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Abstract—In long-haul sensor networks, sensors are remotely
deployed over a large geographical area to perform certain tasks.
We study a class of such networks where sensors take measurements
of one or more dynamic targets and send state estimates of the
target(s) to a fusion center via long-haul satellite links. The severe
loss and delay over the satellite channels can easily reduce the
chance that an estimate is successfully received by the fusion center,
thereby limiting the potential information fusion gain and resulting
in suboptimal accuracy performance of the fused estimates. In this
work, starting with the temporal-domain staggered estimation for
an individual sensor, we explore the impact of the so-called intra-
state prediction and retrodiction on estimation errors. We also
investigate the effect of such estimation scheduling across different
sensors on the spatial-domain fusion performance, where the sensors
retain the same estimation frequency, but with possibly asynchronous
estimation instants staggered over time. In particular, the impact of
communication delay and loss on such scheduling is explored by
means of numerical and simulation studies that demonstrate the
validity of our analysis.

Index Terms—Long-haul sensor networks, state estimate fusion,
asynchronous and staggered estimation, staggered interval, intra-
state and inter-state prediction and retrodiction, mean-square-error
(MSE) performance, reporting latency.

I. INTRODUCTION

Networked sensing systems can be found in a multitude of

real-world applications, especially in detecting and/or monitoring

of the states of dynamic targets. In particular, we consider a

class of such systems – the so-called long-haul sensor networks –

where the sensors are deployed to cover a very large geographical

area, such as a continent or even the entire globe. Examples

of such long-haul networks can be found in tasks such as

the monitoring of greenhouse gas emissions using airborne and

ground sensors [1], processing of global cyber events using cyber

sensors distributed over the Internet [2], space exploration using

a network of telescopes [12], and target detection and tracking

for air and missile defense [5].

In a typical long-haul sensor network tracking/monitoring ap-

plication, a remote sensor measures certain parameters of interest

from the dynamic target(s) on its own, and then sends either the

measurements directly, or the state estimates it derives from the

measurements, to the fusion center. The fusion center serves to

collect data from multiple sensors and fuse these data to obtain

global estimates periodically at specified time instants. In this

work, we focus on satellite-based long-haul sensor networks,

where the sensors send out their time-stamped state estimates,

rather than the raw measurement data, over the satellite links to

a remote fusion center. In the end, a global estimate is expected

to possess better quality levels in terms of its improved accuracy

performance over that of the individual sensors; this effect is often

referred to as the fusion gain.

Unfortunately, many challenges exist in such satellite-based

long-haul sensor network estimation and fusion applications. Be-

cause of the long distance, often on a scale of tens of thousands of

miles, the signal propagation time is rather significant compared

to that in short-range communications. For example, the round-

trip time (RTT) for signal propagation with a geostationary earth

orbit (GEO) satellite is well over a half second [14]. More impor-

tantly, communication over the satellite links is characterized by

sporadic high bit-error rates (BERs) and burst losses. The losses

incurred during transmission or resulting from the message drop

due to occasional high BERs could further reduce the number

of reliable estimates available at the fusion center, which in

turn degrades the fusion performance, since the global estimates

cannot be promptly and accurately finalized by the fusion center.

This can eventually result in failures to comply with the system

requirements on the worst-case estimation error and/or maximum

reporting delay, both crucial elements in systems calling for nearly

real-time performance.

In the literature, some studies have attempted to address esti-

mation and/or fusion under variable communication loss and/or

delay conditions. The quality of information (QoI) performance

is evaluated in [17] under network loss and delay for a target

following the Brownian motion model, where measurements are

selected based on the information gain calculated as a function

of known probability loss and delay profiles. An upper bound of

the loss rate has been derived in [6], above which the estimation

error goes unbounded. Some studies, including [11], [18], [19],

have addressed the so-called out-of-order-measurement (OOSM)

issue – where an OOSM is defined as a measurement that has

been generated earlier but arrives later – and their common goal

is to update the current state estimate with an earlier measurement

without reordering the measurements and recalculating the state

estimator recursively. In these studies, the data will finally arrive

albeit the random delay. More recently, a few studies [9], [10],

[13] have exploited retransmission techniques to recover some of

the lost messages over time so that the effect of information loss

can be somewhat mitigated. A dynamic online selective fusion

mechanism based on the projected information gain is proposed

in [8] so that the final time for fusion is dynamically determined

depending on if enough information has arrived at the fusion



center. Despite the above research efforts, there have been hardly

any studies on temporal-domain scheduling design for improving

the tracking performance in the context of state estimation/fusion

applications.

