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Abstract— The inference of the network traffic matrix from
partial measurement data becomes increasingly critical for var-
ious network engineering tasks, such as capacity planning, load
balancing, path setup, network provisioning, anomaly detection,
and failure recovery. The recent study shows it is promising to
more accurately interpolate the missing data with a 3-D tensor as
compared with the interpolation methods based on a 2-D matrix.
Despite the potential, it is difficult to form a tensor with measure-
ments taken at varying rate in a practical network. To address
the issues, we propose a Reshape-Align scheme to form the
regular tensor with data from variable rate measurements, and
introduce user-domain and temporal-domain factor matrices
which take full advantage of features from both domains to
translate the matrix completion problem to the tensor completion
problem based on CANDECOMP/PARAFAC decomposition for
more accurate missing data recovery. Our performance results
demonstrate that our Reshape-Align scheme can achieve signif-
icantly better performance in terms of several metrics: error
ratio, mean absolute error, and root mean square error.

Index Terms— Internet traffic data recovery, matrix comple-
tion, tensor completion.

I. INTRODUCTION

ATRAFFIC matrix (TM) is often applied to track the
volume of traffic between origin-destination (OD) pairs
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in a network. Estimating the end-to-end TM in a network is an
essential part of many network design and traffic engineering
tasks, including capacity planning, load balancing, path setup,
network provisioning, anomaly detection, and failure recovery.

Due to the lack of measurement infrastructure, direct and
precise end-to-end flow traffic measurement is extremely dif-
ficult in the traditional IP network [1]. Thus previous work
on TM estimation focus on inferring the TM indirectly from
link loads [2], [3], and the methods taken are often sensitive
to the statistical assumptions made for models and the TMs
estimated are subject to large errors [4].

As an alternative, TM is directly built through the collection
of the end-to-end flow-level traffic information using flow
monitoring tools such as Cisco NetFlow, and the recent
OpenFlow [5]. Unlike commodity switches in traditional IP
networks, flow-level operations are streamlined into OpenFlow
switches, which provides the possibility of querying and
obtaining the end-to-end flow traffic statistics. Despite the
progress in flow-level measurements, the collection of the
traffic information network wide to form TM at fine time scale
still faces many challenges:

• Due to the high network monitoring and communication
cost, it is impractical to collect full traffic volume infor-
mation from a very large number of points. Sample-based
traffic monitoring is often applied where measurements
are only taken between some random node pairs or at
some of the periods for a given node pair.

• Measurement data may get lost due to severe communi-
cation and system conditions, including network conges-
tion, node misbehavior, monitor failure, transmission of
measurement information through an unreliable transport
protocol.

As many traffic engineering tasks (such as anomaly detection,
traffic prediction) require the complete traffic volume informa-
tion (i.e., the complete traffic matrix) or are highly sensitive
to the missing data, the accurate reconstruction of missing
values from partial traffic measurements becomes a key prob-
lem, and we refer this problem as the traffic data recovery
problem.

Various studies have been made to handle and recover the
missing traffic data. Designed based on purely spatial [6]–[8]
or purely temporal [9], [10] information, the data recovery
performance of most known approaches is low. Recently
matrix-completion-based algorithms are proposed to recover
the missing traffic data by exploiting both spatial and temporal
information [11]–[15]. Although the performance is good
when the data missing ratio is low, the performance suffers
when the missing ratio is large.
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Based on the analyses of real traffic trace, our recent work
in [16] reveals that the traffic data have the features of tem-
poral stability, spatial correlation, and periodicity. Specially,
the periodicity features indicate that users usually have similar
Internet visiting behaviors at the same time of a day, so
the measurements for an OD pair taken at the same time
slots of two consecutive days are similar. For more accurate
missing data interpolation, we can take advantage of these
features to concurrently consider the traffic of different days
and model the traffic data as a 3-way tensor. Thus, we can
infer the complete traffic matrices of multiple days through
tensor completion [16].

Tensors are the higher-order generalization of vectors and
matrices. Tensor-based multilinear data analysis has shown
that tensor models can take full advantage of the multilinear
structures to provide better data understanding and information
precision. Tensor-based analytical tools have seen applica-
tions for web graphs [17], knowledge bases [18], chemomet-
rics [19], signal processing [20], traffic data management in
transportation [21], [22], and computer vision [23], etc.

Compared with matrix-based data recovery, the tensor-
based approach can better handle the missing traffic data and
will be used in this paper. Although promising, the traffic
tensor model in [16], [24], and [25] is built with a strong
assumption that the network monitoring system adopts a static
measurement strategy by taking traffic samples at a fixed rate.
However, in a practical network monitoring system, the rate
of measurements is often adapted according to the traffic
conditions (i.e., varying in different periods of a day) and
some traffic engineering requirements (i.e., to more timely
detect anomaly). The variable rate measurements make it hard
to form a regular traffic tensor for further processing. Some
challenges due to the variation of the measurement rate are:

• Difficult to align the matrices of different days.
The traffic matrices of different days would have different
number of columns, which makes it hard to integrate the
traffic matrices of different days to form a standard tensor
and recover the missing data.

• Difference in the length of the time slot. The sample
data in a column of the traffic matrix may correspond to
a time slot with a different length, which further brings
the difficulty of recovering the missing items through the
temporal and spatial correlation among traffic data.

Despite the challenges, the traffic matrix has some special
features: 1) The traffic matrices of different days record the
data of the same OD pairs in the network, and 2) The user
traffic data follow a daily schedule. Therefore, there should
exist some common user-domain and time-domain features
that can be exploited for more accurate interpolation.

In this paper, we propose a novel traffic data recovery
scheme in the presence of variation of traffic measurement
rate. Our scheme will first construct a regular tensor with the
reshaping and alignment of traffic matrices with inconsistent
number of columns and different length of time slots, and then
enable more accurate traffic data recovery taking advantage
of the data correlation in a three dimensional tensor. The
contributions of this paper can be summarized as follows:

• We propose a matrix division algorithm for time align-
ment, which exploits our novel time rule to efficiently
divide the traffic matrices into sub-matrices with each
corresponding to one time segment with the same sam-
pling rate.

• We reshape and align traffic matrices from measurements
with variable rates to form a regular tensor, taking
advantage of multi-dimensional data correlation for more
accurate traffic data recovery. To address the challenge of
integrating matrices of different dimensions into a tensor,
we introduce user-domain and temporal-domain factor
matrices to translate the problem of matrix completion
for different days to the problem of tensor completion
based on CANDECOMP/PARAFAC (CP) decomposi-
tion [26], [27].

• We compare the proposed Reshape-Align scheme with
the state of art matrix-completion and tensor completion
algorithms, and our results demonstrate that our scheme
can achieve significantly better performance in terms of
several metrics: error ratio, mean absolute error (MAE),
and root mean square error (RMSE).

To the best of our knowledge, our Reshape-Align scheme is
the first one that considers the traffic recovery problem under
variable rate measurements in a practical network system,
and provides a novel reshaping and alignment technique that
allows the integration of inconsistent traffic matrices to form
a standard tensor for more accurate missing data recovery.

