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V2X Routing in VANET based on Hidden Markov
Model

Lin Yao, Jie Wang, Xin Wang, Ailun Chen, Yuqi Wang

Abstract—It is very hard to establish and maintain end-to-
end connections in a Vehicle Ad-Hoc Network (VANET) as a
result of high vehicle speed, long inter-vehicle distance and
varying vehicle density. Instead, a store-and-forward strategy
has been considered for vehicle communications. The success
of this strategy, however, depends heavily on the cooperation
among nodes. Different from exiting store-and-forward solutions,
we propose a Predictive Routing based on Hidden Markov Model
(PRHMM) for VANETS, which exploits the regularity of vehicle
moving behaviors to increase the transmission performance. As
vehicle movements often exhibit a high degree of repetition
including regular visits to certain places and regular contacts
during daily activities, we can predict a vehicle’s future locations
based on the knowledge of past traces and hidden Markov
model. Consequently, the short-term route of a vehicle and
its packet delivery probability for a specific mobile destination
can be predicted. Moreover, PRHMM enables seamless handoff
between Vehicle-to-Vehicle (V2V) and Vehicle-to-Infrastructure
(V2I) communications so that the transmission performance will
not be constrained by the vehicle density and moving speed.
Simulation evaluation demonstrates that PRHMM performs
much better in terms of delivery ratio, end-to-end delay, traffic
overhead, and buffer occupancy.

Index Terms—Predictive Routing, VANET, HMM.

I. INTRODUCTION

VEHICULAR Ad-hoc Network (VANET), a special type
of mobile ad hoc network, is an important component of

the Intelligent Transportation Systems (ITS). VANETs contain
some fixed infrastructures and some vehicles, where vehicles
act as mobile nodes that can carry and relay data. Each
vehicle can communicate with other vehicles directly forming
vehicle to vehicle communication (V2V) or communicate with
a fixed road side unit (RSU), forming vehicle to infrastructure
communication (V2I) [1]. V2V allows automobiles to ”talk”
to each other over one or multiple hops using short-range
communication, but is subject to frequent communication
disruption as a result of the vehicle joining or leaving from the
network, different vehicle speeds or moving directions. V2I is
a viable solution when V2V communications are not available,
but its performance depends on specific wireless technology
and communication coverage of RSUs. Due to the limitations
of V2V and V2I, we consider the use of hybrid vehicular
communication, named Vehicle-to-X (V2X), to enable the
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seamless vehicular network connectivity in Figure 1. Two
vehicles on the road can communicate either through V2V or
V2I, depending on the available connections and path selection
criteria.

Fig. 1: Vehicular communications in ITS

The potential of hybrid communications not only helps to
increase the chance of connectivity in disconnected scenarios,
but also to improve the performance of message dissemination
in VANETs. The performance of V2X communication, how-
ever, mainly depends on how well the messages are routed.
Different from conventional networks, disconnections are the
norm in VANETs. A VANET has the following salient char-
acteristics [2]: (a) trajectory-based movements with predicable
locations and time-varying topology, (b) varying number of
vehicles with independent or correlated speeds, (c) frequent
topology partitioning due to high mobility, and (d) reduced
power consumption requirements. Consequently, conventional
routing protocols based on the existence of an end-to-end
connection cannot be adopted directly in this unique vehicular
environment as intermediate nodes cannot always be found
between a source and a destination.

VANET routing has been widely studied and investigated
[3][4]. It can be classified into two types, topology-based and
position-based [4]. Topology-based routing forwards packet
based on the information of network links, while in geographic
routing a node forwards packets based on locations of its
neighbors and the destination. Without maintaining any routing
table or exchanging link states within neighbors, position-
based or geographic routing is considered to be more stable
and suitable for VANETs. Position-based routing includes the
geographic unicast and broadcast. In geographic unicast, pack-
ets are transmitted between two nodes via multiple wireless
hops.
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There is a big challenge to design an efficient routing
protocol to deliver a packet timely with low dropping rate
in VANETs [1]. To achieve the least delay, some V2X-based
geographic routing approaches are proposed in [5][6][7][8][9].
Their performance heavily depends on the vehicle density and
traffic conditions. However, there is no use of prediction in
these schemes. As moving paths of human often exhibit a
high degree of repetition as a result of regular visits of certain
places and contacts with others during daily activities, a ve-
hicle’s future locations can be predicted [10]. In [11][12][13],
the possible trajectories of moving vehicles are predicted to
facilitate the route finding from the source to destination.
However, the routing performance of these studies is purely
determined by the vehicle distribution (i.e. dense or sparse)
and vehicle speeds without exploiting the fixed communication
infrastructure.

