource,

where p⃗j(t) is the average bidding price received by the cloudletj
at the time step t (i.e., p⃗j(t)). Therefore, in each step, total ft =∑m

j=1 nj (p⃗j (t)) VMs are admitted to use the resource in the
system, where m is the number of cloudlets in the system. When
the total amount of resource is enough for the users, all VMs will
be admitted to use the cloud resource and we have

∑T
t=1 ft = n,

where n is total number of VMs and T is the total iteration
steps needed. Obviously, as nj

(
p⃗j(t)

)
=

⌊
ζ
(
p⃗j(t) − σ⃗j

)
+ 1

⌋
,

ft is an approximately linear increasing function of p⃗j (t) and
thus an approximately linear increasing function of the price step

8

δ. Therefore, the convergence complexity can be approximately
calculated as O

(√
n
δm

)
. In the simulation part, we will further

show the simulation result on the convergence speed impacted
by price step (δ), the number of VMs (n), and the number of
cloudlets (m).
C. Properties of the Core
Theorem 2. With sufficiently small unit of price, the maximum
system benefit in (3) is achieved in the core allocation defined in
Definition 2.

Proof: By way of contradiction, suppose that our VM-
cloudlet matching game has no strict core allocation to achieve
the Pareto efficiency of the system. Assume that there is an in-
dividually rational allocation

(
µ; p⃗1µ(1), · · · , p⃗iµ(i), . . . , p⃗nµ(n)

)
,

and let Sµ
j denote the set of VMs assigned to the cloudletj

by µ. Let ρ⃗ij be defined by the equation πt
i,j (j, ρ⃗ij) =

πt
i,µ(i)

(
µ(i), p⃗iµ(i)

)
. We can define the total gain realized by the

coalition of Ŝ, j as follows
D
[
(S, j) ;µ; p⃗1µ(1), · · · , p⃗iµ(i), . . . , p⃗nµ(n)

]
= rS,j − rSµ

j ,j (19)

where rS,j =
∑

v⃗i∈S

πt
i

(
j, ρ⃗ij

)
+ ut,load

j (S, ρ⃗j) and rSµ
j ,j =∑

v⃗i∈Sµ
j

πt
i

(
j, p⃗ij

)
+ ut,load

j

(
Sµ
j , p⃗j

)
are the total utility val-

ue of Ŝ, j and Ŝµ
j , j by using (1). Because πt

i,j (j, ρ⃗ij) =

πt
i,µ(i)

(
µ(i), p⃗iµ(i)

)
, then above Eq.(19) can be written as

D (·) = ut,load
j (S, ρ⃗j)− ut,load

j

(
Sµ
j , p⃗j

)
(20)

Define
F
(
µ; p⃗1µ(1), · · · , p⃗iµ(i), . . . , p⃗nµ(n)

)
= max

(S,j)
D
[
(S, j) ;µ; p⃗1µ(1), · · · , p⃗iµ(i), . . . , p⃗nµ(n)

] (21)

By hypothesis that the allocation does not achieve the maximum
system benefit, F

(
µ; p⃗1µ(1), · · · , p⃗iµ(i), . . . , p⃗nµ(n)

)
> 0 as long

as
(
µ; p⃗1µ(1), · · · , p⃗iµ(i), . . . , p⃗nµ(n)

)
is individually rational allo-

cation, since otherwise no VM-cloudlet coalition could improve
upon that allocation on the market. We shall now show that F (.)
is bounded above zero for all individually rational allocations.

Note that F (.) is continuous in p⃗ =(
p⃗1µ(1), · · · , p⃗iµ(i), . . . , p⃗nµ(n)

)
for any given assignment µ

because the maximum of continuous functions is continuous,
and let

G (µ) = min
p⃗

F (µ; p⃗)

s.t. πt
i,µ(i) ≥ 0 for all i, and

ut,load
Sµ
j ,j

≥ 0 for all j (22)
Finally, define

H = min
µ∈Ψ

G (µ) (23)

where Ψ is the set of all assignment functions µ :
{1, 2, · · · , n} → {1, 2, · · · ,m}. G is well-defined because for
any given µ ∈ Ψ, F is continuous and the feasible region
of the problem on the right-hand side of Eq.(22) is nonempty
and compact. Further, G (µ) > 0 for all µ ∈ Ψ. As noted
above, F (·) > 0 everywhere in the feasible region for µ ∈ Ψ.
Finally, H is well-defined and strictly positive because Ψ is a
finite set. Thus choosing the unit of price smaller than H

(n+1)·τ
(τ is maximum resource requirement of VM) insures that any
individual allocation can be improved by at least one VM-cloudlet
coalition.

As proven in Theorem 1, our VM-Cloudlet matching game
converges to a discrete core allocation where no cloudlet or VM
is able to negotiate an agreement that is mutually more beneficial

compared with that of the current. However, the above contents
show that under sufficiently small choices of the unit of price,
our VM-cloudlet matching game has no core allocation, which
contradicts Theorem 1, and the proof is completed.

