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Abstract

Internet traffic characterization has a profound impact on network engineer-
ing and traffic identification. Existing studies are often carried out on a
per-flow basis, focusing on the properties of individual flows. In this paper,
we study the interaction of Internet traffic flows and network features from a
complex network perspective, focusing on six types of applications: P2P file
sharing, P2P stream, HTTP, instant messaging, online games and abnormal
traffic. With large-volume traffic flow records collected through proprietary
line-speed hardware-based monitors, we construct flow graphs of these differ-
ent application types. Based on the flow graphs, we calculate the correlation
coefficients on various properties for individual or multiple applications. Our
studies on associativity among degree and strength of individual hosts and
connected nodes reveal distinct correlative behavior of different types of ap-
plications. Especially, the correlations of P2P applications are observed to be
much stronger than those of the other applications. We also investigate the
correlations between different types of applications, and observe that HTTP
has remarkably different correlations from those of the two P2P applications
due to the fact that multiple application types rely on HTTP. Finally, we
study the dynamics of correlations for a period of 24 hours and reveal a few
interesting trends. We believe that our work which focuses on the assorta-
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tivities of Internet applications provides insightful understanding on Internet
traffic classification of up-to-date applications and will be helpful for Internet
traffic classification and engineering.

Keywords: Internet traffic monitoring, Application flow, Assortativity,
Complex Network

1. Introduction

Study on the characteristics of Internet traffic is important for under-
standing the activities and behavior of the Internet, and it is also essen-
tial for Internet service providers (ISPs) to better manage the operation
of the Internet [1]. Moreover, understanding the characteristics of appli-
cations and traffic flows is helpful for many network operations, including
planning and provisioning of the network infrastructure, traffic engineering
and performance optimization, guaranteeing of service quality and protec-
tion of network from fraud. Indeed, the characteristics of Internet traffic
have been studied extensively, and properties such as heavy-tail distribution,
self-similarity and fractal behavior have long been understood [2].

Many recent studies on Internet traffic are carried out at the flow level.
An Internet flow is formed with a series of packets exchanged between two
hosts, identified by the well-known five tuples: source IP address, destination
IP address, source port, destination port, and protocol type. Usually, a
flow tracks the information exchanged for a complete Internet interaction,
and the study of flow characteristics reveals how the Internet is accessed.
Therefore, investigating Internet flows, both at the aggregate level and at the
individual level, can provide insight on the features of Internet traffic. Flow
records are widely used to examine the characteristics of Internet traffic and
applications in the literatures, e.g., the studies for inter-domain traffic [3],
peer-to-peer (P2P) applications [4], security reasons [5] and entertainment
[6].

So far, most of the existing studies on flows were based on the observa-
tions of single flows, where millions of flow records were examined one by one
and the properties of flows were retrieved. The properties studied include
the number of packets and bytes in a flow, flow duration, distributions of
packet size and interval, etc. Based on the information retrieved from flows,
such as destination port and protocol type, flows can be classified into dif-
ferent applications and the statistics of applications are obtained from the
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observation of a large number of flows. While this method is able to reveal
the characteristics of an application flow, it does not fully utilize the flow
records for more thorough understanding of the features of Internet traf-
fic. In fact, flows do not exist independently but correlate with each other
via network elements, e.g., hosts and connections. Therefore, traffic is also
observed to present complex network characteristics in Internet [7]. For in-
stance, in P2P file sharing, flows between two hosts do not only carry file
contents of the two hosts, but also include information of other participants.
Therefore, flows sharing the same content are related and properties such as
flow duration are affected by the composition of concurrent flows. The Inter-
net flows form dynamic overlays on top of the physical and logical network
structures, and these dynamic overlays manifest the vivid prospect of Inter-
net interactions, therefore are very important for us to better comprehend
the nature of Internet applications. Instead of constraining our studies to
individual flow traffic, in this paper, we investigate the important properties
of the overlaying flow infrastructure from a complex network point of view
based on aggregated and correlated flows.

The main objective of this study is to investigate the degree and strength
correlations within and across the Internet applications for inter-domain traf-
fic. The concept of complex networks and graph [8] is adopted in this study.
We construct flow graphs from the Internet traffic flow records we collected
from operational networks and investigate their properties. In our previ-
ous paper [9], we have investigated the important characteristics of the flow
graphs such as the distributions of node degree and the strength of different
applications. In this paper, we further examine the flow graphs and ana-
lyze the correlations between different properties of network elements, both
within one type of application and across different types of applications.
More specifically, we study the mixing pattern and correlations, which are
the important properties of complex networks [10]. To the best of our knowl-
edge, this is the first effort to study the mixing pattern of different Internet
applications based on a large number of inter-domain flow records and new
traffic types such as online game and abnormal traffic. Besides the pattern
mixing of individual application, we also study the assortativities between
different applications, for example, between HTTP and P2P streams. The
flow records were collected by a proprietary line-speed hardware-based moni-
tor with a capturer and a classifier to track the traffic of a 10 Gbps trunk link
between an access network and the backbone. The records consist of detailed
traffic information with application classifications. Taking the advantage of
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this application classification ability, we are able to analyze the properties
of multiple types of applications. In addition to the widely studied appli-
cation types, i.e., HTTP and P2P file sharing (P2PF), we also analyze four
other types of applications: instant messaging (IM), online games (OG), P2P
streams (P2PS), and abnormal traffic (AT). The AT traffic includes virus and
attacks detected. The mixing patterns and assortativities of specific Internet
applications revealed by our work would help better predict traffic trends,
which will in turn serve as a guideline for better Internet service provisioning
and traffic engineering.

