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ABSTRACT
The Lightweight Directory Access Protocol (LDAP) is being used
for an increasing number of distributed directory applications. We
describe a tool to analyze the performance of LDAP directories. Us-
ing the tool, we study the performance of a LDAP directory under a
variety of access patterns. For the purpose of these experiments, we
use a LDAP schema that has been proposed for the administration
of Service Level Specifications(SLSs) in a differentiated services
network. In addition, individual modules in the server and client
code are instrumented to obtain a detailed profile of their contribu-
tions to the overall system latency and throughput. We discuss the
importance of the factors in determining scalability, namely front-
end versus back-end processes, CPU capability, and available mem-
ory. Under our normal operating conditions, a LDAP directory with
10,000 entries is found to have a response time of 8 ms, and a maxi-
mum throughput of 140 search requests per second. Out of the total
response latency, approximately 3 ms is associated with connection
management, 1.8 ms with retrieval of entries from the database, and
3.2 ms with front-end processing. At high loads, the connection
management latency increases sharply to dominate the response in
most cases. The Nagle algorithm is found to introduce a very large
additional latency, and it appears beneficial to disable it in the LDAP
server. The CPU capability is found to be significant in limiting the
performance of the LDAP server, and for larger directories, which
cannot be kept in memory, data transfer from the disk also plays a
major role. The scaling of server performance with the number of
directory entries is determined by the increase in back-end search
latency, and scaling with directory entry size is limited by the front-
end encoding of search results, and, for out-of-memory directories,
by the disk access latency. We investigate different mechanisms to
improve the server performance.

1. INTRODUCTION
The Lightweight Directory Access Protocol (LDAP) is being used
for an increasing number of directory applications. Applications
include personnel databases for administration, tracking schedules
[1], address translation databases for IP telephony, network databases
for storing network configuration information and service policy
rules [2, 13, 14], and storage of authentication rules [3, 4].

In many of these cases, such as using LDAP directories for storage
of personnel information and authentication rules, the data is rela-
tively static, so that caching can be used to improve performance. In
some situations, the database information needs to be updated fre-
quently. For example, in IP telephony, every time a subscriber uses
a different terminal or is at a different location, his account infor-
mation may need to be updated. Despite the growing importance
of LDAP services, there has been little work on how LDAP servers
behave under different workloads, and in different operating envi-
ronments. In particular, the performance of LDAP in a dynamic
environment with frequent searches has not been looked at closely.

In this paper, we report on the development of a tool to benchmark
LDAP server performance, and analyze results derived using this
tool. In addition, we have instrumented detailed profiling at the
server and LDAP client API codes. These results include the con-
tribution of various system components to the overall performance
in terms of latency and throughput, the scaling of performance with
directory size, entry size, and session re-use, and the importance of
various factors in determining scalability. We also investigate modi-
fications and usage patterns which lead to an improvement in server
performance.

Given the growing use of LDAP in applications, it is useful and con-
venient to carry out the performance experiments using data based
on an existing LDAP schema proposed for a real directory applica-
tion. In this work, we use a schema proposed in [13, 14] for the ad-
ministration ofService Level Specifications(SLSs), which are used
to configure networks for supporting different levels of services. In
this application, it is envisioned that the administrative policies em-
bodied in the LDAP schema will be stored on directories and down-
loaded to devices such as hosts, routers, policy servers, proxies, etc.
If the SLS is allowed to be dynamically negotiated [7, 8], the LDAP
service must deal with frequent directory queries. In these respects,
this application is representative of many current or proposed LDAP
applications [2, 3, 4]. The results reported in this work should be
generally applicable to many of the applications cited earlier; as-
pects of the work that are specific to SLS administration will be
pointed out where appropriate.

The rest of this paper is organized as follows. In Section 2, we first
provide a general background on the LDAP directory service, and
then provide a very brief introduction to differentiated service net-
works and service level Specifications, as well as the LDAP schema
proposed for this application. The experimental set-up is discussed
in Section 3, followed by a discussion of the test methodology in
Section 4. Experiments are described, and the results are presented
and analyzed in Section 5, and related work is presented in Section
6. Finally, we summarize our results and present some conclusions
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Figure 1: An example of organization of data in a LDAP direc-
tory

in Section 7.

2. BACKGROUND
In this section, we first provide a brief introduction to the LDAP di-
rectory service. We then provide a background on the use of LDAP
in administration of differentiated services networks. In this context,
we also describe the LDAP directory structure used in our experi-
ments.

2.1 The LDAP Directory Service
A directory service is a simplified database. Typically, it does not
have the database mechanisms to support roll-back of transactions.
Directories allow both read and write operations, but are intended
primarily for high-volume, efficient read operations by clients.

LDAP is a distributed directory service protocol. LDAP is based on
a client-server model and runs over TCP/IP. It can be used to access
stand-alone directory servers or X.500 directories. Today, LDAPv2
is an Internet standard as defined by the IETF standards process.
The standards document, RFC 1777 [9], dates back to March 1995.
A newer specification, LDAPv3 [10], is currently a draft in review
that is expected to become a new standard soon.

Information is stored in a LDAP directory in the form of entries ar-
ranged in a hierarchical tree-like structure (Figure 1). An LDAP
entry is a collection ofattributes, for example, an entry correspond-
ing to a person may have as its attributes the name of the person,
organization, email-address. Each attribute has atype, which is an
identifying mnemonic (for example, the email attribute may have
type “mail”) and the attribute takes one or morevalues(the email
attribute might have “foo@cs.columbia.edu” as a value).

LDAP defines operations for querying and updating the directory.
Operations are provided for adding and deleting an entry from the
directory, changing an existing entry, and changing the name of an
entry. Most of the time, though, LDAP is used to search for infor-
mation in the directory. The LDAP search operation allows some
portion of the directory to be searched for entries that match some
criteria specified by a search filter. Information can be requested
from each entry that matches the criteria.