From Theorem 2, we can conclude that although our proposed
price-adjustment algorithm is distributed, it can facilitate the
system to achieve the core allocation to maximize the system
benefit.

VII. SIMULATION RESULTS AND ANALYSIS

In this section, we first evaluate the convergence and competi-
tion properties of the proposed mechanism, and then evaluate its
performance.
A. Simulation setting

To evaluate the performance of our proposed pricing mech-
anism, we build a trace-driven simulator where the application
resource requirement (task ID, resource request for CPU, resource
request for RAM, and resource request for disk space) is extracted
from the Google cluster-usage trace [56], [57]. The resource re-
quirements are normalized within [1, 600], [1, 600], and [1, 600]
respectively. Accordingly, in the simulated mobile cloud system,
each cloudlet has 3-dimensional resources, including CPU, RAM,
and disk space. Each cloudlet has the same total normalized
capacity of three-dimensional resources (10000, 10000, 10000).

To evaluate how dynamic application tasks impact the per-
formance, the application requests arrive dynamically following
a Poisson process with the average rate λ. The task execution
duration is randomly generated in [1, 5] time slots. The param-
eters wi, aik, ϖi, θi, ϑij , γi, and ζ in the VM utility function
and cloudlet utility function are randomly generated in [1, 10],
[0.1, 0.5], [0.01,0.05], [0.01,0.05], [0.01,0.05], [0.0001,0.01],
and [500,1000], respectively with θi ≥ ϑij ≥ ϖi. The three-
dimensional basic prices of different cloudlets are randomly
generated in [0.05, 0.1].

We implement four pricing mechanisms to compare the per-
formance. The first two pricing mechanisms are based on the
proposed pricing-adjustment algorithm, in which the VM chooses
the cloudlet that provides it with the maximum utility to send the
offloading request, and raises the price when it is rejected by
this cloudlet. Then, according to whether penalty payment and
benefit discount are adopted in the pricing-adjustment procedure,
the pricing mechanisms can be further divided into two different
types, denoted as MPTMG-PB and MPTMG-NPNB. In the
MPTMG-PB mechanism, VM obtains a penalty payment from a
committed cloudlet when its request is not handled in time, and
the cloudlet calculates its utility according to (10) by considering
the benefit discount due to unbalanced resource utilization. We
set δ = 0.001 as the price-step to increase price when a VM is
rejected by the cloudlet it sends request to.

The prices in the last two mechanisms are fixed. A VM pays
a selected cloudlet at a fixed multi-dimensional price for using
resources, and applications are scheduled to offload to cloudlets
according to their arriving time. For the VMs with the same arriv-
ing time, a VM placement algorithm based on a bin-packing [58]
is adopted to place VMs to cloudlets to maximize the resource
utilization. In the third pricing mechanism, there are limited 8
types of VMs. Every application will match itself to a type of VM,
and a cloudlet allocates resources to the VM according to its type,
denoted as LIMITED. While in the fourth mechanism, the VM’s
resource requirement is heterogeneous similar to the practical

9

application resource requirements, denoted as UNLIMITED. It is
worthy pointing out that all our implemented pricing mechanisms
exploit multi-dimensional price for resource management.

The metrics used to evaluate different pricing mechanisms are
explained as follows: 1) Resource utilization among all cloudlets’
resource dimensions; 2) Response time: the time duration that an
application has to wait before being offloaded to a cloudlet to
run in a VM; 3) System benefit: defined in Eq.(2) as the sum
of benefits of all players in the mobile cloud system; 4) VM
benefit: defined as the benefit calculated by the utility function in
Eq.(8); 5) Cloudlet benefit: defined as the profit calculated by the
utility function in Eq.(10); 6) Execution time: the time duration
to complete all tasks of application requirements.
B. Simulation results

As mentioned in Section V, the proposed distributed price-
adjustment algorithm is executed at the beginning of each time
unit. In the VM-cloudlet matching game, there are competitions
among the players in both sides. To clearly investigate the conver-
gence and market behavior in our proposed pricing mechanism,
we firstly run our MPTMG-PB for one time slot.
1) Convergence behavior

We set the number of VMs and cloudlets to 100 and 3
respectively. Fig.6(a) plots the adjustment procedure for the multi-
dimensional price of one VM during the iteration, which is
shown to approach stable values as the iteration number increases.
Initially, each mobile user sets its price as low as possible for
different cloudlets. A user increases its bidding price for one
cloudlet after the user is rejected by this cloudlet. From Fig.6(a),
we find that the bidding price may reduce sometimes when the
VM selects an alternate cloudlet to send its request during the
iteration procedure.

A user sets its initial bidding prices to cover the basic cost of
the resources, that is, p⃗ij = σ⃗ij . As different types of resource
have different basic cost, the starting point (which corresponds
to the value of the basic cost) in the curves of CPU, Storage,
BW in Fig.6(a) are different. The price changes in different
resources are not synchronized with the iterative process as we
adopt the un-bias price strategy (in Section V-A). Although not
synchronized, all the price dimensions converge quickly which
ensures the cloudlets to quickly provide the VMs for services.

