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ABSTRACT 
The built-in caching capability of future Named Data Networking 
(NDN) promises to enable effective content distribution at a global 
scale without requiring special infrastructure. The aim of this work 
is to design efficient caching schemes in NDN to achieve better 
performance at both the network layer and application layer. With 
the specific objective of minimizing the inter-ISP (Internet Service 
Provider) traffic and average access latency, we first formulate the 
optimization problems for different objectives and then solve them 
to obtain the optimal replica placement. Then we develop 
popularity-driven caching schemes which dynamically place the 
replicas in the caches on the en-route path in a coordination fashion. 
Simulation results show that the performances of our caching 
algorithms are much closer to the optimum and outperform the 
widely used schemes in terms of the inter-ISP traffic and the 
average number of access hops. Finally, we thoroughly evaluate the 
impact of several important design issues such as network topology, 
cache size, access pattern and content popularity on the caching 
performance and demonstrate that the proposed schemes are 
effective, stable, scalable and with reasonably light overhead. 

Categories and Subject Descriptors 
C.2.1 [Computer Systems Organization]: Network 
Architecture and Design 

General Terms 
Algorithms, Performance, Design. 

Keywords 
Named Data Networking; Modeling; Dynamic caching; 
Coordinated caching; Popularity-based. 

1. INTRODUCTION 
The modern usage of Internet has become largely content-
oriented, i.e. users tend not to care where (from which host) 
and how (via which protocol) to obtain a piece of content, 
but are more interested in fast and reliable content retrieval. 
Meanwhile, driven by increasing content sizes and content 
types, Internet traffic has been rapidly growing at an 
unprecedented rate. This explosive growth in traffic poses a 

significant challenge to the underlying network, as network 
capacity cannot satisfy the exponentially growing demand. 
Content-centric overlay networks such as Content Delivery 
Network (CDN) and Peer-to-Peer (P2P) are then introduced 
to effectively improve the content distribution efficiency. 
However, these incremental designs have to deploy extra 
application-oriented overlay mechanisms and need 
dedicated components for the architecture, which leads to 
unscalable solutions. To meet the huge demand of content 
dissemination in the Internet, it is necessary to rethink the 
future Internet architecture which can bridge the gap 
between name-based content delivery and the underlying 
host-to-host communication infrastructure. 

The clean slate Named Data Networking (NDN) [1], also 
called Content-Centric networking (CCN) 1 , is recently 
proposed for this purpose and widely regarded as one of the  
most promising architectures for future networks. Quite 
different from the current IP-based network, this new 
paradigm features name-based routing and systematic in-
network caching. To be specific, in-network caching can 
directly cache content at each node (say router) on the 
forwarding path. By typically caching the popular contents 
at the router, in-network caching can reduce both the 
overall network load and the access delay. Subsequent 
requests no longer need to be served directly by the content 
source which may be far away, but can be served by a 
closer NDN router along the routing path. Though Internet 
caching has already been extensively studied, caching in 
NDN faces a different set of challenges. 

In today’s Internet (like CDNs), caches are located in 
specific severs and replicas can be placed in any of these 
caches. In NDN, however, replicas of the objects are 
cached along the en-route paths so the requested objects 
can be obtained with much shorter latencies. This design 
significantly differs from traditional Internet caching, and 
can seamlessly integrate routing and content retrieval 
without introducing much overhead. In addition, NDN 
caching is universal as it not only applies to the content 
carried by any protocol, but also applies to all the content 
from users other than the content providers (e.g. CDNs). 
Since there is a tremendous amount of content in the 
Internet, line-speed packet processing is required by NDN 

                                                           
1 We use NDN and CCN interchangeably in the paper. 
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to support name-based data forwarding and caching. 
Therefore, the storage of each router in NDN is 
technologically limited by memory access speed. Due to 
limited cache capacity on each node, careful cache 
placement is critical to maximizing the benefit. Our goal in 
this paper is to find suitable caching locations according to 
specific objectives, given network topology, content access 
pattern and various caching constraints.  

Among many metrics that can benefit from caching, the 
main objective of our work is to minimize the inter-ISP 
traffic at the administrative boundaries in NDN. Our 
motivations for this particular objective are as follows:  

 Intra-ISP links are usually over-provisioned, while 
inter-ISP links tend to be the bottlenecks which often suffer 
from congestion [2]. Reducing inter-ISP traffic will 
significantly alleviate congestion and thus improve the 
network performance at a global scale. 

 Since the inter-ISP links are much more costly 
than internal links, the reduction of Inter-ISP traffic will 
greatly reduce the deployment cost for ISPs and thus cut 
down the inter-ISP charging [2].  

 By investigating popularity-based in-network 
caching strategies in NDN with the special objective, we 
intend to thoroughly remove the caching redundancy and 
accommodate as many diverse content items as possible in 
caching system, which yields highest cache hit rate as well 
as minimizing inter-ISP traffic. Meanwhile, since a fraction 
of requests are satisfied within the ISP, caching draws the 
most popular content closer to the end users and helps to 
reduce the number of access hops, which will in turn 
alleviate the traffic burden within an ISP. 

The other objective of the work is to explore better caching 
algorithms to further reduce the access delay without 
increasing inter-ISP traffic. In addition, a fewer number of 
access hops can then result in light traffic load within the 
ISP. To summarize, our ultimate objective is thus to 
improve the overall network performance in terms of inter-
ISP and intra-ISP bandwidth consumption as well as access 
latency, with effective in-network caching. 

Intuitively, coordinated caching among the routers is a 
promising approach to achieving reduced inter-ISP traffic, 
but several important issues need to be addressed: 1) 
Caching principle. Although NDN suggests a multi-path 
usage to enhance the network performance, it is a non-
deterministic variation depending upon the future protocol. 
It is difficult to model such kind of non-determinacy. For 
simplicity, at least at the beginning of NDN, we restrict 
content caching following the en-route principle as the first 
step towards a full-fledged one. 2) Caching consistency. 
Practically, an ISP has several gateways to interconnect 
with provider-ISPs or peer-ISPs. Obviously, maintaining 
caching consistency among multiple gateways is a very 
challenging problem. In this paper, we assume an ISP only 
has a single gateway and plan to extend our solution to 
multiple gateways in the future work.  