2.2 Using LDAP for SLS Administration
As mentioned earlier, although we assume a LDAP directory in-
tended for storage of SLS policies, most of the experimental results
presented in this work apply to LDAP services in general, and a de-
tailed understanding of differentiated service networks and Service
Level Specifications is not required to follow the rest of this paper.
However, a brief background may be of interest to some readers.

Management Tool 
LDAP Client 

Policy Decision

LDAP Client 
Policy Enforcement

Policy Repository
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Figure 2: An architecture for network QoS control using LDAP

2.2.1 Service Level Specifications
The current Internet operates on a best-effort basis, in which all
packets are treated equally. Recently, there has been much interest
in network service models with mechanisms to provide multiple ser-
vice levels to users. The two main approaches under discussion are
the integrated service model, which supports QoS levels by allowing
per-flow resource reservation using RSVP [5] signaling, and the dif-
ferentiated service model [6, 7, 8], which provides multiple service
classes which are served using different per-hop behaviors. In either
model, the network provider negotiates a service level specification
with a customer, defining aspects of network behavior such as the
type of service user packets will receive, and the constraints the user
traffic must adhere to. The SLS may be dynamically re-negotiated,
based on changes in the customer requirements or network condi-
tions.

The network access points and internal routers implement the clas-
sification, resource control, and administrative policies associated
with SLSs. Researchers in the DiffServ community have proposed
storing these policies in a central or distributed policy repository ad-
ministered and accessed using a directory service such as LDAP [13,
14, 15]. In the proposed scenario, the policy repository is updated
when the network provider negotiates new SLSs, or re-negotiates
existing contracts, and also when the policies need to reflect changes
in network topology or traffic levels. Network elements frequently
access the policy database, and download the current set of rules
according to which customer traffic is served.

In addition, the network provider provisions the network in order
to provide the service contracted to customers. The provisioning is
physical (adding or removing network elements) and logical (parti-
tioning or configuring network elements). The network configura-
tion information may be maintained in LDAP directories, and down-
loaded periodically by routers. This allows the network provider
to adjust configurations (for example, buffer space, or packet drop
precedences) with a finer granularity in response to network usage
feedback.

2.2.2 Architecture of Network QoS Control Using LDAP
A preliminary schema using LDAP for configuration of DiffServ
networks has been proposed in [13]. The various aspects of a ser-
vice, such as the traffic profile the user traffic must conform to in
order to receive the service, and the forwarding rules for conform-
ing traffic, are captured in a set of policies. The generic architecture
that is envisioned consists of a management tool, a policy repository,
a policy decision entity, and a policy enforcement entity. Figure 2
shows the functional relations between these different entities, and
it does not restrict where these functional entities should be located.

In the context of the service environment under consideration, the
management tools are used by the network administrator to popu-
late and maintain the LDAP directory with policies. Management
tools may or may not reside on the same host as the directory server.
Enforcement entities apply policy rules.

A decision entity and enforcement entity are usually assumed to re-
side at each edge device, or network access point. The edge de-



vice is referred to by its location and would most likely be placed
at the access point between a local subnet and the backbone net-
work, or at the boundary between backbone networks of two ser-
vice providers. The decision entity downloads policy rules from the
repository, through a LDAP client. The enforcement entity queries
rules from the decision entity and carries out packet handling and
monitoring functions. The decision entity may either download the
entire policy repository all at once, or may query the directory when
needed - for instance, when triggered by events such as an RSVP
message or an IP packet bearing a TCP connect request.

A customer attaches to the network at one or more interfaces be-
longing to an edge device. Each interface is identified by an IP ad-
dress. At each interface, one or more policies may be defined, and
customer packets are monitored and processed according to these
policies. Each policy is associated with a service level which de-
fines actions on the part of network elements in handling customer
packets. A policy may be applied on the basis of source/destination
IP addresses, transport protocols, source/destination ports, and other
parameters such as default port, URL’s, etc.

Policy rules are stored in the LDAP directory as SLSPolicyRules
objects (derived from thePolicy class described in [13]). SLSPoli-
cyRules objects may have attributes specifying the policy name, pri-
ority level of the rule, and the network interfaces to which the rule
may be applied, as well as references to objects which specify the
traffic profile, period of validity of the rule, type of RSVP service or
DiffServ action, etc.

At initialization, the edge device identifies its interface addresses.
It determines the set of policies required for these interfaces, and
downloads the corresponding classification policy rules from the
LDAP server, as well as the service specifications referred by the
policies. Subsequently, the edge device may poll the server periodi-
cally to learn of modifications to the directory, and download its set
of policy rules if the directory is modified. If asynchronous mode
operations are supported by the directory service, the downloading
of policy rules could also be triggered upon changes in the policy
rules.

2.2.3 LDAP Directory Structure Used in the Experiments
The LDAP directory structure used in our tests is a simplified ver-
sion of the directory used to develop the LDAP schema for support-
ing SLS [13, 14, 15], and is shown in Figure 3. EachCustomer
entry has a set of associatedInterfaceentries. ThePolicy entry di-
rectly under theCustomerspecifies policy rules common to multiple
interfaces belonging to the customer, while thePolicyentry for each
Interfacespecifies the policy rules specific to customer traffic at that
Interface. In general, thePolicy entry refers to one or more of the
Serviceentries in the directory to specify the service to be received
by the corresponding traffic. The other entries shown in the LDAP
directory includeChannelandPacerentries. A channel is a virtual
pipe between an ingress edge-device and an egress edge-device. A
pacer is the abstraction that limits the total amount of traffic that can
be sent out into the backbone network at an access-point.

3. EXPERIMENTAL SETUP
In this section we describe our experimental testbed, including the
hardware we use, the LDAP server software structure, the LDAP
client load generation and the benchmarking setup.

