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Abstract—In a long-haul sensor network, sensors are remotely
deployed over a large geographical area to perform certain tasks,
such as target tracking. In this work, we study the scenario
where sensors take measurements of one or more dynamic targets
and send state estimates of the targets to a fusion center via
satellite links. The severe loss and delay inherent over the satellite
channels reduce the number of estimates successfully arriving
at the fusion center, thereby limiting the potential fusion gain
and resulting in suboptimal accuracy performance of the fused
estimates. In addition, the errors in target-sensor data association
can also degrade the estimation performance. To mitigate the
effect of imperfect communications on state estimation and
fusion, we consider retransmission and retrodiction. The system
adopts certain retransmission-based transport protocols so that
lost messages can be recovered over time. Besides, retrodic-
tion/smoothing techniques are applied so that the chances of
incurring excess delay due to retransmission are greatly reduced.
We analyze the extent to which retransmission and retrodiction
can improve the performance of delay-sensitive target tracking
tasks under variable communication loss and delay conditions.
Simulation results of a ballistic target tracking application are
shown in the end to demonstrate the validity of our analysis.

Index Terms—Long-haul sensor networks, state estimation and
fusion, data association, message retransmission, prediction and
retrodiction, mean-square-error (MSE) and root-mean-square-
error (RMSE) performance.

I. INTRODUCTION

Sensor networks, consisting of sensor nodes that are
equipped with sensing, data processing, and communication
components, have been deployed for a wide variety of ap-
plications, including healthcare, cyber security, environmental
monitoring, and national defense, among others [1]. In a long-
haul sensor network, sensors are deployed to cover a vast
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geographical area, which could be a continent or even the
entire globe depending on the specific application. We consider
a class of such networks in which state estimates (e.g., position
and velocity) of certain dynamic targets – such as aircrafts or
ballistic missiles [6] – are sent from the remote sensors to
a fusion center so that a global estimate can be obtained by
fusing the individual estimates. Under certain circumstances,
satellite links may be the only type of cost-effective medium
for such long-range communications because of the prohibitive
cost of extending submarine and terrestrial fiber connections
extensively to rough terrains and sparsely populated areas. We
in particular focus on such satellite link-based monitoring and
tracking applications, wherein measurement data are collected
at the remote sensors and state estimates are individually
generated. These estimates are then sent via long-haul satellite
links to the fusion center, which, upon successful reception of
a subset of these estimates, applies a certain fusion rule and
obtains the final estimate to be reported.

This work is motivated by the many challenges arising
from the imperfect communications over the long-haul satellite
links. Because of the long distance (tens of thousands of
miles), the signal propagation time is significant. For example,
the round-trip time (RTT) for signal propagation with a geosta-
tionary earth orbit (GEO) satellite is more than a half second
[21]. More importantly, communication over the satellite links
is characterized by sporadic high bit-error rates (BERs) and
burst losses. Losses either incurred during transmission or
resulting from the high BERs could further effectively reduce
the number of messages available at the fusion center. It is
well known that fusion of estimates from different sensors is
a viable means of reducing the estimation error; with high
loss rates, however, only a portion of the potential fusion
gain could be achieved and the quality of the fused estimate
output obtained may be deemed unacceptable by the system
operator. In addition, prior to fusion, the estimates generated
by the sensors must be associated with the corresponding
targets. When multiple targets are in close proximity or in
clutter [5], an estimate is very likely to be associated with
a wrong target; this is only to be exacerbated by the long-
haul target-sensor link. Apparently, all the above-mentioned
drawbacks of the satellite links could work against the very
purpose of the underlying task – to promptly and accurately
report state estimates – and may result in failure to comply
with requirements on the worst-case estimation error.
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A. Related Works

State estimation under imperfect communications has been
studied in the literature. State augmentation [23] can handle
fixed delay up to several sampling periods. In [7], [9], [22],
[24], estimation and fusion performance using Kalman filters
(KFs) under variable packet loss rates has been considered. A
dynamic selective fusion method based on information gain
is proposed in [15] so that fusion is deferred till enough
information has arrived at the fusion center. A staggered
estimation scheduling scheme is proposed in [14] that aims
to explore the temporal domain relationships of adjacent data
within an estimation interval to improve the estimation and
fusion performance. More recently, [16] has considered an
information feedback mechanism where fused estimates are
fed back to a subset of sensors in order to improve their in-
formation quality, and in turn, the overall fusion performance.

In contrast to these works, we consider the recovery of
missing information over time. One way to counteract the ef-
fect of the lossy transmission link is to adopt certain transport
protocols in which message retransmission is implemented and
some lost messages can be recovered after one or multiple
rounds of retransmission. Not to be overlooked, however,
is another aspect of the system requirement – the delay
performance. Owing to often near real-time requirements of
the monitoring/tracking tasks, the system often allows for
only a small time gap between the time of interest and
the time when the estimate should be finally obtained and
reported. This often comes as a predefined reporting deadline
before which an estimate must be reported by the fusion
center. Message retransmission may exacerbate the reporting
delay performance by incurring extra time on top of the
already relatively large propagation and transmission latency.
The fusion center may have to increase its reporting time
significantly in order to recover the lost messages, even at
the risk of violating the stipulated reporting deadline.

The transmission control protocol (TCP) implemented in
wired Internet and wireless local area networks (WLANs) is
still garnering research efforts that are too numerous to list.
Analysis of TCP-like transport protocols over satellite links
can be found in studies such as [2] and [10]. Commonly
acknowledged are the difficulties in applying “conventional”
TCP protocols to transmission over satellite links, mainly
because of the very large propagation delay not encountered
in other networks. The specificity of our application also
somewhat distinguishes our analysis from the ones geared
toward the voice- and video-based broadcasting and data-based
Internet access, both of which have continuous data in flight.
Also of note is that in our settings, state estimates from the
remote sensors are generally intermittently sent over a wide-
band satellite channel – with the interval possibly ranging from
a few times within a second to once every few minutes – and
thus congestion is not as much a concern as in conventional
TCP applications. Hence, we assume a simplified transport
protocol in which retransmission is performed on the message-
level basis.

In many state estimation applications, retrodiction, also
known as smoothing, serves as the “backward prediction”

of an earlier estimate. Depending on the relationship be-
tween the length of data used and the time of interest, we
can categorize retrodiction roughly into fixed-point, fixed-lag,
and fixed-interval retrodiction [23]. Whereas the conventional
retrodiction techniques are used mainly for improving esti-
mates that have been obtained, for instance, in the context
of out-of-order measurement (OOSM) problems [18], [26],
[27], we are primarily interested in how missing estimates
can be interpolated from retrodiction1 and the corresponding
improvement in estimation errors following such retrodiction.

Another important aspect of the multi-target tracking task is
that prior to fusion, the data association algorithm determines
the groups of estimates, so that each group is hypothesized
to correspond to the same target. Many types of association
and fusion algorithms for tracking and navigation applications
have been studied [4]. However, our focus here is not on
performance comparison among different algorithms; rather,
of interest to us is the performance improvement from re-
transmission and retrodiction following a given simple set of
association and fusion algorithms.

B. Our Contributions

In this work, we provide analytical models to systematically
study the impact from retransmission and retrodiction on
target-tracking performance under variable loss and delay
conditions in a long-haul sensor network. This work is among
the very first to link both communication (message retrans-
mission) and computation (prediction, retrodiction) with state
estimation performance, accounting for both data fusion and
association in target tracking applications. Simulations of a
coasting ballistic target tracking example are conducted and
results under various conditions are shown in the end to
validate our analysis.

