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Abstract—The cognitive radio (CR) technology holds promise
to significantly increase spectrum availability and wireless
network capacity. With more spectrum bands opened up for CR
use, it is critical yet challenging to perform efficient wideband
sensing. We propose an integrated sequential wideband sensing
scheduling framework that concurrently exploits sequential
detection and compressed sensing (CS) techniques for more
accurate and lower-cost spectrum sensing. First, to ensure more
timely detection without incurring high overhead involved in
periodic recovery of CS signals, we propose smart scheduling of
a CS-based sequential wideband detection scheme to effectively
detect the PU activities in the wideband of interest. Second, to
further help users under severe channel conditions identify the
occupied sub-channels, we develop two collaborative strategies,
namely, joint reconstruction of the signals among neighboring
users and wideband sensing-map fusion. Third, to achieve robust
wideband sensing, we propose the use of anomaly detection in our
framework. Extensive simulations demonstrate that our approach
outperforms peer schemes significantly in terms of sensing delay,
accuracy and overhead.

Index Terms—cognitive radio; sequential detection; wideband
sensing; compressed sensing; cooperative sensing.

I. INTRODUCTION

The ubiquity of wireless-enabled computing and communi-
cations devices has led to ever increasing demands on network
capacity to support a variety of rich and resource-consuming
wireless applications. As a promising technology, cognitive
radio (CR) has attracted significant interests and efforts from
academia and industry [35], where CR devices have been
applied to intelligently and dynamically identify and aggregate
spectrum holes to increase network capacity [13]. A core
function of a CR, or secondary user (SU), is to sense the
spectrum and detect the presence/absence of ambient primary
users (PUs). Many studies have been conducted to improve
the effectiveness of spectrum sensing, although most apply
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only to narrowband scenarios. Wideband spectrum sensing has
become increasingly important for CRs to obtain a “wider”
view of the spectrum: It enables a CR to find spectrum
resources more flexibly and quickly, and also allows a CR-
enabled network to transmit data at a higher rate with more
available spectrum resources.

Despite its great potential, wideband sensing is still a
challenging task. A wideband can be generally divided into
sub-bands or sub-channels, whose occupancy status (i.e.,
whether occupied by PUs) can be determined via sensing. It is
possible to sense all the narrow sub-channels one by one with
a proper channel sensing order [32], which is applicable for a
narrowband; however, for a wideband with an extremely large
number of sub-channels, sensing each channel would incur
large overhead and delay. Alternatively, CRs can sense the
wideband directly with high-end components, e.g., wideband
antenna and radio frequency (RF) front-end, and high-speed
analog-to-digital converter (ADC). To avoid the use of these
expensive components, compressed sensing (CS) [6], [10]
has been exploited to reduce the total number of samples
required [2], [26]. An application running over a long duration
cannot simply sense a channel once, but rather should sense
it periodically to avoid interfering with returning legacy users.
Due to the higher computational complexity for CS recovery
in wideband sensing, it would be very expensive to directly
apply CS methods for periodic sensing. Spectrum sensing
becomes even harder when a user receives weak signals
due to fluctuating environmental dynamics such as channel
fading. Although cooperative sensing may help overcome this
problem, simply applying cooperative wideband sensing using
samples from a large number of users would involve very high
signaling overhead and computational complexity.

In this work, we consider a CR network with multiple users
and propose a cooperative sequential compressive sensing
framework which incorporates sensing scheduling into two
major steps: wideband signal occupancy detection to detect
PU presence in a wideband of interest, and cooperative
wideband compressive sensing to determine which sub-bands
are actually occupied in the wideband. The first step applies
smart scheduling of both sequential and compressed sensing
to detect if there exist PU signals in a wideband without
the need for frequent and complex signal reconstruction.
In contrast to conventional cooperative spectrum sensing,
which directly exploits collaboration among users without
considering the information exchange overhead, the second
step is developed into two cooperative schemes: (1) joint
reconstruction of signals from multiple SUs to improve sensing
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accuracy, thereby reducing the number of samples required for
exchange, and (2) wideband status map fusion among multiple
users with low-cost signaling overhead.

To further improve the accuracy of wideband sensing, we
propose the use of anomaly detection in our framework.
Spectrum sensing can fail in environments with significant
amounts of anomalous data. Unlike a regular channel
state change due to the arrival/departure of the PU, the
anomalies (i.e., data outliers) could originate from various
sources, such as unusual environmental events (thunderstorms,
electric spark, etc.), internal hardware miscalibration that
results in erroneous measurements, and malicious attacks
from other nodes. In the presence of abnormal readings,
measurements obtained at the affected nodes are contaminated.
The anomalies need to be accurately identified to ensure robust
spectrum sensing and protect against attacks. Furthermore, it
is also vitally important to evaluate if a node is functioning
normally based on the quantity of abnormal readings so that
a network manager can take further actions if necessary.

The major contributions of our work are as follows:
• We propose scheduling of compressed-sensing-based

sequential wideband detection, leveraging both CS
and sequential detection techniques for accurate and
low-overhead PU detection. Specifically, we perform
sequential detection based on sub-Nyquist samples
directly, without incurring high CS recovery overhead,
and adapt the scheduling of sequential detection to
improve the detection performance.

• We exploit both intra-signal temporal correlation and
inter-signal spatial correlation to schedule more efficient
cooperative compressed spectrum sensing by proposing
two cooperative schemes: (a) joint reconstruction of the
signals among neighboring users to reduce the number of
samples required to achieve a given spectrum recovery
quality measure, thus reducing the number of samples
sent from each user and the resulting communication
overhead, and (b) wideband status map fusion that only
incurs limited information exchange among the users.

• We propose an anomaly detection method to enable
robust data transmission/reception and more accurate
wideband sensing.

• We perform extensive simulations to validate and
demonstrate the major advantages of our design.

The rest of this paper is organized as follows. Section II
provides an overview of related work. We introduce our system
framework and sensing infrastructure in Section III, and
describe our sequential wideband detection with compressive
sampling in Section IV. Cooperative wideband compressive
sensing and anomaly detection are presented in Section V.
In Section VI, we provide extensive simulation results with
detailed discussions. The paper is concluded in Section VII.

II. RELATED WORK

The majority of studies on spectrum sensing focus on
detection quality for one-time sensing. However, the presence
of uncertainty, such as noise, interference, channel fading,
and anomalies, makes it a daunting task to yield accurate

one-time detection decisions. Moreover, many applications
run over a long duration, and one time sensing is simply
inadequate. Recent efforts have attempted to detect the status
of narrowband channels based on a sequence of sensing data.
Specifically, sequential analysis [28] has been carried out
in [12], [14], [21] for spectrum sensing to obtain a better
performance such as a smaller latency and more accurate
decisions. Different from existing efforts, the focus of this
paper is on effective detection of activities of the legacy
wireless systems over a wide spectrum. Sequential detection
is applied over sparse samples of signals (rather than Nyquist
samples) to facilitate low-cost coarse signal monitoring before
determining the actual sub-channels occupied by the primary
signals. Besides applying sequential spectrum sensing, a
fundamental difference between our work and related studies
such as [12], [14], [21] is our focus on sensing scheduling
that is adapted over time to speed up the decision without
introducing a high overhead.