In this work, we introduce a new concept, staggered scheduling.

Different from conventional work where the time instants for

sensors to generate estimates and the time for the fusion center

to create fusion reports are deemed to coincide, we consider

asynchronous and staggered estimation and fusion where there

is a time shift (we call it “staggered time” in this work) between

the two types of time instants. The fusion center can take

advantage of the time difference to perform intra-state prediction

and retrodiction to improve the quality of the fused estimates at

desired reporting time. This scheduling can be carried out over

multiple sensors as well. Correspondingly, the fusion center needs

to fuse such multi-sensor state estimates with various time stamps.

The main goal of this work is to investigate the effect of

such asynchronous and staggered estimation/fusion on the final

accuracy performances under variable communication loss and

delay conditions. In addition to the scheduling of sensors to

generate estimates at specific time instants, the unexpected delay

and loss of the communication network also naturally contribute

to the time difference between sensor estimation and fusion time.

Our results indicate that the fusion center can exploit staggered

scheduling and opportunistically apply intra-state prediction and

retrodiction to improve the fusion performance based on the link-

level loss and delay conditions.

The remainder of this paper is organized as follows: Sec.

II reviews the filtering fundamentals, highlighting the filtering

methods as applied by the fusion center. Next in Sec. III, we

introduce the basic ideas behind the staggered estimation by the

technique of intra-state prediction and retrodiction. In Sec. IV,

we explore the effect of such staggered design, in the context

of network communication loss and delay, on the performance

of one-sensor estimation. Similar studies are carried out for the

two-sensor scenario in Sec. V where performance of two types

of fusers is investigated. The paper concludes in Sec. VI.

II. PREDICTION AND RETRODICTION BY THE FUSION

CENTER

This section provides a brief overview on filtering basics as

well as the prediction and retrodiction techniques performed

by the fusion center, which serves as the fundamentals for our

staggered estimation/fusion design.

1) Filtering Basics: The goal of a state estimator is to extract

the state information x from measurements z that is corrupted by

noise; this is done by running a filter that outputs the state estimate

x̂ and its associated error covariance matrix P. Essentially,

filtering is considered as a means to reduce uncertainty from noisy

measurement data. In many recursive filtering algorithms, such as

the well-known Kalman filtering (KF), each recursion is concep-

tualized as two distinct phases, namely, “predict” and “update”.

In the “predict” phase, the state estimate from the previous time

step is used to produce an estimate of the current state, which

is also known as the a priori state estimate. Subsequently, in the

“update” phase, such a priori prediction is combined with the

latest measurement to refine the state estimate, resulting in the a

posteriori estimate that is supposed to possess improved quality

in terms of reduced estimation error. Normally, these two phases

alternate and the system state at a certain time instant is predicted

directly from the preceding posterior estimate. In this work, we

assume the sensors can take measurements and then in turn

generate and send out their state estimates in a timely manner; it

is the communication loss and delay between any sensor and the

fusion center that may result in unavailable state estimates at the

fusion center. Doing so allows us to focus mainly on designing

information processing algorithms at the fusion center to improve

the performance.

2) Prediction by the Fusion Center: We consider prediction

performed not by a sensor during its regular recursive filtering,

but by the fusion center. The purpose is largely different even

though the two may share the same “prediction” equation. Since

the fusion center does not have access to measurements, it needs

the sensors to communicate their processed state estimates for

subsequent fusion. However, due to severe loss and delay, the

desired state estimates are not always available; in this case, the

fusion center may simply interpolate the unavailable estimates by

plugging in its own predicted estimates from earlier ones, using

known or learned state evolution models. Hence, the prediction by

the fusion center is used to counteract the effect of communication

degradations. Due to the system uncertainty – often characterized

by varying process noise levels – prediction alone often results

in higher estimation errors compared to the estimates generated

and sent by the sensors; this is the very reason measurements

have to be taken regularly in order to maintain desired tracking

performance. Nevertheless, to realize the fusion gain, it is still

preferable to use predicted estimates for a sensor rather than

discard the sensor’s potential information altogether [4].