The remainder of this paper is organized as follows: We
first provide analysis of the delivery rate of a message after
retransmission in Sec. II, and derive the arrival time distri-
bution in Sec. III. Following analytical studies on retransmis-
sion, we explore the effect of retrodiction on the estimation
performance improvement in Sec. IV, where non-cooperative
and cooperative types of retrodiction are discussed. Simulation
results of a coasting ballistic target tracking application are
presented and analyzed in Sec. V before we conclude the paper
in Sec. VI.

II. MESSAGE RETRANSMISSION

In a long-haul sensor network, a remote sensor sends out
a message containing the state estimate; upon successful
reception of this message, the fusion center sends back an
acknowledgment (ACK) message to the sensor. A failed arrival
of the ACK message before the expiration of the timeout TTO
– due to loss and/or long delay of the message itself or the
ACK – will prompt the sensor to retransmit the message. Typ-
ically, TTO could be several times the RTT of the connection,
and over long-haul connections it could be of the order of

1In the meantime, an available estimate is retrodicted by subsequent
estimate(s) as well whenever applicable as in conventional retrodiction.
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Fig. 1: Timing of message retransmission: the timeout is TTO ,
retransmission window is W , and different choices of the cutoff time
TCO are marked by bold lines

seconds. Setting TTO too long could reduce the maximum
number of retransmissions, thereby limiting the potential to
recover the lost message; on the other hand, a short TTO
may incur many rounds of retransmission (often unnecessarily)
when the sensor could have waited a bit longer to receive the
ACK. Such retransmission continues till the acknowledgment
is received by the sensor, or the retransmission window W
expires. This window should ideally contain multiple TTO
periods so that under adverse link conditions, it’s likely that
the message can eventually be recovered after multiple tries.

In a real system, the reporting deadline may limit the
potential gain from retransmission as the overall time before
reporting can be very short. A cutoff time TCO is defined to
mark the end of the waiting at the fusion center. This cutoff on
the one hand limits the total number of retransmissions, and
on the other limits certain messages from being eventually
delivered due to the randomness of the delay. In Fig. 1, the
effect of this time cutoff is shown. The window W is set
to be 3TTO and hence there are a total of two rounds of
retransmision (at TTO and 2TTO). In the first case, TCO is
small so that the last round of retransmitted message cannot
arrive in time for fusion. While in the last case, setting TCO
way beyond the end of the retransmission window is not likely
to significantly increase the chance of receiving the message.
Therefore, the system should guarantee that the retransmission
window – at the sensors side – is commensurate with the
cutoff time – at the fusion center, as in the second case in the
figure, so that the fusion center could benefit from all rounds
of retransmission while not wasting time attempting to recover
the pending message after the retransmission has ended.

The message-level loss and delay characteristics are deter-
mined by the long-haul link conditions. We assume that each
message sent by a sensor is lost during transmission with
probability pL independently of other messages. Normally, the
latency that a message experiences before arriving at the fusion
center consists of the initial detection and measurement delay,
data processing delay by both the sensor and the fusion center,
propagation delay, and transmission delay, among others2.
These are collectively considered as the minimum delay that
a message must undergo to reach the fusion center, which is
bound mostly by factors such as the distance of the satellite
link, the transmission data rate, and length of the message.
The extra random delay is often due to link conditions such
as weather and terrain. We suppose a pdf f(t) can model the
overall delay t that a message experiences to be successfully
delivered to the fusion center. One typical example is that of
the shifted exponential distribution:

f(t) =
1

µD
exp
− t−TµD , for t ≥ T. (1)

2The queueing delay is also minimal with little/no congestion.

in which T serves as the common link and processing delay,
and µD is the mean of the random delay beyond T . In a
real system, the empirical values of the message delay can be
measured over time and thus an approximate function f̃ can
be estimated. In the following analysis, however, we still use
the generic function f(t) to model the arrival delay.

We are interested in the average probability of a message
being successfully delivered by a certain time, that is, by the
cutoff time TCO. An estimate is only counted once even if
it arrives multiple times due to retransmission. The duplicate
messages received by the FC can simply be ignored as they
will not contribute further to the fusion performance.

With the time of interest being regarded as time zero in this
section, the maximum number of retransmissions before the
cutoff time TCO is

Kretx =

⌈
min{TCO,W}

TTO

⌉
− 1. (2)

From the definition, Kretx+1 is the total rounds of transmis-
sion, including the original and subsequent retransmissions.

We define pkdel,t as the probability that a message is deliv-
ered by time t after k rounds of retransmissions, and

Tretx,k = TCO − kTTO, for k = 0, 1, ...,Kretx (3)

as the duration of the period [kTTO, TCO] in which the k-
th retransmitted message is in flight and could be potentially
delivered to the fusion center.

When there is no retransmission within [0, t], the probability
of a message being delivered by time t is

p0del,t = (1− pL)F (t), (4)

in which F (t) =
∫ t
0
f(u) du is the cdf of the arrival delay.

Its complement, the probability that the original message is
unavailable at time t, is denoted as

p0loss,t = 1− p0del,t = pL + (1− pL)F (t), (5)

in which F (t) = 1 − F (t) is the tail distribution. With these
two probabilities, we can derive the message delivery rate
pKretxdel,TCO

.
The original message is delivered by TCO with probability

p0del,TCO = p0del,Tretx,0 = (1− pL)F (Tretx,0). (6)

And with the first round of retransmission, the delivery prob-
ability totals

p1del,TCO = p0del,TCO + p0loss,Tretx,0p
0
del,Tretx,1 . (7)

In general, for the k-th (0 < k ≤ Kretx) round of message
retransmission, we have

pkdel,TCO = pk−1del,TCO
+ p0del,Tretx,k

(
k−1∏
i=0

p0loss,Tretx,i

)
. (8)

In other words, the extra delivery rate from the k-th round is
realized when all the previous k − 1 retransmissions and the
original message are not available by TCO. Subsequently, we
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can obtain the overall message delivery probability within time
[0, TCO] by summing up all such probabilities for Kretx > 0:

pKretxdel,TCO
= p0del,TCO +

Kretx∑
k=1

p0del,Tretx,k

(
k−1∏
i=0

p0loss,Tretx,i

)
= (1− pL)F (TCO) +

(1− pL)
Kretx∑
k=1

F (Tretx,k)

{
k−1∏
i=0

[1− (1− pL)F (Tretx,i)]

}
.

(9)

III. ARRIVAL TIME PATTERN DISTRIBUTION

So far we have combined the message-level loss rate and
one-way arrival delay distribution to obtain the message deliv-
ery probability with a certain deadline requirement as specified
by TCO. In practice, the fusion center should be afforded some
flexibility in deciding its actual cutoff time so that it does not
violate the systemic value TCO. First, sometimes reporting
an abnormal change promptly is more crucial than initially
providing an accurate estimate because the alert level can be
increased immediately facilitating further investigation. As the
maximum allowable delay, TCO may nevertheless be too large
for such rare but time-critical incidences. On the other hand,
owing to the dynamic environment of the field, sometimes
the fusion center may decide to reduce its waiting time for
the retransmitted messages because of increased computational
effort to obtain the final estimate, due to an increased number
of sensors or increased state dimensionality when multiple
closely positioned targets are in clutter [5].