Compressed sensing (CS) is a useful tool for wideband
spectrum sensing and analysis. Following the principle of CS,
if a signal is sparse in certain domain, it can be recovered
from far fewer samples than required by the Shannon-Nyquist
sampling theorem. In a wide spectrum band, normally only
some parts of the spectrum are occupied. CS can be exploited
to reduce the high sampling rate requirement of the wide-
band signal through sub-Nyquist sampling and then fully
reconstruct the signal. Tian et al. [26] aim to identify wideband
spectrum holes with sub-Nyquist samples used along with a
wavelet-based edge detector. Similarly, in [2], [3], [27], [29],
various wideband spectrum sensing schemes based on CS are
proposed. The flexible channel division scheme with CS is
proposed in [23], and efforts are made in [24] to reduce the
computational complexity of CS with information pulled from
a geo-location database. Romero et al. in [25] propose to
exploit the second-order statistics such as the covariance to
improve the CS performance. Although these methods show
that it is promising to apply CS to wideband sensing, the
complexity involved in CS signal reconstruction makes it
difficult to use for long-term spectrum monitoring desired by
practical cognitive radio systems. We propose to concurrently
exploit sequential detection and compressed sensing for
accurate and lightweight wideband sensing. Although the
scheduling of periodic sequential sensing has been shown to
improve the spectrum sensing performance [16], [17], it would
be very expensive to perform CS periodically. Our framework
is not dependent on any particular wideband sampling method,
and the aforementioned wideband CS schemes can be applied
in our algorithm whenever there is a need to detect detailed
spectrum occupancy conditions in a wideband.

The performance of detection is often compromised by
environmental dynamics such as noise uncertainty, fading, and
shadowing. To mitigate impacts of those issues, cooperative
sensing [1], [4], [9], [15], [18] has been proposed in the
literature and is shown to be effective in improving the
detection performance by exploiting spatial diversity among
users. However, conventional cooperative schemes are for
narrow-band sensing without much information exchange.
There are also efforts on cooperative wideband sensing based
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on CS. In [30], [31], distributed compressed wideband
sensing schemes are proposed. Sun et al. in [2] propose
a multi-slot CS-based wideband sensing algorithm where
sensing is terminated once the currently recovered spectrum
is deemed satisfactory. Different from existing works, our
cooperative wideband sensing is performed after a wideband
has been detected with PU signals. Taking into account
the bandwidth consumption of information exchange, we
study two cooperative schemes for wideband sensing: one
exploiting joint reconstruction of multiple signals with the
aim of reducing the CS reconstruction overhead and the
other employing collaborative fusion with limited information
exchange.

In order to improve the detection performance and reduce
the computational overhead, Ma et al. in [20] exploit the joint
sparse properties of wideband signals among multiple SUs.
Rather than following the joint sparsity model (JSM) type
two (JSM-2) [11] to consider the common sparse support of
cooperative users assuming all users detect the same spectrum
occupancy conditions, our scheme exploits JSM type one
(JSM-1) [5] to consider common sparse components while
also taking into account the difference in spectrum sensed
by individual users. In addition, we consider many other
design factors in cooperative sequential compressed sensing
over wideband, such as scheduling of sequential detection,
fusion of spectrum maps and anomaly detection.

We have introduced CS-based cooperative sequential
wideband sensing in our earlier paper [34]. In this work,
we provide more detailed analyses and theoretical proofs on
certain properties of our scheme. In addition, we propose
a set of new schemes to enhance our previous design,
including additional sampling after detection decision, two
new wideband sensing map fusion schemes and an anomaly
detection methodology. These additional components help
to further improve the sequential detection efficiency and
wideband spectrum map reconstruction accuracy. Finally, we
have performed more extensive performance evaluations and
analyses to demonstrate the effectiveness of our proposed
strategies.

The goal of this work is to enable efficient cooperative
wideband sensing. Different from the literature work, to
reduce the sensing overhead and improve the sensing
performance, our scheme is composed of two major steps:
(a) following the principles of sequential detection and
CS, we adaptively schedule CS-based sequential detection
(without CS reconstruction) to detect PU presence in the
wideband efficiently in a timely manner; (b) to enhance the
detection performance with cooperative sensing, we further
take advantage of correlation (joint sparse property) among
users to develop two collaborative schemes to more effectively
obtain the detailed wideband occupance status from the signals
sensed in the sequential detection. Furthermore, anomaly
detection is incorporated into our framework to alleviate
the impacts of abnormal readings in data and improve the
overall wideband sensing performance. Real-world wireless
applications are prone to data anomalies/outliers, and we
utilize combined sparsity to simultaneously capture both the
signals of interest and anomalies based on the theory of
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Figure 1: Framework overview

overcomplete representation basis [19].

III. SYSTEM FRAMEWORK AND SENSING
INFRASTRUCTURE

We consider a general CR network with a set of CR nodes,
each capable of sensing the wide spectrum band in order to
find unoccupied channels for secondary data transmission. PUs
generally alternate between periods of being active and idle,
and it is critical for CRs to detect the changes in the channel
occupancy state. Once PU activities are detected, CRs also
need to efficiently reconstruct the spectrum usage map within
the wideband to identify the spectrum available in finer detail.
In this section, we introduce first our cooperative wideband
detection and sensing framework, and then the infrastructure
for wideband compressed sensing and periodic sensing.

A. Framework Overview

In order to detect PU existence and reappearance in
a timely fashion, each user periodically senses the wide
spectrum band. As CS recovery involves high computational
complexity, reconstructing the signals in each sensing period
could be costly. Instead, we propose a framework with the
wideband sensing carried out in two major stages, as shown
in Figure 1: (1) detection of PU activities within the wideband
(Section IV), and (2) cooperative wideband sensing of sub-
band availability (Section V).

In the first stage, each SU first sub-samples the wideband
spectrum in each sensing period, and then performs the
Sequential Probability Ratio Test (SPRT) based on sub-
sampled data (Section IV-A). If the data gathered for SPRT
suggest that there might be spectrum status change underway,
it will trigger the further setup of the sensing schedule
(Section IV-C). After the wideband spectrum is detected to
have active PUs, CS recovery is further invoked to identify
the occupancy status of sub-channels in the wideband. As a
prerequisite for cooperative CS, we will first study the intra-
user compressed sensing (Section V-A). During either stage,
if a user receives very weak signals as a result of severe
channel fading, it would be hard for the user to correctly
make a decision. The user can then request collaboration from
its neighbors on demand. Before the data exchange, anomaly
detection (Section V-D) can be implemented by each user
to improve the accuracy of data to be used in cooperation.
We propose two major collaboration methods: neighboring
nodes collaborate in performing joint CS reconstruction of
the spectrum map (Section V-B) or fusing spectrum maps



4 IEEE/ACM TRANSACTIONS ON NETWORKING, VOL. 26, NO. 1, FEBRUARY 2018

(Section V-C) to identify the sub-channels occupied at a lower
signaling cost.

B. Wideband Compressed Sensing

A wideband can usually be divided into sub-bands/sub-
channels. In Figure 2, a wide spectrum band ranging from
0 to W (Hz) is equally divided into J sub-bands, each with
bandwidth W/J (Hz). For example, for a 0∼1 GHz wideband
with each sub-channel occupying 1 kHz, the number of sub-
channels is 106. Within a wideband of interest, depending
on the PU activities, each sub-band can have different and
time-varying occupancy states. One way to learn the usage
conditions of a wide spectrum band is to directly apply the
traditional narrowband detection methods to sense the sub-
bands one by one [32]. For a wideband with a fairly large
number of sub-channels, however, this may bring unacceptable
overhead and sensing delay. Another way is to equip CRs
with components such as wideband antenna, wideband RF
front-end, and high-speed ADC to perform sensing over the
wideband directly. For wideband sensing, a major challenge
is that the required Nyquist sampling rate can be excessively
high. For example, a 0∼500 MHz wideband requires a Nyquist
sampling rate of 1 GHz, which would incur high ADC element
costs and processing overhead. This motivates us to explore
the use of CS to reduce the required sampling rate significantly
for wideband sensing.