In light of the problems of existing work, we propose a
Predictive Routing based on Hidden Markov Model (PRHM-
M) to ensure more reliable and timely data transmissions
in VANETs. This in turn helps improve the road safety,
traffic efficiency, and remote diagnostics [14]. In the case
of accident management, emergency messages may be sent
to a pre-determined road rescue site upon the occurrence of
an accident, such as a crash on the highway during a snow
day and a car spontaneous combustion due to the stored
explosives. PRHMM chooses the vehicles that have a higher
probability of arriving at the rescue center as the next hops, so
that rescue efforts can be organized at lower delay. PRHMM
can also facilitate the transmission of real-time information
from vehicles to a road traffic controller for more efficient
traffic management, where the data are applied to learn the
traffic flow statistics, traffic congestion conditions, and road
utilization. Rather than using passive traffic detection through
sensors, the real-time reports of traffic data through V2V and
V2I can avoid the costs of installing and maintaining a large
number of sensors [15]. Our PRHMM can also be used in
the remote diagnostics, where a service station can assess the
state of a vehicle without making a physical connection with
the vehicle [16][17]. When a vehicle encountering the driving
problem enters the area of a service garage, it can actively
reply the queries from the garage. Based on the vehicle’s
past records (either sent by the vehicle or downloaded from
Internet), the technician can diagnose the problem reported by
the customer to avoid the waiting time.

Our design focuses on three challenges: i) How to effective-
ly predict a vehicle’s future locations based on its past mobility
patterns; ii) How to select nodes for message relaying given
the predicted movement pattern toward the destination vehicle;
and iii) How to achieve automatic switch between V2V and
V2I to avoid disconnections and ensure high-connectivity re-
gardless of the scenarios and vehicle speeds in a VANET. Our
scheme takes advantage of the history mobility and movement
pattern to predict the future path, where the HMM model is
exploited to efficiently process the time-sequence data. Our
main contributions of the paper are as follows:

(i) We propose a novel predictive routing scheme which can
effectively predict a vehicle’s near future path according
to its past mobility trace with HMM.

(ii) We apply a Forward-Backward Algorithm to train HM-
M, which makes full use of the past mobility patterns
to maximize the probability of message arriving at the
destinations.

(iii) We propose a routing decision scheme to efficiently
select relay nodes for message forwarding, taking ad-
vantage of the movement pattern predicted based on the
forwarding probability and delay to the destination.

(iv) We evaluate the performance through extensive simula-
tions. Compared with a routing protocol for intermit-
tently connected networks (PROPHET) [18], a V2X-
based approach (V2X) [6], and a cellular-based approach
(GRPL) [19], our PRHMM is superior in delivery ratio,
delivery latency, delivery overhead and buffer occupan-
cy.

The remainder of this paper is organized as follows. In
Section 2, we discuss related work. Section 3 describes the
preliminary. In Section 4, Markov Routing Algorithm is pro-
posed. Section 5 evaluates the performance of our scheme by
simulations. Finally, we conclude the work in Section 6.

II. RELATED WORK

Many routing protocols have been developed for VANETs,
which differ in their protocols characteristics, techniques used,
network structure [3]. Based on the routing information used in
the packet forwarding, VANET routing protocols are classified
into topology-based and position-based [3][4]. Topology-based
routing schemes generally require additional node topology
information during the path selection process. Geographic
routing uses neighboring location information to perform the
packet forwarding. Geographic routing protocols are common-
ly categorized into three classes [3] [4]: Delay Tolerant Net-
work (DTN) Protocols, Non Delay Tolerant Network (Non–
DTN) Protocols and hybrid.

In the DTN, communication opportunities (contacts) are
intermittent. The routing challenge is to find a path that
can provide the good delivery performance and low end-to-
end delay in a disconnected graph where nodes may move
freely. Some routing protocols choose neighbors close to
the destination as next hops. The Motion Vector Algorithm
(MOVE) in [20] assumes that every node has the global
location information including the destination. Every node can
estimate its closest distance to the destination, and determines
which neighbor to forward packets to. Similar to MOVE,
Scalable Knowledge based Vehicular Routing (SKVR) [21],
also makes use of the destination position in the bus route to
forward packets to a vehicle closer to the destination. Some
approaches are based on the least delay to forward packets.
In Geographical Opportunistic (GeOpps) [22], every node
estimates the delay of different paths to the same destination,
and selects the neighbor closer to the destination as the next
hop. In the Vehicle Assisted Data Delivery (VADD) algorithm
[23], every node can predict the mobility of other nodes based
on the network traffic and route type, and selects a candidate
node with a higher speed to achieve the least transmission
delay. To achieve the least delay, some infrastructures are used
to store and forward a packet when there are vehicles or other
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RSUs within the communication range along the best delivery
path in [5][6][7][8][9]. However, their performance is mainly
determined by the vehicle density and traffic scenarios. In
[11][12][13], a location-prediction-based routing algorithm is
presented to discover route from the source node to the desti-
nation node. In [11], a regular flooding-based route discovery
is proposed to collect the location and mobility information
of nodes and store it at the destination. The destination node
can predict the current location of each node using the stored
information. In [12], every node will choose the encountered
nodes which have the common area and the similar movement
pattern with that of the destination as the best possible next-
hops. In [13], variable-order Markov model is adopted to
abstract vehicular mobility for an urban vehicular network
environment.

