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Abstract—Long-haul sensor networks are deployed in a wide
range of applications from national security to environmental
monitoring. We consider target tracking over a long-haul sensor
network, wherein state and covariance estimates are sent from
sensors to a fusion center that generates a fused state. Fusion serves
as a viable means to improve the estimation performance to meet the
system requirement on accuracy and delay. Communications over
the long-haul links, such as submarine fibers and satellite links, is
subject to long latencies and high loss rates that lead to many lost
or out-of-order messages and may significantly degrade the fusion
performance. We propose an online selective fuser to combine the
received state estimates based on estimated information contribution
from the pending data. By concurrently using prediction and retro-
diction, the fuser opportunistically makes timely decisions to achieve
a balance between accuracy and timeliness of the fused estimate.
Simulation results show that our method effectively maintains high
levels of fusion performance under various communication delay
and loss conditions.

Index Terms—State estimation, long-haul sensor networks, delay
and loss, online selective fusion, prediction and retrodiction.

I. INTRODUCTION

In a long-haul sensor network, sensors are deployed spanning

a large geographical area; connections to the FC are often in the

range of several to tens of thousands of miles. There are many

real-world applications in target monitoring and tracking, such as

military surveillance/reconnaissance and air traffic control, that

utilize such networks. The state estimates of dynamic targets are

sent via satellite links or a combination of submarine and terres-

trial connections to a remote fusion center (FC) with round trip

time (RTT) of hundreds of milliseconds or even more. Latencies

and losses over such links can easily lead to significant delays

and jitters which may severely degrade fusion performance.

There are two competing requirements on the fused estimate

produced by an FC: accuracy and timeliness. The accuracy of the

fused estimate must exceed that of any single sensor, requiring

that most if not all sensor estimates arrive at the FC. Meanwhile,

the fused estimate must be computed and reported within a tight

deadline. For instance, the position of an aircraft must be reported

by the FC within a few seconds. Under extremely adverse link

conditions, data sent from the remote sensors may even fail to

arrive at the FC by the reporting deadline. If the FC simply

ignores the missing data, the quality of the fused state could

suffer; whereas waiting for all the delayed data to arrive would

degrade the timeliness requirement. To tackle the problem, we

design a selective fusion scheme that achieves a trade-off between

estimation accuracy and reporting timeliness.

For ease of exposition, in this work we mainly consider targets

with linear dynamics and zero-mean Gaussian measurement and

noise processes, although the ideas herein can be easily extended

to more complex models. We propose a novel metric for the FC to

make its online selective fusion decisions based on the projected

information contribution from each missing packet. In addition,

the FC also draws on available estimates arriving out of order

so that the missing estimates in between can be filled in quickly,

further reducing the reporting delay.

The rest of the paper is organized as follows. We briefly discuss

a list of related works in Section II. The optimal fusion rule with

full observation is presented in Section III. We then propose our

selective fusion mechanisms based on the projected differential

information gain metric in Section IV. Simulation results are

shown and analyzed in Section V and we conclude the work

in Section VI.

II. RELATED WORK

There has been growing interest in state estimation and fusion

under uncertainty. Fixed arrival delays can be easily handled by

state augmentation [9], where adjacent states in time are grouped

together to form a “super-state”. This can inflate the computation

overhead as the delay becomes larger; More importantly, the

dimension of the augmented state would keep changing with

random delays, rendering this approach invalid. On the other

hand, some studies have considered independent packet losses for

one sensor-estimator. For example, [5] derives an upper bound

of the packet loss rate above which the estimation error will go

unbounded.

In multi-sensor state estimation problems, fusion schemes have

been proposed under the condition that all packets arrive on time;

see [6] and the references therein. [8] has attempted to address

fusion by combining various sources of degradation (delay, loss,

and packet drop) in a probabilistic manner. Aside from its high

dimensionality, the underlying solution requires that probabilities

of all types of degradation be known a priori, which apparently is

a very unrealistic assumption. There have been studies addressing

out-of-sequence measurement (OOSM) issues, as data commonly

arrive out of order due to random delays. One of the focuses

is on how to re-incorporate late arrivals. The initial one-step

lag problem [1] has been extended to multi-lag case [2], and

the single-OOSM problem in [1], [2] has been extended to



multi-OOSM case [11] as well. However, efforts on multi-sensor

studies are still relatively few, and time-domain constraints have

not been accounted for in any of these works.