. . .
. . .

Frequency
. . .

Power

1   2  3  4 j J

W(Hz)

PU
PU

PU

Sub-band index

Figure 2: Frequency division for wideband CRs

The CS theory suggests that if an N -dimensional signal
is sparse in a certain domain, one can fully recover the
signal by using only Ω(logN) linear measurements; in other
words, CS takes advantage of the sparsity within the signal to
significantly reduce the sampling rate. As a wideband is often
sparsely occupied by PUs as shown in Figure 2, CS can be
applied for wideband sensing. For a wideband of bandwidth
W , after obtaining the spectrum occupancy conditions, a CR
can transmit data over the spectrum holes.

To detect the spectrum usage condition, a CR can take
samples of the received signal dc(t) for a duration of Ts,
where the received signal is composed of PU signals and
background noise. By using a certain sampling rate fN over
the sensing time Ts, we can obtain a discrete-time sequence
d[n] = dc(

n
fN

), n = 0, 1, · · · , N − 1, in a vector form
d ∈ CN×1. Here, N = TsfN is usually chosen to be a positive
integer. Based on the Nyquist sampling theory, the sampling
rate is required to exceed 2W , i.e., fN > 2W .

To reduce the need for high frequency sampling at the RF
front end, in our CS framework, an SU’s detector collects the
ambient signal at a certain sub-Nyquist sampling rate fsub
smaller than the Nyquist rate fnyq. An M × N (M < N )
measurement matrix Φ is applied to perform sub-sampling,
where M and N denote the number of sub-Nyquist and

Nyquist samples, respectively. If the sensing duration within
a period Tp is Ts, then M = fsubTs and N = fnyqTs.

If there is any PU signal within the wideband of interest,
the sub-sample vector will be expressed as

y = Φ(d + n′) = Φd + n = ΦΨx + n = Ax + n, (1)

where the sub-Nyquist measurements are y ∈ RM×1, the
sparse vector in Fourier spectrum domain x ∈ RN×1, the
additive noise in the wideband n′, the sampled noise n ∈
RM×1, and the sensing matrix A ∈ RM×N .

Given the measurements y, the unknown sparse vector
x can be reconstructed by solving the following convex
optimization problem:

min ‖x‖`1 (2a)

s.t. ‖Φd− y‖`2 ≤ ε (2b)

d = Ψx (2c)

where the parameter ε is the bound of the error caused by noise
n, and `p denotes the `p-norm (p = 1, 2, ...). The solution can
be equivalently expressed as

x̂ = arg min
u: ‖y−Au‖`2≤ε

‖u‖`1 . (3)

The signal d = Ψx can then be recovered as d̂ = Ψx̂. In
addition to this convex optimization approach (`1 minimization
[7]), there also exist several iterative/greedy algorithms such as
Cosamp [22]. Such convex or greedy approaches are generally
called reconstruction algorithms.

Charbiwala et al. [8] show that if the signal spectrum vector
x = Ψ−1d is sparse, then Φ = AΨ is essentially an M ×N
random sampling matrix constructed by selecting M rows
independently and uniformly from an N×N identity matrix I.
This measurement matrix Φ can be trivially implemented by
pseudo-randomly sub-sampling the original signal d. As we
can adopt the inverse Discrete Fourier Transform (DFT) matrix
as the sparse dictionary Ψ, the measurement matrix will be
reflected by sub-Nyquist sampling. For a time domain signal
with length N , this sub-Nyquist measurement corresponds
to a smaller M < N number of samples. If the spectral
sparsity level K of x is known, one can choose the number of
measurements M to ensure the quality of spectral recovery.

C. Periodic Sensing Structure

Figure 3 illustrates the periodic channel sensing structure,
where the channel detection time (CDT) is the maximum
allowed time to make a sensing decision. A CDT usually
consists of multiple sensing-transmission periods, each called
a sensing period Tp. In this work, as in the 802.22 WRAN
standard, the sensing time Ts is fixed, e.g., 1 ms, and Tp
may only take values that are multiples of a MAC frame size
(FS), e.g., 10 ms due to many higher-layer concerns such as
synchronization. The detection overhead (Rdo) describes the
proportion of time dedicated to the PU detection task and is
defined as the ratio between Ts and Tp, i.e., Rdo = Ts/Tp.
Scheduling of sequential detection will have a significant
influence on the detection overhead as will be shown later.
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Figure 3: Channel detection time CDT , sensing period Tp, and
sensing time Ts

IV. SPECTRUM DETECTION BASED ON SEQUENTIAL
COMPRESSED SENSING

In order to reduce the overall spectrum sensing overhead,
as shown in our framework in Figure 1, we divide our sensing
process into two major stages: 1) cooperatively detecting if
there exist PUs in a wide spectrum band, and 2) estimating
the detailed spectrum usage conditions within the wideband
detected with PUs by constructing a spectrum occupancy map.
In this section, we describe the first stage, in which each
SU periodically sub-samples the wideband and detects the
spectrum activities via group-based compressive sequential
detection. If a user receives very weak signals as a result of
severe channel conditions such as fading, it can send a request
to its neighbors, and perform collaborative sequential detection
based on responses from the neighboring users. We analyze
the condition for stopping the data collection and making a
detection decision in Section IV-B, and introduce additional
procedures that can be taken to speed up the decision making
in Section IV-C.

A. Cooperative Grouped-Compressed-Data SPRT
The classical sequential detection method, Wald’s Sequen-

tial Probability Ratio Test (SPRT) [28], inputs each sample
for the sequential test. We consider a cooperative grouped-
compressed-data SPRT (GCD-SPRT), which differs from the
conventional SPRT in four perspectives: 1) Instead of taking
N Nyquist samples, in each Ts, an SU randomly takes a
number of sub-Nyquist samples M << N ; 2) These samples
are grouped into a “super-sample” to avoid the complexity of
processing each and more importantly to reduce the effect of
short-term channel randomness; 3) An SU applies sequential
detection to a set of super-grouped samples from different
time periods, taking advantage of the temporal redundancy
and diversity to make for more effective detection decisions;
4) An SU receiving weak signals could request cooperation
from its neighbors to fuse their data along with its own,
further exploring the spatial diversity to make faster detection
decisions. Cooperative GCD-SPRT can be performed at an SU
as follows:

Step 1: Calculate the power z(y) from M sub-Nyquist
samples.

If there is any PU signal within the wideband of interest,
the sub-sample vector will be expressed as in Eq. (1). After
a sensing block Ts, the normalized power of M sub-Nyquist
samples contained within is

z(y) =

∑M
i=1 y

2
i

Ts
=
fsub
M

M∑
i=1

y2
i , (4)

where yi denotes an individual sample within Ts, and M =
fsubTs power samples are gathered within a sensing block Ts
to form the super sample.