From 6(b), we also observe that the total system utility in-
creases with iterations, and converges to a stable value quickly,
which demonstrates that the proposed MPTMG-PB is efficient
for on-line resource management.

0 20 40

0.08

0.09

0.1

Iteration

B
id

di
ng

 p
ric

e

CPU
Storage
BW

(a) Bidding price

0 20 40
0

1000

2000

Itreation

T
ot

al
 b

en
ef

it

VMs
Cloudlets
System

(b) Total benefit

Fig. 6. Convergence behavior.

To investigate how competitions among buyer-side (VMs)
impact the convergence behavior, we vary the number of VMs
and the number cloudlets, as shown in Fig.7. The total number
of iterations increases when the number of VMs becomes larger

until the number of VMs reaches a certain value, beyond which
the number of iterations becomes stable. Initially, the increase of
VMs creates higher buyer competition. As many VMs are rejected
by the cloudlets in one iteration, it results in a decrease of the
convergence speed. Take the number of cloudlets equal to 3 as
an example, because the total resources in the cloudlets of the
whole system are limited, the number of iterations maintains the
stability after the number of VMs reaches a certain level. When
the number of cloudlets increases, the system can admit more
VMs in one iteration, therefore the converging speed increases.

N
um

ber of cloudlets

Fig. 7. Impact of competitions among buyer/seller on the convergence behavior.

2) Market behavior
We first investigate two factors from both buyer-side (VMs)

and seller-side (cloudlets) to analyze how competitions impact
the market behavior under our pricing mechanisms. Then we
investigate how the price-step δ⃗ impacts the market behavior.

• Impact of buyer competition

40 80 120 160 200
0

5

10

15

20

Number of VMs

A
ve

ra
ge

 b
en

ef
it

Cloudlets

VMs

(a) Average benefit

40 80 120 160 200
0

1000

2000

3000

Number of VMs
T

ot
al

 b
en

ef
it

System
Cloudlets
VMs

(b) Total benefit

Fig. 8. The impact of buyer competition on market behavior.

We vary the number of VMs while keeping the number of
cloudlets at 10 in the system. In Fig.8(a), with the increase of the
number of VMs thus the increased buyer competition, the average
benefit of the admitted VMs decreases. On the other hand, the
average profit of cloudlets increases, as shown in Fig.8(a). In
Fig.8(b), the total benefit of the mobile cloud system increases
when there are more buyers(VMs), and becomes saturated after
the number of VMs reaches a large value 180. With the total
resources in cloudlets (sellers) limited, the number of VMs can
be supported by cloudlets are also restricted.

When there are more VM requests, from the perspective of
economic market, the service providers will be attracted to deploy
more cloudlets (sellers) for profit.

• Impact of seller competition
We vary the number of cloudlets while setting the number

of VMs to 150. When the number of cloudlets increases thus
leading to higher competition among sellers, VMs can buy and
use the resources in the cloudlets at lower prices, thus the average
benefit of VMs increases. On the other hand, the average profit
of cloudlets deceases as shown in Fig.9(a).

10

4 6 8 10
0

5

10

15

Number of cloudlets

A
ve

ra
ge

 b
en

ef
it

Cloudlets
VMs

(a) Average benefit

4 6 8 10
0

500

1000

Number of cloudlets

T
ot

al
 b

en
ef

it

System
Cloudlets
VMs

(b) Total benefit

Fig. 9. The impact of seller competition on market behavior.

As shown in Fig.9(b), due to seller competition, the total
benefit of the buyers(VMs) increases while the total benefit of
the cloudlets decreases. Moreover, the total benefit of the system
increases initially when the number of cloudlets increases, and
then remains the same as shown in Fig.9(b). This indicates that
the initial number of cloudlets thus resources can not satisfy the
total requirements from VMs. When the number of cloudlets
increases from 3 to 4, the total amount of resources in the system
increases and all these 150 VMs can be admitted to the system,
which leads to higher total system benefit. When the number
of cloudlets increases beyond 4, the cloudlet resources are more
than those required by all the VMs, thus the total system benefit
remains same.

As a result of competition among cloudlets, more VMs will be
attracted to enter the system and use the resources in the cloudlets.

From above competition analysis, we can conclude that the
proposed pricing-mechanisms can provide a healthy competition
in the mobile cloud system, which helps to establish a stable
mobile cloud market.

• Impact of the price-step δ (impact on user’s bid price)

0 10 20
0.08

0.1

0.12

Iteration

C
P

U
 b

id
 p

ric
e

Price−step=0.0005
Price−step=0.001
Price−step=0.002
Price−step=0.004

(a) CPU

0 10 20

0.06

0.08

0.1

Iteration

S
to

ra
ge

 b
id

 p
ric

e

Price−step=0.0005
Price−step=0.001
Price−step=0.002
Price−step=0.004

(b) Storage

0 10 20
0.08

0.1

0.12

0.14

Iteration

B
W

 b
id

 p
ric

e

Price−step=0.0005
Price−step=0.001
Price−step=0.002
Price−step=0.004

(c) Bandwidth

Fig. 10. The price-step of δ impacts on the user’s bid price.

