
Popularity-driven Coordinated Caching
in Named Data Networking

Jun Li, Hao Wu, Bin Liu,
Jianyuan Lu, Yi Wang
Dept. of Computer Science
Tsinghua University, Beijing

Xin Wang
Dept. of Electrical & Computer

Engineering, State Univ. of New York
Stony Brook, New York

Yanyong Zhang, Lijun Dong

WINLAB, Rutgers University
North Brunswick, NJ

ABSTRACT
The built-in caching capability of future Named Data Networking
(NDN) promises to enable effective content distribution at a global
scale without requiring special infrastructure. The aim of this work
is to design efficient caching schemes in NDN to achieve better
performance at both the network layer and application layer. With
the specific objective of minimizing the inter-ISP (Internet Service
Provider) traffic and average access latency, we first formulate the
optimization problems for different objectives and then solve them
to obtain the optimal replica placement. Then we develop
popularity-driven caching schemes which dynamically place the
replicas in the caches on the en-route path in a coordination fashion.
Simulation results show that the performances of our caching
algorithms are much closer to the optimum and outperform the
widely used schemes in terms of the inter-ISP traffic and the
average number of access hops. Finally, we thoroughly evaluate the
impact of several important design issues such as network topology,
cache size, access pattern and content popularity on the caching
performance and demonstrate that the proposed schemes are
effective, stable, scalable and with reasonably light overhead.

Categories and Subject Descriptors
C.2.1 [Computer Systems Organization]: Network
Architecture and Design

General Terms
Algorithms, Performance, Design.

Keywords
Named Data Networking; Modeling; Dynamic caching;
Coordinated caching; Popularity-based.

1. INTRODUCTION
The modern usage of Internet has become largely content-
oriented, i.e. users tend not to care where (from which host)
and how (via which protocol) to obtain a piece of content,
but are more interested in fast and reliable content retrieval.
Meanwhile, driven by increasing content sizes and content
types, Internet traffic has been rapidly growing at an
unprecedented rate. This explosive growth in traffic poses a

significant challenge to the underlying network, as network
capacity cannot satisfy the exponentially growing demand.
Content-centric overlay networks such as Content Delivery
Network (CDN) and Peer-to-Peer (P2P) are then introduced
to effectively improve the content distribution efficiency.
However, these incremental designs have to deploy extra
application-oriented overlay mechanisms and need
dedicated components for the architecture, which leads to
unscalable solutions. To meet the huge demand of content
dissemination in the Internet, it is necessary to rethink the
future Internet architecture which can bridge the gap
between name-based content delivery and the underlying
host-to-host communication infrastructure.

The clean slate Named Data Networking (NDN) [1], also
called Content-Centric networking (CCN) 1 , is recently
proposed for this purpose and widely regarded as one of the
most promising architectures for future networks. Quite
different from the current IP-based network, this new
paradigm features name-based routing and systematic in-
network caching. To be specific, in-network caching can
directly cache content at each node (say router) on the
forwarding path. By typically caching the popular contents
at the router, in-network caching can reduce both the
overall network load and the access delay. Subsequent
requests no longer need to be served directly by the content
source which may be far away, but can be served by a
closer NDN router along the routing path. Though Internet
caching has already been extensively studied, caching in
NDN faces a different set of challenges.

In today’s Internet (like CDNs), caches are located in
specific severs and replicas can be placed in any of these
caches. In NDN, however, replicas of the objects are
cached along the en-route paths so the requested objects
can be obtained with much shorter latencies. This design
significantly differs from traditional Internet caching, and
can seamlessly integrate routing and content retrieval
without introducing much overhead. In addition, NDN
caching is universal as it not only applies to the content
carried by any protocol, but also applies to all the content
from users other than the content providers (e.g. CDNs).
Since there is a tremendous amount of content in the
Internet, line-speed packet processing is required by NDN

1 We use NDN and CCN interchangeably in the paper.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
ANCS’12, October 29–30, 2012, Austin, Texas, USA.
Copyright 2012 ACM 978-1-4503-1685-9/12/10... $15.00.

to support name-based data forwarding and caching.
Therefore, the storage of each router in NDN is
technologically limited by memory access speed. Due to
limited cache capacity on each node, careful cache
placement is critical to maximizing the benefit. Our goal in
this paper is to find suitable caching locations according to
specific objectives, given network topology, content access
pattern and various caching constraints.

Among many metrics that can benefit from caching, the
main objective of our work is to minimize the inter-ISP
traffic at the administrative boundaries in NDN. Our
motivations for this particular objective are as follows:

 Intra-ISP links are usually over-provisioned, while
inter-ISP links tend to be the bottlenecks which often suffer
from congestion [2]. Reducing inter-ISP traffic will
significantly alleviate congestion and thus improve the
network performance at a global scale.

 Since the inter-ISP links are much more costly
than internal links, the reduction of Inter-ISP traffic will
greatly reduce the deployment cost for ISPs and thus cut
down the inter-ISP charging [2].

 By investigating popularity-based in-network
caching strategies in NDN with the special objective, we
intend to thoroughly remove the caching redundancy and
accommodate as many diverse content items as possible in
caching system, which yields highest cache hit rate as well
as minimizing inter-ISP traffic. Meanwhile, since a fraction
of requests are satisfied within the ISP, caching draws the
most popular content closer to the end users and helps to
reduce the number of access hops, which will in turn
alleviate the traffic burden within an ISP.

The other objective of the work is to explore better caching
algorithms to further reduce the access delay without
increasing inter-ISP traffic. In addition, a fewer number of
access hops can then result in light traffic load within the
ISP. To summarize, our ultimate objective is thus to
improve the overall network performance in terms of inter-
ISP and intra-ISP bandwidth consumption as well as access
latency, with effective in-network caching.

Intuitively, coordinated caching among the routers is a
promising approach to achieving reduced inter-ISP traffic,
but several important issues need to be addressed: 1)
Caching principle. Although NDN suggests a multi-path
usage to enhance the network performance, it is a non-
deterministic variation depending upon the future protocol.
It is difficult to model such kind of non-determinacy. For
simplicity, at least at the beginning of NDN, we restrict
content caching following the en-route principle as the first
step towards a full-fledged one. 2) Caching consistency.
Practically, an ISP has several gateways to interconnect
with provider-ISPs or peer-ISPs. Obviously, maintaining
caching consistency among multiple gateways is a very
challenging problem. In this paper, we assume an ISP only
has a single gateway and plan to extend our solution to
multiple gateways in the future work.

The main problem addressed in the paper is to provide
effective caching strategies that enable NDN routers within
an ISP to coordinate their caching decisions. Unlike most
of the earlier work in conventional CDN caching with a
focus on minimizing the access latency without considering
the resulting bandwidth consumption, we make the
following contributions:

 We formulate the problem-solving models with
the aim of concurrently minimizing inter-ISP traffic and
minimizing the average number of access hops, in order to
obtain an optimal solution to the replica placement.