3) Retrodiction by the Fusion Center: Estimation of a target

state at a particular time based on measurements collected be-

yond that time is called retrodiction or smoothing. Retrodiction

improves the accuracy of the estimates, thanks to the use of more

information, at the cost of extra delay. The vast majority of the

existing literature studies have considered retrodiction only from

the perspective of an individual sensor; the effect of retrodiction

in the context of state fusion has been largely unexplored except

in our earlier studies [8], [9]. Since retrodiction calls for the

availability of subsequent data to the ones of interest, the inherent

link delay over a long-haul network entails that the fusion center

can exploit the opportunities for potential retrodiction to improve

the accuracy of the fused estimate. Conventionally, an estimate

is retrodicted only when it actually arrives as in many OOSM-

related studies [11], [18], [19]. However, in our design, the

fusion center opportunistically interpolates the missing estimates

– that is, to “fill in the blanks” – from the available estimates

before, using prediction, and after, with retrodiction. Of course, an

available estimate can be retrodicted using its following estimates

too – as in the conventional use of retrodiction – as long as the

associated fused estimate has not been finalized by the fusion

center. This has the potential benefit to speed up the process of

finalizing the global estimates – since the fusion center does not

have to wait for the actual missing estimates to finally arrive –

and hence reduce the chance of missing the stipulated reporting

deadline.



III. STAGGERED ESTIMATION: AN OVERVIEW

In this work, we propose a new estimation structure, staggered
estimation, which exploits the temporal relationship between

estimates at different time instants to improve the estimation per-

formance. Before presenting the new concept, we first introduce

some basic terminology and the conventional estimation structure.

To formulate the estimation and fusion process, we consider

that a stream of globally fused estimates is reported at a regular

time interval of T , which also coincides with the estimation

interval at the sensors as well. Suppose the (continuous) time

of interest is nT , where n is a positive integer, then due to the

stationarity of the above interval T , in subsequent analysis, the

time instant will also be conveniently referred to as the time

(step) n. Based on the estimates sent by the sensors, the fusion

center can perform prediction and retrodiction to form component

state estimates for fusion. For a given sensor, depending on

what estimates sent from the sensor have been received, the

fusion center may report one of the following types of estimates,

corresponding to a time n:

a) x̂n|n, the “default” estimate sent from the sensor;

b) x̂n− , the predicted estimate;

c) x̂n−|n+1, the predicted & retrodicted estimate; and

d) x̂n+|n+1, the retrodicted estimate.

In the cases a) and d), the sensor’s estimate for time n is

successfully received by the fusion center; whereas in the other

two cases, this estimate is missing and hence prediction over

one or multiple steps1 by the fusion center is performed first.

As the system uncertainty accumulates over time, the estimation

error often increases with the number of prediction steps that

have accrued, which means that x̂n|n−2 is a worse estimate than

x̂n|n−1. On the other hand, the presence of the sensor’s estimate

for step n+ 1 – in c) and d) – helps improve the quality of the

estimate for time n. The improvement is on top of the predicted

estimate in the case c) but on the already received sensor estimate

in d).

The prediction and retrodiction techniques discussed above are

schematically shown in Fig. 1(a), where the estimation interval

T and its integer multiples serve as the basic time units for

prediction and retrodiction. We conveniently name this as inter-
state prediction and retrodiction.

Instead of forming the reports ideally at the same time instants

as those when the sensor generate the estimates, which is difficult

to achieve in reality, we consider a new staggered scheduling

method shown in Fig. 1(b). With this method, a sensor is

scheduled to generate its estimates following the same estimation

interval T but at time instants different from the ones at which

the fusion center creates reports. As a result, we allow both the

prediction and retrodiction to be performed over a period of time

that is a fraction of the estimation interval T . Hence, we have the

intra-state prediction and retrodiction2.

In Fig. 2, an example consisting of three different estimation

schedules is shown. In the figure, the red dotted lines denote

1If the preceding estimate for step n− 1 is available, then one-step prediction
is in place; otherwise, multi-step prediction is necessary.