In contrast to the above works, our study is more of an online

decision-making process under tight constraints on accuracy and

delay. Addressing a higher degree of system uncertainty, we focus

on the impact of missing packets on current estimation accuracy

and timeliness, regardless of their delay/loss patterns. As such,

our scheme is more adaptive and can be applied under most

circumstances.

III. OPTIMAL FUSION WITH FULLY RECEIVED LOCAL STATE

ESTIMATES

We consider the following multi-sensor discrete linear system

(k and i are time and sensor indices, respectively):

xk = Fk−1xk−1 +wk, E[wkw
T
l ] = Qδk−l, (1)

yi
k = Hi

kxk + vi
k, E[vi

k(v
i
l)

T ] = Riδk−l, (2)

where F is the state transition matrix and H is the measurement

matrix1. The vector x denotes the state of the target and y
the sensor measurement. The process noise w and measurement

noise v are white and independent (δ is the Kronecker delta

function), whose variances are Q and R respectively.

The well-known Kalman filter (KF) consists of a set of

equations [9] that recursively estimate the states of such a

dynamic linear system. In the equations, x̂i
k|k−1 and x̂i

k|k denote

respectively the a priori and a posteriori estimates by sensor i
at time k and are periodically updated at each time step. These

notations also apply to P, the error covariance matrix of the

estimate, defined as Pi
k = E[(x̂i

k−xk)(x̂
i
k−xk)

T ]. P−1 is often

called the information matrix. Kalman filters are minimum-mean-

square-error (MMSE)-optimal as the trace of P – the estimation

error – at each step is minimized.

In the multi-sensor scenario, the updates from the KFs by the

individual sensors are sent to the FC so that global fusion can be

performed. If we define the above parameters similarly for the

FC (“G” denotes “global”), we have the following optimal fusion

rule:

x̂G
k|k−1 = Fk−1x̂

G
k−1|k−1 (3)

PG
k|k−1 = Fk−1P

G
k−1|k−1F

T
k−1 +Q (4)

(PG
k|k)

−1 = (PG
k|k−1)

−1 +
n∑

i=1

(
(Pi

k|k)
−1 − (Pi

k|k−1)
−1

)
(5)

(PG
k|k)

−1x̂G
k|k = (PG

k|k−1)
−1x̂G

k|k−1

+

n∑
i=1

(
(Pi

k|k)
−1x̂i

k|k − (Pi
k|k−1)

−1x̂i
k|k−1

)
(6)

In particular, we define the information gain matrix Jk and

information gain vector jk at the FC to be the sum of those

1These matrices are often known from the underlying system.

at the individual sensors:

JG
k � (PG

k|k)
−1 − (PG

k|k−1)
−1

=
n∑

i=1

(
(Pi

k|k)
−1 − (Pi

k|k−1)
−1

)
, (7)

jGk � (PG
k|k)

−1x̂G
k|k − (PG

k|k−1)
−1x̂G

k|k−1

=
n∑

i=1

(
(Pi

k|k)
−1x̂i

k|k − (Pi
k|k−1)

−1x̂i
k|k−1

)
. (8)

Similar results can be found in [4], [10]; [3] has shown that

the above fusion rule is equivalent to the centralized solution

where the FC has received all the raw measurements and hence

is MMSE-optimal. In our distributed fusion, only state esti-

mates (instead of measurements) and their corresponding error

covariances are sent to the FC for fusion. This has practical

benefits. Raw measurement data often arrive in larger volumes

than processed state estimates. Sending measurements directly

not only consumes more bandwidth but also renders the data

being sent more prone to link latency and loss.

IV. SELECTIVE FUSION WITH PROJECTED DIFFERENTIAL

INFORMATION CONTRIBUTION (PRODIC) AND

RETRODICTION

With full observation of the sensors’ data, the error covariance

at the FC is often much lower than that at the individual sensors.

However, severe delay and loss may significantly limit such

fusion gain. In this section, we propose an information metric to

guide the FC through the selective waiting and fusion process. We

also combine forward information gain projection and backward

retrodiction so that the FC can obtain an accurate estimate much

faster.