 Guided by optimal replica placement, we present
two popularity-based caching algorithms, named TopDown
and AsympOpt, where caching is coordinated implicitly
among the routers on the path and the routers can make
online decision independently. The proposed algorithms
can significantly reduce inter-ISP traffic as well as decrease
access latencies. Particularly, AsympOpt can achieve the
best overall performance, which is very close to the results
of optimal solutions.

 We evaluate the performance of the proposed
caching algorithms with optimum solutions and study the
impact of a variety of factors such as network topology,
request pattern, object popularity and cache capacity etc.
Simulation results demonstrate that the proposed
algorithms exhibit stability and scalability under a wide
range of workloads without introducing much overhead.

The rest of the paper is organized as follows: Section 2
surveys the related work. The system model and problem
statement are presented in Section 3. Section 4 describes the
coordinated dynamic caching scheme. The simulation model,
impact factors and the simulation results are discussed in
Section 5. Finally, we conclude this paper in Section 6.

2. RELATED WORK
Internet Caching plays an important role in enhancing
content delivery, as caching can reduce network traffic and
alleviate server load, thereby decreasing access latencies
and improving user-perceived Quality of Experience. A
large body of research has been done in this field which
has led to great successes, such as web proxies [3], object
caches [4] and CDN [5], while caching in NDN is a new
area and very little investigative work has been published,
to our best knowledge. The similar idea of having Internet
routers cache passing data as suggested in NDN has been
studied in en-route caching, which equips each node in a
network with a cache and enables the nodes along the
routing path to cache formerly requested objects in the
network for future reuse [6]. Dong et al. [7] presented
independent content caching and replacement algorithms
for intermediate nodes with limited storage, but the work
can only reach local optimality with the mathematical
model. Due to the complexity of solving the optimization
problem, this scheme is limited to be used for small-scaled
network. Walter et al. [8] presented an in-network caching
architecture based on content routers, which discovers

resources in the network proximity. However, cooperation
is limited to neighborhood and cannot reach the optimum
in the network. In contrast, we strive to thoroughly remove
the redundancy with implicit cooperation among caches in
order to efficiently utilize the available cache space and
minimize inter-ISP traffic.

The most recent works [9] [10] [11]have dived into the
study on CCN caching. D.Rossi et al. [9] presented a quite
thorough simulation study of CCN caching performance.
However, they assumed that named content in CCN can in
principle take any path in the network, while we argue that
routing to the content sources is determined by the CCN
routing protocol and content objects are cached along the
en-route path. Kideok et al. [11] proposed a lightweight
caching scheme named WAVE, in which the popular
contents can be pushed closer to the end users. However,
WAVE cannot eliminate the caching redundancy from
perspective of the whole network and is limited to achieve
good caching performance locally. Psaras et al. [10]
focused on modeling caching trees of content-centric
networking, which is complementary to our work.

In order to achieve better caching performance, we propose
dynamic caching schemes based on content popularity.
Traditional approaches towards network caching have
placed large caches at specific points in the network, with
little or no coordination between the caches. In contrast,
routers with limited storage in our schemes independently
make the caching decision based on the recent content
requests of its subordinates; thus nodes implicitly share
their caching information and coordinate in minimizing the
redundancy. Besides, the proposed caching strategy can
work online to adapt to various network changes.

3. SYSTEM MODEL AND PROBLEM
STATEMENT
In this section, we first briefly introduce the NDN
architecture and then present a system model of the
routers/caches within a single ISP, which are followed by
formulating our caching problem.

3.1 System Model
NDN architecture is featured with the availability of built-
in network storage and receiver-driven chunk level
transport. That is, each router on the Internet is equipped
with a cache and can replicate passing contents to serve the
subsequent requests without the need of forwarding them
to their source servers. In addition, the unit used for
transmission is the segment of content, named chunk.

NDN uses a globally unique identifier (e.g. a hash function
of a URL) to recognize a content object. The content
retrieval procedure is as follows: (1) The content names are
published into network by different Internet applications.
(2) An end user who is interested in a particular type of
content sends out an interest packet with the name of the
requested content. The interest packet propagates along the

routing path towards the content source. (3) Each router
receiving an interest checks whether the requested content
is present in its local cache by looking up a Content Store
(CS) table. If there is a hit, the router sends the matched
data piece to the requester along the reverse path.
Otherwise, it forwards the request to the interfaces
determined by the Forwarding Information Base (FIB).
Ongoing requests are recorded in a Pending Interest Table
(PIT) for later sending back the requested data through the
reverse path towards the sources of the interests. (4) When
the target content travels from the source (or cache)
downward to the requester, the router on the forwarding
path will determine whether to replicate the content
according to the caching strategy.

The requested content objects are distributed at the
repositories outside the ISP in the model, due to the fact
that the majority of the content requests can not be satisfied
within an ISP without caching. Generally it takes fewer
hops to retrieve a content object inside the ISP, so we do
not consider caching those objects whose sources happen
to reside in the investigated ISP, for fully exploiting cache
capacity for better content retrieval performance. Hence,
we simplify the model as illustrated in Figure 1. When an
edge router (say 14R) receives an interest for content object

(say 1O), it will forward the interest towards the content

source guided by FIB. When the target content objects are
sent in reply to interest packets and travel along the way
back to the requester following the chain of PIT entries, the
NDN router on the path determines whether to replicate the
passing content according to the caching strategy. As in the
example, node 4R replicates the content object 1O and

serves the later requests for 1O from the edge routers

within its subtree, that is, 12 13 14, ,R R R .

R1

R2
R3

R4 R5 R6

R7 R8 R9

R10

R11

R14R13 R15R12 R16
R17

R18 R19 R20 R21

Content Source

ISPA

O1O2O3
O6

O7

O8

O9
O10 O11 O12

O13

End user
Content object
Content Router

Content replica

Figure 1. An illustrated caching model

From the above, all the content resources retrieved from the
sources outside the given ISP pass through its gateway and
are cached at some inner nodes on the path to the
requesters. Thus, our caching infrastructure is hierarchical,

where the requests are only interfaced at the end nodes of
the hierarchy and routed towards a single root cache (i.e.,
ISP gateway). Accordingly, the flat graph of ISP topology
can be simplified as a tree model, with gateway being the
root node. Figure 1 shows the example tree abstracted from
the router-level topology of an ISP.