The rest of the paper is organized as follows. We introduce
the related work in Section II. The preliminaries of tensor
are presented in Section III. We present the problem and our
overview solution in Section IV. The proposed algorithms on
matrix division for time alignment, and matrix reshaping and
alignment for tensor completion are presented in Section V and
Section VI, respectively. Finally, we evaluate the performance
of the proposed algorithm through extensive simulations in
Section VIII, and conclude the work in Section IX.

II. RELATED WORK

A set of studies have been made to handle the missing
traffic data. Designed based on purely spatial [6]–[8] or purely
temporal [9], [10] information, most of the known approaches
have a low data recovery performance.

To capture more spatial-temporal features in the traffic
data, SRMF [11] proposes the first spatio-temporal model of
traffic matrices (TMs). To recover the missing data, SRMF is
designed based on low-rank approximation combined with the
spatio-temporal operation and local interpolation. Following
SRMF, several other matrix recovery algorithms [12]–[15],
[28]–[31] are proposed to recover the missing data from
partial traffic or network latency measurements. Compared
with the vector-based recovery approaches [6]–[10], as a
matrix could capture more information and correlation among
traffic data, matrix-based approaches achieve much better
recovery performance.

However, a two-dimension matrix is still limited in captur-
ing a large variety of correlation features hidden in the traffic
data. For example, although the traffic matrix defined in [11]
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can catch the spatial correlation among flows and the small-
scale temporal feature, it can not incorporate other temporal
features such as the feature of the traffic periodicity cross
day. Therefore, a matrix is still not enough to capture the
comprehensive correlations among the traffic data, and the data
recovery performance under the matrix-based approaches can
be improved.

To further utilize the traffic periodicity feature for accurate
traffic data recovery, the recent studies [16], [24] combine
the traffic matrices of different days to form a tensor to
recover the missing data. Several tensor completion algo-
rithms [32]–[35] are proposed for recovering the missing
data by capturing the global structure of the data via a high-
order decomposition (such as CANDECOMP/PARAFAC (CP)
decomposition [26], [27] and Tucker decomposition [36]).
Tensor has proven to be good data structure for dealing with
the multi-dimensional data in a variety of fields [17]–[23].
Very few recent studies [16], [24], [25], [37], [38] begin to
deal with Internet data such as interfering the missing data
and detecting anomaly through tensor decomposition, among
which, [16], [24], [25], [37] are our previous studies. Although
promising, the traffic tensor model in these studies is built with
a strong assumption that the network monitoring system adopts
a static measurement strategy with a fixed rate to take data
samples. The proposed methods may fail to work in a practical
network monitoring scenario where the rate of measurements
varies over time.

To address this practical challenge, we propose a novel
Reshape-Align scheme with several novel techniques, includ-
ing matrix division for time alignment, mechanism to reshape
and align matrices, and the technique to solve the matrix
completion problem through tensor CP decomposition. The
simulation results demonstrate that Reshape-Align scheme can
achieve significantly better performance in terms of several
metrics: error ratio, mean absolute error (MAE), and root mean
square error (RMSE).

III. PRELIMINARIES

The notation used in this paper is described as follows.
Scalars are denoted by lowercase letters (a, b, · · ·), vectors
are written in boldface lowercase (a,b, · · ·), and matrices
are represented with boldface capitals (A,B, · · ·). Higher-
order tensors are written as calligraphic letters (X ,Y, · · ·). The
elements of a tensor are denoted by the symbolic name of the
tensor with indexes in subscript. For example, the ith entry of
a vector a is denoted by ai, element (i, j) of a matrix A is
denoted by aij , and element (i, j, k) of a third-order tensor X
is denoted by xijk .

Definition 1: A tensor is a multidimensional array, and is
a higher-order generalization of a vector (first-order tensor)
and a matrix (second-order tensor). An N -way or N th-order
tensor (denoted as A ∈ R

I1×I2×···×IN ) is an element of the
tensor product of N vector spaces, where N is the order of
A, also called way or mode.

The element of A is denoted by ai1,i2,··· ,iN , in ∈
{1, 2, · · · , In} with 1 ≤ n ≤ N .

Definition 2: Slices are two-dimensional sub-arrays, defined
by fixing all indexes but two.

Fig. 1. Tensor slices.

In Fig. 1, a 3-way tensor X has horizontal, lateral and frontal
slices, which are denoted by Xi::, X:j: and X::k, respectively.
In this paper, we denote the frontal slice X::k as Xk.

Definition 3: The outer product of two vectors a ◦ b is the
matrix defined by: (a ◦ b)ij = aibj .

Definition 4: The outer product A ◦ B of a tensor A ∈
R

I1×I2×···×IN1 and a tensor B ∈ R
J1×J2×···×JN2 is the tensor

of the order N1 + N2 defined by

(A ◦ B)i1,i2,··· ,iN1 ,j1,j2,··· ,jN2
= ai1,i2,··· ,iN1

bj1,j2,··· ,jN2
(1)

for all values of the indexes.
Since vectors are first-order tensors, the outer product of

three vectors a ◦ b ◦ c is a tensor given by:

(a ◦ b ◦ c)ijk = aibjck (2)

for all values of the indexes.
Definition 5: A 3-way tensor X is a rank one tensor if

it can be written as the outer product of three vectors, i.e.
X = a ◦ b ◦ c.

Definition 6: The rank of a 3-way tensor is the minimal
number of rank one tensors, that generate the tensor as their
sum, i.e. the smallest R, such that X =

∑R
r=1 ar ◦ br ◦ cr.

Definition 7: The idea of CANDECOMP/PARAFAC (CP)
decomposition is to express a tensor as the sum of a finite
number of rank one tensors. A 3-way tensor X ∈ R

I×J×K

can be expressed as

X =
∑R

r=1
ar ◦ br ◦ cr, (3)

with an entry calculated as

xijk =
∑R

r=1
airbjrckr (4)

where R > 0, air, bjr , ckr are the i-th, j-th, and k-th entry
of vectors ar ∈ R

I , br ∈ R
J , and cr ∈ R

K , respectively.
By collecting the vectors in the rank one components,

we have tensor X ’s factor matrices A = [a1, · · · ,aR] ∈
R

I×R, B = [b1, · · · ,bR] ∈ R
J×R, and C = [c1, · · · , cR] ∈

R
K×R. Using the factor matrices, we can rewrite the CP

decomposition as follows.

X =
∑R

r=1
ar ◦ br ◦ cr = [[A,B,C]] (5)

Fig. 2 illustrates the CP decomposition. In this paper,
we design traffic data recovery algorithm based on the CP
decomposition.

IV. PROBLEM DESCRIPTION AND SOLUTION OVERVIEW

As the matrix size of each day is different due to vari-
able rate measurements, we cannot use tensor to recover the
missing data directly. In this section, we first formulate the
traffic data recovery problem as a matrix factorization problem,
and then present the benefit and methodology of transforming
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Fig. 2. CP decomposition of three-way tensor as sum of R outer products
(rank one tensors). CP decomposition can be written as a triplet of factor
matrices A, B, C, i.e, the r-th column of which contains ar , br , and cr ,
respectively. The entry xijk can be calculated as the sum of the product of
the entries of the i-th row of the matrix A, the j-th row of the matrix B, and
the k-th row of the matrix C.

this problem further to the tensor factorization problem along
with the difficulty of this transformation in a practical network
monitoring system.