3.1 Hardware

Local Topology

Interface

Pacers

Policy

Policy

Channels

Operator

Services Customer

Figure 3: LDAP tree structure in tests

The LDAP server ran on a dual-processor Ultra-2 machine equipped
with two 200 MHz Sun, UltraSPARC CPUs, 256 MB main memory.
The LDAP server process was bound to one of the two CPUs. The
LDAP clients ran on a couple of Sun Ultra 1 models with 170 MHz
CPU, 128 MB main memory, and one Sun ultra 10 machine with
299 MHz CPU and 256 MB main memory. The server and clients
were connected via 10 Mb/s Ethernet.

3.2 LDAP Server
There are a number of commercial LDAP servers, including Netscape
Directory Server, and Novell LDAP Services. We chose OpenL-
DAP 1.2 [11]. OpenLDAP is a complete open source suite of client
and server applications derived from University of Michigan LDAP
v3.3. The main reasons for our using OpenLDAP is its open source
model, and its rapidly increasing user population. The open source
model allowed us to perform detailed profiling of individual server
modules and examine some modifications of the basic implemen-
tation instead of treating the server as a black box. The server is
based on a stand-alone LDAP daemon (slapd) for directory ser-
vice. Replicated service is also supported through a UNIX daemon
slurpd. In this work, the goal is to study the performance and scal-
ability of the server, and we restrict the LDAP clients to connect
to one slapd. Slapd consists of two distinct parts: a front end that
handles protocol communication with LDAP clients; and a backend
that handles database operations. Slapd comes with three differ-
ent backend databases to choose from. They are LDBM, a high-
performance disk-based database; SHELL, a database interface to
arbitrary UNIX commands or shell scripts; and PASSWD, a simple
password file database. The LDBM backend relies on a low-level
hash or B-tree package for its underlying database. In this work, we
used an LDBM backend, namely the Berkeley DB version 2.4.14
package [12] hash database.

LDBM has two important configuration parameters:cachesize, the
size in entries of an in-memory cache that holds LDAP directory
entries, anddbcachesize, the size in bytes of the in-memory cache
associated with each open index file. In our experiments,dbcache-
sizewas set equal to 10 MB, sufficiently large to keep all index files
in-memory. Thecachesizevaried according to specific experiments.

3.3 LDAP Client
The overall client-server architecture used in our experiments is
shown in Fig. 4. A collection of client machines are connected
to a server machine. There can be more than one LDAP process
running on a client or server machine. The client machines used
had sufficient CPU capability that the delay at client sites could be
ignored in measuring server performance.

A Bench Master process coordinates the client processes and gener-
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Figure 4: LDAP benchmarking testbed architecture

ates an overall performance report. The setup parameters are defined
in configuration files. The Bench Master constructs the command-
line arguments for LDAP client processes based on the configura-
tion files. The Bench Master is also responsible for spawning the
LDAP clients remotely on the designated machines. Each of the
LDAP clients reads the command line and starts up communication
with the Bench Master. After all the LDAP clients have been ini-
tialized, the Bench Master instructs the LDAP clients to commence
the benchmarking. It then waits for the end of the experiment when
it receives all the statistics from all the LDAP clients. Each LDAP
client queries the LDAP directory periodically, with the query start-
ing time for each client randomized to prevent synchronization. In
most of our experiments, the workload of the LDAP server was
changed by varying the query interval of the LDAP clients. The
Bench Master organizes the data from the clients into the bench-
mark report.

4. TEST METHODOLOGY
Common LDAP operations aremodify, add, delete, compareand
search. In the directory application considered for our experiments,
the service specifications should remain relatively static during nor-
mal operation, while the policies defined by customer-provider SLSs
would be updated much more often, as customers negotiate new
SLSs and re-negotiate old SLSs.Searchoperations are therfore
likely to dominate the server load. In general, this is true for most
LDAP applications. Accordingly, for most of our experiments the
server workload consisted ofsearchrequests for downloading of
policy rules (SLSPolicyRules objects) from the LDAP directory (Fig.
2).

The search filter for the search operation was constructed from the
Interface address of interest, and the correspondingPolicy object.
The default entry size for most experiments was 488 bytes, and the
default directory size was 10,000 entries.

A simple LDAP search involves a sequence of 4 operations:ldap open,
ldap bind, one or moreldap searchoperations, andldap unbind
(Figure 5).ldap openinitializes the LDAP library, opens a connec-
tion to the directory server, and returns a session handle for future
use. Theldap bindoperation is responsible for client authentication.
The bind operation allows a client to identify itself to the directory
server by using a Distinguished Name and some authentication cre-
dentials (a password or other information). LDAP supports a variety
of authentication methods. In our experiments, password authenti-
cation was used. When a bind operation is successfully completed,
the directory server remembers the new identity until another bind
is done or the LDAP session is terminated by callingldap unbind.
The identity is used by the server to make decisions about what kind
of changes can be made to the directory. Theldap searchoperation

(a) 10
0

10
1

10
2

10
3

10
0

10
1

10
2

10
3

Average request rate at server (requests/s)

T
im

e 
(m

s)

response time  
connect time   
processing time

(b) 0 50 100 150 200 250 300 350
0

20

40

60

80

100

120

Average request rate at server (requests/s)

T
hr

ou
gh

pu
t (

co
nn

s/
s)

Figure 6: Average connection time, processing time and re-
sponse time (a) and average server throughput (b) shown as a
function of the average request rate at the server. The directory
had 10,000 entries and each entry size was 488 bytes.

initiates a LDAP search by specifying the criteria that entries fitting
in the associated filter could be returned. The search filters were
randomized in our experiments to avoid search results being cached.
Finally, an LDAP session is disposed of by usingldap unbind.