2Of course, the extension of this intra-state filtering can be realized by
superimposing an estimation interval (and its multiples) on top of the fractional
period τ .
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Fig. 1: Prediction and retrodiction: the estimate at time n is to be
obtained. By convention as in (a), only estimates at steps n− 1, n+ 1,
etc. are to be used; however, in this study, we consider an estimate is
generated at a time different from nT , by a fraction of the estimation
interval, as shown in (b).

the common time instants of interest for the fusion center (i.e.,

the time instants whose state estimates are to be finalized and

reported) and the green bars indicate the times where the estimates

are generated. In (a), the standard estimation schedule is shown,

where the estimation time at the sensors and fusion time at the

fusion center always coincide3. In Fig. 2(b), an estimate with

time-stamp (n − 0.2)T is sent out by the sensor, upon initial

reception, the fusion center can perform a 0.2-step prediction

to form the estimate report for time instant nT ; next, if the

subsequent estimate from the same sensor – now with time-stamp

(n + 0.8)T – arrives before the reporting deadline (which is

assumed to be one estimation interval T here), the fusion center

can further perform a 0.8-step retrodiction for an improvement

in accuracy over the previous predicted estimate. On the other

hand, the estimation time in Fig. 2(c) always lags its preceding

fusion time by 0.2T , resulting in a 0.8-step prediction and a

0.2-step retrodiction when both estimates are available. In the

figure, τ (tau) values are shown as the gap between the fusion

time and the time stamp of the latest generated estimate. In all,

when a sensor does not directly report its estimates for the time

instants of interest but expects the fusion center to generate the

corresponding estimates on its own for further fusion, we consider

the scheduling as both “asynchronous” – from the perspective of

the fusion center – and “staggered”.

Albeit conceptually simple, the effects of this staggered

scheduling on estimation and fusion performance are not readily

predictable. In the next two sections, we will investigate its

potential benefits for both one-sensor and two-sensor scenarios

under variable communication loss and delay conditions.

3To avoid confusion, the term “fusion time” refers to the time of interest whose
state estimate needs to be generated by the fusion center; whereas “reporting time”
refers to the time when final fusion occurs.
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Fig. 2: Staggered estimation scheduling: (a) the standard schedule,
where prediction and retrodiction over multiples of the common period
T can be performed; (b) staggered estimation, where the sensor takes
measurements 0.2T earlier than the following fusion time; (c) staggered
estimation, where the sensor takes measurements 0.2T later than the
preceding fusion time. The τ values are shown as the gap between the
fusion time and the time stamp of the latest generated estimate.

IV. STAGGERED ESTIMATION WITH ONE SENSOR

In this section, we focus on staggered estimation scheduling

where the sensor system is composed of only one sensor. Had

the communication between the sensor and the fusion center been

perfect with the standard synchronous scheduling being used, the

fusion center would simply “take over” the sensor state estimates.

With communication loss and delay, however, the fusion center

may have a different view of the state evolution from that of

the sensor due to the use of prediction and retrodiction. We first

introduce the communication loss and delay model; and then we

analyze the probabilities of generating different types of estimates

by a certain deadline and show the impact of scheduling on

estimation performance. Numerical studies are carried out at the

end of the section using a well-known target motion model.

A. Link Communication Loss and Delay Profiles

The communication loss and delay characteristics are deter-

mined by the long-haul link conditions. In this work, we assume

that each message sent by a sensor is lost en route to the fusion

center with probability p that is independent of other messages.

The latency that a message undergoes before arriving at the fusion

center may consist of the initial detection and measurement delay,

data processing delay, propagation delay, and transmission delay,

among others. We suppose a pdf f(t) can model the overall delay

t that a message experiences before being successfully received

by the fusion center. One typical example is that of the shifted

exponential distribution:

f(t) =
1

μ
exp−

t−TI
μ , for t ≥ TI . (1)

in which TI serves as the common link and processing delay,

which is the minimum delay that a message must experience to

reach the fusion center, and μ is the mean of the random delay

beyond TI that can be affected by factors such as weather and

terrain.