Fig.10(a), Fig.10(b) and Fig.10(c) depict the bid price of one
VM under different δ in different resource dimensions. Similar
to Fig. 6, as the different dimension prices are not changed at
the same time in a new iteration, there are slight differences in
the converging speed of different price dimensions. Obviously,
the price-step δ impacts the converging speed. With a larger δ, a
VM is easier to be admitted into the system with fewer iterations.

The converging speed under δ = 0.004 nearly doubles that under
δ = 0.0005.

• Impact of the price-step δ on the system behavior

(a) Bandwidth

1 2 3 4
x 10

−3

500

1000

1500

2000

Price−step

T
ot

al
 b

en
ef

it

VM
Cloudlet
System

(b) Total benefit

Fig. 11. The price-step of δ impacts on system’s behavior.

Fig.11(a) and Fig.11(b) depict how δ affects the convergence
speed and the total benefit of the system. As expected, the
converging speeds increase with the increase of price-step δ. With
a larger δ at coarser price adjustment, the benefits of buyers and
sellers decrease and increase respectively, because VMs have to
pay higher price to purchase the resources. Although the variation
of δ may change the benefit allocation between the buyer and
seller sides, it does not affect the total system benefit. There is a
tradeoff between the speed and the benefit obtained by the buyer.
If a user chooses larger price adjustment step, the corresponding
VM will have shorter time to negotiate with the cloudlet and
obtain the cloud service, at the cost of lower benefit.

Moreover, from Fig.11(a), we can find that the total number of
iterations is controlled within 30 iterations under different price-
steps in all scenarios, which demonstrates that the computation
cost of our algorithm is not high.
3) Performance comparison

The application arrival rate impacts the application workload
in the mobile cloud system. To investigate its impact on the
pricing mechanism, we vary λ values while keeping the number
of cloudlets at 10, and applications are only generated during
the first 50 time slots in one simulation run. We analyze the
performance results from the perspectives of both the cloud
providers and end mobile users.

• Resource utilization

40 60 80 100 120 140 160 180
0.4

0.6

0.8

1

Application arrival rate

A
V

G
 u

til
iz

at
io

n
ra

tio

 LIMITED
UNLIMITED
MPTMG−NPNB
MPTMG−PB

(a) Average resource utilization

40 60 80 100 120 140 160 180
0.4

0.5

0.6

0.7

0.8

0.9

1

Application arrival rate

M
A

X
 u

til
iz

at
io

n
ra

tio

LIMITED

UNLIMITED

TMGMP−NPNB

TMGMP−PB

(b) Maximum resource utilization

Fig. 12. Resource utilization.

The average resource utilization ratio can evaluate the efficien-
cy of resource allocation, while the maximum resource utilization
ratio can reflect the load of the system. If the difference between
the above two utilization ratios is large, one resource dimension
would become the bottleneck. From Fig.12(a) and Fig.12(b),
the average resource utilization ratio and the maximum resource
utilization ratio increase as λ becomes larger and then stay stable

11

when λ is beyond a value. After λ is higher than a threshold value,
the system becomes congested because of the limited amount of
resource in cloudlets.

Compared with other pricing mechanisms, our MPTMG-PB
mechanism has the highest average resource utilization ratio
that is nearly equal to the maximum resource utilization ratio
even when the system becomes congested, which proves that the
benefit discount design in MPTMG-PB with the load-balancing
resource allocation is effective in improving the resource usage
efficiency. In LIMITED, every application matches itself with a
type of VM with the resources allocated according to the upper
limit of the VM, which is usually larger than the application’s
resource requirement. As a result, the cloudlet’s resource is
wasted. Due to the benefit discount design, the average resource
utilization in our MPTMG-PB increases by 10%, 30%, and 40%
from that under MPTMG-NPNB, UNLIMITED, and LIMITED,
respectively.

• Response time

40 60 80 100 120 140 160 180
0

10

20

30

40

Application arrival rate

A
V

G
 r

es
po

ns
e

tim
e

LIMITED
UNLIMITED
TMGMP−NPNB
TMGMP−PB

(a) Average response time

40 60 80 100 120 140 160 180
0

50

100

150

Application arrival rate

M
A

X
 r

es
po

ns
e

tim
e

LIMITED
UNLIMITED
TMGMP−NPNB
TMGMP−PB

(b) Maximum response time

Fig. 13. Response time.

High efficient resource allocation in cloudlets can increase
the number of VMs that can run concurrently, and consequently
can reduce the waiting time for applications to be scheduled to
offload to cloudlets which in turn helps save the energy of mobile
users. This impact is demonstrated by examining the average
response time, as shown in Fig.13(a). When λ = 180, the average
response time of MPTMG-PB is 20%, 50% and 70% lower than
those of MPTMG-NPNB, UNLIMITED, LIMITED. Generally,
idle waiting will significantly degrade the user’s satisfaction level.
Only when the response time is low, a user is willing to enter the
system. Compared to other pricing mechanisms, our MPTMG-
PB mechanism can help the mobile cloud system to attract more
users and win the market.