The purpose of our work is to design and evaluate the
NDN caching strategies in order to achieve a system goal.
To make full use of in-networking caching, we focus on
minimizing the inter-ISP traffic and reducing the number of
access hops by caching the requested contents within an
ISP using the available caching space of routers. To be
specific, we address the problem of online coordinated
caching decision in the following environment: once a
request for a piece of chunk fails to be satisfied by the
caches inside an ISP, the requested object item will be
fetched from the external source and traveled via the
gateway of the investigated ISP. We aim to design
appropriate caching strategies which can work online to
achieve the best gain. Each router in the ISP independently
determines whether to replicate the passing items in its
associated cache. The objective of our work is to minimize
the inter-ISP traffic and also minimize the average number
of access hops by caching frequently requested objects at
selected routers inside the ISP.

3.2 Problem Statement
It is impracticable to find the solution to an optimization
problem including all the optimization objectives. In our
case, the objective of minimizing inter-ISP traffic and the
objective of minimizing average access hops are not always
consistent. In this subsection, we first give out the
definition and notations, and then we formulate individual
problem-solving model for each objective and obtain the
optimal solution to the replica placement respectively. The
solutions are used to guide the caching design and taken as
bounds to the performance.

3.2.1 Definition and Notations
According to the tree topology of our system model in
Figure 1, we consider a caching tree (routing tree), whose
node set N is partitioned into two parts: a set of end nodes
U and a set of intermediate nodes (N U), and the
gateway node 1R being the root of the tree. End nodes are

responsible for managing the interest requests from their
users. Each node j (j N) is equipped with a cache,
whose storage capacity is jC .

Let [i j] be the unique routing path from node i up to
node j , ,i j N . We say j is the upstream node (or
ancestor), while i is the downstream node (or descendant),
if node j is closer to the root 1R than node i . Let

()Ancestors j denote the set of ancestors of node j , i.e., the

nodes in the unique en-route path  1j R (Node j is

included).

Let O be the set of interested objects in the Internet. For
the requested content object ko (ko O), we define:

ks : The size of the object ko .
k
iq : Request rate for object ko at node i (i U).

kCache : The node set which replicates the object ko and

serves the requests for object ko within an ISP.
j

iA : The hop counts between end node i (i U) and node

j (()j Ancestors i).
k
jX is a Boolean variable which equals to 1 if node j is a

cache of ko , that is,

1

0

k
k
j k

j Cache
X

j Cache

  


 j N (1)

3.2.2 Optimization Problem for Minimizing inter-ISP
Traffic
Given a set of caches and request rates, our optimization
problem is to decide which objects should be stored in the
caching system and where to cache them, in order to satisfy
the objective of minimizing inter-ISP traffic. This
optimization objective can be interpreted as maximizing the
inter-ISP traffic savings by the caching system, with the
limited cache storage at each router. That is,

()

max k k k
i j

k O i U j Ancestors i

q s X
  

 
 
 
  (2)

s.t. k k
j j

k O

s X C


 , for all j N (3)

()

1k
j

j Ancestors i

X


 , for all i U (4)

The first constraint is a capacity constraint, which requires
the amount of storage space occupied by objects cached at
a router not exceed its capacity. The second constraint
means that the number of the caches which serve the
requests of object ko from end node i is no more than 1,

i.e., there is at most one replica for object ko in the unique

en-route path  1i R from this end node i to the root 1R .

3.2.3 Optimization Problem for Minimizing Average
Access Hops
The objective of minimizing the average number of access
hops for requesting contents can be formulated as follows,

min()avgH

s.t. k k
j j

k O

s X C


 , for all j N

With the objective, our optimization problem is to decide
which objects should be stored in the caching system and
where to cache them, given a set of caches and requests
rates. More specific, we try to find the optimal replica
placement, i.e., the values of k

jX (ko O , j N), which

leads to the smallest number of access hops on average,
with the constraint of cache capacity. Thus, the problem

turns out to be a Mixed Integer Problem. In addition, for
ease of mathematical expression, we change the objective
of minimizing average response hops to the equivalent
objective of maximizing the saved average hops by caching
in network. The optimization problem is therefore given as,

()

max ()
k

k k j k
i i j

o O i U j Ancestors i

q s HOP A X
  

 
  

 
   (5)

s.t.
k

k k
j j

o O

s X C


 , for all j N (6)

()

1k
j

j Ancestors i

X


 , for all i U (7)

Here, HOP is the average number of router traverse hops
without caching in network. In today’s Internet, packets
traverse an average of around 12 to 14 hops. We remove 2
hops which account for the hops between the router and the
user/content source and take 11 hops for HOP in our
evaluation section [12] [13]. The first constraint is a
capacity constraint, which requires the objects cached at a
router could not exceed its storage capacity. The second
constraint means that the number of the caches which serve
the requests of object ko from end node i is no more than

1, i.e., there is at most one replica of object ko caching at

the nodes falling in the set of the ()Ancestors i , in order to
make the benefit of accommodating as many diverse
objects as possible in caching system.

Each of the above linear programming problems is a Mixed
Integer Problem (MIP). We obtain the optimal solution using
GLPK [14], given the caching tree and request rate of each
object at the end nodes. The complexity of solving the MIP
problem mainly depends on the network size, content
population and cache capacity of each router. For the given
topology with 50 nodes (each node can accommodate 10
content items) and 1000 object items in the network, it takes
several seconds to determine the cached objects and their
optimal caching locations. However, as the tree topology
enlarges to model the real ISP scale, say with the scale of 200
nodes (each accommodating 20 content items) and 5000
content items (which is still much fewer than the actual
number of contents in Internet), it will take more than 3 weeks
to solve the optimization problem on a high-end server.
Obviously, the huge computational power prohibits the real-
time online decision making. Again, considering the fact that
the object request rates are not priori-known and typically
difficult to be predicted, the optimal caching decision is
impractical to be achieved. Thus instead, we will turn to
developing online caching algorithms in Section 4, while
taking the optimization solutions as the guide to caching
algorithm design and the bounds for performance evaluation.

4. SYSTEM DESIGN AND CACHING
ALGORITHMS
As mentioned earlier, the system can be modeled as a tree-
like routing topology shown in Figure 1. We first clarify

the two notations Level and Tier for the tree topology, as
illustrated in Figure 2. Tier is denoted as the distance from
the intermediate node to the closest end node (each end
node being Tier 1), measured by the number of hops.
Obviously, lower tier caches are closer to the end users. In
contrast, Level is denoted as the distance from each node to
the root 1R (1R being Level 1), also measured by the

number of hops. End nodes (nodes in Tier 1) correspond to
the highest level caches and are responsible for monitoring
the requests from the end users and the root node
corresponds to the lowest level cache. The objects
contained in the caches at the lower level can be shared and
accessed by sub-tree nodes at the higher level. A user
request travels from an end node (requester) towards the
root, until the requested object is found. If the requested
object cannot be found even at the root level, the request is
redirected to the source content server which contains the
interested object. Once the object is found, it is sent along
the reverse path towards the requester. Each cache along
the forwarding path independently decides the content
replication according to a chosen caching strategy, which is
determined by dynamic caching algorithms proposed later
in this section.