B. Staggered Scheduling with One Sensor
In this subsection, we explore the effects of different staggered

estimation schedules in the presence of communication loss and

delay. By analyzing the probabilities of having different types of

estimates as inputs to a certain fuser, we calculate the approximate

error performance and compare it against the actual position

mean-square-error (MSE) performance from numerical studies in

the next subsection.
1) Probabilities for Obtaining Different Types of Estimates:

We first consider the specific condition under which a certain

number of retrodiction rounds can potentially take place. Suppose

the interval between the time of interest and the preceding sensor

estimation time is τ , where 0 ≤ τ < T ; in other words, the

time stamp of the preceding estimates is nT − τ . Suppose the

reporting deadline for time nT is nT +D (i.e., with a maximum

lag D); then in order to possibly perform at least one round of

retrodiction, an estimate must be generated after time nT and

arrive at the fusion center by nT + D. Since the time stamp

of the estimate following time nT is (n + 1)T − τ , accounting

for the minimum delay TI as in Eq. (1), the earliest arrival time

(n+1)T−τ+TI should be no later than the deadline nT+D; on

the other hand, to have only up to one round of retrodiction, the

estimate generated at time (n+ 2)T − τ should arrive later than

nT +D. Combining both constraints, we have the condition for

both the reporting lag D and the scheduling lag τ with up to one

round of retrodiction. In fact, this result can be easily extended

to multi-round retrodiction, as stated below:
Proposition 4.1: To have up to l (l ≥ 1) rounds of retrodiction,

the reporting lag D should satisfy the following condition:

lT + TI − τ ≤ D < (l + 1)T + TI − τ. (2)

Without loss of generality, in the following analysis, T and

D are given as 1 s and 1.5 s respectively, with the common

link communication and pre-processing delay TI set as 0.5 s.

This is the situation where in the standard scheduling scheme, the

deadline for reporting one estimate happens to be the very earliest

time the subsequent estimate arrives, namely, D = T +TI . Also,

it is easy to verify that l = 1.
Given the link statistics introduced in the last subsection, the

probability that a sensor estimate is successfully received by the

fusion center within time t since being generated is (1− p)F (t).
It is easy to verify that the amount of time it takes for the two

estimates, one immediately preceding nT and the other following

it, to be delivered to the fusion center before the deadline, are

D+τ and D−T+τ , respectively. As such, we have the following

probabilities of using different types of estimates by the deadline:

a) x̂n|n−τ :

(1− p)F (D + τ)(1− (1− p)F (D − T + τ));
b) x̂n− :

(1− (1− p)F (D + τ))(1− (1− p)F (D − T + τ));
c) x̂n−|n+1−τ :

(1− (1− p)F (D + τ))(1− p)F (D − T + τ); and

d) x̂n+|n+1−τ :

(1− p)2F (D + τ)F (D − T + τ).
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Fig. 3: Probabilities of using different types of estimates at the deadline
with variable staggered estimation interval τ , where loss rate p = 0.25,
T = 1, and D = 1.5.

Similar notations for these types of estimates were first in-

troduced in Sec. III, now with the exception that the staggered

interval τ is added to the subscripts to reflect the time difference.

Note that when τ = 0, the results are simply reduced to those

under standard scheduling. In the cases b) and c), the minus signs

denote that the estimate generated at n− τ is not available at the

fusion center; as such, these probabilities have also incorporated

the scenarios where prediction over a longer time span by the

fusion center has taken place.

Given a pre-determined set of estimation interval T and

deadline D values, the question of interest arises: how would

different τ values impact the estimation performance at the fusion

center? In Fig. 3, the probabilities of eventually using different

types of estimates by the fusion center are plotted for a loss

rate of p = 0.25. As can be easily seen in the figure, as the

staggered interval τ moves from 0 all the way up to T , the

probability of obtaining x̂n+|n+1−τ goes up while that of using

the predicted state x̂n− decreases. Among the four, these two

represent the best and worst estimates respectively in terms of

the estimation error. Increasing τ would then seem to improve the

estimation performance when only these two types of estimates

are considered. However, the other two types of estimate, x̂n|n−τ

and x̂n−|n+1−τ , change in reverse directions too as τ shifts, and

it is not immediately clear which of the two has overall better

accuracy performance [9].

However, the above analysis does not capture the actual be-

havior of the estimate to be finalized by the fusion center, since

intra-state prediction and/or retrodiction has to be applied when τ
shifts away from zero, thereby affecting the behavior of all four

types of estimates. In what follows, we will explore the error

profiles with staggered scheduling under perfect communications.

Then we will combine them with the above probabilistic analysis

to derive the approximate estimation error performance. To do so,

it is necessary to introduce the system and measurement models

first.