In practice, the number of samples taken within a single Ts
is fairly large. For Ts = 1 ms and a 0 ∼ 500 MHz wideband,
the Nyquist sample number is N = 106; and even if we
perform sub-sampling with one tenth of the Nyquist sampling
rate, we would still have 105 sub-Nyquist samples. With the
law of large numbers (M � 10) and central limit theorem,
we have the average signal within Ts approximating Gaussian
regardless of the original distribution of the PU signal, that is,
z(y)

i.i.d.∼H0 : N (fsubPn,
(fsubPn)2

M ),

H1 : N (fsubPn(1 + SNR), (fsubPn)2(1+SNR)2)
M ),

(5)

which can be similarly derived from the results in [17]. Here,
SNR is defined as the ratio between the nominal signal power
P and local noise floor σ2 = PnW , where Pn is the noise
power spectral density (PSD) and W is the bandwidth.

Step 2: Derive the test statistic T (z(y)) for each group.
The log-likelihood ratio (LLR) of the power sample is

calculated as

T (z(y)) = ln
f1(z(y))

f0(z(y))
, (6)

where f0(·) and f1(·) are the probability density functions
(PDFs) under H0 and H1, respectively, as indicated in Eq. (5).

Step 3: Accumulate the test statistics T (z) across groups
to obtain the aggregate test statistic T .

As we accumulate T (zk) (k = 1, 2, ...) sequentially, the
aggregate test statistic up to the s-th group is

Ts =

s∑
k=1

T (zk) =

s∑
k=1

ln
f1(zk)

f0(zk)
. (7)

Step 4: On-demand cooperation with other users.
If a user cannot make timely detection decisions, it can

request its neighbors to collaborate. In response, an SU q can
share its own aggregated test statistic T qsq . Assume the user
receives responses from (Q−1) cooperating users, it can form
the cumulative cooperative test statistic as

T ′s = Ts +

Q−1∑
q=1

T qsq . (8)

Step 5: Make a detection decision.
The cumulative cooperative test statistic in Eq. (8) is

compared against two constant thresholds A and B. With the
requirement of false alarm and missed detection probabilities
PFA and PMD, the two decision thresholds are chosen in
Wald’s SPRT as

A = ln
PMD

1− PFA
, and B = ln

1− PMD

PFA
. (9)

The decision rule for the SU is designed as
• if T ′s > B, it decides that the PU has reclaimed the

channel;
• if T ′s < A, it decides that the channel is still available;
• otherwise, it goes to Step 1 to continue sampling another

group of power data, cooperating with other users, and
updating T ′s+1 using Eq. (8).
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The stopping time S for an SU is defined as the minimum
number of groups of LLR statistics (of the user itself) needed
until one of the two decision thresholds is first crossed:

S = min{s : either T ′s < A or T ′s > B}. (10)

If S is small, the SU can make the detection decision faster.
This helps the SU evacuate the channel in a timely manner
upon the return of PU, or spend more time for its own data
transmission upon detecting the channel as idle.

B. Analysis on Stopping Time

In this subsection, we provide some analytical results for
sequential detection, including the expected values of the test
statistics, the average stopping time, and the average sensing
overhead. The proofs in this subsection are omitted due to
space constraint.

Proposition 1. Each of the i.i.d. test statistics T (z) has the
expected values

m0 , E[T (z)|H0]

= −M − 1

2

SNR2

(1 + SNR)2
+

SNR

(1 + SNR)2
− ln(1 + SNR),

(11)

and

m1 , E[T (z)|H1]

=
M + 1

2
SNR2 + SNR− ln(1 + SNR), (12)

under H0 and H1, respectively.

The above m0 and m1 are the average increments at each
step of the sequential test. For a given M , both values depend
solely on SNR. With low channel SNRs, SNR → 0+, we
have

m0 ≈ −
M

2
SNR2, and m1 ≈

M

2
SNR2. (13)

That is, the absolute values of the average increments under
H0 and H1 are roughly the same when the channel SNR is
low; in other words, the underlying sequential test runs at the
same rate under both hypotheses.

In general, the exact distribution of the test statistic is
difficult to derive; however, when the SNR is low, the
distributions under H0 and H1 can be approximated as
Gaussian, as shown below.

Proposition 2. Under low-SNR conditions, we have

T (z)
i.i.d.∼

{
H0 : N (m0, 2m1),

H1 : N (m1, 2m1),
(14)

in which m0 and m1 are given in Eq. (13).

Next we consider the average stopping time – the average
number of sample groups that need to be collected in order to
reach either decision threshold.

Proposition 3. Regardless of the SNR value, the average run
lengths S for the SU to make a decision on the channel state
under H0 and H1 are

E[S|H0] =
PFAB + (1− PFA)A

m0
(15)

and E[S|H1] =
(1− PMD)B + PMDA

m1
(16)

respectively. From Eqs. (9), (15), and (16), when PFA =
PMD, we have A + B = 0 and E[S|H0] = E[S|H1]. That
is, the sequential test has a symmetric structure and it takes
an equal number of steps on average to reach either decision
boundary. If more strict requirement is imposed on PMD to
ensure the interference minimal to the PUs, i.e., PMD � PFA,
we would have |A| >> |B| ≈ − lnPFA. In this case,
even with nearly identical increments |m0| = |m1| when the
channel SNR is very low, the upper threshold takes much less
time to be crossed. Thus, when the PU is indeed present, the
SU is expected to make the correct decision quickly.

C. Quick Detection of Spectrum State Changes and Schedu-
ling of Detection

It is important to detect the “change point” quickly where
the wideband state shifts from H0 to H1 due to PU
reappearance or vice versa. A sensing decision can be made
once in each CDT window. After a channel is detected to
be idle, an SU can dedicate to transmission as shown in
Figure 4(a); similar structure without compressed sensing is
given in [21]. However, if the PU reappears, the channel will
not be sensed until the next CDT window, which may make
the evacuation delay of the SU exceed the CDT time, the
maximum delay allowed for an SU to evacuate the channel.

Instead, we consider using backward GCD-SPRT along with
a moving CDT window (Figure 4(b)), where GCD-SPRT can
run backward, starting from the latest group of data. This
helps reduce the impact of the older sensing data to detect
the possible status change more quickly. In order to further
speed up the change point detection, we propose an in-depth
sensing method in which a CR adjusts its sensing frequency
to ensure more rapid and precise detection after suspecting the
possible H0-to-H1 transition, as in Figure 4(c).

CDT CDT

PU appears
Max delay for 

detecting PU

H0 H1

CDT

H0 H1

CDT

H0 H1

(a)

(b)

TP,1 TP,2

(c)

Figure 4: Detection delay (red arrows) with (a) forward, non-
overlapping GCD-SPRT; (b) backward, overlapping GCD-SPRT; and
(c) backward, overlapping GCD-SPRT with short-term Tp adjustment

It is critical to determine when an in-depth sensing should
be triggered. We set the following criterion:

Tc = max{T̄new − T̄old} ≥ δ(nnew
B

n
− nold

A

n
),
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in which Tc is the test statistic that will trigger in-depth
sensing; T̄new and T̄old are respectively the sums of the newer
and older test statistics in the CDT-window, nnew and nold
are the numbers of test statistics classified as newer and older,
and n = nnew + nold; B and A are the thresholds in Eq. (9),
and δ is the parameter that controls the sensitivity of SU to
the shift. With a smaller δ value, SU is more sensitive to the
changes in the observed data.