The main problem addressed in the paper is to provide 
effective caching strategies that enable NDN routers within 
an ISP to coordinate their caching decisions. Unlike most 
of the earlier work in conventional CDN caching with a 
focus on minimizing the access latency without considering 
the resulting bandwidth consumption, we make the 
following contributions: 

 We formulate the problem-solving models with 
the aim of concurrently minimizing inter-ISP traffic and 
minimizing the average number of access hops, in order to 
obtain an optimal solution to the replica placement. 

 Guided by optimal replica placement, we present 
two popularity-based caching algorithms, named TopDown 
and AsympOpt, where caching is coordinated implicitly 
among the routers on the path and the routers can make 
online decision independently. The proposed algorithms 
can significantly reduce inter-ISP traffic as well as decrease 
access latencies. Particularly, AsympOpt can achieve the 
best overall performance, which is very close to the results 
of optimal solutions. 

 We evaluate the performance of the proposed 
caching algorithms with optimum solutions and study the 
impact of a variety of factors such as network topology, 
request pattern, object popularity and cache capacity etc. 
Simulation results demonstrate that the proposed 
algorithms exhibit stability and scalability under a wide 
range of workloads without introducing much overhead. 

The rest of the paper is organized as follows: Section 2 
surveys the related work. The system model and problem 
statement are presented in Section 3. Section 4 describes the 
coordinated dynamic caching scheme. The simulation model, 
impact factors and the simulation results are discussed in 
Section 5. Finally, we conclude this paper  in Section 6. 

2. RELATED WORK 
Internet Caching plays an important role in enhancing 
content delivery, as caching can reduce network traffic and 
alleviate server load, thereby decreasing access latencies 
and improving user-perceived Quality of Experience. A 
large body of research has been  done in this field which 
has led to great successes, such as web proxies [3], object 
caches [4] and CDN [5], while caching in NDN is a new 
area and very little investigative work has been published, 
to our best knowledge. The similar idea of having Internet 
routers cache passing data as suggested in NDN has been 
studied in en-route caching, which equips each node in a 
network with a cache and enables the nodes along the 
routing path to cache formerly requested objects in the 
network for future reuse [6]. Dong et al. [7] presented 
independent content caching and replacement algorithms 
for intermediate nodes with limited storage, but the work 
can only reach local optimality with the mathematical 
model. Due to the complexity of solving the optimization 
problem, this scheme is limited to be used for small-scaled 
network. Walter et al. [8] presented an in-network caching 
architecture based on content routers, which discovers 



resources in the network proximity. However, cooperation 
is limited to neighborhood and cannot reach the optimum 
in the network. In contrast, we strive to thoroughly remove 
the redundancy with implicit cooperation among caches in 
order to efficiently utilize the available cache space and 
minimize inter-ISP traffic. 

The most recent works [9] [10] [11]have dived into the 
study on CCN caching. D.Rossi et al. [9] presented a quite 
thorough simulation study of CCN caching performance. 
However, they assumed that named content in CCN can in 
principle take any path in the network, while we argue that 
routing to the content sources is determined by the CCN 
routing protocol and content objects are cached along the 
en-route path. Kideok et al. [11] proposed a lightweight 
caching scheme named WAVE, in which the popular 
contents can be pushed closer to the end users. However, 
WAVE cannot eliminate the caching redundancy from 
perspective of the whole network and is limited to achieve 
good caching performance locally. Psaras et al. [10] 
focused on modeling caching trees of content-centric 
networking, which is complementary to our work. 

In order to achieve better caching performance, we propose 
dynamic caching schemes based on content popularity. 
Traditional approaches towards network caching have 
placed large caches at specific points in the network, with 
little or no coordination between the caches. In contrast, 
routers with limited storage in our schemes independently 
make the caching decision based on the recent content 
requests of its subordinates; thus nodes implicitly share 
their caching information and coordinate in minimizing the 
redundancy. Besides, the proposed caching strategy can 
work online to adapt to various network changes. 

3. SYSTEM MODEL AND PROBLEM 
STATEMENT 
In this section, we first briefly introduce the NDN 
architecture and then present a system model of the 
routers/caches within a single ISP, which are followed by 
formulating our caching problem. 

3.1 System Model 
NDN architecture is featured with the availability of built-
in network storage and receiver-driven chunk level 
transport. That is, each router on the Internet is equipped 
with a cache and can replicate passing contents to serve the 
subsequent requests without the need of forwarding them 
to their source servers. In addition, the unit used for 
transmission is the segment of content, named chunk. 

NDN uses a globally unique identifier (e.g. a hash function 
of a URL) to recognize a content object. The content 
retrieval procedure is as follows: (1) The content names are 
published into network by different Internet applications. 
(2) An end user who is interested in a particular type of 
content sends out an interest packet with the name of the 
requested content. The interest packet propagates along the 

routing path towards the content source. (3) Each router 
receiving an interest checks whether the requested content 
is present in its local cache by looking up a Content Store 
(CS) table. If there is a hit, the router sends the matched 
data piece to the requester along the reverse path. 
Otherwise, it forwards the request to the interfaces 
determined by the Forwarding Information Base (FIB). 
Ongoing requests are recorded in a Pending Interest Table 
(PIT) for later sending back the requested data through the 
reverse path towards the sources of the interests. (4) When 
the target content travels from the source (or cache) 
downward to the requester, the router on the forwarding 
path will determine whether to replicate the content 
according to the caching strategy. 