The main contributions of this study are as follows:

1. We examine flow records for six different types of traffic, namely P2PF,
HTTP, IM, OG, P2PS and AT. We exhibit the profiles of nodes, connec-
tions and traffic volume of these applications, as well as their variations
of traffic parameters within a 24-hour period. The analysis is performed
based on a huge volume of data captured in a two-day period by a pro-
prietary hardware monitor located between an access network and the
backbone network. From the traffic analysis, we find that many hosts
run more than one application simultaneously, and on an average each
host runs 1.43 application.

2. We construct graphs from the flow records and examine the assortativ-
ities among node degree and strength of a specific application. More
specifically, we calculate four types of correlation coefficients for a node
and six types of coefficients for a connected node pair, and identify dif-
ferent assortative behavior for different type of applications.

3. We investigate the correlations across different types of applications by
examining correlations between the properties of nodes participating
in multiple applications. Based on the calculation of four types of
correlation coefficients related to degree and strength, we conclude that
the correlations between different pair of applications are very different.

4. We present the correlation coefficients in a 24-hour period to explore
the time variation of application relationship, from which we observe
different trends of different types of applications.

The rest of the paper is organized as follows. After a brief review of the
related work in Section 2, our data sources and the flow graph construction
procedures are introduced in Section 3. In Section 4, The methodology of cor-
relation analysis is expatiated. Then our results are presented and analyzed
in Section 5. Finally, the paper is concluded in Section 6.
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2. RELATED WORK

Internet traffic has been studied extensively to reveal its characteristics.
In general, data traffic is well known to be self-similar and fractal [2][11].
The traffic of a residential access network was observed [12], the volumes and
the ratios of different applications such as web browsing, P2P file sharing,
streaming, messaging and online games were presented. As P2P applications
are taking a significant share of the current Internet traffic, they have drawn
a lot of attention. In [4], two P2P file sharing applications were studied and
the results show that the inter-arrival time and the connection duration vary
significantly, and thereafter a novel measurement method named CTI was
introduced. The traffic of online game was investigated both through exper-
iments and simulations in [13], where the inter-departure and inter-arrival
times of the packets were reported. Besides these normal applications over
the Internet, virus and attacks also constitute an important part of the Inter-
net traffic, and are a major concern for network security. Based on packets
captured by monitors deployed in the network, the scanning pattern of dis-
tributed denial of service (DDOS) as well as the packet numbers and ports
were presented in [14]. A more comprehensive study has been made in [5],
which provides profiles of abnormal traffic corresponding to IP addresses
and ports using data mining and significant cluster extraction. In [15], the
authors conducted insight investigations on residential Internet traffic and
many properties of digital subscriber line (DSL)-level sessions and TCP con-
nections were studied.

Literature research has observed the existence of complex network in
many Internet-related infrastructure and applications. The topology of phys-
ical connection of routers [16], routing connection of autonomous system
(AS) [17] and the World Wide Web as a network of web pages and hy-
perlinks [18] all show power law degree distribution, which is a fundamen-
tal property of complex networks. Traffic Dispersion Graphs (TDGs) con-
structed from traffic flows are applied to model social behaviors, degrees and
other properties of TDG as analyzed in [7]. TDGs formed by P2P traffic
are studied thoroughly to develop a P2P traffic classification framework [19].
Another kind of traffic graph, i.e. Traffic Activity Graphs (TAGs) are re-
vealed to possess interesting and meaningful block structures [20]. Graph
features of various application traffic are shown to be helpful for Internet
traffic classification [21]. Meanwhile, the Internet traffic studies continuously
attract research attentions. The flow records of aggregated traffic and HTTP
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traffic captured in Internet2 were analyzed in [22]. The strength of edges was
shown to have power law behavior over several orders. Based on the power
law property observed, traffic can be reconstructed from partially measured
network flows to facilitate research [23]. The correlation and pattern mix-
ing of complex networks were studied in depth in [10], where the authors
presented parameters, models and simulations of several types of networks,
including social, technological and biological ones. The correlations of the
properties of several network models were presented in [24]. Network traffic
studies rely heavily on the accuracy of flow capturing and identifications.
[25] shows that the accuracy of current port-based and DPI methods varies
greatly with respect to different applications. The correlation and pattern
mixing of complex networks were studied in depth in [10], where the authors
presented parameters, models and simulations of several types of actual net-
works, including social, technological and biological ones. The correlations
of the properties of several network models were presented in [24].