For the given set of test statistics in the CDT-window,
the SU starts with the most recent test statistic (with the
remaining sensing blocks in the window as “old”) and obtains
the difference; then the new set contains one more recent test
statistic which is removed from the old set, so the numbers of
newer test statistics and older ones are increased and decreased
by one respectively. This continues until the data from a CDT-
window have all been checked. If Eq. (17) is still not met,
then GCD-SPRT-based sequential detection is pursued with
Tp unchanged; otherwise, Tp will be changed and an in-depth
sensing is performed to speed up the decision process. Choices
of Tp will be discussed in the simulations.

A summary of our proposed wideband detection scheme is
given in Algorithm 1.

V. COOPERATIVE WIDEBAND COMPRESSED SENSING

After detecting the existence of PU activities in a wideband,
it is necessary to determine which sub-channels are actually
occupied so the remaining spectrum can be used by SUs for
their own transmissions. We explore the use of compressive
sensing to reconstruct the spectrum usage map from the
sub-sampled data. This recovery can be done by individual
users independently; however, if a user receives weak signals,
the accuracy of spectrum reconstruction could be very low,
and a user may need to sense the spectrum over a much
longer duration with many groups of samples. To alleviate the
problem, we first propose intra-user compressed sensing where
a user fuses its samples in the time domain, taking advantage
of the temporal diversity, to improve the reconstruction
performance. If such temporal fusion is not enough, spatial
sparsity from users in a neighborhood will be utilized in
the inter-user cooperation triggered on demand. We consider
two major strategies for user collaboration: 1) Cooperative
recovery of the spectrum usage maps by utilizing joint
sparsity of the samples from neighboring users to significantly
reduce both the computational overhead for multi-user CS
reconstruction and the number of samples to send to the
requesting user, and 2) Fusion of spectrum maps, where
neighbors send only their spectrum maps to the requesting
user, leading to a lower signaling overhead.

A. Intra-User Compressed Sensing: Wideband Spectrum
Usage Detection

To detect which sub-channels are currently occupied, we
can simply use the samples taken from the most recent
period. However, if the SNR is low, the signal occupancy map
recovered may not be accurate enough. Given a set of samples
collected from multiple time periods in sequential detection, a

user can first fuse its samples over time. The question is, how
many temporal samples should we use and how to fuse them?

If samples are taken across the change point, the time instant
that the spectrum activities change, the fusion of samples may
compromise the sensing performance. To fuse the temporal
samples over a duration of time, we select the starting time
based on the results from sequential detection. In Eq. (7),
detection is only made when a sequence of T (zk) possess the
same sign (either positive or negative) and their cumulative
values exceed a threshold. Consider the beginning instant of
this sequence to be k′; a user will fuse the samples from k′

until the most recent instant k′′.
As the user senses the same wideband spectrum over time,

the basis Ψ for a signal to project to remains the same. If
an SU adopts the same measurement matrix Φ before a local
sequential detection decision is made, we can take the average
y ∈ RM×1 of the compressed readings from the time periods
between k′ and k′′:

y = Φ(d + n′) = Φd + n = ΦΨx + n = Ax + n,

where we have the sparse vector in Fourier spectrum domain
x ∈ RN×1, additive noise in the wideband n′, the sampled
noise n ∈ RM×1, and the sensing matrix A ∈ RM×N . Each
user can individually recover its x by solving the optimization
problem in Eq. (2).

In what follows, we investigate the benefit of exploiting
cooperative compressive sensing. For simplicity, we will now
drop the bar symbol and denote the averages for the q-th
secondary user as yq,xq , etc., q ∈ {1, 2, ..., Q}, where Q is
the number of SUs.

B. Inter-User Cooperation Case 1: Joint Reconstruction of
Wideband Maps

Each user can independently perform wideband spectrum
sensing with the number of CS samples sufficient to
reconstruct the spectrum map. In the case of multiple
users coexisting in a neighborhood, a user experiencing
severe channel conditions or low SNRs can initiate on-
demand cooperation from other users. In a dedicated control
channel, every SU can share its average signal samples
(obtained from intra-user cooperation in Section V-A) with
nearby users within its transmission range and then perform
joint reconstruction of the wideband signals. The joint
reconstruction can be performed either by each cooperating
user in a distributed manner (users share data with one another)
or by a selected fusion node (e.g. the user that calls the
cooperation) in a centralized manner. Deciding which fusion
nodes to perform the joint reconstruction is beyond the scope
of this work.

With data from Q users, a straightforward way to implement
cooperation is to concatenate samples from all the users and
process them together using a super CS matrix. However,
this can easily introduce a high computational overhead. As
samples from neighboring SUs may be spatially correlated, the
redundancy wihtin would not effectively contribute to the CS
recovery process. We utilize the Joint Sparsity Model 1 (JSM-
1) [5] to significantly reduce the number of measurements and
reconstruction overhead.
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The spatial correlation manifests itself where the readings at
nearby users may have common factors, generally introduced
by PU group activities. Besides, the readings at each user
also exhibit localized characteristics due to factors such as
spatial location and local noise. The actual PU signal (before
sub-Nyquist sampling) received at a secondary user q, q ∈
{1, 2, ..., Q}, can be expressed as:

dq = sc + sq, q ∈ {1, 2, ..., Q}, (17)

where

sc = Ψxc, ‖xc‖0 = Kc, sq = Ψxq, ‖xq‖0 = Kq, (18)

where sc is the sparse-common component that is common
to dq and has sparsity Kc in the basis Ψ. sq is the sparse-
innovations (unique portions) of the dq and each has sparsity
Kq in the same basis.

We can see the benefit of exploiting the joint sparsity in a
simple case of Q = 2 users, when a node collaborates with its
most nearby node. If CS is directly employed, we may need
the number of measurements in the order of c(Kc + K1) to
reconstruct d1 and c(Kc+K2) to reconstruct d2, respectively.
To recover the two signals together, we only need c(Kc+K1+
K2) measurements.

For cooperative recovery of signals from Q users, let Λ :=
{1, 2, . . . , Q} denote the set of indices for the Q signals in
the ensemble. Denote the signal in the ensemble by dq ∈
RN, which is sparse in basis Ψ, with q ∈ Λ. To compactly
represent the signal and measurement ensembles, we denote
M̃ =

∑
q∈ΛMq and define X, D, Y, and Φ̃, and Ψ̃ as

X = [xc x1 ... xQ]
T
, Y = [y1 ... yQ]

T
, D = [d1 ... dQ]

T
,

(19)
and

Φ̃ =


Φ1 0 . . . 0

0 Φ2 . . . 0

...
...

. . .
...

0 0 . . . ΦQ

 , (20)

Ψ̃ =


Ψ Ψ 0 . . . 0

Ψ 0 Ψ . . . 0

...
...

...
. . .

...
Ψ 0 0 . . . Ψ

 . (21)

Using the structured Ψ̃, we can represent D sparsely using
vector X, which contains Kc +

∑Q
q=1Kq non-zero elements,

to obtain D = Ψ̃X. We then have Y = Φ̃Ψ̃X = ÃX. With
sufficient measurements, we can recover the vector X, and
thus D (all dq) and wideband status (xc+xq), by solving the
following problem:

min ‖X‖`1 (22a)

s.t. Y = Ψ̃Φ̃X (22b)

with CS construction algorithms such as the one in [7]. After
receiving compressed readings yq from all users, a fusion node
can form new matrices as in Eqs. (19)-(21) and solve the
problem as in Eq. (22). Then the estimated wideband status
map for each user is expressed as xc + xq .