The maximum response time directly reflects the service
quality. As shown in Fig.13(b), our MPTMG-PB has the lowest
maximum response time. When λ = 180, the maximum response
time of our MPTMG-PB is 70%, 80% and 90% lower than
those of MPTMG-NPNB, UNLIMITED, LIMITED. Therefore,
application under MPTMG-PB can be offloaded to execute in a
cloudlet within a limited small time, and the SLA agreement and
QoS requirement of application can be better satisfied. This result
demonstrates that the penalty payment designed in this paper
can provide an effective incentive for cloudlets to more fairly
serve VMs. By reducing the waiting time of individual VMs, a
cloudlet can reduce its extra cost paid to the delayed VM and
gain encouragement payment from the platform.

• System benefit
As proved in Theorem 2, the proposed price-adjustment al-

gorithm allows to obtain the optimal price and VM-cloudlet

40 60 80 100 120 140 160 180
1000

2000

3000

4000

Application arrival rate

S
ys

te
m

 r
ev

en
ue

LIMITED
UNLIMITED
TMGMP−NPNB
TMGMP−PB

Fig. 14. System benefit.

40 60 80 100 120 140 160 180
50

100

150

Application arrival rate

E
xe

cu
tio

n
tim

e

LIMITED
UNLIMITED
TMGMP−NPNB
TMGMP−PB

Fig. 15. Execution time.

matching so that the mobile cloud system can achieve Pareto
efficiency. As a result, the system benefits of MPTMG-PB and
MPTMG-NPNB are significantly higher than the two fixed-
pricing mechanisms UNLIMITED and LIMITED, as shown in
Fig.14. The total benefit of the system increases when λ increases
until it reaches a large value of 110 in MPTMG-PB, beyond
which the total benefit is capped due to the limited total cloudlet
resources. Moreover, MPTMG-PB outperforms MPTMG-NPNB
with up to 20% higher system benefit. As MPTMG-PB can obtain
high resource utilization, the cloudlets can make higher profit by
selling more resources to VMs while VMs can gain higher benefit
by buying resources in cloudlets at lower prices.

• Execution time

Although applications are generated only during the first 50
time slots, as λ increases, the load of the system becomes high.
Some applications have to wait for the service, and the time for
completing all applications may be larger than 50 time slots.
When λ = 180, MPTMG-PB can finish all tasks using 70
time slots, while MPTMG-NPNB, UNLIMITED, and LIMITED
respectively take 80, 100, and 130 time slots to complete all the
jobs as shown in Fig.15. The total execution time reduction is
important, which helps to reduce power consumption and cost in
the mobile cloud system.

In summary, our proposed pricing mechanism MPTMG-PB is
designed by considering both resource availability and VM’s QoS
requirement, so that the optimal system benefit can be achieved
while at the same time supporting efficient resource allocation
and application offloading.

VIII. CONCLUSIONS

The long RTT delay may prevent running delay-sensitive
applications in the remote cloud despite its sufficient resources.
Although cloudlet can ”bring the cloud closer to applications”
to mitigate the long latency, compared to a remote cloud, the
resources owned by a cloudlet are much more limited. To more
efficiently manage application offloading and utilize the limited
resources in cloudlets, we design a Multi-dimensional Pricing
mechanism based on Two-sided Market Game. Specifically, we
propose three types of prices: a multi-dimensional price cor-
responding to multi-dimensional resource allocation, a penalty
price to encourage fair and high quality cloud services, and a
benefit discount factor which facilitates more balanced resource
allocation to help cloudlets to accommodate more VMs in the
long run. We have carried out extensive simulations, and our
results demonstrate that both the amount of resource allocation
and the sequence of application offloading can be effectively
accomplished with the support of our pricing mechanism.

12

ACKNOWLEDGMENT

The work is supported by the National Natural Science Founda-
tion of China under Grant Nos.61572184, 61472283, 61271185,
61472131, and 51575167, Science and Technology Key Projects
of Hunan Province (2015 TP1004), and U.S. NSF CNS 1526843.

REFERENCES

[1] M. Satyanarayanan, R. Schuster, M. Ebling, G. Fettweis, H. Flinck, K. Joshi,
and K. Sabnani, “An open ecosystem for mobile-cloud convergence,” IEEE
Communications Magazine, vol. 53, no. 3, pp. 63–70, 2015.

[2] F. Liu, P. Shu, H. Jin, L. Ding, J. Yu, D. Niu, and B. Li, “Gearing resource-
poor mobile devices with powerful clouds: architectures, challenges, and
applications,” IEEE Wireless communications, vol. 20, no. 3, pp. 14–22,
2013.

[3] M. Satyanarayanan, Z. Chen, K. Ha, W. Hu, W. Richter, and P. Pillai,
“Cloudlets: at the leading edge of mobile-cloud convergence,” in MobiCASE,
IEEE, 2014.

[4] A. Li, X. Yang, S. Kandula, and M. Zhang, “Cloudcmp: comparing public
cloud providers,” in IMC, ACM, 2010.