Figure 2. Toy model of caching topology

Our primary goal is to maximize the gain in cross-domain
traffic from the ISP’s perspective and in access latency
from the user’s perspective by dynamically creating
replicas for popular contents. In this section, we first
introduce the procedure of dynamic caching. We then
propose two coordinated dynamic caching strategies to
achieve our design goal. The strategies are also expected to
run online.

4.1 Dynamic Caching
The access pattern at end nodes changes over time, so the
caching strategy has to track the object request rate at end
nodes, and adapts the caching decision to better achieve the
design goal. The popularity of an object is measured by the
request rate for the object and is generally stable during a
short time period. The caching algorithm is invoked at
regular time intervals to determine the replica placement
positions based on the most recent histories of request
statistics as well as the available cache capacity. As the
object popularity varies over time, only the most recent

access histories are kept to reduce the memory occupation.
The invocation interval for a caching decision is chosen
according to the total arrival rates at the end nodes and the
change frequency of the content popularity. A shorter
interval is preferred for a higher request rate in order to
adapt the caching decision quickly to the changing access
patterns. However, a shorter interval incurs a higher
overhead. On the contrary, a longer interval is suited better
to the stable access patterns.

We go a step further into the details of the popularity-based
dynamic caching process. Each access node maintains a set
of request counters for selected objects and dynamically
created object items and calculates the historical request
statistics periodically to form the access profile. Herein, the
selected objects refer to the most popular objects presented
in the last caching interval, based on the observation that
recently popular files will tend to be accessed more
frequently than others in the near future. Those sustained in
dynamic items region are the emerging popular contents in
the caching round. Dynamic items are maintained
according to the object arrival rate and those with longer
arrival interval of requests for a particular object will make
room for the subsequent requested objects. As a result,
unpopular objects are screened out and the profile of
content catalog is dramatically cut down.

Each node spreads the request information along the
determined routing paths. In this way, each node gets the
needed request profile and individually makes the placement
decision according to the caching scheme. When an object is
fetched after being requested, each router on the paths
determines whether to replicate it or not based on the object
tags which are set by the recent caching decision made in this
round according to the caching algorithms presented in the
next subsections. An object can be tagged by an update mark
or a replication mark. The replication mark indicates that the
fetched object can be cached at the router upon its arrival and
its replica creation time is then set to the current time.
Meanwhile, the replication mark turns to an update one. The
update mark indicates that there is a replica of the object in
the current cache, so a request for the object can be served by
the cache until the lifetime of the replica exceeds a preset
value. Once an object is obsolete, the request for this object
has to be forwarded to the source instead of being served by
the cache and the update mark of the object turns to a
replication mark. Here the threshold of object lifetime is
introduced for the purpose of keeping the cached object
refreshed.

4.2 TopDown Caching Algorithm
TopDown caching algorithm consists of two procedures:
information aggregation and decision making. In this
algorithm, each node makes its caching decision for each
object according to its popularity measured by the
aggregated request statistics of its subtree.

The algorithm is invoked at the commencement of a new
interval and starts the process of information aggregation

from end nodes upwards to the root. To illustrate the
algorithm, we use node jR as an example, be it the end node

or the intermediate node. An end node obtains the most
recent request history covering the latest interval by calling
GetReqHistory, while an intermediate node aggregates
request records sent from all of its children by calling
Aggregate. The obtained request records are then sorted in
the descending order of the number of requests (#request)
and those whose #request is less than the threshold are
removed. The threshold can be used to screen out the
unpopular objects for reducing the computing complexity.
The result is stored in jA . In this way, TopDown gets sorted

request records at each node by aggregating request records
from the bottom level (the highest level) up to the top level
(the root). Here, the level is defined as the distance from
the nodes in this layer to the root in terms of hops, as above
mentioned.

Algorithm 1 TopDown Caching Algorithm
 Information Aggregation (ReqHistory)
1 for layer← bottom level to root do

2 for each node jR in the layer do

3 if jR U then

4 ReqRec[]j ← Get ReqHistory()
5 Else

6 ReqRec[]j ← Aggregate (Children(jR), Records)

7 end if

8 jA ← Sort-Dec (ReqRec[]j, threshold)

9 end for
10 end for

11 Return (jA)

 TopDown decision making (jA)

12 for layer←root to bottom level do

13 for each node jR in the layer do

14 for each record jr A do

15 if r.ObjectID Exist-In jR ’s CachedTable then

16 MarkUpdate (r.ObjectID)

17 Append (jDelTable , r.ObjectID)

18 else if Available-Space  Size (r.ObjectID) then
19 MarkReplicate (r.ObjectID)

20 Append (jDelTable , r.ObjectID)

21 end if
22 end if
23 end for

24 Delete (()jChildren RA , jDelTable)

25 end for
26 end for

With the request information, the decision making process
is from the top to the bottom. Line 15 starts with the record
from the top of jA and fetches the record in turn from the

top till reaching the number of objects (or chunks) which
the node can cache. If the ObjectID of the record is found
in the jR ’s CachedTable which is a list of cached object

items determined by the previous interval, an update mark
is set to the ObjectID. Otherwise, a replication mark is set

to the ObjectID. Thus, the corresponding router storage is
assigned for the object item tagged by update and
replication in this caching round and then actually
implemented upon the arrival of the retrieved content.

For eliminating redundancy, Topdown creates an additional
deletion tracking table called Deltable. The current node should
append ObjectID of those objects marked to be cached locally
(including update and replication) to a deletion tracking table
and send the table to all its children. Each child will delete the
corresponding records existing in the deletion tracking table
from its request record table, and then makes the caching
decision based on the table containing the local request records.

According to the TopDown algorithm, a caching example is
illustrated in Figure 3 (a) with the request profile in Table 1. We
assume each router can only accommodate one object in the
example. In Figure 3, iR stands for a content router, and jO

stands for an object. The circles with jO indicate where the

replicas of jO are placed according to TopDown caching

algorithm.

Table 1. Content request profile

Object
Request

at R4
Request

at R5
Request

at R6
Request

at R7
O1 20 20 20 20
O2 10 10 10 10
O3 8 8 8 8
O4 6 6 6 6
O5 5 5 5 5
O6 4 4 4 4

Figure 3. Examples for Caching Algorithms

From the caching example, we can see that TopDown
algorithm makes caching decision from root down towards
end nodes and places the most popular content objects at
the lower levels. We can also observe that TopDown can
thoroughly eliminate the caching redundancy with global
coordination, which can achieve the objective of
minimizing inter-ISP traffic and maximizing cache hit rate.