The requested content objects are distributed at the 
repositories outside the ISP in the model, due to the fact 
that the majority of the content requests can not be satisfied 
within an ISP without caching. Generally it takes fewer 
hops to retrieve a content object inside the ISP, so we do 
not consider caching those objects whose sources happen 
to reside in the investigated ISP, for fully exploiting cache 
capacity for better content retrieval performance. Hence, 
we simplify the model as illustrated in Figure 1. When an 
edge router (say 14R ) receives an interest for content object 

(say 1O ), it will forward the interest towards the content 

source guided by FIB. When the target content objects are 
sent in reply to interest packets and travel along the way 
back to the requester following the chain of PIT entries, the 
NDN router on the path determines whether to replicate the 
passing content according to the caching strategy. As in the 
example, node 4R  replicates the content object 1O  and 

serves the later requests for 1O  from the edge routers 

within its subtree, that is, 12 13 14, ,R R R . 
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Figure 1. An illustrated caching model 

From the above, all the content resources retrieved from the 
sources outside the given ISP pass through its gateway and 
are cached at some inner nodes on the path to the 
requesters. Thus, our caching infrastructure is hierarchical, 



where the requests are only interfaced at the end nodes of 
the hierarchy and routed towards a single root cache (i.e., 
ISP gateway). Accordingly, the flat graph of ISP topology 
can be simplified as a tree model, with gateway being the 
root node. Figure 1 shows the example tree abstracted from 
the router-level topology of an ISP. 

The purpose of our work is to design and evaluate the 
NDN caching strategies in order to achieve a system goal. 
To make full use of in-networking caching, we focus on 
minimizing the inter-ISP traffic and reducing the number of 
access hops by caching the requested contents within an 
ISP using the available caching space of routers. To be 
specific, we address the problem of online coordinated 
caching decision in the following environment: once a 
request for a piece of chunk fails to be satisfied by the 
caches inside an ISP, the requested object item will be 
fetched from the external source and traveled via the 
gateway of the investigated ISP. We aim to design 
appropriate caching strategies which can work online to 
achieve the best gain. Each router in the ISP independently 
determines whether to replicate the passing items in its 
associated cache. The objective of our work is to minimize 
the inter-ISP traffic and also minimize the average number 
of access hops by caching frequently requested objects at 
selected routers inside the ISP. 

3.2 Problem Statement  
It is impracticable to find the solution to an optimization 
problem including all the optimization objectives. In our 
case, the objective of minimizing inter-ISP traffic and the 
objective of minimizing average access hops are not always 
consistent. In this subsection, we first give out the 
definition and notations, and then we formulate individual 
problem-solving model for each objective and obtain the 
optimal solution to the replica placement respectively. The 
solutions are used to guide the caching design and taken as 
bounds to the performance. 

3.2.1 Definition and Notations 
According to the tree topology of our system model in 
Figure 1, we consider a caching tree (routing tree), whose 
node set N  is partitioned into two parts: a set of end nodes 
U  and a set of intermediate nodes ( N U ), and the 
gateway node 1R  being the root of the tree. End nodes are 

responsible for managing the interest requests from their 
users. Each node j ( j N ) is equipped with a cache, 
whose storage capacity is jC . 

Let [ i j ] be the unique routing path from node i  up to 
node j , ,i j N . We say j is the upstream node (or 
ancestor), while i is the downstream node (or descendant), 
if node j  is closer to the root 1R  than node i . Let 

( )Ancestors j  denote the set of ancestors of node j , i.e., the 

nodes in the unique en-route path  1j R (Node j  is 

included). 

Let O  be the set of interested objects in the Internet. For 
the requested content object ko ( ko O ),  we define: 

ks :  The size of the object ko . 
k
iq : Request rate for object ko at node i  ( i U ). 

kCache : The node set which replicates the object ko  and 

serves the requests for object ko within an ISP. 
j

iA : The hop counts between end node i ( i U ) and node 

j  ( ( )j Ancestors i ). 
k
jX  is a Boolean variable which equals to 1 if node j is a 

cache of ko , that is, 

1

0

k
k
j k

j Cache
X

j Cache

  


     j N                    (1) 

3.2.2 Optimization Problem for Minimizing inter-ISP 
Traffic 
Given a set of caches and request rates, our optimization 
problem is to decide which objects should be stored in the 
caching system and where to cache them, in order to satisfy 
the objective of minimizing inter-ISP traffic. This 
optimization objective can be interpreted as maximizing the 
inter-ISP traffic savings by the caching system, with the 
limited cache storage at each router. That is, 

( )

max k k k
i j

k O i U j Ancestors i

q s X
  

 
 
 
                                      (2) 

s.t.   k k
j j

k O

s X C


 ,  for all j N                 (3) 

( )

1k
j

j Ancestors i

X


 ,  for all i U                    (4) 

The first constraint is a capacity constraint, which requires 
the amount of storage space occupied by objects cached at 
a router not exceed its capacity. The second constraint 
means that the number of the caches which serve the 
requests of object ko  from end node i  is no more than 1, 

i.e., there is at most one replica for object ko  in the unique 

en-route path  1i R  from this end node i  to the root 1R . 

3.2.3 Optimization Problem for Minimizing Average 
Access Hops 
The objective of minimizing the average number of access 
hops for requesting contents can be formulated as follows,  

min( )avgH  

s.t.   k k
j j

k O

s X C


 , for all j N   

With the objective, our optimization problem is to decide 
which objects should be stored in the caching system and 
where to cache them, given a set of caches and requests 
rates. More specific, we try to find the optimal replica 
placement, i.e., the values of k

jX ( ko O , j N ), which 

leads to the smallest number of access hops on average, 
with the constraint of cache capacity. Thus, the problem 



turns out to be a Mixed Integer Problem. In addition, for 
ease of mathematical expression, we change the objective 
of minimizing average response hops to the equivalent 
objective of maximizing the saved average hops by caching 
in network. The optimization problem is therefore given as, 

( )

max ( )
k

k k j k
i i j

o O i U j Ancestors i

q s HOP A X
  

 
  

 
                        (5) 

s.t.   
k

k k
j j

o O

s X C


 ,  for all j N    (6) 

( )

1k
j

j Ancestors i

X


 ,  for all i U    (7) 

Here, HOP  is the average number of router traverse hops 
without caching in network. In today’s Internet, packets 
traverse an average of around 12 to 14 hops. We remove 2 
hops which account for the hops between the router and the 
user/content source and take 11 hops for HOP  in our 
evaluation section [12] [13]. The first constraint is a 
capacity constraint, which requires the objects cached at a 
router could not exceed its storage capacity. The second 
constraint means that the number of the caches which serve 
the requests of object ko  from end node i  is no more than 

1, i.e., there is at most one replica of object ko  caching at 

the nodes falling in the set of the ( )Ancestors i , in order to 
make the benefit of accommodating as many diverse 
objects as possible in caching system. 