Existing results on the correlation of the networks are all based on static
scenarios with the studies focusing on the topology of the Internet and Web.
In contrast, the application flows which we study in this paper reflect the
dynamic user behavior of the Internet. Compared with existing results, our
work enriches the field of inter-domain traffic characterizations in two aspects.
First, we analyze flow records of six major types of Internet applications;
second, we investigate detailed mixing patterns and assortativities within
one type and between different types of applications, and our studies reveal
the existence of correlations between different properties.

In this paper, we focus on the interaction properties of diverse types of
application flows and analyze the results from the perspective of complex
networks. In our previous paper [9], we presented some general results of
complex network analysis such as the incoming and outgoing degree and
strength of nodes, as well as the process of application network growth. The
focus of this paper is on the study of new properties, i.e., the mixing patterns
and assortativities of applications. These new properties are investigated
thoroughly through many types of correlation coefficients, both within one
type of application and between different types of applications. In addition
to HTTP, IM and P2PF studied in [9], three new types applications are
investigated in this paper, namely P2PS, OG and AT.
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Figure 1: Network Traffic Monitor and Network Topology.

3. DATA COLLECTION AND FLOW DATABASE CONSTRUC-
TION

In this section, we provide information on data flow collection and database
construction before performing our data analyses in the next section.

As mentioned earlier, the flow data were collected by placing high-performance
network traffic monitors on the trunks between an access network (AN) and
the backbone network. However, the AN itself is large in scale. It covers a
part of a province in the Mid-West of China, which consists of millions of
end users. The conceptual diagram of the network architecture is illustrated
in Fig. 1.

Each trunk monitored has the capacity of 10 Gbps. The monitor captures
every packet passing through the trunk in both directions, and reports the
results to a server periodically. Each flow record contains information about a
single network flow, which is defined as one or more packets sent from a source
host and port, to a destination host and port, using a particular protocol.
The traffic are continuously monitored during a two-day observation period,
and the flow data are fully captured by the monitors1. The records are then
further classified into applications such as Web, FTP, Email, VoIP, Video

1In our study, hosts include both clients and servers.
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Stream, P2P, etc.
The flow database used in this paper was constructed based on data traffic

collection for a period of two days, starting from 8 pm, 12 October 2010 to
8 pm, 14 October 2010. The traffic was captured in an unsampled manner,
i.e., on a per-packet basis where every packet is tracked and classified into
a flow and every flow was recorded. In total, more than 3.5 billion flow
records were collected with detailed entries including time stamp, source and
destination IP addresses and ports, total number of packets and bytes in the
flow, and application type of each flow record. In the cases of studying the
dynamics of flow and traffic characteristics within a 24-hour period, for more
stable results, the traffic properties from the same period of different days
are averaged.

The monitors which provide the traffic identification results are commer-
cial products which are widely deployed in the carriers’ networks. To clas-
sify flows into different types of applications, the proprietary monitors ap-
ply various parameters and methods, including application signature, special
packet sequence and some deep packet inspection (DPI) methods together
with port-based method. For example, BitTorrent, eMule, Poco, DirectCon-
nect, Gnutella, KaZaa, Thunder, Kugoo, Maze, Winny, Share, PerfectDark,
Vagaa are classified as P2P download. Over 200 specific applications are
identified and classified into 15 types of applications. The results are con-
firmed by the carrier and used in daily network management. We take the
results as the ground truth in our study. Of the 15 types of applications, this
paper focuses on P2PF, HTTP, IM, OG, P2PS and AT, which are the most
typical traffic types and consist of more than 70% traffic volume of the total
traffic load2 Although sophisticated methods have been used to identify the
traffic, there is still about 25% of flows that can not be recognized. These
flows are difficult to be classified by investigating individual flows, but may
be easier to identify when considering correlations among flows. We hope
our results in this paper can provide some guidance to the development of
more efficient methods to identify the remaining traffic in the future.

Furthermore, the flow records are applied to construct graphs, called flow
graphs, in the following way. Each IP address in the records represents a
node; each flow record between two hosts forms an edge; multiple records

2The others are FTP, Email, eBusiness, VoIP, RouteNMS, UserDefine, Di-
rectvideoStream, GenericTCP, GenericUDP.
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between the same pair of nodes are considered to belonging to the same
edge. The bytes over an edge are summed up and the total rate is a weight
property of the edge, which is called strength of the edge. The records of
different applications are used to construct different flow graphs. Since the
flows are directional, the flow graphs generated are directed as well. We also
aggregate all the flow records to construct an overall graph as a reference.

It is worth mentioning that the flow records we used are far from exhibit-
ing all the traffic in the network. Instead, only inter-domain traffic flows,
i.e., the flows between AN and the backbone network, were captured, while
the intra-domain flows within AN or backbone network are not visible to the
monitors. Therefore, the traffic details within the two domains are not inves-
tigated in this study. This can pose bias on our results, since these records
may be in favor of global traffic like HTTP, but less favorable for local ap-
plications, such as P2P and IM. However, by focusing on the flows crossing
the border, we can understand more precisely the interactions between dif-
ferent network segments. In real-life networks, there are often interactions
between autonomous systems, and the interfaces under monitoring are often
the places where billing and traffic engineering are applied. They are also the
traffic bottlenecks in many cases. Therefore the analysis results in this pa-
per will be valuable for making network management and traffic engineering
decisions.