In this section, we aim to derive the distribution of the
arrival time, and more particularly, the cdf of the first instance
of arrival before TCO. This provides us a view of the internal
structure of the arrival process within [0, TCO], which could
be explored for the above flexible scheduling of early cutoff.

A. Arrival Time: One-way Communication Analysis

We treat loss and delay as two independent processes,
although a lost message can be regarded as having an arrival
delay of infinity. In the previous section, only the one-way
delay characterized by the pdf f(t) is considered because
we noticed the equivalence of the final delivery probability
no matter how acknowledgments are actually received. In
deriving the arrival time, however, we need to consider two-
way delay as well: loss and latency of ACKs would affect
the total number of retransmissions, which in turn decides the
distribution of the arrival time. For ease of explication though,
we first work on the case in which there are exactly Kretx

retransmissions – as if no ACKs were ever sent back by the
fusion center – and later extend the results to an arbitrary
number of retransmissions.

First, we define the cdf of a truncated nonnegative random
variable YT with the upper truncation point b > 0 as3

F bT (y) =
F (y)

F (b)
, for all 0 ≤ y ≤ b. (10)

3Note that the subscript “T” appearing in cdf’s and pdf’s denote the function
describes a truncated random variable.

And the associated pdf is

f bT (y) =
f(y)

F (b)
, for all 0 ≤ y ≤ b. (11)

In our study, we are interested in a series of truncated cdfs
and pdfs corresponding to different retransmission cycles.
More specifically, we consider the k-th round of retransmitted
message has a truncated cdf by time Tretx,k as

F
Tretx,k
T (t) =

F (t)

F (Tretx,k)
, for all 0 ≤ t ≤ Tretx,k. (12)

Let D denote the arrival time of the message, and more
specifically, Dk = dk + kTTO the arrival time of the k-th
retransmitted message (or the original message when k = 0).
Apparently, dk denotes the arrival delay of the k-th retrans-
mission.

We are interested in deriving the distribution of D(1) – the
time of the first arrival – before the cutoff time TCO. When
there are a maximum number of Kretx retransmissions before
TCO, we let

DKretx
(1),TCO

= min
k=0,...,Kretx

DKretx
k,TCO

= min
k=0,...,Kretx

{dKretxk,TCO
+ kTTO} (13)

be the time of the first arrival among all Kretx + 1 messages
sent out by the sensor. We note

Pr{DKretx
(1),TCO

≤ TCO} = pKretxdel,TCO
, (14)

where the right-hand side of the equation was given in Eq.
(9). Our goal is to derive the distribution of DKretx

(1),TCO
, that

is, Pr{DKretx
(1),TCO

≤ t} for any 0 < t < TCO. For ease of
presentation, in the remainder of this section, we assume that
a certain TCO value has been specified along with the resulting
Kretx and drop them from the notations unless otherwise
specified.

One may first be tempted to directly apply the result of the
distribution of the minimum of n random variables, which is a
special case of the order statistics [19]. Despite the seemingly
similar relationship, the problem at hand is more complicated.
First, from Eq. (13), we need to find the minimum of Dk for
k = 0, 1, 2, ...,Kretx, which are from different distributions
for different k. Although results for independently and non-
identically distributed random variables have been studied in
the literature [3], the operations involve substantial use of
matrix manipulation, and one must enumerate all 2Kretx+1

possible arrival patterns since each would yield a distinct result
for the distribution of the minimum. To circumvent the issue,
we follow another approach by finding the probability that the
k-th retransmitted message (and the original message when
k = 0) is the earliest to arrive, denoted as Pr{ID(1)

= k}, in
which I is the indicator for the earliest arriving message. As
stated above, we have

Pr{ID(1)
= k} = Pr{Dk ≤ Dj} for all j 6= k. (15)
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Fig. 2: Distributions of d0 and d1

1) Kretx = 0: For the simplest case where there is no
retransmission before the cutoff time TCO, that is, if Kretx =
0, the cdf of the first instance of arrival is simply the truncated
cdf as shown in Eq. (12) for k = 0. To show this, we first have
(a) the delivery probability in Eq. (9) is (1 − pL)F (Tretx,0);
and (b) the associated probability that the arrival time – which
happens to be the delay of the original message as well in this
case – is no greater than t is (1 − pL)F (t). And the cdf can
thus be obtained by having (b) divided by (a):

FD0
(1)
(t) = Pr{D0

(1) ≤ t} =
(1− pL)F (t)

(1− pL)F (Tretx,0)
= F

Tretx,0
T (t).

(16)

2) Kretx = 1: When Kretx = 1, the sensor can retransmit
the message at most once before the cutoff time. There are
basically two scenarios for the first instance of arrival, namely:

1) the original message arrives first before TCO;
2) the retransmitted message arrives first before TCO.

The first case can be further subdivided into
a1) the retransmitted message is not available by TCO;
a2) the retransmitted message is also delivered by TCO, but

its random arrival delay d1 must satisfy d0 ≤ d1 + TTO.
Likewise, for the second scenario, we have
b1) the original message is not available by TCO;
b2) the original message is also delivered by TCO with its

random arrival delay d0 satisfying d1 + TTO < d0.
All different scenarios are illustrated in Fig. 2. Their prob-

abilities are calculated as

Pr{a1} = p0loss,Tretx,1p
0
del,Tretx,0

= (1− (1− pL)F (Tretx,1))(1− pL)F (Tretx,0).
(17)

Pr{a2} = (1− pL)2 Pr{d0 − TTO ≤ d1 < Tretx,1}

= (1− pL)2
∫ Tretx,1

0

(∫ d1+TTO

0

f(d0) dd0

)
f(d1) dd1

= (1− pL)2
∫ Tretx,1

0

F (t+ TTO)f(t) dt. (18)

Similarly, we have

Pr{b1} = p0loss,Tretx,0p
0
del,Tretx,1

= (1− (1− pL)F (Tretx,0))(1− pL)F (Tretx,1).
(19)

Pr{b2} = (1− pL)2 Pr{d1 + TTO < d0 < Tretx,0}

= (1− pL)2
∫ Tretx,0

TTO

(∫ d0−TTO

0

f(d1) dd1

)
f(d0) dd0

= (1− pL)2
∫ Tretx,1

0

F (t)f(t+ TTO) dt. (20)

Note that the sum of Eqs. (18) and (20) is
p0del,Tretx,0p

0
del,Tretx,1

= (1 − pL)F (Tretx,0) · (1 −
pL)F (Tretx,1), the probability that both the original and the
retransmitted messages are available at the cutoff time.

The resulting cdf of D1
(1) is hence

FD1
(1)
(t) = Pr{D1

(1) ≤ t} =

Pr{ID1
(1)

= 0}FTretx,0T (t) + Pr{ID1
(1)

= 1}FTretx,1T (t− TTO)
p1del,TCO

,

(21)

in which Pr{ID1
(1)

= 0} and Pr{ID1
(1)

= 1} are the sums of
Eqs. (17) and (18), and Eqs. (19) and (20), respectively. From
Eq. (9), we have the total delivery probability p1del,TCO for
“normalizing” the probabilities to obtain the cdf.