[5] M. Satyanarayanan, P. Bahl, R. Caceres, and et.al, “The case for vm-based
cloudlets in mobile computing,” IEEE Pervasive Computing., vol. 8, no. 4,
pp. 14–23, 2009.

[6] K. Ha, P. Pillai, W. Richter, Y. Abe, and M. Satyanarayanan, “Just-in-time
provisioning for cyber foraging,” in Mobisys, 2013.

[7] S. Echeverrıa, J. Root, B. Bradshaw, and G. Lewis, “On-demand vm
provisioning for cloudlet-based cyber-foraging in resource-constrained en-
vironments,” 2014.

[8] G. Lewis, S. Echeverrı́a, S. Simanta, B. Bradshaw, and J. Root, “Tactical
cloudlets: Moving cloud computing to the edge,” in MILCOM, pp. 1440–
1446, IEEE, 2014.

[9] M. Jia, W. Liang, Z. Xu, and M. Huang, “Cloudlet load balancing in wireless
metropolitan area networks,” in IEEE INFOCOM 2016-The 35th Annual
IEEE International Conference on Computer Communications, pp. 1–9,
IEEE, 2016.

[10] G. A. Lewis, S. Echeverrı́a, S. Simanta, B. Bradshaw, and J. Root,
“Cloudlet-based cyber-foraging for mobile systems in resource-constrained
edge environments,” in Companion Proceedings of the 36th International
Conference on Software Engineering, pp. 412–415, ACM, 2014.

[11] Q. Xia, W. Liang, and W. Xu, “Throughput maximization for online request
admissions in mobile cloudlets,” in Local Computer Networks (LCN), 2013
IEEE 38th Conference on, pp. 589–596, IEEE, 2013.

[12] B.-G. Chun, S. Ihm, P. Maniatis, M. Naik, and A. Patti, “Clonecloud: elastic
execution between mobile device and cloud,” in EuroSys, 2011.

[13] S. Kosta, A. Aucinas, P. Hui, R. Mortier, and X. Zhang, “Thinkair: Dynamic
resource allocation and parallel execution in the cloud for mobile code
offloading,” in INFOCOM, 2012.

[14] E. Cuervo, A. Balasubramanian, D.-k. Cho, A. Wolman, S. Saroiu, R. Chan-
dra, and P. Bahl, “Maui: making smartphones last longer with code offload,”
in Mobisys, 2010.

[15] B.-G. Chun and P. Maniatis, “Dynamically partitioning applications between
weak devices and clouds,” in MCS, 2010.

[16] K. Sinha and M. Kulkarni, “Techniques for fine-grained, multi-site compu-
tation offloading,” in CCGrid, 2011.

[17] Y. Zhang, H. Liu, L. Jiao, and X. Fu, “To offload or not to offload:
An efficient code partition algorithm for mobile cloud computing,” in
CLOUDNET, 2012.

[18] D. Huang, P. Wang, and D. Niyato, “A dynamic offloading algorithm
for mobile computing,” IEEE Transactions on Wireless Communications,
vol. 11, no. 6, pp. 1991–1995, 2012.

[19] M. S. D Narayanan, J Flinn, “Using history to improve mobile application
adaptation,” in WMCSA, 2000.

[20] R. W. S Gurun, C Krintz, “Nwslite: a light-weight prediction utility for
mobile devices,” in MobiSys, 2004.

[21] P. W. DT Hoang, D Niyato, “Optimal admission control policy for mobile
cloud computing hotspot with cloudlet,” in WCNC, 2012.

[22] X. Wang and H. Schulzrinne, “Pricing network resources for adaptive
applications,” IEEE/ACM Transactions on Networking, vol. 14, no. 3,
pp. 506–519, 2006.

[23] X. Wang and H. Schulzrinne, “Incentive-compatible adaptation of internet
real-time multimedia,” IEEE Journal on Selected Areas in Communications,
vol. 23, no. 2, 2005.

[24] Q. Wang, K. Ren, and X. Meng, “When cloud meets ebay: Towards effective
pricing for cloud computing,” in INFOCOM, 2012.

[25] D. Niu, C. Feng, and B. Li, “A theory of cloud bandwidth pricing for video-
on-demand providers,” in INFOCOM, 2012.

[26] Y. Song, M. Zafer, and K.-W. Lee, “Optimal bidding in spot instance
market,” in INFOCOM, 2012.

[27] B. L. Hong Xu, “Maximizing revenue with dynamic cloud pricing: The
infinite horizon case,” in INFOCOM, 2012.

[28] D. N. Sivadon Chaisiri, Bu-Sung Lee, “Optimization of resource provi-
sioning cost in cloud computing,” IEEE TRANSACTIONS ON SERVICES
COMPUTING, vol. 5, no. 2, pp. 164–177, 2012.

[29] Y. Feng, B. Li, and B. Li, “Bargaining towards maximized resource
utilization in video streaming datacenters,” in INFOCOM, 2012.

[30] B. F. Dorian Minarolli, “Utility-driven allocation of multiple types of
resources to virtual machines in clouds,” in 2011 IEEE Conference on
Commerce and Enterprise Computing, pp. 137–144, 2011.