A. Empirical Study With Real Traffic Data

In order to infer the missing monitoring data with matrix
completion, the rank of the matrix has to be low. We first
validate that Internet traffic data have the low rank feature.

For a network consisting of N nodes, there are n = N ×N
OD pairs. We define a monitoring data matrix, Xk ∈ R

n×mk ,
to hold the traffic data measured in the kth day for k =
1, 2, · · · , K . mk is the total number of time slots captured
in the kth day. In the matrix, a row corresponds to an OD
pair, a column corresponds to a time slot, and the (ij)-th entry
xk:ij represents the monitoring data of the OD pair i at the
time slot j.

According to the singular value decomposition (SVD),
the rank of a matrix X (denoted by r) is equal to the number
of its non-zero singular values. In this paper, we call this as
the “precise rank”. Although this rank definition is of high
theoretical interest, it is not realistic to use this definition
for the practical data. The calculation of the precise rank of
the matrix is an ill-posed problem in a practical environment
because arbitrary small perturbations of matrix elements may
change the rank [39].

According to PCA (Principal components analysis), if a
matrix has low-rank, its top k singular values constitute the

total variance, that is,
k∑

i=1

σ2
i ≈

r∑

i=1

σ2
i , where σi is the i-th

singular value of the matrix. Consequently, we define the ratio

g (k) =
k∑

i=1

σ2
i /

r∑

i=1

σ2
i to indicate what fraction of the total

variance (Frobenius norm) in X is represented by the rank-k

truncated SVD of the matrix X. That is, X ≈
k∑

i=1

σiuivT
i .

We analyze two public traffic traces, Abilene [40] and
GÈANT [41]. For each trace, we randomly select data from
three days. Fig. 3 plots the fraction of the total variance
captured by the top k singular values of the data matrices,
with one small figure corresponding to one day. We find that
the top 20 singular values capture nearly 100% variance of
the monitoring data matrices, which confirms that they are
low-rank and provides a prerequisite for using the matrix
completion.

Fig. 3. Fraction captured by top k singular values. (a) Abilene. (b) GÈANT.

According to the results, we set the rank r to preserve 99%
of the data variability of the traffic matrix. As matrices of
different days record the traffic data of the same network with
the same users, different matrices have similar features in user
domain and temporal domain, thus similar ranks.

In Section V, we divide data matrices across different days
into multiple groups of sub-matrices with the rank rg denoting
the rank of the g-th group. Let rg

1 , rg
2 , · · · , rg

K denote the
ranks of the sub-matrices in the group g of recent K days.
As each sub-matrix records the traffic data of same users in
the same time duration of different days, it should have the
same features in the user domain and temporal domain, and
thus the rank of the sub-matrices in the same group should be
same or at least similar if there exist some traffic measurement
disturbances. That is, rg

1 ≈ rg
2 ≈ · · · ≈ rg

K . To reduce the
parameter training cost, among the K sub-matrices, we can
select l sub-matrices and set rg to be the maximum rank of
the selected sub-matrices. In our simulation, we set l = 3.

B. Traffic Recovery Problem Based on Matrix Factorization

To reduce the network monitoring overhead, only a subset
of measurements are taken. We apply the matrix factorization
to infer the missing entries of the K matrices corresponding
to recent K days. A monitoring matrix Xk with rank r can
be factored into a production of an n× r factor matrix Uk for
the user domain, an r× r diagonal matrix Σk, and an mk× r
factor matrix Vk for the time domain. To infer the missing
entries of K matrices, we can minimize the loss function as
follows:

min
Uk,Σk,V

k

f (Uk,Σk,Vk)

s.t. f (Uk,Σk,Vk) =
1
2

K∑

k=1

∥
∥
∥
(
Xk −UkΣkVT

k

)
Ωk

∥
∥
∥

F

2

(6)

where f (Uk,Σk,Vk) is the loss function defined based on
the Frobenius norm ��F and Ωk is the index set of the
observed samples of the matrix Xk.

After obtaining the factor matrix Uk , the diagonal
matrix Σk, and the factor matrix Vk, the monitoring matrix
can be recovered as follows:

X̂k = UkΣkVT
k (7)

where X̂k denotes the recovered traffic matrix.
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Fig. 4. Tensor based traffic model.

Fig. 5. Traffic matrices with inconsistent number of columns.

C. From Matrix Factorization to Tensor Factorization

As traffic data are observed to possess the features
of temporal stability, spatial correlation, and periodicity
features [16], [24], rather than only recovering the data
through the two dimensional matrix, it is promising to
more accurately interpolate the missing data with a three-
dimensional tensor (Fig. 4) taking advantage of the periodicity
feature of traffic across days. Despite the potential, in a prac-
tical network monitoring system, the measurement strategy
may vary according to the traffic conditions. There exist some
challenges to combine multiple matrices to form a regular
tensor:

• Inconsistent number of columns across the matrices.
As a column represents a sample in a time slot, the
variation of measurement rate in different days would
make their traffic matrices to have different number of
columns (Fig. 5(a)). This introduces the challenge to
forming the standard tensor with these matrices.

• Inconsistent length of time slot within the matrix.
Different measurement rate makes columns in a matrix
to correspond to different time-slot lengths (as shown
in Fig. 5(b)), which further brings the difficulty of recov-
ering the missing items through the temporal and spatial
correlation among traffic data.

D. Characteristics in Multiple Data Matrices

Although the variation of the measurement rate brings the
challenge of integrating the measurement matrices of different
days to form a regular tensor, these matrices have some
characteristics that can be exploited for more accurate data
recovery.

• Traffic matrices of different days record the measurement
data of the same OD pairs in the network, and the
row indexes of these matrices are the same. Thus these
matrices should have some common OD-domain (i.e.,
user-domain) features, so in (9), we use the same factor
matrix Ug for different traffic matrices.

Fig. 6. Overview solution of Reshape-Align scheme.

• Although the number of columns and the time-slot
lengths may be different for matrices of different days,
the user traffic in these matrices vary following a daily
schedule in the temporal domain,
as users usually have similar Internet access behaviors.

To exploit tensor-based algorithms for more accurate miss-
ing data inference, we would like to investigate and take
advantage of these common features to reshape and align
traffic matrices with inconsistent number of columns and time-
slot lengths to form regular tensors. The issues we need to
address are: 1) How could we exploit the common time-
domain features hidden in the traffic data within a day to align
matrices across days? and 2) How to exploit the user domain
and temporal domain features to reshape the matrices across
days to form the tensor?

E. Solution Overview

To fully exploit the common features hidden in monitoring
matrices for more accurate missing data interpolation, we pro-
pose a matrix reshaping and alignment scheme in the presence
of varying network measurement rate.

Fig. 6(a) shows example traffic matrices to recover. The time
slots in a matrix may have different lengths. To well exploit
the common time-domain features hidden in the traffic data
within a day, the matrices should be divided and aligned in the
physical time domain as explained in Section V. Accordingly,
we propose a matrix division algorithm with the example
shown in Fig. 6 (b), where the matrices are divided in temporal
domain to satisfy the time alignment requirement. The sub-
matrices formed after the division (in Fig. 6 (c)) will be further
utilized to form tensors.