Referring to Fig. 5, we define the following latency measures: the
connect time is defined as the time from the sending ofldap open
request untilldap bindoperation is successful. The processing time
is defined as the time required for theldap searchoperation as well
as the data transfer time for the retrieved results to be returned to
the clients. The total time required for an LDAP search operation,
from ldap opento ldap unbind, is defined as the response time. The
measures that reflect the performance of the LDAP service are the
connect, processing and response latencies, and the throughput of
the server, represented by the average number of requests served
per second.

In our experiments, each search operation involved all four of the
above steps,ldap open, ldap bind, ldap search, and ldap unbind.
In a real application, a client performing multiple searches may pre-
fer to leave the connection open and only do an unbind at the end. In
this sense, the total response time data in the experiments represents
a worst-case scenario. In Section 5.4, we consider the effect of leav-
ing the connection open for multiple searches or for the duration of
the experiment on performance.

In addition to thesearchexperiments, the performance of the LDAP
server for database updates is studied in Section 5.5, using a work-
load consisting ofldap addrequests for adding SLSPolicyRules ob-
jects. In this case, the client must construct a new entry with a set of
attributes before calling theldap addroutine.

5. RESULT ANALYSIS
Our experiments have three main purposes: identify the contribu-
tions of various system components towards the overall LDAP per-
formance; suggest measures to improve performance; and study the
limits of LDAP performance, and what determines these limits. We
organize the experimental results as follows. The overall perfor-
mance with respect to throughput and latency is introduced in Sec-
tion 5.1. The various components of the total search latency are
studied in Section 5.2, followed by measures to improve LDAP per-
formance. Some important limitations on LDAP performance are
studied in Section 5.3. We then discuss the effect of session re-use
on server performance in Section 5.4. Finally, performance of up-
date operations is compared to the performance of search operations
in Section 5.5.

5.1 Overall LDAP Performance



1. Initializes the LDAP library 
 connects to a directory server
returns a session handle

Client Server

session_handle ld

bind_success

2. Initializes a LDAP bind operation to 
authenticate to the directory server
using a Distinguished Name (DN) and
passwd

relative to the base object
from the portion of the tree

3. Searches for directory entries

unbind success Freeing all associated resources

4. Disposes of a LDAP session

ldap_open(host, port)

ldap_bind (ld, DN, passwd)

ldap_search (ld, base, scope, filter, attr, atrronly, result)

search result
ldap_unbind (ld)

Figure 5: Sequence of steps in a simple LDAP search operation

The general variation in the LDAP latency and throughput as a func-
tion of server load are shown in Fig. 6. The load was generated by
1000 clients querying periodically, with each client request retriev-
ing a 488 byte SLAPolicyRules entry from a database with 10,000
entries. Fig. 6 (a) shows the variation in connect, processing, and
response latencies as a function of the average request rate at the
LDAP server, and Fig. 6 (b) shows the variation in throughput, or
number of queries served per second, as a function of the average re-
quest rate. Below a load threshold corresponding to a request rate of
105 per second, response latency remains fairly constant at approx-
imately 64 ms, and is dominated by the processing time of 60 ms.
Above this threshold, the response time increases rapidly with in-
creasing load. In this region, the connect time is seen to be the main
bottleneck; the processing time also increases with load, but its ef-
fect is less significant. Corresponding to the latency characteristics,
Fig. 6 (b) shows that the server throughput saturates at a rate of
approximately 105 requests per second. We now consider various
aspects of this performance in more detail.

5.2 Improving the LDAP Search Performance
In this section, we first investigate the various components of the
search and connect latency. We then consider two important mea-
sures to improve effective search latency and throughput: disabling
the Nagle algorithm [16] implemented in TCP, and the caching of
LDAP entries.

5.2.1 Components of LDAP Search Latency
We now consider the components of the search latency in more de-
tail. These results were obtained by adding monitoring code to the
various process modules in the slapd daemon. Fig. 7 shows the
major components that contribute to the server and client search
latency, under a load of 105 search requests/second, at which the
server is not yet saturated. Surprisingly, while the processing time
as measured at the client is approximately 60 ms, results obtained
from tcpdumpand from the monitoring code inslapdshow that out
of 60 ms, approximately 50 ms is a waiting time arising from the Na-
gle algorithm implemented in TCP. We discuss this in greater detail
in Section 5.2.3, and consider the components of the actual search
latency in this section.

At the server, the LDBM back-end uses an index mechanism to store
and retrieve information. Each entry is assigned a unique ID, used
to refer to the entry in the indexes. A search for entries first returns
a list of IDs of entries that have the value being searched; the IDs
are then used to retrieve the corresponding entries. The candidate
ID lookup and the data entry retrieval are seen to take up around 5
ms, 60% of the total search latency of 8.2 ms.
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Figure 8: Variation of the opentime and bind time components
of the average connection time with average request rate at the
server. The directory had 10,000 entries and each entry size was
488 bytes.

The main front-end operations at the server are building the search
filter, testing a search filter against an entry, ASN.1 encoding of
the result entry, sending the search result, and sending the search
status. The client-side LDAP library processing includes building
the search request, ASN.1 decoding, and construction of the final
search result. In all, the front-end operations take around 3.16 ms,
40% of the total response latency. 36.8% of the front-end latency
is contributed by ASN.1 data encoding, followed by sending status
information, 7.5%, building the search request, 7%, ASN.1 decod-
ing, 6.7%, testing a search filter against an entry, 6.2%, forming the
search filter, 5.7%, and sending the search result, 5.4%. The re-
maining operations, including the ASN.1 encoding and decoding of
the query and other information, occupy the remaining 25% of the
front-end latency. Profiling of the slapd daemon also showed that
at heavy loads, the increase in the total response time is due to the
CPU contention among competing threads.

5.2.2 Components of LDAP Connect Latency
The connect latency has two components, corresponding to theldap open
andldap bind steps of the LDAP search operation shown in Fig. 5.
ldap open initializes the LDAP library, opens a connection to the
directory server, and returns a session handle for future use. Thus,
the open time mainly consists of the session set up time and the TCP
connection time, as shown in Fig. 7.