4.3 AsympOpt Caching Algorithm
TopDown caching algorithm can eliminate caching redundancy
and accommodate more diverse content objects, which
increases the gain in reducing user access latency. From the
observation on Figure 3(a) and the solution to the optimization
for minimizing user access latency, we can draw the most

popular content objects closer to the end nodes and further
reduce the access delay, without sacrificing performance of hit
rate or inter-ISP traffic. An example of caching placement
determined by AsympOpt caching algorithm, which is an
improvement of TopDown, is presented in Figure 3(b).
AsympOpt caches the globally most popular content objects
from the lowest tier to the highest tier. Each node in T1 (tier 1,
end nodes layer) is tagged by first priority 1P in T1. In other

tiers, those having no parent in the same tier are tagged as 1P in

this tier. Otherwise, the node should be tagged after its parent’s
priority. Take the model in Figure 2 for instance. 1 2 3, ,R R R are

in the same tier T2. 1R has no parent in the this tier, while 2R ’s

parent is 1R and 3R ’s parent is 2R . Therefore, 1R is tagged by

priority 1P , 2R is tagged by priority 2P , and 3R is tagged by

priority 3P . The values of Tier and priority are determined by

the routing topology.

At starting time, all cache stores are empty and caching
system will begin with Information Aggregation procedure of
the TopDown algorithm in order to get the global popularity
rank GloRank and distribute the result to each node. The
subscript of Object jO stands for its GloRank. Information

Aggregation procedure is iterated periodically during the
execution of AsympOpt caching. The iterative period is
determined by the popularity change.

Given the routing topology and caching capacity jC of router

jR , we have StartValue(j) and RangeValue(j) of jR .

Herein, StartValue(j) is determined by the jR ’s Tier and its

priority, and RangeValue(j) is the total cache capacity
on jR ’s forwarding route. With the value, router jR picks out

jC global popular contents to be cached locally. If the local

popularity of some object is not consistent with the global
popularity and exceeds the range of popularity difference,
those which have relatively low GloRank but are locally
popular will be cached. In this way, we try to compensate for
the difference between the global popularity rank and the
local one (Line 10~Line 23).

Aggregate procedure and Mark procedure are similar to the
corresponding procedures in Algorithm 1 except that the
records of cached contents will be removed from the request
profile which is sent to the parents. For brevity, we don’t
describe the procedures in detail in the paper.

We take an example to explain AsympOpt caching
algorithm when the local and global popularity rank are not
consistent. Let’s consider the end node 6R . Its

StartValue(6) =1 and RangeValue(6) = 4, provided each
router can only cache one content object. If the request
number for 1O ranks lower than 5 in popularity and thus

local popularity of 1O exceeds the range value, 5O which is

not in the expected caching list for being globally popular but
relatively locally popular is cached at 6R ; if the request

number for 1O ranks the first four in popularity, 1O is still

chosen to be cached.

Algorithm 2 AsympOpt Caching Algorithm
1 for layer ← lowest tier to highest tier do

2 for each node jR in the layer sorted by ascending priority do

3 if jR U then

4 ReqRec[]j ← Get ReqHistory()
5 Else

6 ReqRec[]j ← Aggregate (Children(jR), Records)

7 end if
8 end for

9 for each node jR in the layer sorted by descending priority do

10 jA ← Sort-Dec (ReqRec[]j, threshold)

11 st ← StartValue(j) obtained from child in the closest tier

12 while k<= jC do

13 if each GloRank(st) Exist-in first jC records of jA then

14 Mark(GloRank(st))
15 else
16 count ++
17 end if
18 st ++
19 end while
20 for k=1 to count do

21 re ← top record of jA

22 if re.ObjectID is out of the RangeValue(j) then Mark(re)
23 end for

24 SendtoParent (jA)

25
26 Mark(r)

27 if r.ObjectID Exist-In jR ’s CachedTable then

28 MarkUpdate (r.ObjectID)

29 Remove (jA , r)

30 else
31 MarkReplicate (r.ObjectID)

32 Remove (jA , r)

33 end if
34

35 Aggregate (Children(jR), Records)

36 Initialize (ReqRec[]j)

37 for each child kR in Children (jR) do

38 for each record kr A do

39 if r.objectID Exist-In ReqRec[]j then
40 rj. ReqCount= rj. ReqCount + r. ReqCount

41 else

42 Insert the record r

43 end if
44 end for
45 end for
46 return (ReqRec[]j)

5. PERFORMANCE EVALUATION
In this section, the experimental results of the caching
algorithms are presented and analyzed.

5.1 Simulation Settings
Since NS2 has some limitation to simulate the new NDN
paradigm [10], we establish our own simulation to evaluate
the presented caching schemes.

5.1.1 Simulation environment
Our algorithms are tested and evaluated using both
synthetic and real network topologies that have different
structural properties.

We employ the Georgia Tech Internetwork Topology
Model (GT-ITM) toolkit [15] to generate the router-level
network topology using the Transit-Stub model. A shortest
path tree for rooting level topology is abstracted from the
generated graph. Each node is equipped with a cache. User
requests are sent to the end nodes of the tree. Each node,
including the end nodes, checks the requested object in its
local cache before forwarding the request. If the object is
not found, the request will be forwarded to the next-hop
node along the routing path towards the root until it reaches
a node that caches the requested object or out of the ISP via
a gateway node towards the source of the requested object.
In either case, an object copy is sent along the reverse path
to the requesting end node. Each node on the path can
replicate the passing object based on the caching criteria.

We employ different network topologies in the evaluation,
including the topology of University of Wisconsin AS59,
UUNet Alternet AS701and UNINETT AS224 as listed in
Table 2. These topologies vary in size and ISP type.
AS701 is a tier-1 ISP, while AS59 and AS224 are Stub
ISPs. We abstract the routing topologies from the listed
network by ospf (open shortest path first) routing algorithm.

Table 2. Real Network Topology

Network
AS

number
Nodes

Number
of Tiers

Number
of Layers

Uni. of Wisconsin AS59 41 3 5

UUNet Alternet AS701 75 3 8

UNINETT AS224 208 5 9

5.1.2 Input data
We mainly use the synthetic input data in the caching
performance evaluation, and also use the actual trace
collected from Tsinghua University for validation purpose.

5.1.2.1 Synthetic input data
Let  1 2, ... NO o o o denote a set of cacheable objects. We

assume that requests are identical and independently
distributed (i.i.d.) within the set O in a considered time
frame such that each request refers to an object ko with a

probability kp without memorizing previous requests. The

objects are ordered according to the decreasing access
probabilities 1 2 ... Np p p   .

The requests at each end node follow the Poisson arrival
() () / !n t

nP t t e n  . We assume the average request rate 

at edge routers follows a uniform distribution and the
objects’ popularity is governed by the Zipf distribution

() /f i i i    (0.5 2 ) [16], where  is the

skewness factor indicating the concentration degree of
object access. Zipf distribution defines the probability of
accessing an object at rank i out of N available objects.