4. Description of Correlation Analyzing Methods

Assortative mixing, or assortativity, is an important feature of complex
networks besides the well-known power law distribution and the small world
effect [10]. Assortative mixing represents the correlations between the prop-
erties of network elements, i.e., nodes and edges, and may reveal profound
structural and dynamic properties of the network. Assortative mixing of the
flow graph can help answer questions such as: ”Does a node which has a
larger number of incoming connections tends also to have a larger number of
outgoing connections?”, or ”Do the two connected nodes have similar amount
of traffic?”. Therefore, it can provide better understanding of interactions
among applications. Assortative mixing is measured differently for differ-
ent types of networks and properties. For a network with nodes of several
types, the fraction of edges that connect a node of type p to a node of type q,
noted as mpg, shows extent of mixing between the two types. The assortative
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mixing can be measured as an assortative coefficient rd as [10]:

rd =

∑
pmpp −

∑
p apbp

1−
∑

p apbp
, (1)

where
ap =

∑
q

mpq, bq =
∑
p

mpq. (2)

For the network element with a scalar property, such as the incoming degree
of a node, the assortative coefficient rs is calculated as follows. Let mxy

be the fraction of connections between a network element with the property
value x and the element with the property value y, and

ax =
∑
y

mxy, by =
∑
x

mxy. (3)

Then rs is calculated as the standard Pearson correlation coefficient:

rs =
E(xy)− E(x)E(y)

σxσy
=

∑
xy xy(mxy − axby)

σaσb
(4)

where E() and σ are the expectation and the standard deviation of the
corresponding variable respectively.

The calculated assortative coefficient is +1 in the case of a perfect positive
(increasing) linear correlation between the values of the connected network
elements, -1 in the case of a perfect negative (decreasing) linear relationship
(anti-correlation), and certain value between -1 and +1 in all other cases.
When r approaches zero, it indicates that there is a looser relationship (close
to uncorrelated) between the corresponding properties. The closer the coef-
ficient is to either -1 or +1, the stronger the correlation between the studied
properties is.

To estimate the statistical error of value r, the Jackknife method [10] can
be used to evaluate the expected standard deviation of r as:

σ2
r =

M∑
i=1

(ri − r)2 (5)

where M is the number of elements under inspection, ri is the value of r with
the ith element removed from the calculation.
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In our flow graphs, the properties of nodes include: din, the incoming
degree of a node, dout, the outgoing degree, sin, the incoming strength and
sout, the outgoing strength of the same node respectively. The properties of
edges include: se, the strength of an edge. By definition, se of an edge (i, j)
between node i and j, is obtained by:

se(i, j) = (bytes from node i to node j) i, j ∈ [0, N − 1] (6)

and

sin(i) =
N−1∑
j=0

se(j, i) (7)

sout(i) =
N−1∑
j=0

se(i, j), (8)

where N is the number of nodes in the graph.
Among these properties, we study two types of assortative mixing. The

first type, referred to as individual node assortativity (INA), describes the
property correlation of the same node, e.g., the assortativity between the
incoming degree and outgoing degree of the same node. The second one, re-
ferred to as connected node assortativity (CNA), describes the related prop-
erties between connected nodes, e.g. the incoming degrees of two connected
nodes.

The INA coefficient between incoming degree and outgoing degree, de-
noted as rdido, are evaluated with a sample calculation as:

rdido =
N

∑
n di(n)do(n)−

∑
n di(n)

∑
n di(n)√

N
∑

d2i (n)− (
∑

di(n))2
√
N

∑
d2o(n)− (

∑
do(n))2

(9)

where di(n) and do(n) are the incoming and outgoing degrees of node n
respectively, and N is the number of nodes in the graph. The other INA
coefficients are calculated in the similar way. The CNA coefficients are cal-
culated with properties of two connected nodes. For instance, redidi is the
CNA coefficient between the incoming degrees of connected nodes.

5. TRAFFIC ANALYSES

In this section, we present the results derived from the flow database
and analyze the records. We first present the basic traffic characteristics
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Table 1: Statistics of Applications.
P2PF P2PS HTTP IM OG AT

maximun nodes 1,647,539 2,358,726 372,356 53,729 32,058 103,279
average nodes 990,248 1,205,864 207,672 33,950 20,899 66,538
minimun nodes 320,294 268,983 48,425 6,398 7,202 20,809
maximun edges 2,199,836 3,531,262 832,553 61,766 27,928 77,725
average edges 1,389,872 1,807,927 554,083 39,644 17,357 56,023
minimum edges 397,824 369,763 102,211 6,258 5,725 17,487
maximun traffic 1,147,749 959,782 365,998 5,772 12,135 8,810
average traffic 705,376 457,311 229,803 3,012 6,104 3,267
minimum traffic 302,790 100,025 57,407 344 2,792 2,192

of different types of applications, and then study the mixing patterns and
assortativities of traffic inside the same type of application as well as across
different types of applications respectively. Lastly we show the correlation
dynamics within 24 hours in different scenarios.