C. Quantitative Results

1) System and Measurement Models: In most 2-D or 3-D

tracking applications, the same motion model is used for each

coordinate, and the motion along each coordinate is assumed to

be decoupled from other coordinates [4]; therefore, we consider

a kinematic model in one generic coordinate4. The motion un-

certainty can be modeled by the process noise – also defined in

one generic coordinate – that is continuous in time as a white

stochastic process with a certain power spectral density (PSD).

The continuous-time system has a state vector x consisting of

position, velocity, and acceleration,

x = [p v a]T (3)

where the derivative of acceleration is modeled by a zero-mean

white jerk process noise. The system dynamics described by a

discrete-time state equation with a sampling period T are given

by

xk+1 = Fxk +wk, (4)

where the state transition matrix F is defined as

F =

⎡
⎣1 T T 2/2

0 1 T

0 0 1

⎤
⎦ . (5)

The process noise wk is stationary over time with its covariance

matrix Q

Q =

⎡
⎣T

5/20 T 4/8 T 3/6

T 4/8 T 3/3 T 2/2

T 3/6 T 2/2 T

⎤
⎦ q, (6)

where q � σ2
w = E[wkw

T
k ] is the noise power spectral density.

The above motion model is named the continuous-time Wiener

process acceleration (CWPA) model as in [3], [4]. It is appropriate

for targets with longer maneuvering intervals (or shorter sampling

intervals). When the noise PSD q is relatively small, it is also

called the nearly constant acceleration (NCA) model. We will

consider cases with both large and small noise PSDs. In this

kinematic model, the sampling interval T appears in both the

stationary state transition matrix F and the noise covariance

matrix Q. Conventionally, this T serves as the estimation and

fusion intervals as well.

We consider a simplified measurement model in which the

sensor directly measures the position state of interest and hence

only the position estimate

zk = Hxk + vk (7)

is available, where H, defined as

H = [1 0 0], (8)

is the measurement matrix, and the Gaussian measurement noise

v has the following autocorrelation:

E[vkvj ] = Rδkj � σ2
vδkj , (9)

where δ(·) is the Kronecker delta function.

4In other words, motion along different directions in a particular coordinate
system (such as the common “east-north-up” system) is independent and can be
mapped onto corresponding orthogonal axes.
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Fig. 4: Steady-state position estimate mean-square-error (MSE) perfor-
mance with variable staggered interval τ values

2) Approximate Estimation Error: In this work, the fusion cen-

ter applies the Rauch-Tung-Streibel (RTS) retrodiction algorithm

[15] to obtain the retrodicted state estimates. With the previously

established models, the steady-state behavior [15] of the sensor

estimate can be found analytically via Ricatti equation recursion

or more conveniently from simulations. In our subsequent analy-

sis, we assume that q = 1 and σv = 20. In Fig. 4, the steady-state

error performance of different types of estimates under variable

τ values is displayed. Again, with our parameter setup, only the

sensor estimates generated at n+1− τ , if available, can be used

by the fusion center for retrodiction. Another assumption used in

generating the plots is that no bursty loss is present; that is, the

number of prediction steps is constrained strictly under two. For

example, in Cases b) and c) in the last subsection, the minus sign

would mean that only the immediately preceding estimate is not

received, but not the ones before.

From the plots, as τ gradually shifts away from 0, all types

of estimates experience increased steady-state estimation errors.

Recall that under the steady-state condition, a sensor estimate

has the same theoretical MSE guarantee regardless of its time

of origin. Suppose two adjacent sensor estimates are successfully

delivered to the fusion center (as in the case where x̂n+|n+1−τ can

be obtained); as τ increases, the intra-state prediction step size is

lengthened and retrodiction step size shortened, resulting in in-

creased estimation error. This relationship holds true for all other

cases as well. Another interesting observation is that the two cases

with x̂n+|n+1−τ and x̂n−|n+1−τ have nearly identical steady-

state performance. This means that had the communications been

perfect, the frequency that a sensor communicates its estimates

(but with the same estimation frequency on tap) can be reduced

by half without causing tangible performance degradations.

Finally, we calculate the expected estimation MSE performance

as the probabilistic combination of steady-state MSEs of different

types of estimates. More specifically, the expected MSE with a

certain τ choice is computed as the summation of the probabilities

of obtaining all four types of estimates, such as those shown

in Fig. 3, times the corresponding steady-state position MSEs

found in Fig. 4. This result is “approximate” at best in that the

probabilities themselves may have included the cases where a

string of losses occur. The results are plotted in Fig. 5 with

three different link-level loss rates, namely 0%, 25%, and 50%.