5.1.2.2 Real trace
The real trace is collected from Tsinghua University
campus network. The duration of the trace is one hour and
the trace accounts for around 100G bytes. We apply DPI
(Deep Packet Inspection) to parse the trace and use the urls
in HTTP as the input data.

5.1.3 Performance metrics for evaluation
Our goal is to find the optimum caching locations to
maximize the benefits. The most typical metrics are inter-
ISP traffic or hit rate (The difference of the two metrics
mainly lie in whether content size is involved), and the
access delay measured by the number of hops that a given
request travels in the network. So, the two metrics are
tested.

 Saving Rate of inter-ISP Traffic (SR-CDT): the
ratio of the Inter-ISP traffic saved by caching with respect to
the total Inter-ISP traffic incurred without caching.

 Saving Rate of Hops (SR-Hops): we define the
response hops as the number of the routers traveled by the
response packets from the source (or cache) to the requester.
SR-Hops is the ratio of the average number of response
hops reduced by caching over the number of response hops
without caching (11 hops as above mentioned).

5.1.4 Caching schemes for comparisons
We compare our caching schemes with other caching
schemes: Leaving Copies Everywhere (LCE) [17], Leaving
Copies with Probability (LCProb), and Leaving Copies with
Uniform Probability (LCUniP). LCE is currently used in
most hierarchical caches and the same caching algorithm was
applied in the most influential article for NDN [1]. In LCE,
each cache on the delivery path replicates the copy of the
object with the Least Recently Used (LRU) replacement
algorithm. LCE is widely used due to its high performance
and ease of implementation. LCUniP and LCProb are similar
to LCE except that the retrieved content is not blindly cache
at each passing node, but selectively cached by probability to
eliminate redundancy. LCUniP caches the passing content
with uniform probability at each router, while LCProb is with
caching probability 1/(hop count along the path).

In addition, we compare our caching algorithms with the
optimization solutions.

5.2 Comparison with Optimization Solutions
As mentioned above, it takes an extremely long time to
solve the optimization problem with a 200-node network
and it is thus impractical to compare the solution at such a
scale. Therefore, we compare our algorithms with the
optimal solutions in the 50-node topology with each router

caching 10 objects (or chunks), serving for 1000 object (or
chunk) interests in the network. The object request arrivals
follow the Poisson distribution and the popularity of
requested objects follows the Zipf distribution with
skewness parameter 0.9  .

In Table 3, Optimal Solution 1 stands for the solution to the
objective of minimizing inter-ISP traffic, while Optimal
Solution 2 stands for the solution to the objective of
minimizing average number of access hops. We can
observe that both AsympOpt and TopDown closely
approach the bound of SR-CDT performance, so they both
work well on achieving the objective of minimizing inter-
ISP traffic and maximizing cache hit rate. As for SR-Hops
which measures the access latency, AsympOpt is much
closer to the bound and achieves the optimum performance
from the user perspective. In contrast, though TopDown
slightly outperforms AsympOpt in terms of SR-CDT, it is
much inferior to AsympOpt in terms of SR-Hops. In
summary, the proposed algorithms can achieve nearly
optimal performance in small-scale networks. Particularly,
the performance of AsympOpt is very close to the bounds
obtained from the optimization solutions.

Table 3. Comparison with Optimal Solution

Metric
Optimal

Solution 1
Optimal

Solution 2
AsympOpt TopDown

SR-CDT 0.4834 / 0.4775 0.4834

SR-Hops / 0.4500 0.4462 0.3713

5.3 Performance Impact Factors
The efficiency of caching depends on factors such as
network topology, request pattern, cache capacity and
object popularity. In this section, we compare our
algorithms with baseline algorithms LCE, LCProb and
LCUniP (10% probability) considering these factors

The default settings are listed as follows. The ISP routing
topology is a tree with 200 nodes including 103 end nodes,
where each node is equipped with a cache that can serve
for 100,000 object items. The number of average requests
at each end node (which follow the Poisson arrival with
parameter t) follows a uniform distribution
U(20000,40000), where  is the request arrival rate at the
end node and t is the observation interval for caching
decision. Object popularity follows a Zipf distribution with

0.9  .

5.3.1 Impact of the cache size on performance
The cache size at each node is described as the value
relative to the total size of all objects available in the
network and called relative cache size. We compare the
effectiveness of different caching algorithms across a range
of cache sizes, from 0.01% percent to 0.12% percent, with
the total object size of 100,000 chunks. (The default
relative cache size 0.04% will be used in the following
simulations.)

0.00 0.02 0.04 0.06 0.08 0.10 0.12
10

15

20

25

30

35

40

45

50

55
SR

-C
D

T
(%

)

Relative Cache Size (%)

 AsympOpt
 TopDown
 LCE
 LCProb
 LCUniP

0.00 0.02 0.04 0.06 0.08 0.10 0.12

15

20

25

30

35

40

45

50

55

SR
-H

op
s

(%
)

Relative Cache Size (%)

 AsympOpt
 TopDown
 LCE
 LCProb
 LCUniP

(a) Synthetic input

0.00 0.02 0.04 0.06 0.08 0.10 0.12
15

20

25

30

35

40

45

50

55

S
R

-C
D

T
(%

)

Relative Cache Size (%)

 AsympOpt
 TopDown
 LCE
 LCProb
 LCUniP

0.00 0.02 0.04 0.06 0.08 0.10 0.12
15

20

25

30

35

40

45

50

55
SR

-H
op

s
(%

)

Relative Cache Size (%)

 AsympOpt
 TopDown
 LCE
 LCProb
 LCUniP

(b) Real trace

Figure 4. Caching performance vs. cache size

Figure 4 compares the saving rate of inter-ISP traffic (SR-
CDT) and saving rate of average response Hops (SR-Hops)
with the synthetic load and real trace, respectively. The
simulation results show that all the algorithms provide
steady performance improvement as the cache size
increases. In general, AsympOpt significantly outperform
LCE, LCProb and LCUniP both in SR-CDT and SR-Hops.
TopDown performs best, but achieves a marginal
improvement in terms of SR-CDT compared with
AsympOpt. However, AsympOpt performs much better in
terms of SR-Hops than TopDown. Therefore, AsympOpt is
preferable for achieving better whole performance. Among
the three baseline algorithms, LCUnip (10%) performs the
best, while LCE performs the worst as expected in terms of
both metrics. We also test the naïve random en-route
replica placement, that is LCUnip with 50% probability
and find that LCUnip (10%) outperforms LCUnip (50%) in
both of the performance metrics.