3) Kretx > 1: When Kretx is any number greater than one,
thanks to the independence of different retransmissions, we
can carry out the above pairwise comparison for any arbitrary
pair of arrivals. In fact, if we generalize the above results, we
have for any pair i and j (i < j) of effective retransmissions

Pr{Di ≤ Dj} = (1− pL)2
∫ Tretx,j

0

F (t+ (j − i)TTO) f(t) dt

+ (1− (1− pL)F (Tretx,j)) (1− pL)F (Tretx,i),
(22)

and

Pr{Di > Dj} = (1− pL)2
∫ Tretx,j

0

F (t)f(t+ (j − i)TTO) dt

+ (1− (1− pL)F (Tretx,i)) (1− pL)F (Tretx,j).
(23)

Repeating for all possible pairs, we have the probability of
Dk being the minimum, that is, the k-th retransmitted message
is received first, as

Pr{I
D
Kretx
(1)

= k} =
Kretx∏
j=0
j 6=k

Pr{Dk ≤ Dj} = (1− pL)·

Kretx∏
j=0
j 6=k

{
(1− pL)

∫ Tretx,max{k,j}

0

F (t+max{0, (j − k)TTO}) ·

f (t+max{0, (k − j)TTO}) dt

+ (1− (1− pL)F (Tretx,j))F (Tretx,k)

}
. (24)

This leads to the overall distribution of the DKretx
(1) :

F
D
Kretx
(1)

(t) = Pr{DKretx
(1) ≤ t}

=

∑Kretx
k=0 Pr{I

D
Kretx
(1)

= k}FTretx,kT (t− kTTO)

pKretxdel,TCO

.

(25)
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B. Arrival Time: Two-way Communication Analysis

Eq. (25) describes the distribution of the earliest arrival time
under the condition that all Kretx rounds of retransmissions
are sent out after the original message. In reality, though,
the total number of retransmissions can be anywhere from
0 to Kretx. In this subsection, we consider the two-way
communication that determines the number of the actual
retransmissions, which in turn affects the overall distribution
of the earliest arrival time before the cutoff.

For satellite systems with conventional bent pipe type of
transponders [21], one uplink (sensor → satellite) and down-
link (satellite→ FC) pair is used for the forward link, and the
reverse link similarly consists of the uplink (FC → satellite)
and downlink (satellite → sensor) pair. Depending on specific
channel allocation schemes (e.g., TDMA- or FDMA-based),
that is, whether the forward and reverse channels are assigned
the same frequency band, the delay distribution of the ACK
could vary from that of the messages4. Regardless, we have
the pdf of the sum of two random delay values being expressed
as the convolution of their respective pdfs:

h(t) = f(t) ? g(t) =

∫ ∞
t=0

f(u)g(t− u) du, (26)

in which f and g are the distributions of the forward and
reverse links, respectively. Meanwhile, if the ACK message
is lost over the reverse link with a probability pL,ACK , the
overall probability that the ACK message can be eventually
delivered is (1− pL)(1− pL,ACK), and its complement

pL,T = 1− (1− pL)(1− pL,ACK) (27)

is the “total” loss rate of the “super-message” that includes
both the estimate message and ACK. With this loss rate and
h(t) function, we can derive a general form of the arrival time.

1) Probability of Having k1 (0 ≤ k1 ≤ Kretx) Retransmis-
sions: First, we have the trivial case in which Kretx = 0
as TCO ≤ TTO, then with probability one, there is no
retransmission. Next we focus on the cases where Kretx ≥ 1.

Having exactly k1 (0 ≤ k1 < Kretx) retransmissions means
that the earliest reception of the ACK message by the sensor
occurs in the interval [k1TTO, (k1 + 1)TTO). In other words,
the first instance of the ACK arrival at the sensor

Dk1
T,(1) = min

k=0,...,k1
{DT,k} (28)

must satisfy

k1TTO ≤ Dk1
T,(1) < (k1 + 1)TTO, (29)

in which Dk1
T,(1) is similarly defined as in Eq. (13), with the

subscript T specifying that this is the arrival time accounting
for the total delay from both forward and reverse links. Mean-
while, we define the delivery rate for the “super-message”
described earlier as pKretxT,del,t with the maximum number of
retransmissions Kretx. Then we have

Pr{There are exactly k1 retransmissions, 0 ≤ k1 < Kretx}
= pKretxT,del,(k1+1)TTO

− pKretxT,del,k1TTO
. (30)

4Also the initial delay could be quite different too, owing to the usually
much smaller size of the ACK messages.

The delivery probabilities can be similarly calculated as in
Eq. (9), with pL being replaced by pL,T and F (t) by H(t) =∫ t
0
h(u) du, respectively.
On the other hand, having Kretx retransmissions means that

none of the ACKs have been received by KretxTTO, and we
have

Pr{There are exactly Kretx retransmissions}

=

Kretx−1∏
k=0

Pr{DKretx
T,k > KretxTTO}

=

Kretx−1∏
k=0

[1− (1− pL,T )H((Kretx − k)TTO)] . (31)

2) Distribution of the Arrival Time for a Given TCO: With
Kretx in Eqs. (9) and (24) being replaced by any k1 (0 ≤ k1 ≤
Kretx), we can easily find the delivery rate pk1del,TCO after k1
rounds of retransmissions and the probability Pr{I

D
k1
(1)

= k}
that the k-th retransmission marks the earliest arrival among
all k1 + 1 sent out messages. And then we have the cdf with
exactly k1 retransmissions as

F
D
k1
(1)

(t) = Pr{Dk1
(1) ≤ t}

=

∑k1
k=0 Pr{IDk1

(1)

= k}FTretx,kT (t− kTTO)

pk1del,TCO
. (32)

Finally, we can combine Eqs. (30), (31), and (32) to obtain
the distribution of the arrival time for any given TCO:

FD(1)
(t) =

Kretx∑
k1=0

F
D
k1
(1)

(t) Pr{There are k1 retransmissions}.

(33)

IV. STATE ESTIMATION AND FUSION WITH
RETRANSMISSION AND RETRODICTION

We have seen that retransmission can effectively increase
the message delivery rate, which in turn is expected to improve
the estimation quality. However, at times, we wish to further
expedite this recovery process so that the final estimate can
be reported earlier; besides, the system may impose rather
stringent requirements on the estimation errors so that given
the same allocated time for retransmission, we want more
accurate estimates from the output of the fusion center. This
section addresses these concerns by means of utilizing estimate
retrodiction.

A. Estimate Retrodiction

Estimation of a target state at a particular time based on
measurements collected beyond that time is generally called
retrodiction or smoothing. Retrodiction improves the accuracy
of the estimates, thanks to the use of more information, at the
cost of extra delay. Nevertheless, the inherent link delay in a
long-haul network occurring before the final reporting entails
that the fusion center can exploit the opportunities for potential
retrodiction to improve the accuracy of the fused estimate.
Moreover, the randomness of the arrival delay of different
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Fig. 3: Timing of estimate retrodiction: the estimation interval is
TI and different choices of the cutoff time TCO are marked by bold
lines
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Fig. 4: Prediction and retrodiction: the estimate at time n is to be
obtained

messages also facilitates the fusion center to opportunistically
interpolate the missing messages from the available ones for
subsequent time periods.