[31] D. N. Sivadon Chaisiri, Bu-Sung Lee, “Optimal virtual machine placement
across multiple cloud providers,” in IEEE APSCC, 2009.

[32] Z. Fu, X. Wu, C. Guan, X. Sun, and K. Ren, “Toward efficient multi-
keyword fuzzy search over encrypted outsourced data with accuracy im-
provement,” IEEE Transactions on Information Forensics and Security,
vol. 11, no. 12, pp. 2706–2716, 2016.

[33] Z. Xia, X. Wang, X. Sun, and Q. Wang, “A secure and dynamic multi-
keyword ranked search scheme over encrypted cloud data,” IEEE Trans-
actions on Parallel and Distributed Systems, vol. 27, no. 2, pp. 340–352,
2016.

[34] Z. Fu, F. Huang, X. Sun, A. Vasilakos, and C.-N. Yang, “Enabling semantic
search based on conceptual graphs over encrypted outsourced data,” IEEE
Transactions on Services Computing, DOI: 10.1109/TSC.2016.2622697,
2016.

[35] F. Zhangjie, S. Xingming, L. Qi, Z. Lu, and S. Jiangang, “Achieving efficient
cloud search services: multi-keyword ranked search over encrypted cloud
data supporting parallel computing,” IEICE Transactions on Communica-
tions, vol. 98, no. 1, pp. 190–200, 2015.

[36] Y. Kong, M. Zhang, and D. Ye, “A belief propagation-based method for
task allocation in open and dynamic cloud environments,” Knowledge-Based
Systems, vol. 115, pp. 123–132, 2017.

[37] S. Sardellitti, G. Scutari, and S. Barbarossa, “Joint optimization of radio
and computational resources for multicell mobile-edge computing,” IEEE
Transactions on Signal and Information Processing over Networks, vol. 1,
pp. 89–103, June 2015.

[38] X. Chen, L. Jiao, W. Li, and X. Fu, “Efficient multi-user computation
offloading for mobile-edge cloud computing,” IEEE/ACM Transactions on
Networking, vol. 24, pp. 2795–2808, Oct 2016.

[39] L. Yang, J. Cao, H. Cheng, and Y. Ji, “Multi-user computation partitioning
for latency sensitive mobile cloud applications,” IEEE Transactions on
Computers, vol. PP, no. 99, pp. 1–14, 2014.

[40] M. Jia, J. Cao, and L. Yang, “Heuristic offloading of concurrent tasks
for computation-intensive applications in mobile cloud computing,” in
Computer Communications Workshops (INFOCOM WKSHPS), 2014 IEEE
Conference on, pp. 352–357, IEEE, 2014.

[41] L. Xiang, S. Ye, Y. Feng, B. Li, and B. Li, “Ready, Set, Go: Coalesced
offloading from mobile devices to the cloud,” in Proc. of IEEE INFOCOM,
2014.

[42] S. Deng, L. Huang, J. Taheri, and A. Zomaya, “Computation offloading
for service workflow in mobile cloud computing,” Parallel and Distributed
Systems, IEEE Transactions on, vol. PP, no. 99, pp. 1–1, 2014.

[43] F. Liu, P. Shu, and J. Lui, “Appatp: An energy conserving adaptive mobile-
cloud transmission protocol,” IEEE Transactions on Computers, vol. PP,
no. 99, pp. 1–1, 2015.

[44] K. Xie, X. Wang, X. Liu, J. Wen, and J. Cao, “Interference-aware coopera-
tive communication in multi-radio multi-channel wireless networks,” IEEE
Transactions on Computers, vol. 65, no. 5, pp. 1528–1542, 2016.

[45] K. Xie, X. Wang, J. Wen, and J. Cao, “Cooperative routing with relay assign-
ment in multiradio multihop wireless networks,” IEEE/ACM Transactions
on Networking, vol. 24, no. 2, pp. 859–872, 2016.

[46] K. Xie, J. Cao, X. Wang, and J. Wen, “Pre-scheduled handoff for service-
aware and seamless internet access,” Computer Networks, vol. 110, pp. 324–
337, 2016.

[47] A. Ghodsi, M. Zaharia, B. Hindman, A. Konwinski, S. Shenker, and
I. Stoica, “Dominant resource fairness: fair allocation of multiple resource
types,” in USENIX NSDI, 2011.

[48] D. Gale and L. S. Shapley, “College admissions and the stability of
marriage,” The American Mathematical Monthly, vol. 69, no. 1, pp. 9–15,
1962.

[49] T. Eisenmann, G. Parker, and M. W. Van Alstyne, “Strategies for two-sided
markets,” Harvard business review, vol. 84, no. 10, p. 92, 2006.

[50] L. S. Shapley and M. Shubik, “The assignment game i: The core,” Interna-
tional Journal of game theory, vol. 1, no. 1, pp. 111–130, 1971.

[51] A. E. Roth, “The evolution of the labor market for medical interns and
residents: a case study in game theory,” The Journal of Political Economy,
pp. 991–1016, 1984.