Each of the above linear programming problems is a Mixed 
Integer Problem (MIP). We obtain the optimal solution using 
GLPK [14], given the caching tree and request rate of each 
object at the end nodes. The complexity of solving the MIP 
problem mainly depends on the network size, content 
population and cache capacity of each router. For the given 
topology with 50 nodes (each node can accommodate 10 
content items) and 1000 object items in the network, it takes 
several seconds to determine the cached objects and their 
optimal caching locations. However, as the tree topology 
enlarges to model the real ISP scale, say with the scale of 200 
nodes (each accommodating 20 content items) and 5000 
content items (which is still much fewer than the actual 
number of contents in Internet), it will take more than 3 weeks 
to solve the optimization problem on a high-end server. 
Obviously, the huge computational power prohibits the real-
time online decision making. Again, considering the fact that 
the object request rates are not priori-known and typically 
difficult to be predicted, the optimal caching decision is 
impractical to be achieved. Thus instead, we will turn to 
developing online caching algorithms in Section 4, while 
taking the optimization solutions as the guide to caching 
algorithm design and the bounds for performance evaluation. 

4. SYSTEM DESIGN AND CACHING 
ALGORITHMS 
As mentioned earlier, the system can be modeled as a tree-
like routing topology shown in Figure 1. We first clarify 

the two notations Level and Tier for the tree topology, as 
illustrated in Figure 2. Tier is denoted as the distance from 
the intermediate node to the closest end node (each end 
node being Tier 1), measured by the number of hops. 
Obviously, lower tier caches are closer to the end users. In 
contrast, Level is denoted as the distance from each node to 
the root 1R ( 1R  being Level 1), also measured by the 

number of hops. End nodes (nodes in Tier 1) correspond to 
the highest level caches and are responsible for monitoring 
the requests from the end users and the root node 
corresponds to the lowest level cache. The objects 
contained in the caches at the lower level can be shared and 
accessed by sub-tree nodes at the higher level. A user 
request travels from an end node (requester) towards the 
root, until the requested object is found. If the requested 
object cannot be found even at the root level, the request is 
redirected to the source content server which contains the 
interested object. Once the object is found, it is sent along 
the reverse path towards the requester. Each cache along 
the forwarding path independently decides the content 
replication according to a chosen caching strategy, which is 
determined by dynamic caching algorithms proposed later 
in this section. 

 

Figure 2. Toy model of caching topology 

Our primary goal is to maximize the gain in cross-domain 
traffic from the ISP’s perspective and in access latency 
from the user’s perspective by dynamically creating 
replicas for popular contents. In this section, we first 
introduce the procedure of dynamic caching. We then 
propose two coordinated dynamic caching strategies to 
achieve our design goal. The strategies are also expected to 
run online. 

4.1 Dynamic Caching 
The access pattern at end nodes changes over time, so the 
caching strategy has to track the object request rate at end 
nodes, and adapts the caching decision to better achieve the 
design goal. The popularity of an object is measured by the 
request rate for the object and is generally stable during a 
short time period. The caching algorithm is invoked at 
regular time intervals to determine the replica placement 
positions based on the most recent histories of request 
statistics as well as the available cache capacity. As the 
object popularity varies over time, only the most recent 



access histories are kept to reduce the memory occupation. 
The invocation interval for a caching decision is chosen 
according to the total arrival rates at the end nodes and the 
change frequency of the content popularity. A shorter 
interval is preferred for a higher request rate in order to 
adapt the caching decision quickly to the changing access 
patterns. However, a shorter interval incurs a higher 
overhead. On the contrary, a longer interval is suited better 
to the stable access patterns. 

We go a step further into the details of the popularity-based 
dynamic caching process. Each access node maintains a set 
of request counters for selected objects and dynamically 
created object items and calculates the historical request 
statistics periodically to form the access profile. Herein, the 
selected objects refer to the most popular objects presented 
in the last caching interval, based on the observation that 
recently popular files will tend to be accessed more 
frequently than others in the near future. Those sustained in 
dynamic items region are the emerging popular contents in 
the caching round. Dynamic items are maintained 
according to the object arrival rate and those with longer 
arrival interval of requests for a particular object will make 
room for the subsequent requested objects. As a result, 
unpopular objects are screened out and the profile of 
content catalog is dramatically cut down.  

Each node spreads the request information along the 
determined routing paths. In this way, each node gets the 
needed request profile and individually makes the placement 
decision according to the caching scheme. When an object is 
fetched after being requested, each router on the paths 
determines whether to replicate it or not based on the object 
tags which are set by the recent caching decision made in this 
round according to the caching algorithms presented in the 
next subsections. An object can be tagged by an update mark 
or a replication mark. The replication mark indicates that the 
fetched object can be cached at the router upon its arrival and 
its replica creation time is then set to the current time. 
Meanwhile, the replication mark turns to an update one. The 
update mark indicates that there is a replica of the object in 
the current cache, so a request for the object can be served by 
the cache until the lifetime of the replica exceeds a preset 
value. Once an object is obsolete, the request for this object 
has to be forwarded to the source instead of being served by 
the cache and the update mark of the object turns to a 
replication mark. Here the threshold of object lifetime is 
introduced for the purpose of keeping the cached object 
refreshed.  

4.2 TopDown Caching Algorithm 
TopDown caching algorithm consists of two procedures: 
information aggregation and decision making. In this 
algorithm, each node makes its caching decision for each 
object according to its popularity measured by the 
aggregated request statistics of its subtree. 