C. Inter-User Cooperation Case 2: Fusion of Wideband
Spectrum Maps

The cooperative compressive sensing in case 1 requires the
exchange of data samples among users, and the overhead
could be high if a large number of samples are exchanged.
As an alternative, we also provide a set of spectrum-map-
based cooperative schemes. A user in need of cooperation can
choose to fuse the spectrum maps from nearby users, either
for achieving a consensus of the sub-band usage status or for
facilitating a user suffering from severe fading to learn about
the spectrum occupancy condition.

1) Fusion schemes: The maps from multiple users may be
fused with different schemes. We consider the following four
strategies:

(a) Soft Fusion. Power spectrum usage maps recovered by
all users are averaged to obtain a new map, and each sub-band
value is compared with an energy threshold to determine which
sub-bands are occupied.

Let P jq be the estimated power at user q (q = 1, 2, ..., Q)
for sub-band j (j = 1, 2, ..., J). Then for each sub-band j, the
fused power spectrum value P j is expressed as

P j =

∑Q
q=1 P

j
q

Q
. (23)

(b) Hard Fusion. The spectrum energy map from each
user is applied to determine which sub-bands are occupied
individually, and the resulting binary spectrum maps (where
the occupied sub-bands marked as “1” and the idle ones
marked as “0”) are merged by the OR rule (alternatively, AND
rule, majority rule, etc.).

(c) Wideband SNR Weighted Fusion. Rather than fusing
the maps from all users equally, the ones with higher SNRs
would contribute more to the accurate spectrum occupancy
detection. In wideband SNR weighted fusion, we take into
account the effects of users’ wideband SNRs by weighting
the spectrum signal of a node with the SNR of its sensed
wideband signal and combine the weighted information from
all the users to obtain the fusion results.

Let SNRq be the wideband SNR for user q (q = 1, 2, ..., Q)
and P jq be the estimated power at user q for sub-band j (j =
1, 2, ..., J), then for each sub-band j, the fused power spectrum
value Pj is weighted in the following form:

P j =

Q∑
q=1

SNRq∑Q
q=1 SNRq

P jq . (24)

(d) Sub-carrier SNR Weighted Fusion. Each sub-carrier
may experience different channel conditions and has different
SNRs. In sub-carrier or sub-band SNR weighted fusion, we
consider the signal strength over each sub-channel in the
wideband. More specifically, this scheme obtains the status of
each sub-band by weighting the sub-carriers by their individual
SNRs, and the weighted sums of the sub-carriers are further
applied to determine the spectrum activity.

Let SNRjq and P jq be the SNR and estimated power at user
q (q = 1, 2, ..., Q) for sub-band j (j = 1, 2, ..., J), respectively,
then for each sub-band j, the fused power spectrum value P j



ZHAO et al.: SCHEDULING OF COLLABORATIVE SEQUENTIAL COMPRESSED SENSING OVER WIDE SPECTRUM BAND 9

is weighted in the following form:

P j =

Q∑
q=1

SNRjq∑Q
q=1 SNR

j
q

P jq . (25)

Comparing the two weighted fusion schemes, the sub-
carrier SNR weighted scheme may allow for more efficient
fusion. However, transmitting SNRs of all sub-carriers would
introduce higher signaling overhead. We will evaluate the
trade-off between detection accuracy and the signaling
overhead in our performance studies.

2) Additional sampling and fusion delay: In previous
discussions, the signal samples from the time of change
detection to the decision-making are used to reconstruct
the wideband spectrum map and find the detailed activities
of PUs. As our spectrum monitoring is long-term, new
measurement samples will no longer be used for this round
of sensing process but only for the detection of a possible
PU activity change. Although enough samples have been
collected to determine whether there exists a PU activity
change in a wideband, they may not be warranted for accurate
reconstruction of the spectrum map to identify detailed sub-
channel activities. We would like to study whether additional
periods of sampling after the decision making on wideband
activity can possibly further improve the accuracy in forming
the spectrum map.

The additional sampling is done in a similar way as in
the sequential detection process, but with a different stopping
rule. The length of the sensing period (Tp) will be reset
to the default value. In each additional sensing period, the
user will sample the wideband with the default sensing time
Ts, reconstruct its individual spectrum map, and perform the
map fusion with the information from cooperative users. Its
fused map is calculated by a fusion scheme introduced in
Section V-C1. The user will stop gathering additional samples
after the convergence stopping rule is met: the difference
of fused maps between the current sensing period and the
previous period falls below a threshold δf .

Instead of performing the map fusion only once immediately
after the detection decision, additional periods of sampling will
bring in further fusion delay and signaling overhead. We will
study the tradeoffs in our performance studies in Section VI.

D. Anomaly Detection and Data Recovery

Abnormal readings in gathered wideband samples can
significantly degrade the detection and sensing performances.
In the case of map fusion discussed in Section V-C, instead
of directly utilizing all the samples to recover the map, we
propose that each node perform anomaly detection first. Once
anomalies are detected and localized, a user can rule out the
impacts of abnormal readings and recover the spectrum map
more accurately, thus a “better” map can be supplied to the
fusion process. Similar techniques can also be used in the joint
reconstruction case in Section V-B.

The anomalies usually occur in the form of spikes of burst
data, which indicates the aforementioned abnormal readings
hiding in the measured data are usually sparse. This serves as
a foundation for us to exploit CS to identify these anomalies

Algorithm 1 Wideband detection for each SU
Require:

(1) Initialization (details in Section IV). (2) Generate the pseudo-random
sub-Nyquist measurement matrix Φ as described in Section III-B.

Ensure:
1: Sub-sampling

For each sensing block Ts, sub-sample with Φ, collect sub-Nyquist
samples y expressed in Eq. (1).

2: Detection of Potential Change
Calculate test statistics described in GCD-SPRT (Section IV-A) and
perform change detection (Section IV-C).
If Eq. (17) is not met, then Tp remains unchanged. Go to Backward
GCD-SPRT.
Otherwise, change is suspected and in-depth sensing is triggered. Go to
In-depth Sensing.

3: Backward GCD-SPRT
Perform Cooperative Backward GCD-SPRT described in Section IV.
Make decision of wideband detection (PU is present/absent). End of
algorithm.
If decision cannot be made, slide the CDT-window forward by Tp from
the current one, iterate until decision can be made.

4: In-depth Sensing
New sensing period Tp is determined for the periodic sensing model and
CDT-window slides forward by new Tp. Go to Backward GCD-SPRT.

Algorithm 2 Cooperative wideband sensing at fusion node
Require:

Initialization.
Ensure:
1: Information Exchange. Fusion node obtains other users’ data.

Case 1: temporal averaged samples (Section V-B);
Case 2: spectrum maps (Section V-C).

2: Collaboration
Case 1: joint reconstruction of spectrum map from users’ samples;
Case 2: fusion of the users’ spectrum maps.

and reduce their effects on sensing performance. From the
theory of overcomplete representation basis [19], we exploit
combinational sparsity to simultaneously capture both the
signals of interest and the anomalies, where sensed data d
can be decomposed into regular data dr and the abnormal
activity da. Mathematically, the received data at a node can
be expressed as

d = dr + da = Ψxr + da = [Ψ I][xr da]
T

= Ψ′x, (26)

where
Ψ′ = [Ψ I] and x = [xr da]

T
. (27)

After sub-sampling,

y = Φ(d + n′) = Φd + n = ΦΨ′x + n = A′x + n. (28)

According to the CS theory, one is able to recover the
sparse vector x, and thus the regular portion dr and anomalous
portion da of the data from the contaminated measurement d.
If a large non-zero value is detected in da, then there exists
an abnormal reading in the measured data.