5.1. Traffic Characteristics of Diverse Applications

The duration of a flow varies depending on application type and user
demand. While browsing a simple Web page takes only a few seconds, a P2P
download may last for several hours. As a compromise, the flow records are
inspected on an hourly basis in our study. As traffic varies during a day, we
examine also the traffic dynamics on hourly basis. The basic parameters of
the six types of applications are summarized in Tab. 1 and the variations are
presented in Fig. 2 and Fig. 3.

In Tab. 1 and Figs. 2 and 3, n and e represent the number of nodes and
connections respectively, t is the traffic volume in the unit of megabyte .
Tab. 1 shows the maximum, average and minimum volume of node, edge
and traffic. As we can see, P2PS, P2PF and HTTP are the three largest
application volumes, accounting for more than 90% of the traffic classified.
In Fig. 2, the label on the left side of Y axis shows the volume of nodes and
connections, while the right label represents the traffic volumes. The volume
of nodes is the summation of nodes involved in the flow records in each hour,
so are the volumes of the connections and traffic. Parameters of P2PF traf-
fic (Fig. 2a vary with the time of the day, with the lowest value appearing
around 3∼5 am in the morning when most people are sleeping. The other
normal traffic, such as P2PS (Fig. 2b), HTTP (Fig.2c), IM (Fig. 3a) and
OG (Fig. 3b) have similar trends. However, although the numbers of hosts
and connections for AT in Fig. 3c are similar to the other applications, the
behavior and the traffic intensity of AT have different trends. The AT gen-
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erates a large volume of traffic during the mid-night but traffic load remains
low in the day time except for the peak in the noon. This is because that
AT traffic is mostly likely generated by computer programs automatically in
a scheduled manner.

The nodes and traffic volumes from different applications in percentage
are shown as histogram in Fig. 4. The percentages are calculated based on
the total traffic monitored, including the unknown traffic. We can observe
that P2PS and P2PF account for about 60% of the total traffic, but over 25%
of the traffic cannot be identified. The percentage of nodes corresponding
to unidentified applications is even higher. The possible reason may be that
shorter connections which contain a smaller amount of data are more difficult
to be identified. The results in Fig. 4 are derived from the traffic records in
the first hour of our collected data. We have also made an investigation on
the data of the rest of the hours, and the percentage relationship of different
application types is similar to the first hour, although the total number of
nodes and amount of traffic vary over time. While the percentage of different
types of traffic in Fig. 4 sums up to 100%, the summation of the number of
nodes is over 100%. This is because many hosts are involved in more than one
type of applications at the same time and are counted multiple times. We
discover from the records that the average number of applications per host
varies between 1.4 and 1.5 within the day, with an average ratio at about
1.43 (Fig. 5a). We further count the number of hosts involved in different
number of applications simultaneously, and present our results in Tab. 2,
where na is the number of hosts that have #a number of applications. It is
shown that over 25% of hosts participate in more than one application at
the same time. In order to find out whether a host with a higher number
of connections participates in more applications than a host with a fewer
number of connections does, we depict the relationship between the average
number of applications and the number of node connections in Fig. 5b. The
average number of applications involved by the nodes with lower than 20
connections do increase slowly as the connection number becomes larger.
However, for the hosts with a large number of connections (e.g., over 100),
many of them are involved in three applications simultaneously, and there
is a big variation in the number of applications involved by hosts with a
large number of connections. This result indicates that the majority of users
involve in a limited number of applications simultaneously, and some users
may establish a few connections for the same type of application.
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Table 2: Number of Nodes vs. the Number of Node Applications.
#a 1 2 3 4 5 6 7 8 9 10
na 54,500,625 12,887,185 2,802,451 1,389,541 158,377 371,912 438,233 316,697 170,577 80,360
% 74.5 17.6 3.8 1.9 0.2 0.5 0.6 0.4 0.2 0.1

Table 3: Individual Node Assortativity of Applications.
dido disi doso siso

P2PF r 0.819 0.277 0.463 0.333
σ 0.055 0.028 0.029 0.026

P2PS r 0.900 0.694 0.503 0.523
σ 0.007 0.022 0.041 0.090

HTTP r 0.431 0.174 0.397 0.033
σ 0.038 0.011 0.028 0.004

IM r 0.293 0.126 0.212 0.019
σ 0.132 0.023 0.036 0.012

OG r 0.040 0.125 0.292 0.023
σ 0.202 0.023 0.060 0.010

AT r 0.260 0.001 0.006 0.000
σ 0.038 0.001 0.001 0.000

Overall r 0.840 0.620 0.524 0.398
σ 0.019 0.070 0.040 0.055

Unknown r 0.891 0.392 0.368 0.192
σ 0.028 0.075 0.055 0.047

5.2. Mixing Pattern and Assortativities within One Type of Application

We define and calculate four INA coefficients for each application using
9, namely the INA coefficient of the incoming and outgoing degree (rdido),
the incoming degree and incoming strength (rdisi), the outgoing degree and
outgoing strength (rdoso) and the incoming and outgoing strength (rsiso). The
results are presented in Tab. 3 together with the estimated σ using (5).