The algorithm is invoked at the commencement of a new 
interval and starts the process of information aggregation 

from end nodes upwards to the root. To illustrate the 
algorithm, we use node jR as an example, be it the end node 

or the intermediate node. An end node obtains the most 
recent request history covering the latest interval by calling 
GetReqHistory, while an intermediate node aggregates 
request records sent from all of its children by calling 
Aggregate. The obtained request records are then sorted in 
the descending order of the number of requests (#request) 
and those whose #request is less than the threshold are 
removed. The threshold can be used to screen out the 
unpopular objects for reducing the computing complexity. 
The result is stored in jA . In this way, TopDown gets sorted 

request records at each node by aggregating request records 
from the bottom level (the highest level ) up to the top level 
(the root). Here, the level is defined as the distance from 
the nodes in this layer to the root in terms of hops, as above 
mentioned. 

Algorithm 1  TopDown Caching Algorithm 
 Information Aggregation (ReqHistory) 
1 for layer← bottom level to root  do 

2 for each node jR  in the layer do 

3 if jR U  then  

4 ReqRec[]j ← Get ReqHistory( ) 
5 Else 

6     ReqRec[]j ← Aggregate (Children( jR ), Records) 

7 end if 

8 jA ← Sort-Dec (ReqRec[]j, threshold) 

9    end for 
10 end for 

11 Return ( jA ) 

 TopDown decision making ( jA ) 

12 for layer←root  to bottom level  do 

13 for each node jR  in the layer do 

14 for each record jr A  do 

15 if  r.ObjectID Exist-In jR ’s CachedTable  then 

16 MarkUpdate (r.ObjectID) 

17               Append ( jDelTable , r.ObjectID) 

18    else if  Available-Space  Size (r.ObjectID)  then 
19               MarkReplicate (r.ObjectID) 

20               Append ( jDelTable , r.ObjectID) 

21    end if 
22         end if 
23     end for 

24   Delete ( ( )jChildren RA , jDelTable ) 

25 end for 
26 end for 

With the request information, the decision making process 
is from the top to the bottom. Line 15 starts with the record 
from the top of jA and fetches the record in turn from the 

top till reaching the number of objects (or chunks) which 
the node can cache. If the ObjectID of the record is found 
in the jR ’s CachedTable which is a list of cached object 

items determined by the previous interval, an update mark 
is set to the ObjectID. Otherwise, a replication mark is set 



to the ObjectID. Thus, the corresponding router storage is 
assigned for the object item tagged by update and 
replication in this caching round and then actually 
implemented upon the arrival of the retrieved content.  

For eliminating redundancy, Topdown creates an additional 
deletion tracking table called Deltable. The current node should 
append ObjectID of those objects marked to be cached locally 
(including update and replication) to a deletion tracking table 
and send the table to all its children. Each child will delete the 
corresponding records existing in the deletion tracking table 
from its request record table, and then makes the caching 
decision based on the table containing the local request records.  

According to the TopDown algorithm, a caching example is 
illustrated in Figure 3 (a) with the request profile in Table 1. We 
assume each router can only accommodate one object in the 
example.  In Figure 3, iR  stands for a content router, and jO  

stands for an object. The circles with jO indicate where the 

replicas of jO  are placed according to TopDown caching 

algorithm. 

Table 1. Content request profile 

Object 
Request 

at R4 
Request 

at R5 
Request 

at R6 
Request 

at R7 
O1 20 20 20 20 
O2 10 10 10 10 
O3 8 8 8 8 
O4 6 6 6 6 
O5 5 5 5 5 
O6 4 4 4 4 

 

Figure 3. Examples for Caching Algorithms 

From the caching example, we can see that TopDown 
algorithm makes caching decision from root down towards 
end nodes and places the most popular content objects at 
the lower levels. We can also observe that TopDown can 
thoroughly eliminate the caching redundancy with global 
coordination, which can achieve the objective of 
minimizing inter-ISP traffic and maximizing cache hit rate. 

4.3 AsympOpt Caching Algorithm 
TopDown caching algorithm can eliminate caching redundancy 
and accommodate more diverse content objects, which 
increases the gain in reducing user access latency. From the 
observation on Figure 3(a) and the solution to the optimization 
for minimizing user access latency, we can draw the most 

popular content objects closer to the end nodes and further 
reduce the access delay, without sacrificing performance of hit 
rate or inter-ISP traffic. An example of caching placement 
determined by AsympOpt caching algorithm, which is an 
improvement of TopDown, is presented in Figure 3(b). 
AsympOpt caches the globally most popular content objects 
from the lowest tier to the highest tier. Each node in T1 (tier 1, 
end nodes layer) is tagged by first priority 1P  in T1. In other 

tiers, those having no parent in the same tier are tagged as 1P  in 

this tier. Otherwise, the node should be tagged after its parent’s 
priority. Take the model in Figure 2 for instance. 1 2 3, ,R R R  are 

in the same tier T2. 1R  has no parent in the this tier, while 2R ’s 

parent is  1R and  3R ’s parent is 2R . Therefore, 1R  is tagged by 

priority 1P , 2R  is tagged by priority 2P , and 3R  is tagged by 

priority 3P . The values of Tier and priority are determined by 

the routing topology.  

At starting time, all cache stores are empty and caching 
system will begin with Information Aggregation procedure of 
the TopDown algorithm in order to get the global popularity 
rank GloRank and distribute the result to each node. The 
subscript of Object jO stands for its GloRank. Information 

Aggregation procedure is iterated periodically during the 
execution of AsympOpt caching. The iterative period is 
determined by the popularity change.  

Given the routing topology and caching capacity jC of router 

jR ,  we have StartValue( j ) and RangeValue( j ) of jR . 

Herein, StartValue( j ) is determined by the jR ’s Tier and its 

priority, and RangeValue( j ) is the total cache capacity 
on jR ’s forwarding route. With the value, router jR  picks out 

jC  global popular contents to be cached locally. If the local 

popularity of some object is not consistent with the global 
popularity and exceeds the range of popularity difference, 
those which have relatively low GloRank but are locally 
popular will be cached. In this way, we try to compensate for 
the difference between the global popularity rank and the 
local one (Line 10~Line 23). 

Aggregate procedure and Mark procedure are similar to the 
corresponding procedures in Algorithm 1 except that the 
records of cached contents will be removed from the request 
profile which is sent to the parents. For brevity, we don’t 
describe the procedures in detail in the paper. 