The proposed anomaly detection scheme is summarized
in Algorithm 3, which can be performed either (a) by each
node individually or (b) at the fusion node. In the following
simulations, we will study the benefits of anomaly detection
in individual user cases.

VI. SIMULATIONS AND RESULTS

In this section, we conduct extensive simulation studies to
demonstrate the performance of our design compared to peer
schemes.
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Algorithm 3 Anomaly detection and regular data retrieval
Require:

(1) Initialization. (2) Measurement y.
Ensure:
1: Anomaly detecting compressed sensing

min‖x‖`1 , s.t.
∥∥A′x− y

∥∥
`2
≤ ε,A′ = ΦΨ′ = Φ

[
Ψ I

]
(29)

where the parameter ε is the bound of the error.
2: Regular data and anomaly data separation

From x and Eqs. (26) and (27), obtain regular data dr and anomaly data
da .

3: Anomaly Detection
As discussed in Section V-D, if a large non-zero value is detected in da,
then there exists an abnormal reading in the measured data. The more
non-zero elements in da, the more likely the user is under significant
influence of anomalies and prone to malfunction.

4: Further processing with regular data
The reconstructed regular data dr, instead of anomaly contaminated
data d, is further exploited by each user to perform wideband sensing
described.

Table I: Default parameters

Parameter Description
sensing block duration Ts = 20µs
channel detection time CDT = 400ms
required error probabilities PFA = PMD = 0.1
sub-Nyquist sampling rate fsub = 0.25 GHz
# compressed samples in Ts M = fsubTs = 5000
Nyquist number N = fnyqTs = 20, 000

A. Simulation Settings
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Figure 5: Example of wideband sensing under SNR = −5dB

1) System Setup: We consider a wideband of 500 MHz,
which can be virtually divided into 50 sub-bands, each
occupying 10 MHz. The Nyquist sampling rate is fnyq =
1 GHz. A PU group signal is a wideband signal that spreads
over the wideband but may only occupy a small portion of
it; i.e., the number of occupied sub-bands is much smaller
than the total number of sub-bands monitored. The noise is
assumed to be circular complex AWGN, i.e., n ∼ N (0, η2).
The SNR values will be given in specific tests.

Default parameter settings are shown in Table I. An
example of the wideband signal spectrum, noise spectrum, and
recovered spectrum using CS is presented in Figure 5, where
the SNR is -5 dB. The wideband signal shown in this example
has three occupied sub-bands that have center frequencies of
75, 125, and 225 MHz respectively and each sub-band has
a bandwidth of 10 MHz. We also set the MAC frame size
FS = 200µs. For the sensing period Tp, we adopt the settings
similar to those in [17].

Throughout simulations, we use `1-magic as the basic
reconstruction algorithm [7]. Some other modified recon-

struction algorithms can also be used, such as those greedy
algorithms proposed in [33].

2) Schemes and Performance metrics: The peer schemes
we compare with in our simulations are summarized in
Table II. The option “reference” is the scheme with proposed
sequential detection but with Nyquist sampling (without using
CS). We use “reference” as a benchmark to evaluate the
performance of using sub-sampling with our proposed scheme.
The scheme “conv1” uses conventional non-overlapping
forward SPRT without CS, whereas “conv2” reconstructs
signals every Tp in order to use recovered signals to
perform sequential detection and identify the actual spectrum
channel occupancy. In the collaborative sensing case, “conv2”
concatenates the signals from multiple users to form a super
matrix for further reconstruction. Table II also lists the default
SNR for each scheme (if not otherwise stated): for group 1
schemes, -18.8 dB; for group 2, -5 dB. In group 3, each fusion
scheme has been introduced in Section V-C1.

Table II: Peer schemes comparison

Group 1: default SNR= −18.8dB
“proposed”: δ = 2, Tnew

p ← 2FS
“proposed-snr1” : proposed with SNR= −22.8dB
“proposed-snr2” : proposed with SNR= −20.8dB
“conv1” : non-overlapping forward SPRT w/o CS, see Fig. 4(a) and [21]
“reference” : proposed sequential w/o CS, i.e., with Nyquist sampling

Group 2: default SNR= −5dB
“proposed-joint”: proposed joint recovery among SUs
“proposed-joint1” : proposed with SNR= −15dB
“proposed-joint2” : proposed with SNR= −10dB
“conv2” : with CS, reconstruct signals each Tp for sequential detection
“peer2” : with CS, concatenated signal reconstruction, see [31]

Group 3: Map Fusion Schemes, see Sec. V-C
“SF”: Soft Fusion
“HF” : Hard Fusion
“W-SNR-WF” : Wideband SNR Weighted Fusion
“S-SNR-WF” : Sub-band SNR Weighted Fusion
“JR” : proposed joint recovery

Some performance metrics used in our studies are defined
as follows:
• Detection delay: The time it takes for a secondary user

to determine whether there exist PUs in the wideband.
• Detection accuracy: The probability of successfully

detecting if there exist PUs in the wideband, i.e., detecting
with neither false alarm nor missed detection.

• Wideband sensing accuracy: The percentage of the sub-
bands in the overall wideband that are correctly detected
regarding their activity status. This accuracy depends on
the channel measurement rate, defined as the ratio of sub-
Nyquist rate to the Nyquist rate.

• reconstruction computational overhead: The actual run-
ning time used to complete the CS reconstruction.

• number of CS reconstructions: The number of CS
reconstructions performed based on the compressed
(subset of) samples. Each CS reconstruction occurs in one
or several sensing periods, depending on the scheme.

• Fusion delay: Delay introduced by taking additional
samples for more accurate fusion as introduced in
Section V-C2.

• Total delay: Sum of detection delay and fusion delay.
• Signaling overhead: The total amount of information

transmitted from the time when the PU detection decision
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Figure 6: Effects of number of users
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Figure 7: Effects of joint measurement rate
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Figure 8: Comparisons of fusion schemes

is made until the completion of the map fusion process,
i.e., the cost of information exchange during the fusion
process.

B. Performance and Analysis

1) Impacts of number of users: We vary the number of
cooperating users in Figure 6(a), and as expected, the detection
delay for all schemes reduces as the number of users increases.
This clearly indicates the benefit of our cooperative sensing.
The delay values of “proposed” and “reference” are very
similar, which indicates that CS-based sequential detection
is effective and can achieve comparable performance even
with samples much fewer than required by Nyquist sampling.
With our proposed scheme under lower SNRs in “proposed-
snr1” and “proposed-snr2”, the detection delay is larger as
expected, which indicates that channel conditions have a
significant impact on the detection delay. A user in extreme
environmental situations may not be able to make the detection
decision by itself and thus the sensing cooperation is needed
to alleviate this problem. In addition, compared with “conv1”,
our proposed scheduling of GCD-SPRT scheme can make
a decision with a much shorter delay, thus accelerating the
detection process and avoiding transmission conflictions with
primary users. The delay reduction is up to a third when
compared to “conv1”.

In Figure 6(b), although only a quarter of the samples are
used, our proposed scheduled GCD-SPRT scheme can achieve
the detection accuracy similar to that using the Nyquist-
sampling (“reference”). Compared to “conv1”, GCD-SPRT
achieves up to 60% higher accuracy, even though “conv1”
uses more samples in each period. This shows the benefit of
exploiting compressed sensing and our backward sequential
sensing. We also see that when the number of users (Q)
increases, the detection accuracy improves more rapidly, which
again demonstrates the advantage of cooperation among SUs.