Consider a discrete-time system in which estimates are
generated regularly at a certain fixed period TI . An important
note here is that a subsequent estimate must be available in
order for retrodiction to happen. As such, the retransmission
window W and the cutoff time TCO must contain at least
one estimation interval TI (and also the initial latency of
the latest estimate to arrive at the fusion center) so that the
next estimate could potentially arrive therein. This is shown
in Fig. 3. In the first case, no retrodiction can be possibly
performed because the cutoff time comes before the end of the
same estimation interval; while in the second and third case, a
maximum of one and two, respectively, rounds of retrodiction
can be possibly carried out. In many actual systems, the near
real-time reporting requirement dictates that the estimation
intervals are chosen fairly small. As a result, the next estimate
can be generated and sent to the fusion center in time for
retrodiction before the reporting deadline.

Let xn denote the true target state at time t = nTI and x̂n
its estimate. One note is that since we have both continuous
time – when addressing latency – and the discrete time indices
for retrodiction analysis, all time subsequently labeled as “n”
– the time of interest to us – should be understood as the
continuous time nTI and the retransmission parameters TTO
and W and the cutoff time TCO are all defined relative to this
time instant.

Fig. 4 demonstrates the effect of prediction and retrodiction
on the quality of the state estimate. For each sensor, for
example, we have the following types of estimates when
retrodiction of up to one step is performed:

1) x̂n, shorthand for x̂n|n, the “default” estimate sent from
the sensor;

2) x̂n− , the predicted estimate;
3) x̂n−|n+1, the predicted & retrodicted estimate; and
4) x̂n+|n+1, the retrodicted estimate.

In the cases a) and d), the estimate x̂n is received by the
fusion center; whereas in both other cases, this estimate is
missing and hence prediction of one or multiple steps is at
first necessary. As is well-known in filtering theory, estimates
derived from prediction alone generally have higher errors
when system uncertainty exists; and the errors will increase

with the number of prediction steps that have accrued. For
example, x̂n|n−2 is a worse estimate than x̂n|n−1 in terms of
accuracy. On the other hand, the presence of the subsequent
estimate x̂n+1 (in the last two cases) helps improve the quality
of the estimate of time n. Of course, the improvement is on top
of the predicted estimate in case c) but on the already received
x̂n in case d). Of concern here is whether an interpolated
estimate from retrodiction – such as that in case c) – can
adequately substitute the default estimate in case a); and what
is the probabilistic performance of obtaining these different
types of estimates so that the system requirement on estimation
errors can be met.

The quantitative performance of retrodiction also depends
on the specific algorithm. In this work, we apply Rauch-Tung-
Striebel (RTS) retrodiction [23] because not only the algorithm
is easy to implement, with relatively low computational cost,
but the algorithm involves only the state estimates and their
covariances – rather than the raw measurement data – which
is well suited in our settings when the fusion center needs to
run the algorithm.

Based on the criteria that whether the sensors actively
participate in retrodiction during message retransmission, we
categorize our schemes into non-cooperative and cooperative
retrodiction. In the former case, message retransmission is
carried out in exactly the same way as before; it is up to the
fusion center to opportunistically apply retrodiction whenever
applicable. In contrast, cooperative retrodiction means that the
sensors themselves, upon request, send out the retrodicted
estimates during retransmission so that the fusion center can
directly fuse such retrodicted values if successfully delivered.
In what follows, we derive the delivery rates of different types
of estimates during retransmission for both types of retrodic-
tion and consider their impact on the final error performance.

B. Non-Cooperative Retrodiction

The fusion center can opportunistically apply retrodiction
whenever applicable; this can of course be combined with
message retransmission introduced earlier. In what follows,
we derive the delivery rates of different types of estimates
following retransmission and retrodiction. Although here only
one-step retrodiction is shown, analysis for retrodiction of two
or more steps can be similarly obtained, albeit in a more
exhaustive manner, as the number of possible scenarios grows
exponentially with the number of steps5.

We have the following probabilities at the cutoff time nTI+
TCO:
• pn− , the probability that x̂n− is reported (neither x̂n or

x̂n+1 is delivered by the cutoff);
• pn|n, the probability that x̂n|n is reported (x̂n+1 is not

delivered yet);
• pn−|n+1, the probability that x̂n−|n+1 is reported (x̂n+1

has been delivered but not x̂n);
• pn+|n+1, the probability that x̂n+|n+1 is reported (both

x̂n and x̂n+1 have been delivered).

5Another caveat is that message-level loss and delay may worsen as
significantly more data are sent simultaneously with increasing retrodiction
steps.
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The analysis in Sec. II can be readily applied here, thanks
to the independence of the transmission from different time
intervals. Similar to Eq. (2), we have the maximum number
of retransmissions during t ∈ [nTI +TI , nTI +TCO] given as

Kretx,retr1 =

⌈
min{TCO − TI ,W}

TTO

⌉
− 1, (34)

in which the subscript retr1 denotes that there is a maximum
of one-step retrodiction. And the duration in Eq. (3) can also
be defined likewise for the above time interval:

Tretx,retr1,k = TCO − TI − kTTO, (35)
for k = 0, 1, ...,Kretx,retr1 .

To calculate the above probabilities, we need to consider
the probability that x̂n+1 is delivered at the cutoff time. This
probability, denoted as p

Kretx,retr1
del,TCO−TI , follows the very same

form as in Eq. (9), but with newly defined Eqs. (34) and (35)
substituting the corresponding terms. Then we have

pn− = (1− pKretxdel,TCO
)(1− pKretx,retr1del,TCO−TI ) (36)

pn|n = pKretxdel,TCO
(1− pKretx,retr1del,TCO−TI ) (37)

pn−|n+1 = (1− pKretxdel,TCO
)p
Kretx,retr1
del,TCO−TI (38)

pn+|n+1 = pKretxdel,TCO
p
Kretx,retr1
del,TCO−TI (39)

C. Cooperative Retrodiction

In this subsection, we provide similar analysis as above –
that is, with a maximum of one step of retrodiction being
performed – and focus on comparisons between cooperative
and non-cooperative retrodiction techniques. In particular, two
possible implementations of the cooperative retrodiction are
studied, one in which we only consider one-way communica-
tions – as we have done so far – and the other requiring two-
way analysis that addresses the delivery of the ACK messages
as well.

1) Condition for One-Step Cooperative Retrodiction: In
non-cooperative retrodiction, message retransmission is sched-
uled in the manner as described in Sec. II and a sensor is obliv-
ious to the retrodiction process happening at the fusion center.
In contrast, cooperative retrodiction requires the retrodicted
estimates to be sent out during retransmission. In order for a
sensor to actually send out its one-step retrodicted estimates,
the retransmission window W should not have expired at the
end of the estimation interval TI ; in fact, there should be
at least one round of retransmission initiated by the sensor
after TI when the retrodicted estimate can be sent out by
the sensor. Hence, compared to non-cooperative retrodiction,
tighter conditions are in place for cooperative retrodiction.