To exploit correlations across days for more accurate data
recovery, we further translate the factor matrices of each sub-
matrix to common ones taking advantage of the user domain
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Fig. 7. Time alignment problem.

and temporal domain features hidden in the sub-matrices, and
then integrate the reshaped and aligned sub-matrices to form
the tensor in Fig. 6 (d). We apply the tensor completion
algorithm to interpolate the missing data in Fig. 6 (e), and then
take the reverse procedure of reshaping to obtain the recovered
sub-matrices (in Fig. 6 (f)), which will be combined to form
the final recovered large matrices (in Fig. 6 (g)).

V. MATRIX DIVISION FOR TIME ALIGNMENT

We first present our matrix division algorithm, then refor-
mulate the recovery problem for the sub-matrices by taking
consideration of the common features of matrices in both the
user (OD) domain and the time domain.

A. Matrix Division

Although the difference in the traffic measurement rate
may result in different time-slot lengths, we can still observe
that the user traffic patterns often change daily following
the user daily Internet access behaviors. To well exploit the
time-domain features hidden in the traffic data, we divide
daily measurements into multiple time segments each having
a different measurement rate.

Fig. 7 utilizes two examples to illustrate the time alignment
problem, where X1, X2, X3, X4 denote the measurement
traffic matrices of four days. In Fig. 7(a), a fixed measurement
rate is adopted in X1 for the whole day. For matrices X2, X3,
X4, two different measurement rates are assumed for the first
half day and the next half day, respectively. To align the data in
the time domain, we divide the whole day time into two time
segments, each corresponding to one half day and adopting the
same measurement strategy. Accordingly, the original traffic
matrices are divided into two parts with X1 =

[
X1

1,X
2
1

]
,

X2 =
[
X1

2,X
2
2

]
, X3 =

[
X1

3,X
2
3

]
, X4 =

[
X1

4,X
2
4

]
. Similarly,

in Fig. 7(b), the time in the day is divided into three time
segments and thus original traffic matrices are divided into
three parts with X1 =

[
X1

1,X
2
1,X

3
1

]
, X2 =

[
X1

2,X
2
2,X

3
2

]
,

X3 =
[
X1

3,X
2
3,X

3
3

]
, X4 =

[
X1

4,X
2
4,X

3
4

]
.

B. Time Division and Alignment

As the network monitoring center has the knowledge of
the measurement strategy, it can easily perform such time
division and alignment. To facilitate the alignment process,
the center will record the changes of measurement rate in
different days. When the measurement rate is largely changed
in a day, the center inserts a time spot with the date of the

Fig. 8. A time rule to record measurement rate change. This example shows
the time rule state of Fig. 7(b). Besides the start (0:00) and the end (24:00),
there are two time spots in the time rule. One links the measurement rate
information of the 3rd day (i.e., X3) and the fourth day (i.e., X4) as these two
days change their measurement rates at this time spot as shown in Fig. 7(b).
The other links the measurement rate information of the 2nd day (i.e., X2),
the 3rd day (i.e., X3), and the fourth day (i.e., X4). As the first day (i.e., X1)
adopts the static measurement rate in the whole day, X1 does not correspond
to any time spot.

record and the measurement rates before and after the time
spot. Obviously, the time duration between two time spots
corresponds to one segment, and thus the time division can be
easily obtained based on the inserted time spots. Fig. 8 shows
the time spot of Fig. 7(b).

Although continuous network monitoring will provide a
sequence of traffic matrices with each for one day, for more
accurate recovery and analysis of the traffic data, network
engineering tasks usually only consider the traffic data in
recent days. In our design, with the recent days selected, a time
spot is set to be active only if it is linked to one of the selected
days. The duration of a day is divided according to the active
time spots only.

As shown in Fig. 7, obviously, the divided sub-matrices
X1

1, X1
2, X1

3, and X1
4 record the traffic data of the same time

duration in different days, and can be combined for more
accurate traffic data recovery. Our reshaping and alignment
scheme exploits these temporal domain features hidden in the
matrices to more accurately recover the missing data.

C. Problem Reformulation With Common User and
Temporal Domain Features

After the time alignment, the original matrices are divided
into multiple sub-matrices. We denote sub-matrices that record
the traffic data of the same time segment of different days as
one sub-matrix group. If the duration of a day k is partitioned
into G time segments, we have Xk = [X1

k,X2
k, · · ·XG

k ] for
k = 1, 2, · · · , K . According to the time division and alignment
requirement, all matrices are divided at the same time spot
to cover the same time segment. Therefore, after the matrix
division, there are G groups of sub-matrices with each group
having K sub-matrices, that is {Xg

1,X
g
2, · · · ,Xg

K} for g =
1, 2, · · · , G.

According to the partition, the problem in (6) can be
transformed to the problem of minimizing the total loss from
the recovery of all sub-matrices:

min
Ug

k,Σg
k,Vg

k

f (Ug
k,Σg

k,Vg
k)

s.t. f (Ug
k,Σg

k,Vg
k)

=
1
2

G∑

g=1

(
K∑

k=1

∥
∥
∥
∥

(
Xg

k −Ug
kΣ

g
k(Vg

k)T
)

Ωg
k

∥
∥
∥
∥

F

2
)

(8)
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where Xg
k ∈ R

n×mk:g , Ug
k ∈ R

n×rg , Vg
k ∈ R

mk:g×rg , Σg
k is

rg × rg diagonal matrix, Ωg
k is the index set of the observed

samples of matrix Xg
k. mk:g is the number of columns of Xg

k.
rg is the matrix rank of Xg

k.
The problem above can be solved by recovering each matrix

independently. However, with the data correlation across days,
a better recovery can be made if the set of matrices can
be integrated into a tensor to recover together. This is not
possible with each matrix having different number of columns.
To address the issue, we first exploit the common data features
hidden in the user domain and temporal domain to translate
the problem.

As different monitoring matrices record the traffic data
of the same set of n OD pairs of different days, they
should share some common features in the user domain.
Taking advantage of these features for more accurate traffic
recovery, we use the same factor matrix Ug = Ug

k (where
Ug ∈ R

n×rg ) for different sub-matrices of different days
in Eq(8), and the transformed problem can be expressed as
follows:

min
Ug,Σg

k,Vg
k

f (Ug,Σg
k,Vg

k)

s.t. f (Ug,Σg
k,Vg

k)

=
1
2

G∑

g=1

(
K∑

k=1

∥
∥
∥
∥

(
Xg

k −UgΣg
k(Vg

k)T
)

Ωg
k

∥
∥
∥
∥

F

2
)

(9)

Beside the common feature in user domain, as we have
discussed in Section IV-D, traffic data also have common
feature in the time domain, which is not captured in the
problem (9). To reflect the feature, enlightened by Harsh-
man [42], we impose an invariance constraint on the factor
matrices Vg

k in the time domain: the cross product (Vg
k)T Vg

k

is constant over different days, that is, Τg = (Vg
k)T Vg

k for
k = 1, 2, · · · , K .

Before we update the problem formulation in (9) to incor-
porate this invariance constraint, the following theorem refor-
mulates the constraint.