We take an example to explain AsympOpt caching 
algorithm when the local and global popularity rank are not 
consistent. Let’s consider the end node 6R . Its 

StartValue( 6 ) =1 and  RangeValue( 6 ) = 4, provided each 
router can only cache one content object. If the request 
number for 1O  ranks lower than 5 in popularity and thus 

local popularity of 1O  exceeds the range value, 5O  which is 

not in the expected caching list for being globally popular but 
relatively locally popular is cached at 6R ; if the request 



number for 1O  ranks the first four in popularity, 1O  is still 

chosen to be cached. 

Algorithm 2  AsympOpt Caching Algorithm 
1 for layer ← lowest tier to highest tier  do 

2  for each node jR  in the layer sorted by ascending priority do 

3 if jR U  then  

4 ReqRec[]j ← Get ReqHistory( ) 
5 Else 

6      ReqRec[]j ← Aggregate (Children( jR ), Records) 

7 end if 
8  end for 

9 for each node jR in the layer sorted by descending priority do 

10 jA ← Sort-Dec (ReqRec[]j, threshold) 

11 st ← StartValue(j ) obtained from child in the closest tier  

12 while k<= jC  do 

13 if each GloRank(st) Exist-in first jC records of jA  then 

14  Mark(GloRank(st)) 
15  else 
16 count ++ 
17  end if 
18   st ++ 
19 end while 
20 for k=1 to count do 

21  re ← top record of jA  

22  if re.ObjectID is out of the RangeValue(j) then Mark( re ) 
23 end for 

24 SendtoParent ( jA ) 

25  
26 Mark( r) 

27    if  r.ObjectID Exist-In jR ’s CachedTable  then 

28          MarkUpdate (r.ObjectID)  

29          Remove ( jA , r) 

30    else 
31          MarkReplicate (r.ObjectID) 

32          Remove ( jA , r) 

33    end if 
34  

35 Aggregate (Children( jR ), Records) 

36 Initialize (ReqRec[]j) 

37 for each child kR in Children ( jR ) do 

38 for each record kr A   do     

39 if  r.objectID Exist-In ReqRec[]j  then 
40              rj. ReqCount= rj. ReqCount + r. ReqCount 

41 else 

42              Insert the record r  

43 end if 
44 end for 
45 end for 
46 return (ReqRec[]j) 

5. PERFORMANCE EVALUATION 
In this section, the experimental results of the caching 
algorithms are presented and analyzed. 

5.1 Simulation Settings 
Since NS2 has some limitation to simulate the new NDN 
paradigm [10], we establish our own simulation to evaluate 
the  presented caching schemes. 

5.1.1 Simulation environment 
Our algorithms are tested and evaluated using both 
synthetic and real network topologies that have different 
structural properties. 

We employ the Georgia Tech Internetwork Topology 
Model (GT-ITM) toolkit [15] to generate the router-level 
network topology using the Transit-Stub model. A shortest 
path tree for rooting level topology is abstracted from the 
generated graph. Each node is equipped with a cache. User 
requests are sent to the end nodes of the tree. Each node, 
including the end nodes, checks the requested object in its 
local cache before forwarding the request. If the object is 
not found, the request will be forwarded to the next-hop 
node along the routing path towards the root until it reaches 
a node that caches the requested object or out of the ISP via 
a gateway node towards the source of the requested object. 
In either case, an object copy is sent along the reverse path 
to the requesting end node. Each node on the path can 
replicate the passing object based on the caching criteria. 

We employ different network topologies in the evaluation, 
including the topology of University of Wisconsin AS59, 
UUNet Alternet AS701and UNINETT AS224 as listed in 
Table 2. These topologies vary in size and ISP type. 
AS701 is a tier-1 ISP, while AS59 and AS224 are Stub 
ISPs. We abstract the routing topologies from the listed 
network by ospf (open shortest path first) routing algorithm. 

Table 2. Real Network Topology 

Network 
AS 

number 
Nodes 

Number 
of Tiers 

Number 
of Layers 

Uni. of Wisconsin AS59 41 3 5 

UUNet Alternet AS701 75 3 8 

UNINETT AS224 208 5 9 

5.1.2 Input data 
We mainly use the synthetic input data in the caching 
performance evaluation, and also use the actual trace 
collected from Tsinghua University for validation purpose.  

5.1.2.1 Synthetic input data 
Let  1 2, ... NO o o o  denote a set of cacheable objects. We 

assume that requests are identical and independently 
distributed (i.i.d.) within the set O in a considered time 
frame such that each request refers to an object ko  with a 

probability kp  without memorizing previous requests. The 

objects are ordered according to the decreasing access 
probabilities 1 2 ... Np p p   . 

The requests at each end node follow the Poisson arrival 
( ) ( ) / !n t

nP t t e n  . We assume the average request rate   



at edge routers follows a uniform distribution and the 
objects’ popularity is governed by the Zipf distribution 

( ) /f i i i     ( 0.5 2  ) [16], where  is the 

skewness factor indicating the concentration degree of 
object access. Zipf distribution defines the probability of 
accessing an object at rank i out of N available objects. 

5.1.2.2 Real trace 
The real trace is collected from Tsinghua University 
campus network. The duration of the trace is one hour and 
the trace accounts for around 100G bytes. We apply DPI 
(Deep Packet Inspection) to parse the trace and use the urls 
in HTTP as the input data. 

5.1.3 Performance metrics for evaluation 
Our goal is to find the optimum caching locations to 
maximize the benefits. The most typical metrics are inter-
ISP traffic or hit rate (The difference of the two metrics 
mainly lie in whether content size is involved), and the 
access delay measured by the number of hops that a given 
request travels in the network. So, the two metrics are 
tested. 

 Saving Rate of inter-ISP Traffic (SR-CDT): the 
ratio of the Inter-ISP traffic saved by caching with respect to 
the total Inter-ISP traffic incurred without caching.  

 Saving Rate of Hops (SR-Hops): we define the 
response hops as the number of the routers traveled by the 
response packets from the source (or cache) to the requester. 
SR-Hops is the ratio of the average number of response 
hops reduced by caching over the number of response hops 
without caching (11 hops as above mentioned).  