2) Cooperative Retrodiction: One-way Communications
without ACK: During the time period [nTI +TI , nTI +TCO],
instead of the original estimate, the sensor sends out the retro-
dicted estimate x̂n+|n+1 directly. The total number of retrans-
mission rounds for the original message during [nTI , nTI+TI ]
is reduced to

Kretx,coop =

⌈
TI
TTO

⌉
− 1, (40)

while both the new state estimate x̂n+1|n+1 and retrodicted es-
timate x̂n+|n+1 are sent after TI . If TI = lTTO, l = 1, 2, 3, ...,
both estimates will undergo

Kretx,coop,retr1 = Kretx,retr1 =

⌈
TCO − TI
TTO

⌉
− 1, (41)

rounds of retransmission, in which the subscripts “coop, retr1”
and “retr1” denote cooperative and non-cooperative retrod-
iction of up to one step respectively. Similar to our earlier
analysis, we can obtain the delivery probabilities of the orig-
inal estimate x̂n|n as pKretx,coopdel,TCO

, of the subsequent estimate

x̂n+1|n+1 as pKretx,retr1del,TCO−TI , and of the retrodicted estimate by

the sensor x̂n+|n+1 as pKretx,coop,retr1del,TCO−TI . With an increased size
of the state space, the probabilities of obtaining different types
of estimates at the cutoff time can now be computed as

pn− =

(1− pKretx,coop,retr1del,TCO−TI )(1− pKretx,coopdel,TCO
)(1− pKretx,retr1del,TCO−TI ) (42)

pn|n =

(1− pKretx,coop,retr1del,TCO−TI )p
Kretx,coop
del,TCO

(1− pKretx,retr1del,TCO−TI ) (43)

pn−|n+1 =

(1− pKretx,coop,retr1del,TCO−TI )(1− pKretx,coopdel,TCO
)p
Kretx,retr1
del,TCO−TI (44)

pn+|n+1 =

p
Kretx,coop,retr1
del,TCO−TI + (1− pKretx,coop,retr1del,TCO−TI )p

Kretx,coop
del,TCO

p
Kretx,retr1
del,TCO−TI

(45)

Note in Eq. (45) that the estimate x̂n+|n+1 can be obtained
either directly from the sensor, or indirectly in the manner we
discussed in the non-cooperative retrodiction case.

3) Cooperative Retrodiction: Two-way Communications
with ACK: The analysis above is along the same line as that
in Sec. II, where only one-way communication is considered.
This can also be seen as the extreme case where no ACK is
ever sent back by the fusion center, since the sensors always
have their one-step retrodicted estimates sent out after one
estimation interval TI . In reality, though, the ACK might have
been successfully received by the sensor within TI , thereby
obviating the need for further retransmission. Next, we carry
out two-way communication analysis to account for such
scenarios.

Recall from Eq. (27) that pL,T is the loss rate of the “super-
message” that includes both the estimate message and ACK.
With this loss rate and h(t) function in Eq. (26), we have the
probability that the ACK is delivered by time t and hence no
more retransmission occurs afterward:

pretx(t) = (1− pL,T )H(t), for t ∈ [0,min{TCO,W}], (46)

in which H(t) =
∫ t
0
h(u)f(u) du is the cdf of the two-way

communications delay.
After the ACK has been successfully received within one

estimation interval, the retrodicted estimate is no longer to be
sent out, thereby reducing the chance that the best estimate
x̂n+|n+1 is available at the fusion center. Subsequently, with
probability 1−pretx(TI), Eqs. (42)–(45) hold true; on the other
hand, with probability pretx(TI), only two types of estimates
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are possible to be used by the cutoff time – since x̂n|n has
been received successfully – with probabilities 1−pKretx,retr1del,TCO−TI
for x̂n|n and pKretx,retr1del,TCO−TI for x̂n+|n+1. Using the law of total
probability, we can easily incorporate them to calculate the
overall probabilities of obtaining each type of estimate.

D. Impact of Retransmission and Retrodiction on Estimation
Error

It’s generally difficult to derive the exact error performance
analytically. Note that in Eqs. (36) and (38), the time at
which the last received estimate was generated is not specified;
that is, the number of prediction steps leading up to x̂n−
is unknown. Even with known error profiles for x̂n|n and
x̂n+|n+1, an exact evaluation of estimation error for x̂n− and
x̂n−|n+1 requires knowledge of the errors with an arbitrary
number of prediction steps, which is generally unrealistic. If
the off-line error performance can be obtained for the above
original, predicted, and retrodicted estimates, an approximate
estimation error can be calculated as the probabilistic sum of
errors for different types of estimates. Next, via simulations of
a ballistic target tracking application, we explore the impact
of both retransmission and retrodiction on actual estimation
performance.

V. PERFORMANCE STUDIES OF BALLISTIC TARGET
TRACKING WITH RETRANSMISSION AND RETRODICTION

We carry out system-level tracking simulations of coasting
ballistic targets. First, we focus on the one-target case where
fusion is performed by the fusion center to combine the state
estimates of a single target sent by the sensors. Then, the multi-
target tracking scenario is investigated, where a probability
association model is used to capture the performance of data
association prior to the estimate fusion. We aim to explore
the benefits and limitations of applying retransmission and
retrodiction under variable loss and delay statistics.

A. Effect of Retransmission Schedules on Tracking Perfor-
mance

1) Target Model: The trajectory of a ballistic target, from
launch to impact, is divided into three basic phases: boost,
coast, and reentry. In this work we focus on the coast phase,
which is an exo-atmospheric, free-flight motion, continuing
until the Earths atmosphere is reached again. The states
of a coasting ballistic target – whose motion is governed
predominantly by gravity – are generated using the following
state-space model [13]:

ẋ ,

[
ṗ
v̇

]
= f

([
p
v

])
,

[
v

aG(p)

]
. (47)

The target state vector x =
[
pT vT

]T
, where p =[

x y z
]T

and v , ṗ =
[
ẋ ẏ ż

]T
are the target position

and velocity vectors, respectively. aG(p) is the gravitational
acceleration under the spherical Earth model [13]:

aG(p) = −
µ

p2
up = −

µ

p3
p, (48)

where p is the vector from the Earth’s center to the target,
p , ‖p‖ is its length, up , p/p is the unit vector in the
direction of p, and µ = 3.986012× 105 km3/s2 is the Earth’s
gravitational constant.

The algorithm for state propagation can be
found in [25] and the initial target state is [11]:
[113.75 3960 5150 0.988 3.33 − 6.01]T , in which
the position and velocity values are in the units of km and
km/s respectively.

2) Sensor and Noise Profiles: A total of N = 5 sensors
are deployed for reporting their state estimates of the dynamic
target defined above. A state estimate x̂i(k) from sensor i at
time k is generated by adding random Gaussian noise to the
true states6 as in [20]:

x̂i(k) = x(k) + ni(k), (49)

where x(k) is the true target state for a target at time k, and
ni(k) ∼ N (0,Σ). Σ is a diagonal matrix:

Σ = diag
([
σ2
x σ2

y σ2
z σ2

ẋ σ2
ẏ σ2

ż

])
, (50)

where σ2
x, σ2

y , and σ2
z are the position error variances, and

σ2
ẋ, σ2

ẏ , and σ2
ż are the velocity error variances. The following

state estimation errors are set commonly for all sensors: σ2
x =

σ2
y = σ2

z = 1 and σ2
ẋ = σ2

ẏ = σ2
ż = 10−4.

3) Fusion Rule: We apply the linear fuser defined as
follows:

PF =

(
L∑
i=1

P−1i

)−1
, and x̂F = PF

L∑
i=1

P−1i x̂i, (51)

where x̂F is the fused estimate and PF is its error covariance
matrix. Pi and x̂i are similarly defined for sensor i. A total of
L (L ≤ N ) state estimates are combined at the fusion center.
This simple fuser is a special form of the track-to-track fuser
[5] where the process noise is zero.