Interestingly, across all cases, the estimation errors decrease
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Fig. 5: Approximate position estimate MSE performance with variable
staggered interval τ and loss rate p values: only prediction across time
of up to 2T is considered

initially as τ shifts away from zero, and then increases. For

validation of the results, however, we also need to test the actual
estimation error performance via Monte-Carlo simulations.

3) Actual Estimation Error Performance: The same set of

parameters are used to generate the actual position estimate MSE

performance as shown in Fig. 6. Comparing it with Fig. 5, we

can observe the following: First, the above approximation by

probabilistic combination becomes increasingly erroneous as the

loss rate increases. When there is no or little loss, the off-line

probabilistic values serve as a good approximation of the actual

error profile; however, as p increases, bursty losses become more

commonplace, which was not reflected in the steady-state MSE

values in Fig. 4, resulting in overly optimistic approximation

when the loss becomes severe (as in the p = 0.5 case in the

figure). Also the minimum estimation error is somewhat skewed

in the approximation. Nevertheless, a common time across cases

where the minimum estimation errors can be found happens to be

around τ = 0.4 s. Here, at zero loss rate, the standard scheduling

results in a nearly 30% higher estimation MSE compared to the

value obtained at τ = 0.4 s; even at a 25% loss rate, standard

scheduling still yields 20% more errors compared to its staggered

counterpart. As the loss becomes even higher, the improvement

from staggered scheduling in terms of the percentage of error

reduction becomes less prominent as the fusion center encounters

more difficulties receiving estimates regardless of their time of

origin. But overall, the error reduction performance showcases

the major advantage of scheduling sensor estimation activity in a

staggered manner.

V. STAGGERED ESTIMATION AND FUSION WITH TWO

SENSORS

Having explored the error performance with one sensor, we

now move on to the two-sensor case, where information fusion

of the sensor estimates also needs to be accounted for. First

we briefly introduce the fusers to be used here and then again

investigate the estimation error performance via simulations.

A. Fusers

It is a well known fact that the common process noise in

measuring the motion of any target results in correlation among

estimates generated by multiple sensors. The cross-covariance

is the term that describes this spatial correlation. However, it
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Fig. 6: Actual position estimate MSE performance with variable
staggered interval τ and loss rate p values

is in general a very challenging task to derive the exact cross-

covariance terms in practice. We consider two types of fusers

where the fused estimate can be obtained directly with no cross-

covariance calculation needed.

1) Linear Fuser without Cross-Covariance: In tracking appli-

cations, the track-to-track fuser (T2TF) [4] is a linear fuser that

is optimal in the linear minimum mean-square error (LMMSE)

sense. The fused state estimate x̂F and its error covariance PF

are defined for two sensors [4] as:

x̂F = x̂1+(P1−P12)(P1+P2−P12−P21)
−1(x̂2− x̂1) (10)

PF = P1−(P1−P12)(P1+P2−P12−P21)
−1(P1−P21) (11)

where x̂i and Pi are the state estimates and error covariance

from sensor i, respectively, and Pij = PT
ji is the error cross-

covariance between sensors i and j. However, if the sensor errors

are correlated but the cross-covariance is unavailable, one may

assume that the cross-covariance is zero in order to apply this

linear fuser, even though the result will be suboptimal. The fuser

would then reduce to a simple convex combination of the state

estimates:

PF = (P−1
1 +P−1

2 )−1 (12)

x̂F = PF (P
−1
1 x̂1 +P−1

2 x̂2) (13)

2) Fast Covariance Intersection (CI) Algorithm: Another sen-

sor fusion method is the covariance intersection (CI) algorithm.

The intuition behind this approach comes from a geometric

interpretation of the problem. If one were to plot the covariance

ellipses for PF (defined as the locus of points {y : yTP−1
F y = c}

where c is some constant), the ellipses of PF are found to always

lie within the intersection of the ellipses for P1 and P2 for all

possible choices of P12 [7]. The intersection is characterized by

the convex combination of sensor covariances:

PF = (ω1P
−1
1 + ω2P

−1
2 )−1 (14)

and the corresponding sensor fusion for the CI algorithm is

x̂F = PF

(
ω1P

−1
1 x̂1 + ω2P

−1
2 x̂2

)
, ω1 + ω2 = 1 (15)

where ω1, ω2 > 0 are weights to be determined (e.g., by

minimizing the determinant of PF ).