Assuming there are always a number of nodes to achieve
the successful communication, non-DTN protocols do not
consider the disconnection issue and are only suitable for use
in high density network. In the greedy approach, every node
forwards its packet to the neighbor closest to the destination.
But the forwarding strategy can fail if no neighbor is closer
to the destination than the node itself. To solve this issue,
GPSR [24] uses perimeter forwarding to decide the next hops.
GPSR is a stateless protocol that the destination information
in the packet header will never be updated. To address this
problem, Advanced Greedy Forwarding (AGF) is proposed
to incorporate the speed and direction of a node in the
beacon packet and the total travel time[25]. Greedy Routing
with Abstract Neighbor Table (GRANT) uses the concept of
extended greedy routing to choose the next hops [26]. In the
overlay routing approach, the routing protocol operates on a set
of representative nodes overlaid on top of the existing network,
especially in the urban environment. Nodes would forward
as far as they can along roads in both greedy and perimeter
mode and stop at junctions which help to decide the next
hop [27]. Connectivity-Aware Routing (CAR) uses AODV-
based path discovery to find routes with limited broadcast from
PGB [28]. Greedy Traffic Aware Routing protocol (GyTAR)
[29] tries to mimic the shortest path routing by taking into
account the road connectivity based on the given number
of cars. Landmark Overlays for Urban Vehicular Routing
Environments (LOUVRE) [30] is a geo-proactive overlay
routing where the sequence of overlaid nodes is determined.
In GRLP [19], authors propose a geographic routing scheme
which exploits the predictive locations of vehicles for data for-
warding. Transferred messages are particularly chosen in the
buffer and a cellular system is used to predict vehicle locations
based on information uploaded by vehicles themselves.

Hybrid schemes are also developed because no existing
routing protocol performs efficiently in all circumstances.
Two or more position-based routing protocols (non-DTN and
DTN schemes) are merged. Sometimes one or more topology
routing protocols are merged with position-based routing in
TO-GO [31] and HLAR [32].

Summary of Related Work In summary, though there exist
many different routing approaches, most of them (including
the predictive routing schemes) have their performance de-
termined by the specific traffic scenarios and vehicle speed

in a VANET. In contrast, our work aims to design a V2X
routing scheme independent of traffic conditions and vehicle
speeds. Different from the works in delay-tolerant networks
[19] [33] [34][35] , our protocol adopts HMM to predict
the future movement of a vehicle based on its past mobility
traces. Different from Markov model, there is no one-to-
one correspondence between the future location and the past
mobility pattern in HMM. The future locations are hidden. So
our model can better work in VANETs where there is no way
to tell for certain which road the vehicle will be on just by
checking the past mobility traces.

III. HIDDEN MARKOV MODEL

Hidden Markov Model (HMM) is a statistical Markov
model where the system is modeled as a Markov process
with unobserved states. In a HMM, the state is not directly
visible, but the observation that depends on the state is visible.
Each state has a probability distribution over the possible
observation states. Therefore, the sequence of observation
states generated by a HMM gives some information about the
sequence of states.

HMM can be denoted by λ = (N,M, π,A,B) or λ =
(π,A,B).
N - the number of hidden states.
M - the number of observable states.
S = {S0, S1, ..., SN−1}, the hidden state sequence.
O = {O0, O1, ..., OM−1}, the observable state sequence.
A = {aij}, the transition probabilities between the hidden

states Si and Sj , where aij = P (Sj |Si).
B = {bj(k)}, the probabilities of the observable states Ok

in the hidden state Sj , where bj(k) = P (Ok|Sj).
π = {πi}, the initial hidden state probabilities, where πi =

P (Si).
In our paper, we adopt Forward-Backward algorithm

to establish an accurate Hidden Markov Model λ =
(N,M, π,A,B) [36]. The correlative variables are defined as
follows:
αt(i)=P (O1O2...Ot, Si|λ), the forward variable - the prob-

ability of the cumulative observation sequence and hidden state
Si at time t, given the model λ.
βt(i)=P (Ot+1Ot+2...OT |Si, λ), the backward variable - the

probability of the future observation sequence until time T ,
given the model λ and the hidden state Si at time t.
ζt(i, j)=P (Si, Sj |O1O2...OT , λ), the probability of transit-

ing from the hidden state Si at the time t to the hidden state
Sj at the time t + 1, given the model λ and the observation
sequence.
γt(i)=P (Si|O1O2...OT , λ), the probability of the hidden

state Si at the time t, given the model λ and the observation
sequence.

The adjustment process of the Forward-Backward algorithm
is as follows [36]:

(i) Initialize λ = (π,A,B).
(ii) Compute correlation parameters αt(i), βt(i), ζt(i, j),

and γt(i).
(iii) Adjust π,A,B and λ.
(iv) If P (O|λ) increases, go to (ii).
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In a HMM, both transitions and observations can be used to
predict the next state. The equation below is applied to predict
the state distribution at time t+ 1 under the state distribution
at time t:

P t+1(s)← P t(S)P (Ot+1|S)

P (Ot+1)
(1)

In addition, Ot+1, the observation at time t + 1 is used to
further constrain the state distribution.

P (Ot+1) =
∑
Si∈S

P t+1(Si)P (Ot+1|Si) (2)

IV. HMM-BASED ROUTING FOR VANET

In this section, we present PRHMM, a predictive routing
scheme based on HMM for VANETs. PRHMM exploits
vehicles to carry and forward messages. As discussed earlier,
the end-to-end delivery performance will degrade significantly
as a result of temporary and frequent network disconnections.
The success of V2X applications relies on the network connec-
tivity, which is possible only when there is a high vehicular
density to sustain multi-hop communications or there exist
fixed infrastructures such as RSUs. The aim of our work is to
find some suitable relays which can forward the messages to
the destination vehicle with a higher probability.