5.1.4 Caching schemes for comparisons 
We compare our caching schemes with other caching 
schemes: Leaving Copies Everywhere (LCE) [17], Leaving 
Copies with Probability (LCProb), and Leaving Copies with 
Uniform Probability (LCUniP). LCE is currently used in 
most hierarchical caches and the same caching algorithm was 
applied in the most influential article for NDN [1]. In LCE, 
each cache on the delivery path replicates the copy of the 
object with the Least Recently Used (LRU) replacement 
algorithm. LCE is widely used due to its high performance 
and ease of implementation. LCUniP and LCProb are similar 
to LCE except that the retrieved content is not blindly cache 
at each passing node, but selectively cached by probability to 
eliminate redundancy. LCUniP caches the passing content 
with uniform probability at each router, while LCProb is with 
caching probability 1/(hop count along the path). 

In addition, we compare our caching algorithms with the 
optimization solutions. 

5.2 Comparison with Optimization Solutions 
As mentioned above, it takes an extremely long time to 
solve the optimization problem with a 200-node network 
and it is thus impractical to compare the solution at such a 
scale. Therefore, we compare our algorithms with the 
optimal solutions in the 50-node topology with each router 

caching 10 objects (or chunks), serving for 1000 object (or 
chunk) interests in the network. The object request arrivals 
follow the Poisson distribution and the popularity of 
requested objects follows the Zipf distribution with 
skewness parameter 0.9  .  

In Table 3, Optimal Solution 1 stands for the solution to the 
objective of minimizing inter-ISP traffic, while Optimal 
Solution 2 stands for the solution to the objective of 
minimizing average number of access hops. We can 
observe that both AsympOpt and TopDown closely 
approach the bound of SR-CDT performance, so they both 
work well on achieving the objective of minimizing inter-
ISP traffic and maximizing cache hit rate. As for SR-Hops 
which measures the access latency, AsympOpt is much 
closer to the bound and achieves the optimum performance 
from the user perspective. In contrast, though TopDown 
slightly outperforms AsympOpt in terms of SR-CDT, it is 
much inferior to AsympOpt in terms of SR-Hops. In 
summary, the proposed algorithms can achieve nearly 
optimal performance in small-scale networks. Particularly, 
the performance of AsympOpt is very close to the bounds 
obtained from the optimization solutions. 

Table  3. Comparison with Optimal Solution 

Metric 
Optimal 

Solution 1 
Optimal 

Solution 2 
AsympOpt TopDown

SR-CDT 0.4834 / 0.4775 0.4834

SR-Hops / 0.4500 0.4462 0.3713

5.3 Performance Impact Factors 
The efficiency of caching depends on factors such as 
network topology, request pattern, cache capacity and 
object popularity. In this section, we compare our 
algorithms with baseline algorithms LCE, LCProb and 
LCUniP (10% probability) considering these factors 

The default settings are listed as follows. The ISP routing 
topology is a tree with 200 nodes including 103 end nodes, 
where each node is equipped with a cache that can serve 
for 100,000 object items. The number of average requests 
at each end node (which follow the Poisson arrival with 
parameter t  ) follows a uniform distribution 
U(20000,40000), where   is the request arrival rate at the 
end node and t is the observation interval for caching 
decision. Object popularity follows a Zipf distribution with 

0.9  . 

5.3.1 Impact of the cache size on performance 
The cache size at each node is described as the value 
relative to the total size of all objects available in the 
network and called relative cache size. We compare the 
effectiveness of different caching algorithms across a range 
of cache sizes, from 0.01% percent to 0.12% percent, with 
the total object size of 100,000 chunks. (The default 
relative cache size 0.04% will be used in the following 
simulations.) 
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(a) Synthetic input 
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(b) Real trace 

Figure 4. Caching performance vs. cache size 

Figure 4 compares the saving rate of inter-ISP traffic (SR-
CDT) and saving rate of average response Hops (SR-Hops) 
with the synthetic load and real trace, respectively. The 
simulation results show that all the algorithms provide 
steady performance improvement as the cache size 
increases. In general, AsympOpt significantly outperform 
LCE, LCProb and LCUniP both in SR-CDT and SR-Hops. 
TopDown performs best, but achieves a marginal 
improvement in terms of SR-CDT compared with 
AsympOpt. However, AsympOpt performs much better in 
terms of SR-Hops than TopDown. Therefore, AsympOpt is 
preferable for achieving better whole performance. Among 
the three baseline algorithms, LCUnip (10%) performs the 
best, while LCE performs the worst as expected in terms of 
both metrics. We also test the naïve random en-route 
replica placement, that is LCUnip with 50% probability 
and find that LCUnip (10%) outperforms LCUnip (50%) in 
both of the performance metrics.  

We also observe that as the relative cache size increases, the 
slope of the curves turns to be flatter, that is, the performance 
gain decreases with the increased capacity. Considering the 
tradeoff between the cost and performance gain, we can deploy 
suitable cache capacity with the curves.  

Although the result curves are largely consistent with the curves 
created by the synthetic input, the advantage of our algorithms 
over baseline algorithms seem to decline in case of real trace 
input. It may be because the trace we’ve got is not general 
enough and we only analyze the web requests. The 
comprehensive evaluation on real traces will be our future work. 

5.3.2 Impact of the request pattern on performance 

5.3.2.1 Popularity Skewness  
We assume that the request pattern follows the Zipf 
distribution, that is, the frequency of a request is the inverse 
of its rank in the request popularity. The Zipf skewness 

parameter   indicates the degree of concentration of object 
requests. When the values of  are close to 1, it indicates 
that a few objects (also known as “hot spots”) attract the 
majority of the requests; while when values are close to 0, it 
means the object popularity is almost uniform. We examine 
the impact of request frequency distribution on the 
effectiveness of our caching schemes. 