In version 2 of the LDAP protocol, theldap bind step (client au-
thentication) is a mandatory requirement. As mentioned previously,
LDAP supports different authentication methods, and simple password-
based authentication was used in the experiments reported here. Fig.
7 shows that the server takes 80% of the binding time, and the client
takes 20% of the time.
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Figure 9: Comparison of the server performance with and with-
out Nagle algorithm: (a) average connection time, processing
time and response time; (b) average server throughput. The di-
rectory had 10,000 entries and each entry size was 488 bytes.

Fig. 8 shows the open time and authentication time components of
the connect time, as a function of the request rate. At small loads,
the authentication time is more than twice the open time and dom-
inate the connect latency, which is consistent with the profiling re-
sults. The increase in connect time beyond a request rate of 105 per
second is largely dominated by the increase in open time.

5.2.3 Effect of the Nagle Algorithm on Search Latency
The Nagle algorithm restricts sending of packets when the segment
available to send is less than a full MTU size, in order to reduce
transmission of small packets and thus improve network utilization.
The algorithm works as follows: if all outstanding data has been
acknowledged, any segment is sent immediately. If there is unac-
knowledged data, the segment is only transmitted if it is a full MTU
size. Otherwise, it is queued in the hope that more data will soon
be delivered to the TCP layer and then a full MTU can be sent.
Fig. 9 shows that when the Nagle mechanism is disabled by en-
abling the TCPNODELAY socket option, the LDAP search time is
reduced from 60 ms to around 8 ms, while the throughput remains
unchanged.

slapd responds to a search request from the client side ldap library
functions in two steps: it first returns the data entries; it then sends
the search and transmission status. The client side ldap library func-
tions then construct the final results and send to the LDAP client.
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Figure 10: Comparison of the performance when the server is
configured with 0 and 10,000 entry caches: (a) the response la-
tency; (b) the throughput.

The results fromtcpdumpindicated that the sending of search status
information (14 byte) was delayed about 50 ms until an acknowl-
edgement message was received from client side.

Researchers have presented evidence [17, 18] that the Nagle algo-
rithm should be disabled in order to reduce latency and to protect
against unforseen interactions between TCP and HTTP with persis-
tent connections. We believe Nagle algorithm should also be turned
off in the LDAP application, since the delay of the last segment of
the response was shown to be unnecessary from thetcpdumpre-
sults. To avoid consequent extra packets on the network, functions
such as writev() can be used as have been used in WWW servers
such as Flash and JAWS.

5.2.4 Effect of Caching LDAP Entries
The LDBM backend can be configured to keep a cache for each
index file (dbcachesize) and a cache of entries (cachesize) in mem-
ory. We compared the server performance with two different sizes
of the index cache, 100 KB and 10 MB. The backend search time
was almost identical for either case, although at the smaller cache
size there was a large increase in the time required to populate the
directory. This indicated that the index cache was large enough to
hold the index files in either case.

We studied the impact of the entry cache size on the server per-
formance by varying the cache size from 0 entries (out-of-memory



directory without any cache) to 10,000 entries (in-memory direc-
tory with full cache) while keeping the index cache size at 10 MB.
For a directory with 10,000 entries, a cache with 10,000 entries re-
sults in a reduction in the back-end entry retrieval latency (shown
in Fig. 7) from 5 ms to 1.8 ms, with little change in the other la-
tency components. Consequently, the total processing time reduces
from 8.2 ms to 5 ms, and the contribution of the back-end process-
ing time to the total latency reduces from 60% to 36%. When the
latency is plotted as a function of load, we see a 40% reduction in
search processing time due to caching over nearly the entire range
of loads, as shown in Fig. 10 (a). Correspondingly, the throughput
increases 25% and reaches 140 requests/second, as shown in Fig.
10 (b). The relatively smaller improvement in throughput compared
with the improvement in processing time is because at high loads,
the connect latency is the dominant component in the total response
latency. Memory usage was observed to increase 9% with the above
increase in cache size.

Since we are primarily interested in the performance of the LDAP
server, in the experiments in the remainder of this paper, the Nagle
algorithm was disabled to eliminate the unnecessary wait before re-
turning search results to the client. Unless otherwise specified, an
LDBM index cache of size 10 MB, and entry cache equal to the size
of the directory were used. Before an experiment, the cache was
first filled up to avoid the extra overhead due to cache misses at the
beginning of the experiment.

5.3 Performance Limitations
In this section, we study the limitations of the LDAP server perfor-
mance in three important areas: server CPU capability, the scaling
of the LDAP directory, and the scaling of LDAP entry size. An use-
ful point to consider is that in some cases network connectivity may
significantly influence the perceived server response. In our case,
since clients were connected to the server over a high-speed LAN,
this effect could be neglected.

5.3.1 Server Processor Capability: Single vs Dual Proces-

sors
In this section, we consider the importance of processing capability
in determining the server performance. As mentioned earlier, all
our experiments were carried out on a dual processor server, but
by binding theslapdprocess to one of the two CPU’s, it was used
in single-processor mode for the experiments in other sections. To
determine the influence of processor capability, we performed some
experiments to compare the performance in single-processor mode
with the performance in dual-processor mode.

Fig. 11 (a) shows the comparison of latency versus connection rate
characteristics for the two cases, using a load generated by search
operations. The dual processor server shows similar performance at
low loads, and the advantage increases to give roughly40% smaller
latency at higher loads for the total response time. The reduction in
latency is observed mainly due to the reduction in connect time. The
processing time due to search actually increases slightly at heaviest
load, which may be due to the memory contention between the two
processors.