In addition to the coefficients of the six specific types of applications, we
also include those of the aggregated traffic (overall) and unidentified traffic
(unknown) for reference. For rdido, the large values of the P2P applications
clearly show strong correlations between incoming and outgoing connections.
This is in accordance with the P2P feature, i.e., a node with a larger number
of outgoing connections is easier to get more incoming connections. However,
the coefficients concerning the strength of P2PF are smaller than those of
P2PS. The reason might be that for P2P file sharing, especially for files
that are not very popular, seed nodes which do not receive data contribute
to a larger share of the traffic volume. In the P2P stream case, however,
users share data when viewing the same media at the same time, thus the
coefficients are relatively higher. The HTTP and IM applications have middle
ranges of correlations, with lower values between the incoming and outgoing
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Table 4: Connected Node Assortativity.
Application redidi redodo resisi resoso redodi resosi

P2PF -0.037 -0.030 -0.044 -0.041 -0.037 -0.040
P2PS -0.063 -0.073 -0.014 -0.025 -0.069 -0.018
HTTP -0.112 -0.193 0.004 -0.104 -0.213 -0.028
IM -0.061 -0.108 -0.041 -0.088 -0.175 0.005
OG -0.051 -0.102 0.001 -0.041 -0.094 -0.002
AT -0.076 -0.057 0.014 0.000 -0.096 0.499

Overall -0.047 -0.047 -0.034 -0.025 -0.050 -0.029
Unknown -0.031 -0.029 0.032 -0.019 -0.031 -0.022

strength, indicating that the hosts of HTTP and IM do not usually transmit
or receive data at the same time. The small value of rdido and rsiso of OG
implies that there is very low correlation between incoming and outgoing
connections or traffic volumes. The incoming traffic for online games may
involve a large amount of data from other players while the outgoing traffic
may consist mainly of small-size game control commands.. However, its
values are larger for rdisi and rdoso, meaning that nodes with more connections
tend to generate higher traffic. For AT, there is no correlation concerning
the traffic volume, but the value of rdido does show some correlation. As we
know, most virus infection and attacks are completed by malware exchanging
messages with remote attackers, so there are certain degree of correlation
between the incoming and outgoing connections. The σ values are generally
one order smaller than the corresponding r values when the r values are not
too small, indicating that our statistics have reasonable precision.

The CNA coefficients are presented in Tab. 4. Similar to the INA, we use
the subscripts to indicate the properties investigated, and use re for CNA
instead of r for INA. Six CNA coefficients are studied, namely redidi for
incoming degrees, redodo for outgoing degrees, resisi for incoming strength,
resoso for outgoing strength, redodi for outgoing degree of source node and
incoming degree of destination, and resosi for outgoing strength of source
and incoming strength of destination. Most values in Tab. 4 are smaller than
zero, which indicates a negative assortativity, and means that nodes having
larger degree or strength tend to connect to nodes with smaller corresponding
values. However, as most values are close to 0, it indicates the correlations
are pretty weak. The assortative correlations of HTTP and IM, on the other
hand, are noticeable.

To further investigate the relationship, besides providing the assortativ-
ity on the same properties, we calculate two new coefficients for connected
nodes: one is between the outgoing degree of the source node and the incom-
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ing degree of the destination node (redodi), and the other is between their
corresponding strength (resosi). Since an edge creates one incoming degree
and one outgoing degree on the two end nodes of the edge, we expect some
positive correlations between them. However, it turns out not to be the case.
We observe stronger negative assortativities for HTTP and IM, and the two
new coefficients are even larger than the other coefficients of the two applica-
tions. This implies that connections are more likely to go from high output
nodes to low input nodes or vice versa. In the mean time, other applications
show almost no such correlations. This may be because that HTTP applica-
tions are generally carried out between the servers which have larger number
of connections and clients which have smaller number of connections. For
IM, besides servers for registration etc., there may exist ”hub” persons who
maintain a lot of contacts with others at the same time, which is a phenom-
ena often observed in social networks. Most resosi values are small except
for AT, showing a strong positive assortativity. We inspect the flow records,
and find that heavy traffic generated by a few connections takes a significant
share of the total traffic load among AT nodes, hence strong correlation ex-
ists. However, the σ of resosi is 0.312, which is also quite large, indicating
that the distribution is highly skewed. This implies that the traffic of AT
is exchanged mostly among some particular hosts, while the others do not
transmit or receive much traffic. All other σ values of the coefficients are
small, around or less than 0.001, so they are not listed in Tab. 4.