We first introduce our prediction model to predict the future
movement path of a vehicle based on its past mobility traces
and select a set of nodes that are more likely to reach the
destination vehicle to be the relay nodes. We then define
routing metrics. Finally, we will present our routing algorithm
for the decision of the relay nodes to continue the packet
forwarding and the corresponding routing paths.

A. Movement Prediction

Since the position information is available in VANETs and
obviously beneficial for unicast routing, our routing scheme
makes full use of the positions of the communicating nodes
in determining the forwarding nodes and the transmission path.
A sender can find its own position from the local GPS or other
localization schemes, and obtain the position of the destination
vehicle through some kind of location service [37][38]. Each
vehicle can estimate its speed at a specific time based on the
speed limit of the road. A vehicle broadcasts beacon messages
periodically to its one-hop neighbors to announce its physical
location, moving velocity and direction.

Before presenting our model for the prediction of the trip
sequence, we first introduce some terminologies.

1) Terminologies: We have the following three terminolo-
gies:

Link Point: A link point represents the location and states
of a vehicle, defined in terms of l ={ road, speed, direction},
which corresponds to a location point in Figure 2. In our digital
map, road segments terminate at intersections or dead ends.
Our model aims to predict the next link based on the past
route of a vehicle.

Trip Sequence: A trip sequence is formed with a set of
link points to record the moving trace of a vehicle, R =

{l1, l2, . . . , li, . . .}, where R is the collection of movement
records corresponding to the observation sequence in our
paper. li represents the ith link, and the last link point
represents the destination of the route. A trip sequence can be
collected periodically or triggered by events. In the periodic
approach, a mobile device must consider the tradeoff between
achieving a higher location accuracy with more frequent
recording and reducing the battery consumption with a larger
recording interval. In our work, we adopt the event-triggered
approach where the current location is recorded upon detecting
a transition to the new road segment.

Traversed State: We model the sequence of traversed state
si where i represents a discrete time variable [34]. A state si
is represented by a pair < lj , dk >, where lj represents the jth
link point and dk represents the kth destination. The vehicle
states are denoted as . . . , si−2, si−1, si,si+1, si+2, . . . , where
si is the current state, . . . , si−2, si−1 are the immediately
preceding states. Based on a given set of states . . . , si−2, si−1,
si , we will predict the future states si+1, si+2, . . . .

dead end

intersection

name change

13

38

80

41
10 16

20

the first possible route

the second possible route

the third possible route

Fig. 2: Roads are represented as discrete segments. A red
point represents the current location of the car, and a green

point represents the possible destination of the car. 38, 41 or
80 marks a street segment.

2) Prediction of the Trip Sequence based on HMM: A
vehicle may go to different destinations in a day such as office,
home, supermarket,etc. Our model first obtains all possible
destinations of a vehicle based on its historical mobility pattern
and the current link information, and then predicts the trip
sequence from the current location to a destination. Rather
using a single location, in this work, we use the final road
segment to represent a destination.

We divide the target position of a packet into two types:
destination and intermediate road segment. As a vehicle is
in the moving state, its final position is unknown. Thus, we
consider the final vehicle position as a hidden state in a HMM,
and the immediate road segments to reach by a vehicle as the
observable states. The size of the transition matrix A is N ∗N ,
where N is the number of destination positions, and the size
of emission matrix B is N ∗M , where M is the number of
intermediate roads or segments.
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We adopt HMM to predict the next position a vehicle will
pass in the following steps. First, we find the frequently visited
destination segments of a vehicle based on the visiting times
recorded in the history table. Then we use these road segments
as the elements of matrix A.

To form the accurate HMM, we apply the Forward-
Backward Algorithm [36] to compute the four correlative
variables defined in Section 3. Then, we can compute πi, aij
and bi(k) based on Equation (3), (4) and (5). Finally, the accu-
rate model λ = (π,A,B) is obtained, where (1, 2, ..., t, ...T )
represents the sequence of observations. At time t, the vehicle
moves along a new path and updates its history table.

The expected number of times that the vehicle stays at the
hidden state Si at time t is

πi = γt(i) (3)

The probability of transition from Si to Sj is calculated as:

aij =

∑T
t=1 ζt(i, j)∑T
t=1 γt(i)

(4)

The probability of observing the state Ok when the hidden
state is Sj .

bi(k) =

∑T
t=1,Ok

γt(j)∑T
t=1 γt(j)

(5)

In Table I, lj−1 is the previous road segment that the vehicle
has passed by, lj is the current road passing by, and dk is the
destination road segment.

TABLE I: The history table

lj−1 lj dk
· · · · · · · · ·
7 23 13

23 27 13
27 36 13
36 13 13
13 · · · · · ·

For example, the vehicle has arrived at the road segment 13
in Figure 2. There are three possible next road segments to
pass, 38, 41 and 80. Based on the transition matrix A in our
HMM, the probabilities from the current segment 13 to each
possible next segment are respectively a13−>38 = 0.3367,
a13−>41 = 0.1497, a13−>80 = 0.2561. Hence, the path
towards 38 is likely to be chosen as the next path. From the
matrix B, we can get b13(10) = 0.4793, b13(16) = 0.1145,
b13(20) = 0.0972, so the probability of passing the road 10 is
the largest. Consequently, the trip sequence of the vehicle can
be formed.