A. Selective Fusion – Design Considerations

With incomplete collection of the sensors’ estimates, in Eqs.

(7) and (8), fewer than n terms are actually incorporated and the

resulting a posteriori P is higher than that in the full-observation

case. If one-step predicted values – that is, the a priori estimates

– substitute for the missing data, the effect is exactly the same

as that of simply ignoring the missing packets: Pi
k|k = Pi

k|k−1

and x̂i
k|k = x̂i

k|k−1 leading to Ji
k = 0 and jik = 0, respectively.

Therefore, prediction alone may cause the error covariance to

shoot up within a short amount of time if there are many missing

estimates.

Alternatively, the FC can defer the final reporting for Dmax

– the reporting deadline – and collect all the estimates that

have arrived by then. This deadline is often set for the worst

performance that the system could tolerate. Generally, it is

preferable to report the estimate as early as possible which is

especially critical for surveillance tasks. Owing to packet loss

and long arrival delays, however, the average waiting time could

be well approaching Dmax, even if some estimates would not

measurably improve the accuracy at all. Passively waiting for

every missing packet not only significantly increases the reporting

delay but may hardly benefit the overall accuracy when the

packets being awaited carry little information. It would be a

more viable option that the FC selectively waits for some missing



packets before finalizing a global estimate. Stated differently,

at any time step, the FC should decide whether each delayed

packet is still “worth” waiting for. The goal is to balance both

the accuracy and timeliness requirements.

B. PRODIC as the Information Metric

Applying stationarity of the state transition matrix, we define

a function h that links together two successive a posteriori P:

P−1
k|k = h(P−1

k−1|k−1,Jk). (9)

We name the information metric Projected differential

information contribution (PRODIC), which measures the

potential information contribution of a delayed packet should it

return now. The following steps calculate ΔPi
k,k−d at time k,

which is the PRODIC of the missing packet from the sensor i
with time-stamp k − d:

Step 1: Add the expected information gain Ji
k−d of the missing

packet to the information matrix PG
k−d:

(PG
k−d,temp)

−1 = (PG
k−d)

−1 + Ji
k−d; (10)

The “temp” means that the associated PG is only updated

temporarily to obtain the PRODIC of the missing packet (which

has not actually arrived).

Step 2: Recursively propagate the change of PG
k−d in Step 1,

through the intermediate steps, to the current time k. From time

Tn = k − d+ 1, k − d+ 2, ..., up to k, calculate

(PG
Tn,temp)

−1 = h
(
(PG

Tn−1,temp)
−1,JG

Tn

)
; (11)

In this step, all the JG terms of these intermediate time steps

remain the same.

Step 3: Calculate the differential information gain

ΔPi
k,k−d = PG

k −PG
k,temp. (12)

After the recursion in Step 2 has proceeded to the current time k,

Eq. (12) measures the difference between PG
k,temp – the updated

PG
k with the supposed arrival of the missing packet – and the

current PG
k .

Note that the PRODIC is calculated separately for each delayed

packet of time k − d. Doing so (with a linear complexity)

would greatly reduce the computational overhead should the FC

consider all possible combinations of packet arrivals (with an

exponential complexity). After considering the PRODIC of one

missing packet, the FC has actually found the least amount of

information to be gained among all the possible arrival patterns

that include at least this particular pending packet. Therefore,

PRODIC is a conservative measure of information gain for

awaiting an individual packet.

The FC compares the PRODIC value of a missing packet

with a cutoff threshold th. If the PRODIC value exceeds the

threshold, the FC still considers the information carried by the

missing packet important for reducing the estimation error and

will continue waiting for the estimate. As long as the reporting

deadline has not been reached, the global estimate will be

finalized only when the FC decides not to wait for any of the

pending estimate for the corresponding time instant.

For convenience of implementation, the FC can use a fixed

normalized threshold, for example, the desired percentage of error

reduction, so that

ΔPi
k,k−d

PG
k

= 1− PG
k,temp

PG
k

> th (13)

implies the packet can potentially improve the current PG
k more

than the threshold level and thus will be awaited.