We also observe that as the relative cache size increases, the
slope of the curves turns to be flatter, that is, the performance
gain decreases with the increased capacity. Considering the
tradeoff between the cost and performance gain, we can deploy
suitable cache capacity with the curves.

Although the result curves are largely consistent with the curves
created by the synthetic input, the advantage of our algorithms
over baseline algorithms seem to decline in case of real trace
input. It may be because the trace we’ve got is not general
enough and we only analyze the web requests. The
comprehensive evaluation on real traces will be our future work.

5.3.2 Impact of the request pattern on performance

5.3.2.1 Popularity Skewness
We assume that the request pattern follows the Zipf
distribution, that is, the frequency of a request is the inverse
of its rank in the request popularity. The Zipf skewness

parameter  indicates the degree of concentration of object
requests. When the values of  are close to 1, it indicates
that a few objects (also known as “hot spots”) attract the
majority of the requests; while when values are close to 0, it
means the object popularity is almost uniform. We examine
the impact of request frequency distribution on the
effectiveness of our caching schemes.

Figure 5 shows the performance curves as a function of Zipf
parameter  over a range from 0.5 to 2, with the relative
cache size of 0.04%. The curves remain approximately
constant with the skewness factor. Because of the large base
of content population, the most popular contents are almost
cached in different cases.

0.5 0.6 0.7 0.8 0.9 1.0 1.1 1.2 1.3 1.4 1.5 1.6 1.7 1.8 1.9 2.0
20

25

30

35

40

45

50

55

SR
-C

D
T

(%
)

Zipf-parameter

 AsympOpt
 TopDown
 LCE
 LCProb
 LCUniP

0.5 0.6 0.7 0.8 0.9 1.0 1.1 1.2 1.3 1.4 1.5 1.6 1.7 1.8 1.9 2.0
25

30

35

40

45

50

S
R

-H
op

s
(%

)

Zipf-parameter

 AsympOpt
 TopDown
 LCE
 LCProb
 LCUniP

Figure 5. Caching performance vs. Zipf skewness

5.3.2.2 Object popularity fluctuation
As the object popularity changes with time owing to the
variation in user interests, we further study the impact of
varying object popularity on the caching performance. The
X axis shows the popularity variation range, with
maximum change of 60 popularity rank for each round.
Though there is some fluctuation because of the random
generation for dataset, in general slight variation on object
popularity has advantage over sharp variation. It is more
difficult for the caching algorithms to adapt quickly in
response to severe and quick popularity alteration. Both
SR-CDT and SR-Hops are the worst in case of sharp
variation in popularity. As shown in Figure 6, all the
algorithms can keep good efficiency and stability
regardless of the popularity change. The insensitiveness of
the proposed algorithms provides better adaptation to
different network environment and makes the assumption
of unchanged popularity reasonable.

5 10 15 20 25 30 35 40 45 50 55 60
15

20

25

30

35

40

45

50

SR
-C

D
T

(%
)

Popularity Variation

 AsympOpt
 TopDown
 LCE
 LCProb
 LCUniP

0 5 10 15 20 25 30 35 40 45 50 55 60
20

25

30

35

40

45

50

SR
-H

op
s

(%
)

Popularity Variation

 AsympOpt
 TopDown
 LCE
 LCProb
 LCUniP

Figure 6. Caching performance vs. Popularity variation

5.3.3 Impact of content population on performance
Internet contents are anticipated to dramatically increase
due to the explosive growth in user-generated contents and

many emerging applications. To shed light on this issue,
we have conducted experiments to gain a deeper insight
into the impact of object population increase on the
performance of caching algorithms, with a special focus on
its scalability and robustness.

Figure 7 shows that the proposed algorithms still gain
much better performance than the baseline algorithms,
when increasing the number of object items while keeping
the caching capacity fixed. Our simulation also shows that
when enlarging the cache capacity with the increase in
#objects, the caching performance in terms of SR-CDT and
SR-Hops remains good. Besides, as the content population
exceeds 100,000, caching performance tends to be
convergent. The stable property is very favorable, as the
content items increase rapidly nowadays.

1000 10000 100000 1000000
10

15

20

25

30

35

40

45

50

55

60

65

70

75

80

85

90

SR
-C

D
T

(%
)

Content Population

 AsympOpt
 TopDown
 LCE
 LCProb
 LCUniP

1000 10000 100000 1000000
15
20
25
30
35
40
45
50
55
60
65
70
75
80
85
90

SR
-H

op
s

(%
)

Content Population

 AsympOpt
 TopDown
 LCE
 LCProb
 LCUniP

Figure 7. Caching performance vs. content population

AS59 AS701 AS224 N100 N200 N392
10

20

30

40

50

SR
-C

D
T

 (
%

)

Topology

 AsympOpt
 TopDown
 LCE
 LCProb
 LCUniP

AS59 AS701 AS224 N100 N200 N392
10

20

30

40

50

S
R

-H
op

s
(%

)

Topology

 AsympOpt
 TopDown
 LCE
 LCProb
 LCUniP

Figure 8. Caching performance vs. topology

5.3.4 Impact of the ISP topology on performance
We generate three different router-level topologies by GT-
ITM and extract the routing trees rooting from the gateway:
100 nodes with 53 end nodes, 200 nodes with 103 end
nodes, and 392 nodes with 262 end nodes, respectively.
And we test the algorithms over real networks as well.
Figure 8 illustrates that the performances of the presented
caching schemes are insensitive to the topology change,
which ensures the scalability of our proposed caching
algorithms and the ease of deployment.

5.3.5 Discussion of simulation results
From the simulation results presented above, we reach
some conclusions about our caching schemes.

1) Effectiveness

From Figure 4-8, we can see that AsympOpt outperforms
the baseline algorithms both in SR-CDT and SR-Hops, and
TopDown performs well in saving inter-ISP traffic, which
is our first order objective. In all the cases, the algorithms

are effective and seem to achieve better performance in
presence of more randomness in access pattern.

2) Scalability

The proposed caching algorithms show great scalability as
demonstrated in Figure 7, 8. The caching performance of
the schemes increases with the increasing cache size.
Moreover, enlarging ISP’s network scale will not impose a
negative impact on algorithms’ performance, possibly
because caching favors popular contents, which are not
pertinent to object population. Further, when object
population is large enough, caching performance is
convergent to a reasonable value, which is good news for
the content explosive era.

3) Stability

The algorithms are insensitive to the variation in user
behaviors on object requests. The relative performance
remains stable regardless of the distribution of requested
objects and popularity alteration, even in the worst case
where there is extremely dynamic change of object
popularity. Besides, AsympOpt is superior to the baseline
algorithms in almost all cases with various parameters.

5.4 Preliminary measurement of overheads
We analyzed the caching scheme and conducted
preliminary experiments mainly on the default 200-node
topology for measuring the cost on three folded: storage
use, communication overhead and execution time.