Theorem 1: For the invariance constraint Τg = (Vg
k)T Vg

k

to hold, it is necessary and sufficient to have Vg
k = Pg

kV
g

where Vg ∈ R
rg×rg does not change in different days and

Pg
k ∈ R

mk:g×rg is a column-wise orthonormal matrix with
(Pg

k)T Pg
k = I.

Proof: The proof includes two parts.
1) Sufficiency proof. With Vg

k = Pg
kV

g , (Vg
k)T Vg

k =
(Pg

kV
g)T Pg

kV
g = (Vg)T Vg holds, that is, the invariance

constraint is enforced.
2) Necessity proof. As (Vg

k)T Vg
k=

(
Vg

j

)T
Vg

j for all pairs

j, k = 1, 2, · · · , K , we have (Vg
k)T Vg

k=(Vg
1)

T Vg
1 for

k = 1, 2, · · · , K . We express Vg
k with respect to the

column-wise orthogonal basis matrix Qg
k ∈ R

mk:g×rg

as Vg
k= Qg

kT
g
k where Tg

k ∈ R
rg×rg . Then it fol-

lows that (Tg
k)T Tg

k = (Tg
1)

T Tg
1 and hence Tg

k=Ng
kT

g
1,

where Ng
k ∈ R

rg×rg is an orthonormal matrix. Therefore,
Vg

k= Qg
kN

g
kT

g
1 and we can define Pg

k= Qg
kN

g
k and Vg=Tg

1.

Based on Theorem 1, the problem in (9) can be further
transformed to (10) by replacing Vg

k with Pg
kV

g:

min
Ug,Σg

k,Vg,Pg
k

f (Ug,Σg
k,Vg,Pg

k)

s.t. f (Ug,Σg
k,Vg,Pg

k)

=
1
2

G∑

g=1

(
K∑

k=1

∥
∥
∥
∥

(
Xg

k −UgΣg
k(Pg

kV
g)T

)

Ωg
k

∥
∥
∥
∥

F

2
)

(Pg
k)T Pg

k = I (10)

That is, the difference of the matrix Xg
k for different days

k = 1, 2, · · · , K is captured by the matrix Σg
k and Pg

k.
In Section VI-B, we will show that the problem formulation
in (10) provides the possibility of translating the matrix
completion problem to the tensor completion through CP
decomposition.

VI. MATRIX RESHAPING AND ALIGNMENT

FOR TENSOR COMPLETION

To solve the problem (10), we propose an alternating least
squares algorithm that alternately solves the following two
sub-problems:

• Sub-problem 1: minimize (10) over Pg
k for a given set

of Ug,Σg
k,Vg

• Sub-problem 2: minimize (10) over Ug,Σg
k,Vg for fixed

Pg
k

A. Sub Problem 1

The sub-problem 1 can be written as follows.
min
Pg

k

f (Pg
k)

s.t. f (Pg
k) =

1
2

G∑

g=1

(
K∑

k=1

∥
∥
∥
∥

(
Xg

k−UgΣg
k(Pg

kV
g)T

)

Ωg
k

∥
∥
∥
∥

F

2
)

(Pg
k)T Pg

k = I (11)

Let
B = UgΣg

k(Pg
kV g)T

, (12)

we have B=UgΣg
k(Vg)T (Pg

k)T and BT = Pg
kV

gΣg
k(Ug)T .

The loss function on each sub-matrix (i.e. Xg
k) can be written

as
∥
∥
∥Xg

k −UgΣg
k(Pg

kV
g)T

∥
∥
∥

2

F

= tr
(
(Xg

k −B) (Xg
k −B)T

)

= tr
(
(Xg

k −B)
(
(Xg

k)T −BT
))

= tr
(
Xg

k(Xg
k)T

)
− 2tr

(
Xg

kB
T
)

+ tr
(
BBT

)
(13)

As tr
(
Xg

k(Xg
k)T

)
and tr(BBT ) =

tr(UgΣg
k(Vg)T VgΣg

k(Ug)T ) do not depend on Pg
k,

minimizing (10) is equivalent to solving the following
problem:

max
Pg

k

tr
(
Xg

kB
T
)

subject to: (Pg
k)T Pg

k = I

B = UgΣg
k(Pg

kV g)T (14)

Authorized licensed use limited to: SUNY AT STONY BROOK. Downloaded on April 27,2020 at 06:23:19 UTC from IEEE Xplore.  Restrictions apply. 



1144 IEEE/ACM TRANSACTIONS ON NETWORKING, VOL. 26, NO. 3, JUNE 2018

As tr
(
Xg

kB
T
)

= tr
(
Xg

kP
g
kV

gΣg
k(Ug)T

)
=

tr
(
VgΣg

k(Ug)T Xg
kP

g
k

)
, the problem in (14) can be

further transformed to

max
Pg

k

tr
(
VgΣg

k(Ug)T Xg
kP g

k

)

subject to: (Pg
k)T Pg

k = I (15)

Let VgΣg
k(Ug)T Xg

k = Mg
kΔ

g
k(Ng

k)T be singular value
decomposition (SVD). According to [43], we have that Pg

k =
Ng

k(Mg
k)T is the column wise orthonormal solution for the

problem (15).

B. Sub-Problem 2

Theorem 2: The sub-problem 2 of minimizing (10) over
Ug,Σg

k,Vg for fixed Pg
k can be reduced to the following

problem:

min
Ug,Σg

k,Vg
f (Ug,Σg

k,Vg)

s.t. f (Ug,Σg
k,Vg)

=
1
2

G∑

g=1

(
K∑

k=1

∥
∥
∥
∥

(
Xg

kP
g
k −UgΣg

k(Vg)T
)

Ωg
k

∥
∥
∥
∥

F

2
)

.

(16)

Proof: As we can easily see, the loss function in Eq(16)
can be written as
∥
∥
∥Xg

kP
g
k −UgΣg

k(Vg)T
∥
∥
∥

2

F

= ((Xg
kP

g
k −UgΣg

k(Vg)T )(Xg
kP g

k −UgΣg
k(Vg)T )T )

= (Xg
kP

g
k(Xg

kP
g
k)T )− 2tr(Xg

kP
g
k(UgΣg

k(Vg)T )T )
+ (UgΣg

k(Vg)T (UgΣg
k(Vg)T )T )

= (Xg
k(Xg

k)T )− 2tr(Xg
kP

g
kV

g(Σg
k)T (Ug)T )

+ (UgΣg
k(Vg)T Vg(Σg

k)T (Ug)T ) (17)

Replacing B with UgΣg
k(Pg

kV g)T in Eq(12) to Eq.(17),
we have
∥
∥
∥Xg

kP
g
k −UgΣg

k(Vg)T
∥
∥
∥

2

F

= tr
(
Xg

k(Xg
k)T

)
− 2tr

(
Xg

kB
T
)

+ tr
(
BBT

)
(18)

Obviously, combining Eq.(13) and Eq.(18), we have
∥
∥
∥Xg

k −UgΣg
k(Pg

kV
g)T

∥
∥
∥

2

F
=

∥
∥
∥Xg

kP
g
k −UgΣg

k(Vg)T
∥
∥
∥

2

F
,

(19)

the proof completes.
Let Yg

k = Xg
kP

g
k, problem in (16) can be further written as

follows.

min
Ug,Σg

k,Vg
f (Ug,Σg

k,Vg)

s.t. f (Ug,Σg
k,Vg)

=
1
2

G∑

g=1

(
K∑

k=1

∥
∥
∥
∥

(
Yg

k −UgΣg
k(Vg)T

)

Ωg
k

∥
∥
∥
∥

F

2
)

(20)

As Xg
k ∈ R

n×mk:g and Pg
k ∈ R

mk:g×rg , obviously, Yg
k ∈

R
n×rg has the identical size of n× rg . It is easy to see

Fig. 9. Transform G groups of sub-matrices to G tensors. (a) G group
sub-matrices. (b) G 3-way tensors.