The online decisions made by the FC are largely affected by the

availability of the estimates from the sensors with better accuracy

guarantees. When the FC has received all or most packets from

these sensors, further improvement from the missing ones is small

or negligible. On the other hand, with the data from these better

sensors missing, PG would inflate, elevating the normalized

PRODIC of these packets; what often ensues is the decision to

continue waiting for these missing packets.

C. Information Gain from Retrodiction

Because the estimates from some sensors often carry larger

potential information gain, the FC generally has to wait long

enough if estimates from these sensors are missing. Retrodiction
(“backward prediction”), also known as smoothing, has been

studied in the estimation literature. Conventionally, an earlier

existing estimate is retrodicted using subsequent measurements

so that its accuracy is improved. We propose a novel use of

retrodiction to proactively interpolate intermediate missing data.

After one or more subsequent packets of an unavailable one have

been received, the FC retrodicts the missing one. While waiting

for missing packets, the FC applies retrodiction, from the current

time k to time k−d whose global estimate is to be reported next,

for all the estimates – including the available ones – in between.

The idea is illustrated in Fig. 1, where d = 2.
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Fig. 1: Selective fusion concept: There are three sensors. Since
applying prediction-only estimates results in a higher error vari-
ance, to reduce the accuracy degradation, the FC may decide
to wait for the delayed packet while applying retrodiction if
subsequent packets arrive. Note both available and unavailable
estimates are retrodicted. The terminating time for retrodiction
always corresponds to the next pending estimate to be reported.

We apply the fixed-interval Rauch-Tung-Streibel (RTS) retro-

diction algorithm [9], which is known to be computationally

efficient. The algorithm is especially suited for our scenario

because state estimates appearing in the equations are sent

directly to the FC. The following steps iteratively propagate the

newly gained information, due to the on-time arrival of estimate



at time k from sensor i (we denote the associated packet as Pi
k),

backward to time k − d.

Step 0: Initialize the backward smoother.

Pi
k,retr = Pi

k|k; (14)

x̂i
k,retr = x̂i

k|k; (15)

From time Tn = k, k − 1, ..., up to k − d, recursively calculate

the values through the following three steps:

Step 1: backward smoothing gain

Gi
Tn−1 = Pi

Tn−1|Tn−1F
T
Tn−1(P

i
Tn|Tn−1)

−1; (16)

Step 2: Pi of the smoothed estimate

Pi
Tn−1,retr =

Pi
Tn−1|Tn−1 −Gi

Tn−1(P
i
Tn|Tn−1 −Pi

Tn,retr)(G
i
Tn−1)

T ;
(17)

Step 3: smoothed estimate

x̂i
Tn−1,retr = x̂i

Tn−1|Tn−1+Gi
Tn−1(x̂

i
Tn,retr− x̂i

Tn|Tn−1). (18)

In these equations, Pi
retr denotes the a posteriori Pi after

retrodiction. The algorithm is applied to each sensor separately,

so that the process is also in line with the packet-level PRODIC

calculation. In contrast to conventional studies, retrodiction in

our scheme has the dual benefits of improving existing estimates

and interpolating missing ones. From the equations, a string of

missing estimates can be improved by just one subsequently

available one. For example, in Fig. 1, at time k, having been

retrodicted by packet P2
k, P2

k−1 can further retrodict P2
k−2. This

can potentially reduce the reporting delay significantly.

V. PERFORMANCE EVALUATION

A. Simulation Setup

We consider tracking of a target whose motion follows the

near-constant-acceleration model [7]. The target state consists of

its position, velocity, and acceleration. Our goal is to reduce the

position estimate MSE and the reporting time. As our default

setup, there are a total of three sensors, whose measurement noise

standard deviations are all 50 m. The process noise PSD is 0.5

m2/s3 and the normalized sampling time and reporting deadline

are 1 and 10, respectively. The PRODIC threshold is set to 5%. In

our study, packet loss and delay are two independent processes.

While the packet loss is generated as an independent Bernoulli

process, delays follow (memoryless) exponential distribution. The

default loss rate and normalized arrival delay are set to be 10%

and 3, respectively. Next we study the impact of each factor

separately.