4) Communication Link Statistics: The default forward link
loss rate is set to be pL = 0.5, compared to that of the reverse
link pL,ACK = 0.1. The arrival delay of both directions
satisfies the shifted exponential distribution defined in Eq. (1),
with µD,F = 0.3 s and µD,R = 0.2 s for the forward and
reverse links respectively and a common T = 0.5 s. The
default TTO and W are set to be 1.5 s and 4.5 s respectively,
which are both integer multiples of the measured average RTT
at 1.5 s.

5) MSE analysis: From Eq. (51), the mean-square-error
(MSE) of the position and velocity estimates of the linearly
fused estimate satisfies

|p̂F −p|2 = |p̂i−p|2/L, and |v̂F −v|2 = |v̂i−v|2/L, (52)

if the sensors have the same estimation error profiles (that
is, the same MSEs). Suppose the system imposes its max-
imum tolerable errors of position and velocity estimates as
MSEmax,p̂ and MSEmax,v̂ respectively, with independent

6This is a simplified model for scenarios in which the dependency of
estimation errors on the underlying states are negligible.
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transmissions from up to N sensors, the minimum delivery
probability should satisfy

pdel,min =
Lmin
N

=
1

N
max{ |p̂i − p|2

MSEmax,p̂
,
|v̂i − v|2

MSEmax,v̂
},

(53)

in which Lmin is the minimum number of estimates that
should be delivered. The actual delivery probability from
message retransmission as expressed in Eq. (9) must be
checked against this minimum delivery rate to ensure the MSE
requirements are met.

The distribution of the arrival time, as in Eq. (33), can be
used to derive an upper bound of the estimation error. For
a given cutoff time TCO, when the fusion center decides to
finalize the estimate at an earlier time t, according to Eq. (51),
the expected contribution of the position estimate from the
sensor i is lower bounded by α

|p̂i−p̂|2 , in which α = F
D
TCO
(1)

(t).
The other part, weighted by 1− α, depends on how the fuser
chooses to substitute the missing estimate, such as using one-
or multi-step prediction. If we consider the error performance
of the fused estimate, the upper bound – as in the worst-
case scenario in which a missing estimate results in zero
contribution – is

|p̂F (t)− p|2max =
|pF (TCO)− p|2

F
D
TCO
(1)

(t)
, for 0 < t ≤ TCO, (54)

in which pF (TCO) is the fused position estimate at time TCO.
A similar result can be found for the velocity estimate.

6) Timeout TTO and Cutoff TCO: Figs. 5 and 6 demonstrate
the effect of different retransmission timeout and fusion cutoff.
There is no retransmission when W = TTO = 4.5 s. When
TTO is set to be 1.5 s, however, two rounds of retransmissions
can effectively reduce the MSE of the estimate. For example,
when the loss rate is 60%, the error is reduced by more
than 50%. Likewise, for a given TTO, when the reporting
deadline requirement is tightened, as reflected by decreasing
cutoff time TCO, the estimation MSE will increase given the
same loss rate. On the other hand, when read horizontally,
the plots indicate that to meet the same MSE requirement,
with increasing loss rates, TTO should be reduced and/or TCO
should be increased. A good rule of thumb to determine the
MSE performance is the ratio TCO/TTO, although this rule
may at times fail due to the periodicity of the retransmission
process, especially when the values being compared are close.

7) Retransmission Performance: In Fig. 7, we plotted the
proportion of different numbers of retransmissions with respect
to various loss rates. Note that the last group (labeled as “2”)

does not indicate the message will be delivered within this
round, but rather this is the last try as Kretx = 2. As expected,
an increased message-level loss rate requires more rounds of
retransmissions so that the message can be recovered with the
same probability over a longer period of time.

8) Upper Bound of the MSEs From Early Cutoff: Finally,
in Fig. 8, the upper bounds of the MSEs resulting from earlier-
than-scheduled cutoff are shown. The singular points in these
plots indicate the arrival of a new round of retransmission.
The concavity of the bounds (excluding the singular points)
implies that the “best” time for early fusion is roughly in the
middle of each round (accounting for the link delay), where
the deepest descent in this round has occurred. In addition,
as time inches closer to the cutoff time TCO, the bound also
approaches the actual MSE obtained when the cutoff time is
set at that point, and is a good indicator of the actual MSE
performance.

B. Tracking of One Coasting Target

1) Target Model: The target model remains the same as that
introduced in the previous subsection. We note the generated
trajectory there – which happens to be the very last few
seconds before the target enters the re-entry stage starting at
an altitude of about 100 km – is very short. Hence, we have
backtracked a segment of the earlier trajectory so we can focus
on the position state estimates during the last 30 seconds prior
to the re-entry stage.

2) Sensor Profiles: In this subsection, a more complex
sensor measurement model is used that can describe state-
dependent measurement errors. A total of N = 3 sensors are
deployed for reporting their state estimates with the common
estimation interval set as TI = 2 s. The measurements (z) of
the range (r), elevation (E), and azimuth (A) of the target are
generated using the following measurement model [11]:

z = h(x) + v, (55)

where the target state x is in Cartesian coordinates, but the
measurement z and additive noise v are in the sensor spherical
coordinates. If [x y z]T is the true position of the target,
then the measurement7 is given as

z =

 rE
A

+ v =


√
x2 + y2 + z2

tan−1
(

z√
x2+y2

)
tan−1

(
x
y

)
+ v, (56)

7Note that this measurement has been normalized to any sensor’s own
known location.
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Fig. 10: Position estimate RMSE over time, with loss rates of (a)
0.2; and (b) 0.7

v ∼ N (0,R), R =

σ
2
r 0 0
0 σ2

E 0

0 0
σ2
E

cos2(E)

 . (57)

A simplified radar model is used to define the range and
elevation error standard deviations. The σr and σE values of
a ballistic target/satellite tracking phased array radar, the Cobra
Dane, are 15 ft and 0.05◦ respectively, according to [8]; and
these values are assumed for all the sensors. The sensors apply
the recursive best linear unbiased estimator (BLUE) proposed
in [28] which improves upon the measurement-conversion
approach [12]; that is, the output has the minimum MSE
among all linear unbiased filters in Cartesian coordinates. As
in [28], the filter is initialized with an effectively large state
error covariance and a highly inaccurate state estimate.

3) Fusion Rule: We apply a linear fuser similar to that
defined in (51). With imperfect communications, the number
of received state estimates for any time of interest is often less
than the desired value N . The fusion center can apply two
approaches: First, as in Eq. (51), it uses the actual number
of available estimates L (L ≤ N ) and ignores the remaining,
if any, unavailable tracks. Alternatively, it can substitute the
predicted (or retrodicted) estimates in place of the original,
if the latter is unavailable, and use all N tracks for fusion.
While the first approach is easier to implement, its estimation
error is often worse; in other words, a predicted estimate still
more or less provides error reduction for the fused estimate
when compared to the case where the track is simply dropped.
Therefore, in what follows, we pursue the second method of
fusing the estimates in which all the tracks are used.

4) Communication Link Statistics: The following commu-
nication link statistics are used for the remainder of this
section. Two link loss rates of 0.2 and 0.7, are studied,
representing respectively the low and high loss scenarios.
The arrival delay satisfies the shifted exponential distribution
defined in Eq. (1), with µD = 0.3 s and the initial latency
T = 0.5 s. With the cutoff time set as TCO = 3 s – the same
for the retransmission window W – we explore two options
with the retransmission timeout period TTO set as 1.5 s (up
to one round of retransmission) and 3 s (no retransmission)
respectively.