More recently, Wang and Li [16] proposed a fast CI algorithm

where the weights are found based on an information-theoretic

criterion so that ω1 and ω2 can be solved for analytically as

follows:

ω1 =
D(p1, p2)

D(p1, p2) +D(p2, p1)
(16)

where D(pA, pB) is the Kullback-Leibler (KL) divergence from

pA(·) to pB(·), and ω2 = 1−ω1. When the underlying estimates

are Gaussian, the KL divergence can be computed as:

D(pi, pj) =
1

2

[
ln

|Pj |
|Pi| + dT

XP−1
j dX + Tr(PiP

−1
j )− k

]

(17)

where dX = x̂i − x̂j , k is the dimensionality of x̂i, and | · |
denotes the determinant. This fast-CI algorithm will be used for

a quantitative comparison against the above simple linear fuser

with unavailable cross-covariances.

B. Estimation Error Performance with Two Sensors and Stag-
gered Scheduling

Two sensors are assumed to have the same measurement noise

profile. In this case, we need to consider all the combinations

of different staggered intervals for both sensors – relative to the

reporting time instants at the fusion center – denoted as τ1 and

τ2, respectively. Probabilistic analysis similar to that in the last

section can be carried out for both sensors. However, our focus

here is to analyze the Monte Carlo simulation results as shown

in Figs. 7 and 8, in which results for the simple linear fuser and

the fast-CI fuser are plotted respectively.

From the figures, all generated three-dimensional surfaces re-

semble a sheet with downward-curved center portions, the exten-

sion of the earlier one-sensor estimation performance. We observe

that for nearly all cases, the fast-CI fuser outputs estimates that are

of slightly worse quality than those generated by the simple linear

fuser5. Also the fast-CI fuser is more sensitive to the changes in

the loss rate. The increase in estimation MSE with a more lossy

link is more dramatic in the CI fuser. Another common feature

across the cases is that the standard scheduling τ1 = τ2 = 0
happens to result in the highest estimation error. Comparing the

results here to those in the one-sensor case shown in Fig. 6, we

can see that both fuser outputs have MSEs that are more than

half of those values with one sensor only, reflecting the effect of

the common process noise and cross-covariance.

Although not easily discernible in the figures here, a more “mi-

croscopic” examination of the numerical results reveals the effect

of cross-covariance in staggered scheduling design. Individually,

at τ = 0.4 s, the fusion center can expect the least estimation

error from either of the two sensors. However, the case where

τ1 = τ2 = 0.4 s does not achieve the best fuser outputs; another

point close by does. This observation can be construed as the

reduction of cross-covariance by staggering the estimation time

across sensors. If the two sensors take samples at the same time

(even at optimal τ = 0.4 s), the cross-covariance is the highest;

as the time separation in between increases, so does the reduction

of correlation. This reduction of cross-covariance over time was

also observed in one of our earlier numerical studies [9] and is

especially of interest for further investigation.

5Note that if P1 = P2, then ω1 = ω2 = 0.5, and the resulting fused estimate
will be equivalent to that from Eq. (13) but with an inflated error covariance
matrix (increased by a factor of 2).
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Fig. 7: Actual position estimate MSE performance with two-sensor linear fusion and varying staggered interval τ and loss rate p: (a) p = 0; (b)
p = 0.25; (c) p = 0.5
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Fig. 8: Actual position estimate MSE performance with two-sensor fast-CI fusion and varying staggered interval τ and loss rate p: (a) p = 0; (b)
p = 0.25; (c) p = 0.5

VI. CONCLUSION

.

In this work, we studied how the fusion center can exploit

staggered scheduling and opportunistically apply intra-state pre-

diction and retrodiction to improve the fusion performance based

on the link-level loss and delay conditions. Tracking performances

in one- and two-sensor cases are provided that demonstrate the

advantages of staggered scheduling design. Extensions of this

study include incorporation of more sensors as well as more

complex target maneuvering models. Also of interest are dynamic

scheduling algorithms based on the instantaneous communication

condition.
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