B. Comparison of Different Online Fusion Schemes

We compare the following online fusion schemes in our

simulation study:

• Maximal waiting (“wait”): the FC finalizes the estimate

after all missing estimates arrive or the reporting deadline

is reached, whichever is first;

• Selective fusion based on PRODIC but without retrodiction

(“PRODIC”):
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Fig. 2: Loss rate vs. (a) position error variance and (b) reporting
delay
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Fig. 3: Arrival delay vs. (a) position error variance and (b) reporting
delay

• Selective fusion based on PRODIC with modified RTS

retrodiction (“PRODIC-retr”);

• We also consider the full-observation case (“ideal”) as a

baseline scenario for comparison with other schemes, in

which the reporting delay is always zero and hence there

is no retrodiction.

1) Loss Rate: Setting other parameters at their default values,

the packet loss rate is varied from 0 to 0.25. From the results
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Fig. 4: PRODIC threshold (in percentage) vs. (a) position error
variance and (b) reporting delay

shown in Fig. 2, with its average reporting time approaching

the deadline, the ”wait” scheme takes advantage of the extra

waiting time to collect much delayed estimates and thus reduces

the estimation error. The PRODIC scheme can effectively reduce

the reporting delay; however, the estimation error is still relatively

high. Compared to other schemes, PRODIC-RTS is less sensitive

to change in the loss rate. At the highest loss rate 25%, the error

variance increases only by about 7% from the zero-loss case.

This demonstrates the effectiveness of our design, which exploits

retrodiction to reduce the estimation error upon packet loss.

Besides, the change in reporting delays as the loss rate increases

is negligible (it stays slightly above 2). From this perspective,

our PRODIC-RTS is robust to packet loss.

2) Arrival Delay: We vary the normalized packet arrival delay

from 0 to 6. In Fig. 3, similar trends can be observed, with some

minor exceptions. When there is no arrival delay, no retrodiction

is performed so that the estimates can be reported immediately;

as the arrival delay goes up to one, the error variance decreases

thanks to retrodiction. As the arrival delay increases even more,

the error variance also increases, though not as fast as in other

schemes. As can be seen, retrodiction has effectively reduced the

estimation errors with significantly longer delays.

Although it may first seem surprising that the reporting delay is

well below the average arrival delay (e.g., when the arrival delay

equals 6, the reporting delay is 2.5), the result is attributed to both

the randomness of the arrival delay and the selective fusion pro-

cess. There exist packets whose arrival delays are smaller than the

average and hence can retrodict other missing ones comparatively

faster. With the improved estimates following retrodiction, the FC

may decide to terminate its waiting much earlier, disregarding all

the remaining pending packets. In contrast, the reporting delay in

the “waiting” case often approaches the reporting deadline Dmax

due to the near constant presence of missing packets.

3) PRODIC Threshold: In the above simulations, we have

kept the PRODIC threshold at 5%; that is, only when a pending

packet can potentially reduce the current estimate error by at

least 5% would the FC decide to wait for it. In reality, the FC

can tune the threshold according to the current accuracy level.

In Fig. 4, the threshold varies from zero (i.e., to wait for all) to

20%. The results can be easily interpreted: As the threshold goes

up, the requirement on each packet is relaxed, fewer packets need

to be awaited, and hence reduced accuracy and reporting delay

follow; and vice versa. It is interesting to note that when the

threshold is zero, PRODIC scheme is reduced to the “waiting”

case; PRODIC-RTS, on the other hand, does not incur inflated

waiting time thanks to retrodiction.

To sum up, our PRODIC-RTS scheme, combining features

such as information gain projection, selective waiting, and proac-

tive retrodiction, often yields accuracy performance comparable

to that under the full-observation case while incurring very little

reporting delay, demonstrating its robustness against degradation

in transmission links such as severe loss and delay.

VI. CONCLUSION

In this work, we have considered state estimation over a long-

haul sensor network. To meet the stringent requirements on

accuracy and timeliness, while accounting for severe data latency

and loss inherent over long-haul links that exert a negative impact

on fusion performance, we have proposed an information metric

(PRODIC) and a modified application of the RTS retrodiction

algorithm, so that the fusion center can make its online decisions

to efficiently fuse the information contributed by the remote

sensors. Simulation results have validated the advantages of our

design under variable transmission delays and loss rates.
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