5) Position Estimate RMSE Performance: We run Monte
Carlo simulations to test the position estimate root-mean-
square-errors8 (RMSEs) during the last 30 seconds of the

8The RMSEs are used more often in the tracking literature. We used MSEs
earlier in Sec. V.A. because the upper bounds were used to approximate fusion
performance.

coasting phase, and the results are shown in Fig. 10. Whereas
the performance improvement of cooperative retrodiction over
the non-cooperative counterpart has been shown in a numerical
example in [17], the improvement is usually not as significant.
We focus here on the case – often in practical implementation
– where the sensors do not participate in cooperation. The
estimation errors become noticeably higher with a higher
message-level loss rate; but regardless of the loss rate, applying
retransmission and retrodiction can effectively reduce the esti-
mation errors. Given the communication parameters, according
to Eq. (9), the total delivery probability of the original message
at time cutoff TCO is approximately (1 − p2L) where pL
denotes the message-level loss rate. As such, the delivery
rates for pL = 0.2 and 0.7 at TCO are approximately 96%
and 50% respectively. The increased delivery rate effectively
prevents the fusion center from using the predicted estimates
– statistically worse than the original – thereby improving
the estimation performance compared to the case without
retransmission.

During this 30-second period9, the sensors produce state
estimates whose quality progressively improves over time –
the favorable condition for applying retrodiction. Even with
just one-step retrodiction, its effect on improving the accuracy
can already be seen from the plots, where the RMSE is reduced
generally by over 10%. Interestingly, retransmission seems to
play a more prominent role than retrodiction when the loss rate
is high – note the two curves in the middle appear “flipped”
when the loss changes from 0.2 to 0.7 – since the chance
of applying retrodiction is rather small without retransmission
under higher loss rates.

C. Tracking of Multiple Coasting Targets

In this subsection, we consider tracking of multiple ballistic
targets coasting in close proximity to one another. The initial
states for M = 4 different targets (in which Target 1 is the
one we used in the previous subsection) are shown in Table I.
The trajectories are generated in the same manner as before.

TABLE I: Initial target states

Target
Position
x, y, z (km)

Velocity
ẋ, ẏ, ż (km/s)

1 76.1, 3829.4, 5373.1 0.995, 3.54, -5.73
2 77.0, 3827.1, 5368.6 0.985, 3.48, -5.75
3 75.0, 3828.2, 5370.0 0.970, 3.52, -5.74
4 77.8, 3831.3, 5375.8 0.998, 3.51, -5.72

1) Association Properties: An important task prior to fu-
sion is that every sensor estimate (track) must be associated
with a certain target. Rather than focus on a particular type of
data association algorithm, we explore the effect of available
time on data association and on the final estimation perfor-
mance by means of the probabilistic model [20] as follows.

The state estimate of Target i is assigned to Target j with
probability aij :

aij =

{
1− (M − 1)pA, i = j

pA, i 6= j
, i, j = 1, ...,M,M ≥ 2,

9The filters have been initialized prior to the “zero” time in the figures.
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Fig. 9: Multi-target position estimate RMSE over time with variable τ and the loss rate as 0.7: (a) no retransmission or retrodiction; (b)
with retransmission, but no retrodiction; (c) with retrodiction, but no retransmission; (d) with both retransmission and retrodiction

(58)

where M is the number of targets, and pA is the probability
that we assign a state estimate to any incorrect target10. We
model pA here to be the following function of the number of
targets, M , and time τ :

pA =
1

M(1 + βτ)
, pA ≤

1

M
, (59)

where β is a scaling parameter. This function has the following
properties: (a) as the number of targets M increases, the total
probability of misassignment, (M − 1)pA, increases; (b) as
τ increases, pA decreases; (c) if τ = 0, there is an equal
probability of assigning a state estimate to any target; and (d)
as τ →∞, pA → 0. However, of note is that pA is unlikely to
be zero given an unlimited execution time for the correlator;
more likely there may be some lower bound pA,min on the
probability pA, such that if τ → ∞, pA → pA,min. This
model is suited for the scenario in our study because the targets
remain in close proximity and thus the distance between any
two does not undergo dramatic change; as such, no target lies
far apart from the rest from the view of a long-haul sensor.
A fixed amount of time τ is allocated right before TCO for
computation, and the scaling factor β depends on the specific
algorithms used. Here we set β = 80.

2) Position Estimate RMSE Performance: In Fig. 9,
the position estimate RMSEs for Target 1 under different
retransmission-retrodiction combinations are plotted for a mes-
sage loss rate of pL = 0.7. First, by comparing the results
from each category with that in Fig. 10(b), we observe the
estimation errors have increased due to mis-assigned tracks,
although with the same allocated time τ , the improvement
after retransmission and/or retrodiction is on the level as
before. When the allocated time for computation is short,
say τ = 0.05, the degradation in error performance is much
higher. As τ gradually goes up, the errors are seen to decrease,
thanks to the improved performance of the correct association
probabilities.

On the other hand, we observe that as τ is further increased,
for example from 0.2 to 0.3, except in Case (a), where
no retransmission or retrodiction is implemented, there is
no clearly discernible performance improvement in accuracy.
Actually, by this time, the probability for wrong associations
has become very low. But as τ , the allocated time within TCO,

10For the case where M = 1, data association is not required since there
is only one target to which the state estimate can belong (i.e., for M = 1,
pA = 0).

increases, the remaining time for communications is shortened.
As such, when τ becomes higher, the slight improvement in
computation can hardly offset reduced communication oppor-
tunities, which could either be the retransmitted messages (in
(b)) or the next estimate itself used for retrodiction (in (c))
or both (in (d)). This demonstrates the trade-offs between
computation and communication when the total allocated time
TCO is fixed.

3) Discussions: In this subsection, we have assumed the
communication parameters are given for a certain long-haul
network. For a given deadline TCO, however, if an existing
schedule cannot meet the required or desired estimation ac-
curacy levels, the fusion center can schedule more frequent
retransmission and/or estimation intervals (at the cost of higher
communication overhead for the sensors), to counteract the
increasing demand for computation due to more sensors being
deployed and/or more targets being monitored.

VI. CONCLUSION

Many estimation- and fusion-based civilian and military
applications, notably target tracking and monitoring, are
subject to constraints over the communication link, in the
computation-constrained sensors and devices, and as a result
of various environmental factors. It is thus very challenging to
meet both the accuracy and timeliness requirements mandated
by most systems. In this paper, we studied target tracking in
a long-haul sensor network where communication loss and
delay are severe enough to degrade the estimation accuracy
performance significantly. We derived the improved delivery
probabilities of estimate messages and the distribution of the
first arrivals. We also analyzed the probabilities of obtaining
different types of estimates by the fusion center when retrans-
mission and retrodiction techniques are applied. Simulation
results for tracking of coasting ballistic targets – with the
effect of track association and fusion being accounted for
– demonstrate the effectiveness of our retransmission- and
retrodiction-based mechanisms and the extent to which they
can be applied so that the system requirements on estimation
errors can be potentially met. Extensions of this work may
include adaptive determination of different retransmission and
retrodiction schedules in the context of more complex target-
measurement models and highly dynamic network environ-
ment.
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