After getting the trip sequence, every vehicle can know
whether it may arrive at the destination of a packet it receives
with a high probability. Then, routing metrics based on the
trip sequence will be derived, which will be introduced in the
next section.

B. Routing Metrics

We define two routing metrics to evaluate a vehicle’s
capacity of forwarding packets, the delivery delay and the

TABLE II: Frequent notation

Notation Description
RSU i The i-th Road Side Unit
S Source
D Destination
vi The i-th vehicle
li The i-th road
lc The current location of vi
ld The destination location of D
L The packet length
gv The transmission rate of between vehicles

d (li, lj) The distance between i-th and j-th road
v The vehicle velocity

delivery probability. A neighbor can be chosen as the next
hop relay only if it can balance the two metrics.

Delivery Probability: This is the probability of successfully
delivering packets to the destination. Based on our prediction
model, we can get a rough route from the current node to
a destination D and estimate the delivery probability. Based
on Equation (4), we can deduce the following matrix of the
current node, where pi→j represents the probability from li to
lj , n is the number of links from lc to ld.

P[n×n] =


1 p1→2 · · · p1→n

p2→1 1 · · · p2→n

... · · · 1
...

pn→1 pn→1 · · · 1.


Since there is more than one continuous path from lc to

ld, we use Γj = 〈l1, l2, · · · , ln〉 to present the jth path, where
l1 = lc and ln = ld. The probability of reaching the destination
through Γj can be calculated as

Pi =
∏

i,j<n

pi→j . (6)

The probabilities for all possible paths to D will be cached
and the path with the maximum probability is selected as the
optimal one.

Delivery Delay: This is the time estimated for the current
vehicle to travel from the current location to the destination
location when the vehicle follows a specific path. The delivery
delay over a path Γj is the total time consumed for the vehicle
to reach the destination location. The delivery delay, dV 2D, is
defined as follows:

dV 2D =
L

gv
+

∑
li∈Γj

sli
v
, (7)

where L is the size of the packet, and gv is the transmission
rate of the current node. sli is the road length of li, and∑
li∈Γj

sli
v represents the time consumed to travel along along

Γj .

C. Routing Decision

In many cases, there are no RSUs deployed. In case that
RSUs are deployed, if all vehicles resort to RSUs for commu-
nications, it would overload RSUs and lead to significant per-
formance reduction. To ensure communications without RSUs
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and reduce the burden of RSUs, packets will be preferably
forwarded through V2V communications in our model. If
the vehicle density is low and there exist RSUs around, V2I
communications will be exploited. Finally, when neither V2V
no V2I is available, packets will be carried by moving vehicles
towards the destination taking advantage of their mobility.
Therefore, packet routing in PRHMM follows the following
basic principles:

(1) If a vehicle finds the destination within its transmission
range, it will send messages to the destination directly.

(2) Else, this vehicle tries to select at most other N vehicles
to route the packets based on the routing metrics.

(3) Else, if no vehicle exists in step (2), an appropriate RSU
should be chosen to forward packets.

(4) Else, this vehicle stores the packet until it meets an
appropriate next hop or drops the packet upon reaching the
maximum amount of time to hold the packet.

In order to reliably and timely deliver a packet to its
destination, it is important to find appropriate relays. The
following five steps will be applied in our model for a node
which holds a packet to select vehicles or RSUs as its relays
to continue forwarding packets to the destination D.

In step (1), D’s information including its identifier and
location ld is broadcasted to its neighbors before sending a
packet.

In step (2), each neighbor replies with the delivery delay,
delivery probability and its probability of encountering an
RSU.

In step (3), the node compares its own delay and delivery
probability with those of neighbors. To trade off between the
delivery probability and delivery delay in selecting a relay, we
define a metric Q

Q = α · p− (1− α) dv2v, (8)

where p represents the delivery probability to D and dv2v

means the delivery delay to D. The value of α will be
introduced in the next section. We determine if a neighbor
can be a candidate relay as follows:

relay = { yes if
Qneighbor

Qcurrent
> δ

no otherwise.

If the number of neighbors that are candidate relays is more
than N , we will choose the first N neighbors; Otherwise, we
will choose all the appropriate neighbors.

In step (4), if δ > 1 holds, a selected relay is expected to
ensure a packet to reach D with a better performance, and
packets are forwarded to it.