Fig. 11 (b) shows the comparison of throughput characteristics for
single and dual processors. As seen earlier, the throughput of the
single processor server starts to saturate beyond a load of 105 re-
quests per second, and saturates at 140 requests per second. The
dual processor server starts to saturate beyond a load of 155 requests
per second, and does not saturate completely even at a load of 194
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Figure 11: Effect of using a dual processor server on the re-
sponse time and throughput, with a directory containing 10,000
entries, entry size 488 bytes: (a) connect, processing and re-
sponse latencies versus request rate; (b) throughput versus re-
quest rate

requests per second. Also, at the highest load, CPU utilization in the
single-processor server reached 98%, while CPU utilization in the
dual processor remained less than 50%.

The above results suggest that the improvement given by the dual
processor server would continue to increase at higher loads than
those used in the experiment. Higher loads were obtained in an ex-
periment with each client generating requests continuously (a new
query upon completion of the previous query) instead of at periodic
intervals. Read and write throughput characteristics were generated
using LDAPsearchandaddoperations respectively. The results are
shown in Fig. 12. Consistent with trends observed in Fig. 11 (a), at
low loads the throughput characteristics are similar for dual proces-
sor and single processor servers. Beyond a threshold load of about
8-10 clients, the write throughput saturates at around 60 connec-
tions per second for the single processor server and 85 connections
per second for dual processor operation, an improvement of roughly
40%. A similar effect is observed in the read throughput, which
reaches saturation with just 4 clients and gives 150 connections per
second for single processor server and 211 connections per second
for dual processor server, an improvement of roughly 40%, the same
improvement rate as the write operation.

There is a second load threshold in write throughput of about 36
clients for single processor and 48 clients for dual processors be-
yond which the throughput decrease with increase in load, while
the read throughput remains constant within the load range of the
experiments. The reduction in throughput of write operations may
be due to the increasing contention of system resources among chil-
dren processes and the increase in the network delay when the server
loads increase. These experiments also show the throughput ofsearch
operations is roughly 2.5 times that ofadd operations in both the
single processor and dual processor case.

Overall, processor capability plays a major role in limiting system
performance for an in-memory directory, and using a dual processor
server gives a significant performance benefit.

5.3.2 Scaling of Directory Size
In this section, we study the scaling of LDAP performance with the
directory size, and discuss the limitations on performance at large
directory sizes.

We first consider the scaling up of the directory when the directory
is in-memory. Fig. 13 (a) shows the comparison of response latency
of a directory with 50,000 entries and 50,000 entry cache, with a
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Figure 12: Throughput of search and add operations for single
and dual processor servers, with a varying number of LDAP
clients generating queries continuously
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Figure 13: Effect of directory size on the server connect and
processing times (a) and the server throughput (b).

directory with 10,000 entries and 10,000 entry cache. The increase
in the total response with directory size is mainly due to the increase
in the processing time, which increases by 60%, from 5 ms to 8 ms.
Profiling at the server shows that the increase in the processing time
is, as expected, due to increase in back-end processing. Specifically,
it is mainly due to the increase in the entry retrieval time (by 2.6
ms), and a slight increase in the ID search time (by 0.2 ms). Fig.
13 (b) shows that the throughput decreases 21% and saturates at 110
requests/second with the increase in directory size.

As the directory size increases, the database cache size is eventu-
ally limited by the available system RAM, and the directory can
no longer be kept in-memory. In our system, when the cache size
was increased beyond 50,000, performance degraded progressively
due to lack of memory. When the directory is out-of-memory, per-
formance scaling is limited both by the database search time, and
by the disk access time. Fig. 13 shows that further increasing the
number of directory entries from 50,000 to 100,000 while keeping
the cache size at 50,000 entries causes the response time to increase
another 7 ms (87.5%) and the total processing time reaches 15 ms.
Correspondingly, the throughput reduces from 110 requests/second
to 85 requests/second (23%). Since the connect latency dominates
the response at high loads, the reduction in throughput is relatively
small compared to the increase in processing time.

To summarize, there was a moderate deacrease in latency and through-
put with directory scaling up to 50,000 entries, due to an increase in
database search time. Further scaling was constrained by system
memory leading to an out-of-memory directory, and the deteriora-
tion in processing latency was significantly sharper, due to increas-
ing disk access time and database search time.

5.3.3 Scaling of the Directory Entry Size
In this section we study the scaling of performance with the size
of the LDAP entry. In our experiments, we compared the perfor-
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Figure 14: Effect of directory entry size on the server connect
and processing times (a) and the server throughput (b) for5000
entry directory and 5000 entry cache
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Figure 15: Effect of directory entry size on the server connect
and processing times (a) and the server throughput (b) for a
10,000 entry directory, 5000 entry cache

mance for LDAP directories with 488 byte entries, and with 4880
byte entries. For the larger entry size, the availability of system
RAM limited the maximum database cache size to 5000 entries, be-
yond which the performance degraded rapidly. We first performed
the comparison for an in-memory directory, using a 5000 entry di-
rectory and 5000 entry cache for both entry sizes. Fig. 14 (a) shows
the processing latency, and Fig. 14 (b) the throughput, as a function
of load. At light and moderate loads, the total response latency in-
creases by about 8 ms with increase in entry size, while the through-
put remains the same. Profiling at the server shows that the increase
in response time comes mainly from the increase in the ASN.1 en-
coding time, from 1.2 ms to 7 ms. In addition, the filter matching
step took around 0.8 ms at the higher entry size, up from 0.2 ms
at the lower entry size. These results are understandable, since both
ANS.1 encoding and the filter matching process depend on the num-
ber of attributes in the LDAP entry, which increases as the entry size
increases. The latency of the other front-end processing steps, and
back-end processing steps increase by much smaller amounts. Un-
der heavy loads, when the server saturates, Fig. 14 (b) shows the
maximum throughput at 4880 bytes is 30% smaller.