5.3. Assortativities across different types of applications

As observed from the analysis in Section 5.1, about 25% of the hosts run
multiple applications. This is because that one may browse the web while
downloading files in the background, or exchange messages with friends while
being attacked unperceptively. It is therefore interesting to find out which
kinds of applications are usually used together by end users and which are
not. In this subsection, we investigate the correlations between applications
running together by the same host. The same method mentioned in the
previous subsection is adopted, but the correlation coefficients of the prop-
erties across different types of applications are calculated instead. From the
flow records, we identify nodes associated with multiple applications, e.g.,
IP addresses with both HTTP and P2PS records. For these common nodes
among applications, the correlation coefficients of degree and strength are
calculated, and the results are illustrated in Tables 6 and 7.
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Table 5: Number of Common Nodes between Applications.
P2PF P2PS HTTP IM OG AT

P2PF 1,318,392 268,335 147,745 24,683 13,539 44,479
P2PS 2,209,628 143,085 29,434 12,190 50,162
HTTP 342,108 32,364 16,933 25,582
IM 51,885 4,052 6,885
OG 30,262 4,013
AT 93,151

Table 6: Correlation Coefficients of Degrees across Applications.
P2PS HTTP IM OG AT

P2PF rdi 0.717 0.186 0.228 0.238 0.486
σdi 0.027 0.023 0.099 0.044 0.049
rdo 0.619 0.172 0.096 0.022 0.140
σdo 0.029 0.020 0.039 0.203 0.013

P2PS rdi 0.708 0.625 0.577 0.663
σdi 0.040 0.035 0.021 0.041
rdo 0.570 0.099 0.545 0.226
σdo 0.058 0.020 0.018 0.014

HTTP rdi 0.105 0.678 0.391
σdi 0.017 0.049 0.076
rdo 0.068 0.078 0.128
σdo 0.008 0.499 0.023

IM rdi 0.076 0.178
σdi 0.036 0.095
rdo 0.002 0.128
σdo 0.007 0.012

OG rdi 0.326
σdi 0.061
rdo 0.145
σdo 0.025

The number of common nodes between applications is shown in Tab. 5
first. For reference purpose, the number of nodes of a specific type of appli-
cation is shown along the diagonal line of the table corresponding to another
type of application, e.g., P2PF has 1318392 nodes in its flow graph. As illus-
trated, although the number of nodes for HTTP is significantly smaller than
those of P2P applications, the common nodes between HTTP and IM/OG
are more than those between P2P applications and IM/OG. This result in-
dicates that people tend to perform other activities while browsing the web
or vice versa, but not when they are downloading files or involved in an
application with streams such as watching movie. IM/OG involves a lot of
client-to-server communication as HTTP does, and many IM/OG messages
are carried by HTTP protocol. This may also be the reason they have many
common nodes.

As shown in Tab. 6, the degree correlations between the two P2P applica-

17



Table 7: Correlation Coefficients of Strength across Applications.
P2PS HTTP IM OG AT

P2PF rsi 0.410 0.378 0.130 0.150 0.017
σsi 0.024 0.027 0.029 0.043 0.068
rso 0.504 0.021 0.039 0.030 0.024
σso 0.034 0.003 0.014 0.011 0.003

P2PS rsi 0.396 0.096 0.156 0.228
σsi 0.120 0.036 0.040 0.083
rso 0.083 0.066 0.076 0.014
σso 0.012 0.018 0.021 0.044

HTTP rsi 0.139 0.164 0.097
σsi 0.028 0.038 0.082
rso 0.023 0.108 0.003
σso 0.006 0.022 0.001

IM rsi 0.040 0.015
σsi 0.014 0.123
rso -0.002 0.128
σso 0.034 0.027

OG rsi 0.126
σsi 0.024
rso 0.037
σso 0.005

tions are quite strong. However, there is a clear difference between their re-
spective correlations with HTTP. The correlations between P2PS and HTTP
are apparently stronger than those between P2PF and HTTP, which may be
because that the index and the directory of streaming media are often carried
by the HTTP protocol, and many media links are embedded in web pages.
Moreover, P2PS has strong correlations with all other applications, while
the correlations between P2PF and others are not that significant. This is
perhaps because people tend to start P2P downloading when they do not use
their computers, e.g., when watching stream media. AT traffic is observed
to have quite large correlations with almost every application, showing that
abnormal traffic affects all applications. The correlations related to rdi of AT
are consistently stronger than those of rdo, probably because some connec-
tions are dropped by anti-virus software.

While degree correlation indicate the relationship between connection
numbers of hosts, strength coefficient present the relationship between traffic
volumes. In Tab. 7, the incoming strength coefficient (rsi) and the outgo-
ing strength coefficients (rso) are shown. The two P2P applications show
strong correlations with their incoming and outgoing volumes, which is in
conformance with the degree correlations. Both types of P2P applications
carry mostly the same type of contents, i.e., videos and multimedia. So it is
not surprising that people who like such contents tend to use both of them.
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However, there are sharp differences between rsi and rso for the two P2P
applications and HTTP. The incoming strength of P2PF and HTTP has a
high correlation with a value 0.378, while the outgoing strength has a very
low correlation at 0.021. Similar relationship is also observed between P2PS
and HTTP. A possible reason is that most hosts receive the traffic from
the network using browsers and viewers, so the incoming traffic presents
stronger correlations. However, the outgoing traffic flows are generated by
different application servers, so the correlations between the outgoing traffic
from different servers are low. In general, the correlation values of strength
are smaller than those of degree, implying that the traffic from different
applications is more random at hosts since hosts usually do not involve in
transmissions of large amount of data for different applications at the same
time.