Figure 5 shows the performance curves as a function of Zipf 
parameter   over a range from 0.5 to 2, with the relative 
cache size of 0.04%.  The curves remain approximately 
constant with the skewness factor. Because of the large base 
of content population, the most popular contents are almost 
cached in different cases. 
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Figure 5. Caching performance vs. Zipf skewness 

5.3.2.2 Object popularity fluctuation 
As the object popularity changes with time owing to the 
variation in user interests, we further study the impact of 
varying object popularity on the caching performance. The 
X axis shows the popularity variation range, with 
maximum change of 60 popularity rank for each round. 
Though there is some fluctuation because of the random 
generation for dataset, in general slight variation on object 
popularity has advantage over sharp variation.  It is more 
difficult for the caching algorithms to adapt quickly in 
response to severe and quick popularity alteration. Both 
SR-CDT and SR-Hops are the worst in case of sharp 
variation in popularity. As shown in Figure 6, all the 
algorithms can keep good efficiency and stability 
regardless of the popularity change. The insensitiveness of 
the proposed algorithms provides better adaptation to 
different network environment and makes the assumption 
of unchanged popularity reasonable. 
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Figure 6. Caching performance vs. Popularity variation 

5.3.3 Impact of content population on performance 
Internet contents are anticipated to dramatically increase 
due to the explosive growth in user-generated contents and 



many emerging applications. To shed light on this issue, 
we have conducted experiments to gain a deeper insight 
into the impact of object population increase on the 
performance of caching algorithms, with a special focus on 
its scalability and robustness. 

Figure 7 shows that the proposed algorithms still gain 
much better performance than the baseline algorithms, 
when increasing the number of object items while keeping 
the caching capacity fixed. Our simulation also shows that 
when enlarging the cache capacity with the increase in 
#objects, the caching performance in terms of SR-CDT and 
SR-Hops remains good. Besides, as the content population 
exceeds 100,000, caching performance tends to be 
convergent. The stable property is very favorable, as the 
content items increase rapidly nowadays. 
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Figure 7. Caching performance vs. content population 
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Figure 8. Caching performance vs. topology 

5.3.4 Impact of the ISP topology on performance 
We generate three different router-level topologies by GT-
ITM and extract the routing trees rooting from the gateway: 
100 nodes with 53 end nodes, 200 nodes with 103 end 
nodes, and 392 nodes with  262 end nodes, respectively. 
And we test the algorithms over real networks as well. 
Figure 8 illustrates that the performances of the presented 
caching schemes are insensitive to the topology change, 
which ensures the scalability of our proposed caching 
algorithms and the ease of deployment. 

5.3.5 Discussion of simulation results 
From the simulation results presented above, we reach 
some conclusions about our caching schemes. 

1) Effectiveness 

From Figure 4-8, we can see that AsympOpt outperforms 
the baseline algorithms both in SR-CDT and SR-Hops, and 
TopDown performs well in saving inter-ISP traffic, which 
is our first order objective. In all the cases, the algorithms 

are effective and seem to achieve better performance in 
presence of more randomness in access pattern. 

2) Scalability 

The proposed caching algorithms show great scalability as 
demonstrated in Figure 7, 8. The caching performance of 
the schemes increases with the increasing cache size. 
Moreover, enlarging ISP’s network scale will not impose a 
negative impact on algorithms’ performance, possibly 
because caching favors popular contents, which are not 
pertinent to object population. Further, when object 
population is large enough, caching performance is 
convergent to a reasonable value, which is good news for 
the content explosive era. 

3) Stability 

The algorithms are insensitive to the variation in user 
behaviors on object requests. The relative performance 
remains stable regardless of the distribution of requested 
objects and popularity alteration, even in the worst case 
where there is extremely dynamic change of object 
popularity. Besides, AsympOpt is superior to the baseline 
algorithms in almost all cases with various parameters.  

5.4 Preliminary measurement of overheads 
We analyzed the caching scheme and conducted 
preliminary experiments mainly on the default 200-node 
topology for measuring the cost on three folded: storage 
use, communication overhead and execution time.  

5.4.1 Communication overhead 
In order to characterize communication overhead, we first 
list the related notations as follows, 

iD : the number of nodes who is i hops apart from the root. 

L: the longest distance between end node and root 
C: homogeneous cache capacity  
M: the number of content profile sent for information 
aggregation 

N: the number of all nodes. 
0

L

i
i

N D


   

F: content population 

ijH : hop count to satisfy the request for jO  at end node i 

Then, the average communication overhead is as follows, 
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LCE: 0 
Take 200-node topology for instance, the communication 
overhead for all the algorithms is : AsympOpt 11.3 Kbytes , 



TopDown 12.464Kbytes, LCProb  424M bytes, LCUniP 
105 Mbytes.  

5.4.2 Storage overhead 
Storage cost for LCE, LCProb and LCUniP is negligible, 
while AsympOpt needs (4F-2/N+8) bytes and TopDown 
needs (4F-2/N+8) bytes.   

5.4.3 Execution time 
The job execution time during each caching round is listed 
as follows: 1304ms for AsympOpt, 2577ms for TopDown, 
402540ms for LEC, 400784ms for LCProb, and 398672 for 
LCUniP. Our algorithms save hundreds of seconds of 
running time and account for limited communication 
overhead mostly because the algorithms only deal with 
access statistics of selected objects and are well scaled with 
the increasing object population, while the baseline 
algorithms have to cope with each arriving object. 
Therefore, we can expect our algorithms to gain favorable 
result under the large-scale network serving numerous 
objects. 

6. CONCLUSION AND FUTURE WORK 
We have developed coordinated caching schemes to reduce 
the redundant traffic going through the NDN networks, 
trying to minimize both inter-ISP traffic and average 
number of access hops. The main goal of this paper is to 
propose efficient caching algorithms that can make 
dynamic caching decisions on the fly. The proposed 
algorithms achieve the performance that is close to the 
optimum (especially for AsympOpt) with the favorable 
saving rate in inter-ISP traffic and considerably improve 
the performance of access delay and intra-ISP link 
consumption measured by the number of hops traveled. A 
variety of factors that can impact the caching performance 
are considered in the simulations and our algorithms are 
demonstrated to be effective, stable and scalable with 
varying network topology, cache capacity, objects request 
pattern, popularity variation and population covered by end 
routers. As part of our future work, we plan to extend our 
dynamic caching solution by considering multiple 
gateways, as well as the use of multiple paths in NDN.  
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