In step (5), if δ < 1 holds, packets may be sent to an
RSU. If the probability for the current node to encounter an
RSU is larger than all its neighbors, it will forward packets
once meeting an RSU; otherwise, packets will be sent to
the neighbor whose probability of encountering an RSU is
the highest. After receiving packets, an RSU will deliver
packets to the destination D if it is within the transmission
range; otherwise, the packets will be forwarded to its RSU
neighbor which is closest to D, and the process continues. If
packets reach an RSU that is closest to D but D is beyond its

TABLE III: Simulation Setup

Network area 10 ∗ 8km2

Simulation time 700k seconds
Mobility Model WorkingDayMovement
data rate of cars and RSUs 2Mbps
transmission range 200m
packet creating time 500s-600s
packet size ranges 10B - 4KB
Number of Office 30
Number of Home 141

TABLE IV: Settings for different sets

parameter Set1 Set2 Set3 Set4 Set5
α [0.1:0.9] 0.3 0.3 0.3 0.3

Vehicle No 50 [30;70] 50 50 50
RSU No 15 15 [0:40] 15 15

Speed (m/s) 2.4-13.6 2.4-13.6 2.4-13.6 [2:14] 2.4-13.6

transmission range, the RSU will send packets to a passing-by
vehicle which has a higher probability of reaching D.

V. PERFORMANCE EVALUATION

We use the Opportunistic Network Environment (ONE) sim-
ulator [39], a powerful tool developed in Java environment, to
evaluate our routing protocol. The ONE simulator is designed
for Delay Tolerant Networks (DTNs), and is comprised of both
mobility and routing modules.

Our simulation background is the city of Helsinki in Fin-
land. A node moves following the Working Day Movement
model, which captures the regular activities of human being,
including sleeping at home, working in office and visiting
some places. The model follows the movement pattern of
people and is verified by comparing its statistical features
with the real-world traces using the metrics such as the inter-
contact time, contact duration and the number of contacts
per hour [10]. There are two different ways for a person
to go from home to work: driving or taking the bus, with a
50% probability for each. Each person works in the office for
eight hours each day. At work, the movement is limited to 10
meters. At the end of the working day, a person may go back
home with 50% probability and 50% go to some other Points
of Interest (POI) for shopping and other things. Each person
almost follows the same track every day to the work. Buses
move with the Bus Movement model, running back and forth
along their routes with speeds between 7 and 10 m/s. The
stopping time for buses to pick up passengers is randomly
selected between 10 seconds and 30 seconds.

Table III shows the basic settings. The simulation run lasts
for 700k seconds and messages are created after the first
200k seconds, with the first 200k seconds used to collect
mobility traces. Each simulation is repeated 10 times with
different random seeds. The transmission mode switching does
not depend on the mobility or the traffic. The overall system
is modeled as an alternating renewal process, where vehic-
ular connectivity cyclically alternates among three phases,
no connectivity, short-range connectivity without any RSU,
long-range connectivity with a RSU. Table IV shows different
settings for specific simulation sets.



7

We compare PRHMM with PROPHET [18], GRPL [19],
and another V2X scheme [6]. PRHMM predicts a vehicle’s
future locations using HMM and selects the relays based
on their probability of delivering packets to the destination.
We choose a prediction-based scheme PROPHET [18] as a
reference. In PROPHET, every node records the encounter
history to form a delivery predictability vector, based on which
the node can determine how likely it is able to deliver a
message to the destination. Messages are only sent to the
node with a higher chance of delivering the messages to the
destination. PRHMM is a geographic routing scheme which
exploits the history trace to predict the future location for data
forwarding. Consequently, we compare PRHMM with another
geographic routing scheme GRPL [19]. In GRPL, packets are
forwarded to a neighbor node closest to the destination, where
the neighboring vehicle locations are predicated based on their
historical location and velocity data obtained from the location
server. PRHMM exploits hybrid vehicular communication with
automatic switching between V2V and V2I to increase the
network connectivity. We thus also compare PRHMM with a
V2X scheme [6]. The following metrics are used to compare
these schemes:

- Delivery ratio: The ratio of data packets successfully
delivered to destination nodes out of all the unique messages
created.

- Delivery latency: The average delay from the time when a
message is created to the time when it is successfully delivered
to the destination.

- Delivery overhead: The average number of packets
generated for each message to be sent to the destination
successfully excluding the control packets.

- Buffer occupancy: The average amount of buffer occupied
per hour per vehicle.

- Algorithmic complexity: To evaluate the computational
speed of an algorithm, we introduce a numerical function T (n)
to represent the number of times that the basic operation is
repeated as a function of n.

In the remaining of this section, we provide a number of
studies to evaluate the performance of our proposed scheme.

A. Effect of α

Fig. 3: effect of α

The parameter α is used as a weight value that impacts the
delivery probability and the delivery delay when making the
routing decision. In this set of simulations, α changes from 0.1
to 0.9. Figure 3 shows the change trend between the delivery

latency and a. Obviously, the delivery ratio increases as α
becomes larger. When α = 0.9, the delivery ratio reaches the
maximum.