5.4. Correlation Variation within a Day

Finally, we further investigate the variation of correlation coefficients over
a 24-hour period. We average the 24 hour results over 2 days, and the four
individual node assortativities shown in Tab. 3 are depicted in Fig. 6 and
Fig. 7, with σ plotted as error bars. As we may observe, most coefficients do
not vary significantly, and the variations are generally within ±0.1. For the
two P2P applications, the coefficients regarding the strength decrease dur-
ing night, perhaps because more hosts finish downloading data and become
seeds or simply stop transmitting and receiving any data. However, the co-
efficients of HTTP increase or become flat during night, with the exception
of rdoso. The coefficients of AT are quite uniform, with an obvious rdido and
no other correlations just like we observe in the first hour. This is because
that the abnormal traffic is likely generated randomly by machines and does
not depend on the time of day. There are no clear patterns in the IM and
OG applications and the large corresponding σ hinders us from making more
meaningful observation. As the percentages of traffic corresponding to these
two traffic types are lower in the total traffic, we will resort to more powerful
machine to process a larger number of records in the future.

The variation of the correlation coefficients of the connected nodes is also
shown. Most values are observed to be around 0, with the exception of the
HTTP traffic, which is shown in Fig. 8. During late night, the values of the
degree coefficients approach 0, meaning that the negative assortivities reduce
during night. This is because fewer users will initiate HTTP applications in
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late night. The traffic strength correlation remains to be low and at the
similar levels at different time of the day.

Furthermore, we inspect the correlation coefficients across applications
over a 24-hour period. We focus on the three largest applications and the
coefficients between them are plotted in Fig. 9. For the correlations between
the two P2P applications, it is interesting to observe that during night, the
strength correlations (rsi and rso) decrease when the connection correlations
(rdi and rdo) vary, while in the morning, all the four correlations increase
and remain high for the rest of the day. The correlations between P2PF and
HTTP exhibit a deviation for the strength and connections. The connection
correlations increase and reach the peak at 2∼5 am. In contrast during the
same time, the correlation of the incoming strength drops to a minimum.
The correlation of incoming strength remains unchanged. The coefficients
of the connections between P2PS and HTTP are larger than those between
P2PF and HTTP, while the coefficients of the strength are almost the same.

6. CONCLUDING REMARKS

In this work, we have constructed flow graphs based on detailed Inter-
net traffic flow records for different applications. Six types of applications,
namely P2P file sharing, P2P stream, HTTP, instant messaging, online game
and abnormal traffic are investigated. We first reported the profiles of the
applications, showing that P2PF, P2PS and HTTP are the three largest
ones in terms of both the host numbers and the traffic intensity. Then we
revealed that the number of nodes and connections as well as the traffic vol-
umes of applications vary during the day, being the lowest from midnight
to early morning as expected. Over 25% hosts participate in more than one
application, with the average number of applications per host as 1.43.

Furthermore, the correlations within one type and across different types
of applications were investigated in various ways. For each application type,
four kinds of correlation coefficients concerning the same hosts and six kinds
regarding connected nodes were calculated. Different types of applications
have distinct correlation behavior. The coefficients show that the properties
of hosts generally are positively assortative, with the two P2P applications
being the strongest, while the hosts connected have weak negative or no
assortativities. The correlation between degree are more significant than
those between strength.
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We further studied the correlations between different types of applica-
tions. The incoming and outgoing degree and the strength of common nodes
between different types of applications were examined, and the correlation
coefficients were presented. According to our results, applications have very
different relationships, and the coefficients vary significantly from almost 0
to over 0.7. A few other interesting facts were also explored. For instance,
although the two P2P applications have strong correlations between them-
selves, they correlate with HTTP very differently.

Moreover we investigated the variations of correlations within a day. Dif-
ferent behavior was found with different types of correlation coefficients. The
correlations of P2P applications decrease during night, while the correlations
of HTTP remain the same or increase during the period. AT presents uniform
correlations within a day. The correlations between the two types of P2P ap-
plications increase in the morning and remain high during the daytime, and
the correlations between P2PF and HTTP exhibit a deviation between the
strength and connections.

Our studies also shown a variety of behaviors regarding the correlations of
applications. Some properties exhibit distinctive differences which are helpful
for understanding the nature of Internet applications and interactions. As
mentioned when reporting the traffic profiles, about 25% of traffic cannot be
classified yet. In our future work, we will further investigate the relationship
between the unknown traffic and the identified application types.
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Figure 2: Hosts, Connections and Traffic over 24 hours.25
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Figure 3: Hosts, Connections and Traffic over 24 hours(cont.).26
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Figure 6: Correlation Coefficient within a Day.29
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Figure 7: Correlation Coefficient within a Day(cont.).30
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