Fig. 10. The relationship between tensor CP decomposition and frontal slice
matrix decomposition. (a) Tensor CP decomposition. (b) Frontal slice matrix
decomposition.

in Fig. 9 (b), a group of K identical-size matrices Yg
k for

1 ≤ k ≤ K forms a 3-way tensor with each slice being
Yg

k. Therefore, G groups of identical-size matrices in Eq.(20)
correspond to G 3-way tensors, as shown in Fig. 9.

Fig. 9 shows that multiple sub-matrices can be reshaped
and aligned to the tensor-style. However, the problem in (20)
is still a matrix completion problem. We would like to solve
the problem through the tensor completion taking advantage
of correlation across days for more accurate data recovery.

1) Relationship Between CP Decomposition and Frontal
Slice Decomposition: To see if it is possible to translate the
problem (20) to the tensor completion, we first investigate
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the relationship between tensor CP decomposition and the
decomposition of a frontal matrix slice of the tensor.

In Fig. 10(a), according to (5), the CP decomposition of a
3-way tensor X can be written as follows.

X =
∑R

r=1
ar ◦ br ◦ cr = [[A,B,C]] (21)

where matrices A ∈ R
I×R, B ∈ R

J×R, C ∈ R
K×R are the

factor matrices in the CP decomposition.
According to the CP decomposition, in Fig. 10(b), a frontal

slice Xk can be written as

Xk = ck1a1 ◦ b1 + · · ·+ ckRaR ◦ bR =
∑R

i=1
ckiai ◦ bi

(22)

where ck1, ck2, · · · , ckR are the entries of the k-th row of the
factor matrix C.

Eq (22) shows that each frontal slice Xk can be expressed
as a superposition of R rank-1 matrices ai ◦ bi (1 ≤ i ≤ R).
That is, the traffic data Xk is approximated by the linear com-
bination of R rank-1 matrices ai ◦bi. As A = [a1, · · · , aR] ∈
R

I×R, B = [b1, · · · ,bR] ∈ R
J×R, according to (22), Xk can

be rewritten as

Xk = AΣkBT (23)

where A ∈ R
I×R and B ∈ R

J×R are the factor matrices in
the CP decomposition, Σk = diag (Ck:) and Ck: is the k-th
row of the factor matrix C.

2) Problem Transformation: The relationship shown
in Fig. 10 provides a way to decompose a group of matrices
with the same size through the tensor decomposition. The
problem in (20) aims to find the matrix decomposition for
matrix completion. The problem can be solved with higher
accuracy if all the matrices can be integrated into a tensor.
Fortunately, to capture the common user domain and time
domain features, we have introduced the same user factor
matrix Ug and time factor matrix Vg across different days.
With the relationship between the tensor CP decomposition
and the frontal matrix-slice decomposition, the formulation in
(20) can be transformed to the following tensor completion
problem:

min
Ug,Vg,Cg

f (Ug ,Vg,Cg)

s.t. f (Ug,Vg,Cg)=
1
2

G∑

g=1

(
�(Yg−[[Ug,Vg,Cg]])Ωg�2F

)

(24)

where Yg is the tensor with its frontal slices being sub-
matrices Yg

k for k = 1, 2, · · · , K , Ug ,Vg ,Cg are the factor
matrices of Yg , Ωg is the index set of the observed samples of
tensor Yg . As this paper dose not focus on CP decomposition
methods, we apply the approach in [44] to perform the
tensor completion. This allows us to obtain the optimal factor
matrices Ug ,Vg ,Cg by minimizing the loss function in (24).

After obtaining Ug ,Vg ,Cg, the reshaped slice can be recov-
ered with Ŷg

k = UgΣg
k(Vg)T where Σg

k = diag (Cg
k:) and

Cg
k: is the k-th row of the factor matrix Cg . Then through the

reverse procedure of reshaping, we can obtain the recovered
sub traffic matrix X̂g

k = Ŷg
k(Pg

k)T = UgΣg
k(Vg)T (Pg

k)T .

VII. COMPLETE SOLUTION

In this section, we first present the complete solution, and
then discuss the convergence of the solution.

A. Algorithm Design

The complete data recovery based on reshaping and align-
ment is shown in Algorithm 1. The sub-problems 1 and 2 are
iteratively solved and 3-9 Steps are repeated until it converges.

Specially, given traffic matrices of K days, if there are
G− 1 time spots besides the time spots at 0:00 and 24:00 in
the time rule involved in these K days, in Step 1, the large
matrix of each day is divided into G sub-matrices according
to the time alignment requirement. As there are K days,
after such a division, there are G groups of sub-matrices with
each group having K sub-matrices. The Step 2 initializes the
factor matrices needed in the algorithm. Step 4 solves the sub
problem 1 of minimizing (11) over Pg

k for fixed Ug,Σg
k,Vg .

Step 5 builds the tensor with the reshaped sub-matrices. Step 6
solves the sub problem 2 and updates Ug , Vg , Cg by solving
the tensor completion problem min

Ug,Vg,Cg
f (Ug,Vg,Cg) =

1
2 �(Yg − [[Ug,Vg,Cg]])Ωg�2F . Step 7 builds the diagonal
matrix needed in the matrix decomposition Σg

k ← diag (Cg
k:)

where Cg
k: is the k-th row of factor matrix Cg obtained in Step

6. After obtaining Ug , Vg , Σg
k, and Pg

k, Step 8 calculates the
recovered sub matrices in the iterative step.

In Step 8, Mg
k is an indicator matrix whose entry (i, j)

is one if the entry (i, j) in Xg
k is sampled (i.e., measured)

and zero otherwise. 1 is an all ones matrix that has the same
size as Mg

k. � in Step 8 represents a scalar product (or
dot product) of two matrices. For example, given that A, B
have the same size and C = A � B, we have cij = aijbij .
Xg

k ←Mg
k�Xg

k+(1−Mg
k)�UgΣg

k(Vg)T (Pg
k)T guarantees

that the sample entry already measured remains unchanged
and only the missing data are updated during the iterative
procedure.

B. Convergence Analysis

The convergence of the proposed Algorithm 1 is guaranteed
by the following theorem.

Theorem 3: The sequence {(Ug)t, (Σg
k)t, (Vg)t, (Pg

k)t}
generated by Algorithm 1 monotonically decreases the
objective function f (Ug,Σg

k,Vg,Pg
k) of Eq(10) where t

denotes the iteration step; the objective function sequence
f ((Ug)t, (Σg

k)t, (Vg)t, (Pg
k)t) converges; the sequence

{(Ug)t, (Σg
k)t, (Vg)t, (Pg

k)t} converges.
Proof: The proof includes three parts.