[52] N. Economides and J. Tåg, “Network neutrality on the internet: A two-
sided market analysis,” Information Economics and Policy, vol. 24, no. 2,
pp. 91–104, 2012.

13

[53] S. Lamparter, S. Becher, and J.-G. Fischer, “An agent-based market platform
for smart grids,” in Proceedings of the 9th international conference on
autonomous agents and multiagent systems: industry track, pp. 1689–1696,
International Foundation for Autonomous Agents and Multiagent Systems,
2010.

[54] R. Jain, D.-M. Chiu, and W. R. Hawe, A quantitative measure of fairness and
discrimination for resource allocation in shared computer system. Eastern
Research Laboratory, Digital Equipment Corporation, 1984.

[55] J. Mo and J. Walrand, “Fair end-to-end window-based congestion control,”
IEEE/ACM Transactions on Networking (ToN), vol. 8, no. 5, pp. 556–567,
2000.

[56] C. Reiss, J. Wilkes, and J. L. Hellerstein, “Google cluster-usage traces:
format+ schema,” Google Inc., Mountain View, CA, USA, Technical Report,
2011.

[57] J. Wilkes, “More google cluster data,” Google research blog, Nov, 2011.
[58] D. J. E Coffman, J Garey, “Approximation algorithms for bin-packing an

updated survey,” Algorithm Design for Computing System Design, 1984.

Kun Xie received PhD degree in computer application
from Hunan University, Changsha, China, in 2007. She
worked as a postdoctoral fellow in the department of
computing in Hong Kong Polytechnic University from
2007.12 to 2010.2. She worked as a visiting researcher
in the department of electrical and computer engineering
in state university of New York at Stony Brook from
2012.9 to 2013.9. She is currently a Professor in Hu-
nan University. Her research interests include wireless
network and mobile computing, network management
and control, cloud computing and mobile cloud, and

big data. She has published over 60 papers in major journals and conference
proceedings (including top journals IEEE/ACM TON, IEEE TMC, IEEE TC,
IEEE TWC, IEEE TSC, and top conferences INFOCOM, ICDCS, SECON,
IWQoS)

Xin Wang (M’1 / ACM’4) received the B.S. and
M.S. degrees in telecommunications engineering and
wireless communications engineering respectively from
Beijing University of Posts and Telecommunications,
Beijing, China, and the Ph.D. degree in electrical and
computer engineering from Columbia University, New
York, NY. She is currently an Associate Professor in
the Department of Electrical and Computer Engineering
of the State University of New York at Stony Brook,
Stony Brook, NY. Before joining Stony Brook, she was
a Member of Technical Staff in the area of mobile and

wireless networking at Bell Labs Research, Lucent Technologies, New Jersey, and
an Assistant Professor in the Department of Computer Science and Engineering of
the State University of New York at Buffalo, Buffalo, NY. Her research interests
include algorithm and protocol design in wireless networks and communications,
mobile and distributed computing, as well as networked sensing and detection.
She has served in executive committee and technical committee of numerous
conferences and funding review panels, and serves as the associate editor of IEEE
Transactions on Mobile Computing. Dr. Wang achieved the NSF career award in
2005, and ONR challenge award in 2010.

Gaogang Xie received his B.S. degree in Physics, M.S.
degree and Ph.D. degree in computer science all from
Hunan University respectively in 1996, 1999 and 2002.
He is currently a Professor and Director of Network
Technology Research Center with the Institute of Com-
puting Technology (ICT), Chinese Academy of Sciences
(CAS), Beijing, China. His research interests include
Internet architecture, packet processing and forwarding,
and Internet measurement.

Dongliang Xie received the Ph.D. degree from Beijing
Institute of Technology, China, in 2002. He is an asso-
ciate professor in State Key Laboratory of Networking
and Switching Technology of Beijing University of Post-
s and Telecommunications (BUPT), China. His research
interests focus on resource-constrained wireless com-
munication and information-centric network, including
architecture of ubiquitous and heterogeneous network,
complex network analysis, as well as content retrieval
and service management.

Jiannong Cao (M’93-SM’05-FM’14) received the Ph.D
degree in computer science from Washington State U-
niversity, Pullman, WA, USA, in 1990. Dr. Cao is cur-
rently a chair professor and head of the Department of
Computing at Hong Kong Polytechnic University, Hung
Hom, Hong Kong. Dr. Cao’s research interests include
parallel and distributed computing, computer networks,
mobile and pervasive computing, fault tolerance, and
middleware.

Yuqin Ji received M.S. degrees in computer application
from Hunan University, China, in 2013. Her research
interests include mobile cloud computing.

Jigang Wen received PhD degrees in computer ap-
plication from Hunan University, China, in 2011. He
worked as a research assistant in the department of
computing in Hong Kong Polytechnic University from
2008 to 2010. He is now a postdoctoral fellow in
Institute of Computing Technology, Chinese Academy
of Science, China. His research interests include wireless
network and mobile computing, high speed network
measurement and management.

14