5.4.1 Communication overhead
In order to characterize communication overhead, we first
list the related notations as follows,

iD : the number of nodes who is i hops apart from the root.

L: the longest distance between end node and root
C: homogeneous cache capacity
M: the number of content profile sent for information
aggregation

N: the number of all nodes.
0

L

i
i

N D


 

F: content population

ijH : hop count to satisfy the request for jO at end node i

Then, the average communication overhead is as follows,

AsympOpt

 0

4 [(1)] /
L

i
i

D M L i C N


    

TopDown:

1

0 1

4 [(1)] /
L L

j
i j i

D C M N N


  

     

LCProb:

1 1

4 [] /
N F

ij
i j

E H N
 



LCProb:

1 1

[] /
N F

ij
i j

E H N
 


LCE: 0
Take 200-node topology for instance, the communication
overhead for all the algorithms is : AsympOpt 11.3 Kbytes ,

TopDown 12.464Kbytes, LCProb 424M bytes, LCUniP
105 Mbytes.

5.4.2 Storage overhead
Storage cost for LCE, LCProb and LCUniP is negligible,
while AsympOpt needs (4F-2/N+8) bytes and TopDown
needs (4F-2/N+8) bytes.

5.4.3 Execution time
The job execution time during each caching round is listed
as follows: 1304ms for AsympOpt, 2577ms for TopDown,
402540ms for LEC, 400784ms for LCProb, and 398672 for
LCUniP. Our algorithms save hundreds of seconds of
running time and account for limited communication
overhead mostly because the algorithms only deal with
access statistics of selected objects and are well scaled with
the increasing object population, while the baseline
algorithms have to cope with each arriving object.
Therefore, we can expect our algorithms to gain favorable
result under the large-scale network serving numerous
objects.

6. CONCLUSION AND FUTURE WORK
We have developed coordinated caching schemes to reduce
the redundant traffic going through the NDN networks,
trying to minimize both inter-ISP traffic and average
number of access hops. The main goal of this paper is to
propose efficient caching algorithms that can make
dynamic caching decisions on the fly. The proposed
algorithms achieve the performance that is close to the
optimum (especially for AsympOpt) with the favorable
saving rate in inter-ISP traffic and considerably improve
the performance of access delay and intra-ISP link
consumption measured by the number of hops traveled. A
variety of factors that can impact the caching performance
are considered in the simulations and our algorithms are
demonstrated to be effective, stable and scalable with
varying network topology, cache capacity, objects request
pattern, popularity variation and population covered by end
routers. As part of our future work, we plan to extend our
dynamic caching solution by considering multiple
gateways, as well as the use of multiple paths in NDN.

7. ACKNOWLEDGMENTS
This paper is partially supported by NSFC (61073171),
China Postdoctoral Science Foundation (Grant No.
023230012), Tsinghua University Initiative Scientific
Research Program (20121080068), Specialized Research
Fund for the Doctoral Program of Higher Education of
China (20100002110051), and Ningbo Natural Science
Foundation (Grant No. 2010A610121). We would like to
thank Greg Byrd and the anonymous reviewers for their
helpful comments and suggestions.

8. REFERENCES
 [1]. Jacobson, V., Smetters, D. K., and Thornton, J. D. et al.,

"Networking named content", Proceedings of the 5th
international conference on Emerging networking
experiments and technologies, ACM, 2009, pp.1-12.

[2]. Hefeeda, M. and Noorizadeh, B., "On the Benefits of
Cooperative Proxy Caching for Peer-to-Peer Traffic,"
Parallel and Distributed Systems, IEEE Transactions on, vol.
21, no. 7, pp.998-1010, 2010.

[3]. Rodriguez, P., Spanner, C., and Biersack, E. W., "Analysis
of web caching architectures: hierarchical and distributed
caching," Networking, IEEE/ACM Transactions on, vol. 9,
no. 4, pp.404-418, 2001.

[4]. Hefeeda, M., Hsu, C. H., and Mokhtarian, K., "Design and
Evaluation of a Proxy Cache for Peer to Peer Traffic," IEEE
Transactions on Computers, vol. 60, no.7, pp.964-977, 2011.

[5]. Pallis, G. and Vakali, A., "Insight and perspectives for
content delivery networks," Communications of the ACM,
vol. 49, no. 1, pp.101-106, 2006.

[6]. Bhattacharjee, S., Calvert, K. L., and Zegura, E. W., "Self-
organizing wide-area network caches", Seventeenth Annual
Joint Conference of the IEEE Computer and
Communications Societies (Infocom'98), pp.600-608, 1998.

[7]. Lijun Dong, Dan Zhang, Yanyong Zhang, and Dipankar
Raychaudhuri, "Optimal Caching with Content Broadcast in
Cache-and-Forward Networks", ICC' 2011, 2011.

[8]. Walter Wong, Marcus Giraldi, Mauricio F.Magalhaes, and
Jussi Kangasharj, "Content Routers: Fetching Data on
Network Path", ICC'2011, pp.1-6, 2011.

[9]. D.Rossi and G.Rossini, "Caching performance of content
centric networks under multi-path routing (and more),"
Telecom ParisTech, Technical Report, 2011.

[10]. Psaras, I., Clegg, R., Landa, R., Chai, W., and Pavlou, G.,
"Modelling and Evaluation of CCN-Caching Trees,"
NETWORKING 2011, pp.78-91, 2011.

[11]. Cho, K., Lee, M., Park, K., Kwon, T. T., Choi, Y., and Pack,
S., "WAVE: Popularity-based and Collaborative In-network
Caching for Content-Oriented Networks", Infocom’2012
workshops, pp.316-321, 2012.

[12]. Schwartz, Y., Shavitt, Y., and Weinsberg, U., "A
measurement study of the origins of end-to-end delay
variations", Passive and Active Measurement, Lecture notes
in Computer Science, vol. 6032/2010, pp.21-30, 2010.

[13]. P.V.Mieghem, "Performance analysis of communications
networks and systems",Cambridge Univ. Press, 2006,
pp.358.

[14]. "GLPK: GNU Linear Programming Kit,"
http://www.gnu.org/s/glpk/, 2012.

[15]. Calvert, K. I., Doar, M. B., and Zegura, E. W., "Modeling
internet topology," Communications Magazine, IEEE, vol.
35, no. 6, pp.160-163, 1997.

[16]. Hefeeda, M. and Saleh, O., "Traffic modeling and
proportional partial caching for peer-to-peer systems,"
IEEE/ACM Transactions on Networking (TON), vol. 16, no.
6, pp.1447-1460, 2008.

[17].Laoutaris, N., Syntila, S., and Stavrakakis, I., "Meta
algorithms for hierarchical web caches", IEEE International
Conference on Performance, Computing and
Communications, pp. 445-452, 2004.