Part 1. We show that the update steps in step 4 and step
6 monotonically reduce the values in the objective function of
Eq(10).

In step 4, given (Ug)t, (Σg
k)t, (Vg)t, we have (Pg

k)t+1 =
argmin

Pg
k

f ((Ug)t, (Σg
k)t, (Vg)t,Pg

k). Therefore, we have

f
(
(Ug)t, (Σg

k)t, (Vg)t, (Pg
k)t+1

)

≤ f
(
(Ug)t, (Σg

k)t, (Vg)t, (Pg
k)t

)
. (25)

Similarly in step 6, given (Pg
k)t+1,

we have (Ug)t+1, (Σg
k)t+1, (Vg)t+1 =
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Algorithm 1 Complete Reshape and Align Traffic Recovery
Algorithm
1: According to the time alignment requirement, large matri-

ces are divided into G groups of sub-matrices with each
group having K sub matrices

2: Initialize Ug principal eigenvectors
∑K

k=1 Xg
k (Xg

k)T by
SVD, Vg ← I, Σg

k ← I
3: while not converge do
4: Sub problem 1: Compute the SVD VgΣg

k(Ug)T Xg
k =

Mg
kΔ

g
k(Ng

k)T and update Pg
k = Ng

k(Mg
k)T

5: Generate tensor Yg whose slices are Yg
k = Xg

kP
g
k

6: Sub problem 2: Update Ug , Vg , Cg

by solving min
Ug,Vg,Cg

f (Ug,Vg,Cg) =
1
2 �(Yg − [[Ug,Vg,Cg]])Ωg�2F for all the g =
1, 2, · · · , G tensors through CP decomposition

7: Σg
k ← diag (Cg

k:)
8: Update Xg

k ← Mg
k � Xg

k + (1−Mg
k) �

UgΣg
k(Vg)T (Pg

k)T

9: end while
10: Combine the recovered sub-matrices and obtain the recov-

ered large matrices.

arg min
Ug,Σg

k,Vg

f
(
Ug,Σg

k,Vg, (Pg
k)t+1

)
and thus

f
(
(Ug)t+1,(Σg

k)
t+1,(Vg)t+1,(Pg

k)
t+1

)

≤ f
(
(Ug)t,(Σg

k)
t,(Vg)t,(Pg

k)
t+1

)
. (26)

Combining Eq(25) and Eq(26), we obtain

f
(
(Ug)t+1,(Σg

k)
t+1,(Vg)t+1,(Pg

k)
t+1

)

≤ f
(
(Ug)t,(Σg

k)
t,(Vg)t, (Pg

k)
t
)
. (27)

Part 2. We show that the objective function f is lower
bounded. As f (Ug,Σg

k,Vg,Pg
k) is the loss function defined

based on the Frobenius norm ��F , obviously, we have
f ((Ug)t, (Σg

k)t, (Vg)t, (Pg
k)t) ≥ 0.

Thus, together with the monotonic decrease proved in
Part 1, we can conclude that f ((Ug)t, (Σg

k)t, (Vg)t, (Pg
k)t)

converges.
Part 3. It is easy to see that f (Ug,Σg

k,Vg,Pg
k) is

Lipschitz continuous w.r.t Ug , Σg
k, Vg , and Pg

k, thus
{(Ug)t, (Σg

k)t, (Vg)t, (Pg
k)t} converges.

VIII. PERFORMANCE EVALUATIONS

In this section, we first present the simulation setting, and
then the simulation results.

A. Simulation Setup

We use the public traffic trace data from two sources (the
U. S. Internet2 Network (Abilene [40]) and the pan-European
research backbone network (GÈANT [41])) to evaluate the
performance of our proposed Reshape-Align scheme. The
Abilene network consists of 12 nodes thus 144 OD pairs.
The GÈANT network consists of 23 nodes thus 529 OD
pairs. Abilene and GÈANT collect monitoring data every
5 minutes and 15 minutes respectively. Abilene and GÈANT
record monitoring data in 168 days and 112 days, respectively.

TABLE I

PERFORMANCE METRIC

Fig. 11. Convergence behavior. (a) Abilene. (b) Geant.

Therefore, we have K = 168 and K = 112 for Abilene and
GÈANT accordingly.

Three different metrics are considered: Error Ratio, Mean
Absolute Error (MAE), and Root Mean Square Error (RMSE),
which are defined as Table I.

In the table, xk:ij and x̂k:ij denote the raw data and the
recovered data at (i, j)-th element of the matrix Xk where
1 ≤ i ≤ n, 1 ≤ j ≤ mk, and 1 ≤ k ≤ K . Only entries not
observed (i, j) ∈ Ω̄k are counted in the Error Ratio. Different
from Error Ratio, the total data entries (i.e.,

∑K
k=1 n×mk)

are counted in the MAE and RMSE. MAE is an average of the
absolute errors after the interpolation, RMSE is the standard
deviation of the differences between recovered values and raw
values.

According to the time alignment requirement in Section V,
different measurement rates will result in different partitions.
We take 3 measurement scenarios as examples to show the
performance: 1) The measurement rates are different in differ-
ent days while the measurement rate of the same day is the
same. 2) The measurement rates are different in different days
while the measurement rate changes at the noon every day.
3) The measurement rates are different in different days while
the measurement rate changes at 8:00, and 16:00 every day.
Obviously, for time alignment, matrices in Scenario 1 form one
group. In Scenarios 2 and 3, the traffic matrices are partitioned
into two groups and three groups, respectively.

B. Convergence Behavior

As presented in Section VI, two sub-problems are itera-
tively solved by an alternating least squares algorithm in our
Reshape-Align scheme. Fig. 11 shows the convergence behav-
ior of Reshape-Align where the sampling ratio is set to be
50%. Different from measurement rate that denotes how often
measurements are taken in the network, the sampling ratio in
the simulation is the fraction of the matrix entries that are
observed with the measurements. In this work, the remaining
entries are inferred with tensor completion in our Reshape-
Align.
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Fig. 12. Comparison with matrix completion algorithms using trace Abilene.
(a) Scenario 1. (b) Scenario 2. (c) Scenario 3.

Obviously, in all the simulation scenarios using different
trace data, RMSE decreases with iterations and converges to a
stable value quickly. This demonstrates that it is efficient and
effective to solve the traffic data recovery problem through the
alternating least squares algorithm.

Among all the 3 scenarios, the Scenario 1 achieves the best
recovery performance while Scenario 3 achieves the worst
performance. This is because their matrix sizes are different.
The matrices in the Scenario 1 cover the time segment of the
whole day, while the sub-matrices for Scenario 2 correspond
to half a day, and the sub-matrices operated in Scenario
3 cover one third of a day. A longer time period makes more
data available to abstract the temporal feature for missing
data recovery, and thus the best performance is achieved in
Scenario 1.

C. Comparison With Matrix Completion Algorithms

Although some limited very recent studies consider the
traffic data recovery through tensor completion, they cannot be
directly applied in the practical network with variable measure-
ment rates. Therefore, we implement four matrix completion
algorithms (NMF [45], SRMF [11], SV T [46], LMaFit [47])
for the performance comparison.