The comparison between the two entry sizes was also performed
with a directory of 10,000 entries, the cache size remaining at 5,000
entries. Fig. 15 (a) shows the processing latency, and Fig. 15 (b)
the throughput, as a function of load. The increase in total response
time with increase in entry size is now 40 ms at low and moder-
ate loads. The much larger detrioration in response time with entry
size is due to the increased data transfer time from the disk in ad-
dition to the the increased front-end processing time. The increase
in front-end processing time remains at about 8 ms, confirming that
the front-end processing is not influenced greatly by the increase in
directory size, and the increase in data handling time at the back-end
is 32 ms. Also, for the larger entry size, the processing time is com-
parable with the connect latency even at high loads (unlike previous
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Figure 16: Effect of session reuse rate on the server processing
times (a) and the server throughput (b).
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Figure 17: Comparison of latency and throughput characteris-
tics for search and add operations: variation of connect, pro-
cessing and response latency with server load (a), and variation
of server throughput with server load (b). (Directory had 10,000
entries, entry size 488 bytes)

experiments in which the connect latency dominated the total re-
sponse at high loads). Consequently the increase in processing time
with entry size strongly influences the maximum throughput, which
decreases sharply from 110 requests/second to 30 requests/second.

To summarize, for an in-memory directory the scaling of the total
processing latency with entry-size is determined by the front-end
processing, specifically, by the ASN.1 encoding and filter matching.
For out-of-memory operation, the increase in processing latency is
dominated by the increased back-end data retrieval time. The maxi-
mum throughput also decreases sharply in this case.

5.4 Session Reuse
In the experiments so far, the client requested a single search or add
operation, and then closed its connection. We now study the change
in performance when a client performs multiple searches in a LDAP
session. We varied the degree of session reuse from 0 to 100%, with
0% corresponding to a new connection being established for every
search, and 100% corresponding to the connection being left open
during the duration of the experiment.

Fig. 16 (a) shows that the search time increases at heavy loads as
the session reuse rate increases from 0% to 100%. This is because
the actual server load for searching operations increases with the
increase in session reuse, while the total connect latency decreases
because fewer connect requests are received. At the same time, the
total response time decreases as can be deduced from the increase
in the throughput shown in Fig. 16 (b) from 105 request/second
to 155 requests/second at the onset of congestion., and from 140
requests/second to 223 requests/second under the heaviest load, an
improvement of 60%.

5.5 Performance under Update Load

The experiments described so far measured the performance under
loads generated bysearchrequests. In order to compare these results
with the performance under update operation, a set of experiments
was performed with clients each periodically querying the server
with add requests. Fig. 17 shows that the processing time foradd
operations dominates the total response time not only at low loads,
but also when the server saturates. This is unlike the search scenario,
in which the connect time dominates the total response time when
the server is under heavy load. This is probably because the latency
due to locks generated by competingwrite() requests becomes sig-
nificant under heavy load. At low loads, theadd latency is about
four times the search latency, and the difference between the two
decreases at high loads, as the connect latency becomes more im-
portant. Fig. 17 (b) shows that the add throughput begins to saturate
beyond a threshold of 60 requests per second and finally saturates at
65 requests per second, about 55% less than the search throughput.

The LDAPmodifyoperation was not directly investigated. Amodify
operation involves searching and retrieving an existing entry, mod-
ifying it, and then writing it back to the LDAP directory. Conse-
quently, one would expect the processing latency in this case to be
roughly the sum of thesearchandaddprocessing latencies.

6. RELATED WORK
Benchmarking of LDAP server performance has been reported re-
cently by Mindcraft [19]. The purpose of Mindcraft’s work is to
compare the performance of three servers: Netscape Directory server
3.0 (NSDS3), Netscape Directory Server 1.0 (NSDS1) and Novell
LDAP Services (NDS). In their work, the performance for a 10,000
entry personnel directory was measured on a 200 MHz Intel Pentium
Pro with 512 MB RAM. The throughput for NSDS3, NSDS1, and
NDS were found to be 183 requests/second, 38.4 requests/second
and 0.8 requests/second respectively. The size of the LDAP entry
was not specified. The directory was in-memory in all cases, and the
performance with larger, out-of-memory directories (or large entry
sizes) was not considered. Since the directory was in-memory, CPU
capability was found to be the bottleneck.

In the above work, the LDAP server was generally treated as a black
box. Our work differs significantly in our objectives and approach.
We have determined the scalability of the performance particularly
with respect to directory size and entry size, determined the contri-
bution of different system components and parameters to the server
performance and scalability, and provided suggestions for improv-
ing system performance. The detailed nature of this work also dic-
tated the choice of OpenLDAP instead of a commercial server, as
explained earlier.

7. CONCLUSIONS
In this paper, we have discussed the performance of the LDAP di-
rectory service in a dynamic, distributed environment, with frequent
directory accesses. The LDAP directory structure used in the exper-
iments is based on a proposed LDAP schema for administration of
Service Level Specifications in differentiated service networks, and
a brief explanation of the use of LDAP in this context has been pro-
vided. However, the experimental results are applicable to LDAP
directory applications in general.

We have shown that under our normal operating conditions - a direc-
tory with 10,000 488 byte entries, and a cache size of 10,000 entries
- the LDAP server has a response latency of 8 ms at loads up to
105 search requests per second, and a maximum throughput of 140
search requests per second. Out of the total response latency of 8



ms, 5 ms comes from the processing latency, 36% of which is con-
tributed by back-end processing (entry retrieval from the database),
and 64% by front-end processing. In general, at high loads, the con-
nect latency increases sharply to dominate the overall response, and
eventually limits the server throughput. Consequently, a change in
the processing time due to changes in system parameters has a rela-
tively smaller effect on the maximum throughput.