B. Effect of vehicle density

Fig. 4: Delivery ratio with different vehicle numbers

Fig. 5: Delivery latency with different vehicle numbers

Fig. 6: Overhead with different vehicle numbers

We vary the number of vehicles from 40 to 70. In Figures 4
and 5, our PRHMM is seen to possess the highest delivery
ratio and the lowest latency regardless of the vehicle density.
Because vehicles can resort to RSUs to forward packets in
PRHMM and V2X, they can have higher delivery ratio and
lower latency than PROPHET and GRPL. V2X heavily rely on
RSUs for forwarding with a lower chance of using vehicles.
PRHMM takes advantage of the vehicles to avoid overloading
RSUs to reach the destination thus having a lower latency.
Purely relying on V2V, it is hard for vehicles in PROPHET
or GRPL to find a relay to forward packets. In GRPL, the
future location of a relay is predicted based on its location at
a previous time instant thus the location is time-lagged. It is
well known that in geographic routing, the destination location
is crucial for making the forwarding decisions. If the location
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information is time-lagged and deviates from the real one, a
relay node selected may not be able to forward packets to the
destination. In addition, it may be hard to find a relay that
has a lower geographic distance to the destination in many
cases. Therefore, PRHMM can achieve higher delivery ratio
and lower latency than V2X, PROPHET and GRPL. From
Figure 5, we can see the delivery latency keeps stable for
all four schemes. PRHMM can reduce the latency 11.2%
compared to V2X, 15.5% compared to PROPHET and 20%
compared to GRPL.

In Figure 6, the overhead of PRHMM is seen to be
smaller than V2X and PROPHET. In PROPHET, packets are
forwarded to nodes which are predicted to have a higher
chance of encountering the destination. In PRHMM, packets
are forwarded to nodes which have a higher probability of
arriving at the destination. In V2X, vehicles only forward
packets to the nearest neighbors.

When with 70 vehicles, PRHMM’s overhead is 41.97% and
15.6% less than those of V2X and PROPHET, respectively.
Figure 6 shows that GRPL possesses the smallest overhead.
In GRPL, every vehicle should upload its states (location,
velocity, etc) to central server periodically, however, this
overhead is not taken into account.

C. Effect of RSU number

Fig. 7: Delivery ratio with different number of RSUs

Fig. 8: Delivery latency with different number of RSUs

We only compare PRHMM and V2X as they exploit use of
RSUs. In PRHMM, packets are preferably forwarded through
V2V communications. If the vehicle density is low and there
exist RSUs around, V2I communications will be exploited.

Figures 7 and 8 show our PRHMM in most cases performs
better than V2X both in terms of the delivery ratio and latency
when there exist RSUs. When there are fewer RSUs, packets

Fig. 9: Delivery overhead with different RSU

in V2X are spread between vehicles within a cluster. While in
PRHMM, only the vehicles with better performance metrics
are selected as relays. With fewer candidate relays to choose
from, RSU has a higher hance of being resorted to. Due to
the competition in accessing the limited number of RSUs,
PRHMM has a lower delivery ratio and a higher delivery
latency than V2X. With the increase of RSUs, PRHMM
performs better than V2X, because PRHMM has more strict
rule to choose the next hops and only appropriate relays
(including RSUs and vehicles) are selected.

In Figure 9, the overhead of PRHMM is seen to be lower
than that of V2X. As only the neighbors with better forwarding
metrics can be candidate relays, fewer relays are chosen in
PRHMM, which leads to fewer packets in the network. With
more RSUs, additional RSUs may be also selected to forward
packets, causing the overhead to increase in both V2X and
PRHMM. The overhead of PRHMM is 50% less than that in
V2X because only appropriate relays are chosen in PRHMM.
After the number of RSUs is more than 10, the delivery
overhead is stable in PRHMM, as packets will be preferably
forwarded through V2V communications thus the delivery has
less dependence on the number of RSUs.

D. Effect of vehicle speed

In this set of simulation, Figure 10 and Figure 11 show that
the delivery ratio decreases and delivery latency increases. As
a vehicle moves faster, it is more difficult to find appropriate
neighbors to forward packets and vehicles have less time
interval to forward messages.

For example, a neighbor may move away while the packets
are on its way to the neighbor, which causes a lower delivery
ratio and higher delivery latency. However, the delivery ratio
of PRHMM is 16.05% higher than that of V2X and 66.44%
higher than that of GRPL. The delivery latency of PRHMM
is 12.1% lower than that of V2X, 7% lower than that of
PROPHET, and 18.26% lower than that of GRPL. GRPL is a
geometric routing protocol, where a node makes a forwarding
decision based on the destination location retrieved from the
location server. As the node locations are updated to the server
periodically, the accuracy will reduce when nodes move faster,
which compromises the delivery ratio and delay of GPRL.
With the support of RSUs, the performance of PRHMM is
less impacted.
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Fig. 10: Delivery ratio with different vehicle speed

Fig. 11: Delivery latency with different vehicle speed

E. Buffer occupancy

In Figure 12, we compare the buffer occupancy with the
buffer size set to 60K. When the number of messages sent
is 400, compared to V2X, PROPHET and GRPL, the buffer
occupancy of PRHMM is 68.03%, 52.72% and 34.92% lower
respectively. PRHMM chooses a limited number of relays as
next hops based on the metric built using HMM. In PROPHET,
messages are only sent to the node with a higher chance of
delivering them to the destination, and this node may be even
farther away from the destination. In GRPL, messages are only
sent to a neighbor which is closest to the destination. The
future location of a neighbor is predicted based on its history
location and velocity obtained at a previous time instant from
the location server. Because the location information is time-
lagged and deviates from the real one, a selected relay may
not be appropriate to forward packets to the destination, which
causes more copies to be transferred. In the V2X algorithm,
the node simply forwards each packet to the nearest neighbor,
which may not have a higher chance of encountering the
destination, or not have the closer distance to the destination.
With inefficient packet forwarding, this algorithm has the high-
est buffer occupancy. In the worst case with 1000 messages
sent, the buffer occupancy of PRHMM is 52.32%, 26.10%
and 22.87% lower than that of V2X, PROPHET and GRPL
respectively. The results demonstrate the effectiveness of our
proposed algorithm in tracking the delivery states of vehicles
and guiding the routing.