To align measurement data under different measurement
rates for data recovery, in all the above matrix completion
algorithms, our temporal division scheme is taken to form
the sub-matrices of each day. Then we combine the recovery
results of different days to evaluate the performance.

1) Performance Under Different Sampling Ratios and Sce-
narios: From Fig. 12 to Fig. 13, we study the impact of
sampling ratio under three different scenarios we set in the
simulations. Fig. 12 (Abilene) and Fig. 13 (GÈANT) show
the performance in terms of error ratio, MAE, and RMSE

Fig. 13. Comparison with matrix completion algorithms using trace GÈANT.
(a) Scenario 1. (b) Scenario 2. (c) Scenario 3.

with different sampling ratios under the uniform sampling.
The performance results are different for different traces. As
expected, with the increase of the sampling ratio thus sample
data, the error ratio, MAE, and RMSE decrease and thus better
recovery performance is obtained. Our Reshape-Align scheme
can transform the data recovery through the traffic matrix to
the tensor completion to well exploit the multi-dimensional
correlations hidden in the traffic data. Therefore, compared
with other four matrix completion algorithm, Reshape-Align
achieves the best recovery performance with the lowest error
ratio, MAE, and RMSE in all the figures using different trace
data. Among all the algorithms that directly use the matrix
completion, SRMF achieves the best performance. Besides
using a low-rank matrix to approximate the traffic matrix,
SRMF also utilizes spatial and temporal constraint matrices
in the problem formulation to express the knowledge about
the spatio-temporal structure of the traffic matrix.

Similar to the results in Fig. 11, among all the scenarios,
scenario 1 achieves the best performance while scenario
3 achieves the worst performance because more data are
available to abstract the temporal feature to infer the missing
data in scenario 1.

2) Performance Under Consecutive Data Missing: We ran-
domly select one day and let consecutive measurements over
60 minutes all get lost in Scenario 3, and then calculate the
error ratio on the 60 minute data, as shown in Fig. 14. The
consecutive data missing, obviously, results in the consecutive
column missing in the traffic matrix. From the literature work,
the conventional matrix completion algorithms fail if there are
completely empty rows or columns as they do not have effect
on these missing entries. In the Fig. 14, we use N/A to indicate
that these algorithms fail to function. Reshape-Align, however,
can recover the consecutively missing data with the error ratio
only 0.4 (Abilene).
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Fig. 14. Performance under consecutive data missing. (a) Abilene.
(b) GÈANT.

Fig. 15. Comparison with tensor completion algorithms using trace Abilene.
(a) Scenario 1. (b) Scenario 2. (c) Scenario 3.

With the time alignment and matrix reshaping, our Reshape-
Align scheme transforms the problem of recovering the traffic
data measured with variable rates into a tensor completion
problem, taking advantage of the information along three
dimensions to recover the missing data. The normal matrix
completion only considers the constraints along two partic-
ular dimensions. This is the key reason why Reshape-Align
outperforms the matrix completion-based algorithms.

D. Comparison With Tensor Completion Algorithms

Under variable measurement rates, the matrices of different
days can not be directly combined as a regular tensor thus
it is hard to apply current tensor completion algorithms to
infer the missing data. To allow the tensor completion to be
used, a trivial way can be applied to handle such an issue
with four steps. First, our temporal division scheme can be
applied to the traffic matrices of multiple days to align the
time, with which multiple sub-matrices are created and form
different groups. Second, for each group, a regular sub-tensor
can be built by combining sub-matrices from different days
with the lowest common multiple of time-stamps of all sub-
matrices in the group as the dimensionality of the temporal

Fig. 16. Comparison with tensor completion algorithms using trace GÈANT.
(a) Scenario 1. (b) Scenario 2. (c) Scenario 3.

domain. Third, a traditional tensor completion algorithm is
applied to each sub-tensor to infer the missing data. Fourth,
the recovery results of different groups are integrated to
form the complete tensor. We apply this scheme to four
tensor completion algorithms (CPnmu [33], CPopt [34], CPals
[48], and Tucker [48]), and compare their results with those
achieved with our Reshapealign.

The first three (CPnmu, CPopt, and CPals) are designed
based on CP model, the last Tucker is designed based on the
Tucker model.

As expected, with the increase of sampling ratio thus the
number of measurements, the recovery performance under
all tensor completion algorithms increase with the decrease
of error ratio, MAE, and RMSE in Fig. 15 and Fig. 16.
Among all the tensor completion algorithms implemented,
our Reshape-Align achieves the best recovery performance
with the lowest recovery error ratio, MAE, and RMSE. Under
the trivial way of aligning the measurement data, the lowest
common multiple of time-stamps of all sub-matrices is set as
the dimensionality of the temporal domain. As a result, many
columns in the matrices are empty, which makes the tensor
very sparse and reduces the tensor completion performance.
The results demonstrate that our technique on reshaping and
aligning un-regular tensor to a regular tensor is very effective
and efficient. Among all the algorithms that take the trivial
method to build the tensor, Tucker achieves the best perfor-
mance as it utilizes a core tensor to coordinate the information
along different tensor modes.

E. The Performance Impacted by the Number of Groups

To investigate how the number of groups G impacts the
recovery performance, we vary G from 1 to 5. As shown
in Section VIII-A, in our simulation scenarios 1, 2, and 3,

Authorized licensed use limited to: SUNY AT STONY BROOK. Downloaded on April 27,2020 at 06:23:19 UTC from IEEE Xplore.  Restrictions apply. 



XIE et al.: ACCURATE RECOVERY OF INTERNET TRAFFIC DATA 1149

Fig. 17. Performance impacted by the number of groups (No.Groups).
(a) Abilene. (b) GÈANT.

the traffic matrices are partitioned into one group, two groups
and three groups, respectively. Following the simulation setting
in Section VIII-A, scenarios 4 and 5 partition the traffic
matrices into 4 and 5 groups, respectively.

Fig. 17 shows the recovery performance. As expected, with
the increase of G, the recovery performance decreases with
higher error ratio, MAE, and RMSE, as the relation from
fewer data can be exploited in each group for inference.
However, compared with SRMF (the best matrix completion
algorithm) and Tucker (the best tensor completion algorithm),
our Reshape-align can achieve better recovery performance,
which demonstrates that our Reshape-align is more effective
than existing matrix completion and tensor completion algo-
rithms. The performance of the tensor completion algorithm
Tucker is even worse than that of SRMF, as the trivial way of
building the regular tensor will make the tensor very sparse
and consequently reduce the recovery performance.

IX. CONCLUSION

Accurate inference of the traffic matrix in the presence of
changing measurement frequency is of practical importance.
In this paper, we propose a Reshape-Align scheme which
can reshape the inconsistent traffic matrices observed in dif-
ferent days into consistent ones, align and integrate these
matrices to form tensor, and take advantage of the user-
domain and temporal domain features hidden in the traffic
data to translate the matrix completion problem to the tensor
completion problem with CP decomposition for more accurate
missing data recovery. The performance studies demonstrate
that, compared with the state of art matrix-completion and
tensor completion algorithms, our scheme can infer missing
data with significantly better performance.
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