In addition to this basic performance specification, we have obtained
a detailed profile of contributions of various system components to
the overall performance; studied the scaling of performance with di-
rectory size, entry size, and session re-use; and determined the rela-
tive importance of various factors in determining scalability, namely
front-end versus back-end processing, CPU capability, and available
memory. We have also identified an important required modification
to the basic OpenLDAP implementation in order to obtain the above
performance. We now briefly summarize our important findings.

• Disabling of Nagle algorithm. The Nagle algorithm was ob-
served to contribute an additional wait time of roughly 50 ms
to a search operation. Disabling the Nagle algorithm results
in a reduction in response time by a factor of 7 under normal
operation.

• Entry caching. For a directory with 10,000 entries, an in-
memory directory (cache-size 10,000) has a 40% improve-
ment in processing time and 25% improvement in throughput
over a directory without a cache.

• Scaling with directory size. The scaling of performance with
the number of entries in the directory is determined by the
back-end processing. Up to 50,000 directory entries can be
kept in-memory in our system, and the server processing time
and throughput deteriorate by about 60% and 21% respec-
tively when directory size increases from 10,000 to 50,000.
Beyond this limit, the directory is out-of-memory due to sys-
tem RAM constraints, and increasing the directory size from
50,000 to 100,000 entries results in a sharper increase in pro-
cessing time of another 87.5%, and a decrease in throughput
by 23%.

• Scaling with entry size. The scaling of performance with the
entry size in the directory is determined by the front-end pro-
cessing, mainly an increase in the time for ASN.1 encoding
of the retrieved entry, as long as the directory is in-memory.
An increase in entry size from 488 bytes to 4880 bytes for a
5,000 entry directory results in an increase in processing time
of 8 ms at moderate load, 88% of which is due to the increased
ASN.1 encoding time, and a throughput deterioration of about
30%. However, for a directory with 10,000 entries, the cache
size is still limited to 5,000 by the system RAM, and a simi-
lar increase in entry size results in a much larger throughput
deterioration of about 70%, mainly due to the increase in data
transfer latency from the disk.

• CPU capability. For an in-memory directory, the CPU is a
significant bottleneck. Using dual processors improves per-
formance by 40%.

• Session re-use.In general, higher session re-use leads to im-
proved performance. A 60% gain in performance is obtained
when the session is left open during the duration of the exper-
iment, relative to when a connection is opened and closed for
each search request.

In conclusion, we believe that the results show that OpenLDAP
slapd is a potential candidate for supporting policy administration
in the differentiated service environment as well as in other network
applications that need dynamic directory access support. In future,
we plan to evaluate other LDAP servers based on the criteria devel-
oped in this paper, which may run on different platforms and with
different implementations.

8. REFERENCES
[1] A. Dun, D. Hennessy, and F. Dawson Jr., “Calendar attributes for

vcard and LDAP,” Internet Draft, Internet Engineering Task Force,
Mar. 1998. Work in progress.

[2] B. Aboba, “Lightweight directory access protocol (v3): Schema for
the routing policy specification language (RPSL),” Internet Draft,
Internet Engineering Task Force, Nov. 1997. Work in progress.

[3] B. Aboba, “Extension for PPP authentication,” Internet Draft,
Internet Engineering Task Force, Nov. 1997. Work in progress.

[4] L. Bartz, “LDAP schema for role based access control,” Internet
Draft, Internet Engineering Task Force, Oct. 1997. Work in progress.

[5] R. Braden, L. Zhang, S. Berson, S. Herzog, and S. Jamin, “Resource
ReSetVation Protocol (RSVP) Version 1 Functional Specification,”
RFC2205, Sept. 1997.

[6] K. Nichols and S. Blake, “Definition of the Differentiated Services
Field (DS Byte) in the IPv4 and IPv6 Headers”, Internet Draft, May
1998.

[7] S. Blacke, et al, “A Framework for Differentiated Services,”
Internet-Draft, Internet Engineering Task Force, Feb., 1999. Work in
progress.

[8] S. Blake, D. Black, M. Carlson, E. Davies, Z. Wang, W. Weiss,“An
Architecture for Differentiated Services”, RFC 2475, Dec. 1998

[9] W. Yeong, T. Howes and S. Kille, “Lightweight Directory Access
Protocol,” RFC1777, Mar. 1995.

[10] M. Wahl, T. and S. Kille, “Lightweight Directory Access Protocol
V3,” RFC 2251, Dec. 1997.

[11] The Open Source LDAP suite, http://www.OpenLDAP.org

[12] The Berkeley Database, http://www.sleepycat.com

[13] E. Ellesson, et. al. “Schema for Service Level Administration of
Differentiated Services and Integrated Services in Networks,”
Internet-Draft, Internet Engineering Task Force Internet-Draft, June
1998.

[14] R. Rajan, J. C. Martin, S. Kamat, M. See, R. Chaudhury, D. Verma,
G. Powers, R. Yavatkar, “Schema for Differentiated Services and
Integrated Services in Networks,” Internet Draft, Internet
Engineering Task Force, Oct. 1998. Work in progress.

[15] M. Beigi, R. Jennings, S. Rao, D. Verma, “Supporting Service Level
Agreements using Differentiated Services,” Internet Draft, Internet
Engineering Task Force, Nov. 1998. Work in progress.

[16] John Nagle, “Congestion control in IP/TCP internetworks,”ACM
Computer Communication Review, vol. 14, no. 4, pp. 11-17, Oct.
1984.

[17] J. Heidemann, “ Performance interactions between P-HTTP and
TCP Implementations,”ACM Computer Communication Review,
vol. 27, no. 2, pp. 65-73, April 1997.

[18] H. F. Nielsen, et. “Network Performance Effects of HTTP/1.1,
CSS1, and PNG,”ACM SIGCOMM Symposium on Communications
Architectures and Protocols, Cannes, France, Sep. 1997.

[19] Directory Server Certified Performance Reports,
http://www.mindcraft.com/perfreports/ldap/.