F. Algorithmic complexity

We compare the algorithm complexity of all routing algo-
rithms and summarize the results in Table V.

PROPHET predicts the delivery probability based on the
historical encounter information between nodes, and applies

Fig. 12: Buffer occupancy

this predicted value as the routing metric. Two encounters
exchange the summary vectors, each containing the delivery
predictability of its sender to other nodes in the network.
As each of the two encounters needs to update its delivery
predictability to all other nodes in the network, this process
incurs a complexity of O(n). A node will simply forward
its packets to the encountered node which has a higher
delivery predictability. Consequently, the overall complexity
of PROPHET is O(n).

GRPL is a geographic information-based routing scheme.
Before sending a new packet, the source node queries the
location server for the current location of the destination and
appends it to the packet header. It uses a greedy forwarding
algorithm for the choice of relay nodes and the neighbor
closest to the destination is selected as the next hop. It includes
a location prediction, where a node predicts the future location
of each neighbor based on its history location and velocity.
For a network of n nodes, the prediction complexity is O(n).
During the packet forwarding, the node chooses the neighbor
closest to the destination as the next hop. The forwarding
complexity is O(n). Consequently, the algorithm complexity
of GRPL is O(n).

The V2X algorithm aims to achieve the seamless connectiv-
ity by switching between V2I and V2V. The propagation delay
between two vehicles is used as the routing metric. There are
3 phases in the V2X algorithm. In the no-connection phase,
no V2V or V2I is available so the packet must be carried by
the node itself. The time complexity is O(1). In the short-
range connection phase, V2V is available and the messages
are forwarded to the closest neighbor, with the assumption
that this takes the smallest propagation time to forward the
packet. For a network of n nodes, the complexity is O(n). In
the long-range connection phase, V2I is available. As the next
hop is an RSU, the complexity is in a constant O(1) time.
Therefore, the final complexity of V2X reaches O(n).

The core of our PRHMM algorithm is to establish a
hidden Markov model, using the forward-backward algorithm
to model the position information and observation state. As
defined before, N is the number of hidden states which is the
number of road segments a vehicle may reach, and M is the
number of observable states corresponding to the number of
road segments the vehicle has passed. PRHMM is composed
of movement prediction and routing decision. During the
predictive process, the forward (or backward) variable for a
certain time depends on the N states of the previous time
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(or the next time), and it requires N cycles to compute the
correlation parameters αt(i), βt(i), ζt(i, j) and γt(i). There-
fore, the time complexity of building the prediction model is
O(N2). In addition, as we use the observable state sequence
O = {O0, O1, ..., OM−1} to establish the prediction model,
the complexity of the sequence of observations is proportional
to M . Consequently, the complexity of building HMM is
O(M ∗N2) time. Because each observation state corresponds
to a hidden state, N is equivalent to M , so the complexity of
building HMM is O(M3). During the routing decision, if no
predicted vehicle exists, the packet is sent to the nearby RSU
in a constant time O(1); otherwise, as PRHMM can select
multiple relays, the node sorts the neighbors in the descending
order of Q in Equation (8). The complexity is O(n lg n) with n
representing the number of vehicles. Accordingly, the overall
complexity of PRHMM is O(M3 + n lg n). The number of
road segments M is generally much smaller than the total
number of vehicles in the network n.

From the above discussion, we can get Table V. The
complexity estimation is very conservative. In reality, these
operations are related to relay selection and performed with
only neighboring nodes, whose number is much smaller than
n. The current processors can easily handle the computations
of all these algorithms. It is important that PRHMM can
achieve much more reliable and faster message distributions.

TABLE V: Complexity of the routing algorithm

Algorithm Complexity
PROPHET O(n)
GRPL O(n)
V2X O(n)
PRHMM O(n lgn+M3)

VI. CONCLUSION AND FUTURE WORK

In this paper, we propose a hybrid vehicular routing scheme
which exploits both V2V and V2I to improve the transmission
performance in VANET. We adopt HMM to predict the vehi-
cle’s future path based on the historical mobility pattern. Based
on the transition matrix of HMM, we derive the probabilities
for a vehicle to move from its current segment to each possible
next segment. We select the forwarding relay by trading off
between the delay and probability for neighboring vehicles
to forward packets to the destination.The transmission will be
switched from V2V to V2I if no immediate relay can be found
but there exists an RSU within the communication range, and
to opportunistic routing otherwise.

We have performed extensive simulations to compare
PRHMM with several other state-of-the-art schemes in de-
livery ratio, delivery latency, delivery overhead, and buffer
occupancy. We have also analyzed the algorithmic complexity
to evaluate the computational speed of each algorithm.

In our future work, we plan to have a real-world implemen-
tation to further verify the performance.
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