In Figure 6(c), the computational overhead for CS
reconstruction is compared. For ease of presentation, we
normalize this overhead by dividing it by the largest value in
the figure, i.e., the scheme “conv2” with the number of users
Q = 3. We can see that among all the schemes, our proposed
joint recovery scheme results in the least overhead. Compared
to “conv2”, which is the sequential detection scheme with the
CS reconstruction scheduled once every sensing period Tp,
the overhead for CS reconstruction in our proposed scheme
is about 80% lower when Q = 9. This is a very promising
improvement considering the number of samples is often very
large in wideband sensing.

2) Impacts of measurement rate: Figure 7(a) depicts the
impacts of the joint measurement rate on detection delay.
The delay is reduced as the measurement rate increases. The
smaller the measurement rate, the fewer samples are gathered
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Figure 9: Impacts of number of users on fusion schemes with additional sampling
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Figure 10: Impacts of anomaly detection

in the sequential detection, hence the longer it takes to make
a detection decision. At the measurement rate of 0.6, our
proposed joint recovery scheme reduces the detection delay
by 12% compared to “peer2”, the latter of which simply puts
together samples from all users for signal reconstruction.

From Figure 7(b), as the measurement rate becomes larger
(i.e., more samples are taken in the sub-sampling process), the
accuracy of wideband sensing increases, which agrees with the
CS theory. At the same measurement rate of 0.6, our scheme
outperforms “peer2”, which shows the advantages of joint
CS reconstruction in achieving a higher signal reconstruction
accuracy. Comparing the joint scheme under different SNRs, if
we draw a horizontal line corresponding to a sensing accuracy,
we can see the number of measurements needed increases
when the SNR is lower. With the same SNR, compared to
“peer2” that uses long concatenated signal samples to perform
reconstruction, the joint recovery scheme can actually reduce
the measurement rate to reach the same wideband sensing
accuracy. The reason is that we exploit the temporal and spatial
correlations in sensing data to further reduce the measurement
requirement for reconstructing every user’s signal.

In Figure 7(c), the number of CS reconstructions of different
schemes is compared, where the values are normalized
(divided by the largest value in the figure, i.e., the scheme
“conv1 always with CS” with a joint measurement rate of 0.2).
Among all the schemes, our proposed scheduling of CS-based
detection with joint signal recovery scheme requires the least
number of CS reconstructions. When the joint measurement
rate is 0.8, compared to “conv1 always with CS” which has
the conventional sequential detection with CS reconstruction
in every sensing period, and “reference always with CS”
which uses our sequential detection scheduling but always
performs CS in each sensing period, our proposed scheme

reduces the number of CS reconstructions by about 75% and
65%, respectively. This overhead reduction is the joint effect
of smart scheduling of sequential detection and on-demand
compressed sensing.

3) Impacts of Additional Sampling: Rather than recovering
the spectrum map with joint CS recovery among neighbors,
to avoid the need of transmitting measurement samples,
we introduce several schemes to fuse the spectrum maps
constructed by individual secondary devices. In addition,
additional sampling may be taken to increase the accuracy
of reconstructing the spectrum map as introduced in
Section V-C2. We would like to study the trade-offs brought by
the additional sampling and fusion delay. For different fusion
schemes, we evaluate the additional fusion delay, improved
sensing accuracy, and additional signaling overhead resulting
from the additional sampling. We plot the results in Figure 8.

For the Soft Fusion, Hard Fusion, Wideband SNR Weighted
Fusion, and Sub-band SNR Weighted Fusion, the use of
additional sampling increases the delay by 28%, 41%, 15%,
and 9%, respectively and the corresponding signaling overhead
by about 700%, 2500%, 500%, and 200%. The considerable
increase in delay and overhead is due to the use of additional
sensing periods to achieve higher wideband sensing accuracy,
and the accuracy level is seen to improve by 18%, 24%,
14%, and 10%, respectively. Compared to map fusion, the
delay and wideband sensing accuracy of Joint Recovery
(JR) improve respectively by 4% and 2%, but its signaling
overhead can become larger by two orders of magnitude (too
large and therefore not plotted in Figure 8(c)) due to the
need for exchanging signal samples. As an interesting trade-
off observed, if a fusion scheme requires less information
exchange (a) it may need additional sampling sensing periods
to achieve stable convergence (see the stopping rule in
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Section V-C2), thus leading to longer fusion delay and
a larger signaling overhead, and (b) it may improve the
wideband sensing accuracy more rapidly with the same group
of additional sampling. One reason might be that if a fusion
scheme has more information exchanged from the beginning,
it is likely that it will benefit less from the additional sampling
due to information redundancy.

4) Impacts of number of users on Fusion Schemes with
Additional Sampling: We vary the number of users and
study how it affects the performances of fusion schemes
with additional sampling introduced in Section V-C2. Since
additional sampling is exploited, we have evaluated the total
delay, total wideband sensing accuracy and total signaling
overhead.

The results are shown in Figure 9. As expected, when
more users collaborate in sensing, the total delay (sum of
detection and fusion delay) is reduced and the wideband
sensing accuracy improves. The signaling overhead increases
but at a smaller scale. Although more information is exchanged
in each sensing period, the fusion of results from more users
reduces the number of periods needed to make detection and
fusion decision.

5) Impacts of Anomaly Detection: We vary the number of
anomaly-affected users and the percentage of anomalies in
each user’s received data to assess the impacts of anomalies
and the advantage of anomaly detection in reducing the
detection delay and improving the wideband sensing accuracy.
We investigate the case of Q = 5 collaborative users, where
each may be affected by 5% or 10% anomalies and the
number of affected users varies from 1 to 5. The results
are shown in Figure 10. The average detection delay among
users becomes longer as each user encounters more abnormal
readings or the number of affected users increases, which
indicates the significant impacts of anomalies on the detection
delay. It can also be observed that (a) the wideband sensing
accuracy decreases as the number of affected users increases
and/or each user experiences more abnormal readings and
(b) anomaly detection significantly improves the accuracy
compared to direct processing of the contaminated data
without detecting anomalies. When there are Q = 5 users
and 5% anomalies per user, compared to the scheme without
considering anomalies (directly using contaminated data),
anomaly detection improves the wideband sensing accuracy
by 27%, and with 10% anomalies per user, by 45%. The
scheme with anomaly detection is less affected by the increase
in anomalies. The wideband sensing accuracy with anomaly
detection degrades slower when more anomalies exist in the
received data, which indicates anomaly detection performs
even better in the presence of more severe abnormal readings.

VII. CONCLUSION

To increase wireless network capacity, we have presented
an integrated framework to perform wideband detection and
wideband sensing efficiently. The Compressed Sensing (CS)
technique is incorporated into the scheduling of sequential
detection to ensure low sensing and signaling overhead and
more accurate wideband detection. To better identify the sub-
bands occupied by PU, we have proposed two cooperative

schemes among neighboring users. To achieve more accurate
wideband sensing, an anomaly detection method is also
presented. Simulation results demonstrate the significant
advantages of our performance in reducing the detection
delay, increasing the detection accuracy, as well as reducing
the CS recovery overhead and compressive measurement
requirements. Our studies also show the trade-offs between
the improvement of sensing performance with lower delay and
higher accuracy and the overhead incurred for computation and
communications.
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