
Robust Router Congestion Control Using Acceptance and Departure

Rate Measures

Ganesh Gopalakrishnana, Sneha Kaserab, Catherine Loaderc, and Xin Wangb

a{ganeshg@microsoft.com},
Microsoft Corporation, Redmond, WA 98052, USA

b{kasera, xwang@research.bell-labs.com},
Bell Labs Research, Holmdel, NJ 07733, USA

c{catherine@cwru.edu},
Case Western Reserve University, Cleveland, OH 44106, USA

In packet switched networks, routers need to implement controls to overcome the prob-
lems of reduced performance in the event of congestion. In this work, with a view towards
robust implementation, we examine a new active queue management scheme, Acceptance
and Departure Rate (ADR) that uses a combination of acceptance rate and departure
rate measures to control link congestion. Unlike many existing approaches, ADR does
not implicitly or explicitly use queue length measures which are not robust to changes
in system capacity. The main advantage of our approach being its robustness with vary-
ing network parameters including link capacity and network load. We also compare the
performance of our approach with other known active queue management schemes.

1. Introduction

A router output queue could suffer congestion conditions when it receives more traffic
than its line capacity. Uncontrolled congestion could cause high queue build up resulting
in increased queuing delays and packet loss. One potential solution is to allocate more
resources, i.e., provide higher line capacities. Unfortunately this is an expensive solution,
especially in access networks. A carefully designed congestion control mechanism is more
cost-effective. It also provides opportunities for differential treatment of packets under
congestion. Active queue management of router queues attempts to provide congestion
control by monitoring the congestion state of a router queue and pro-actively dropping
or “marking” packets before any impending congestion could cause reduced performance.
Several schemes have been proposed for active queue management. These schemes have
been modeled and evaluated for stability, throughput and delay performances. Our goal
in this paper is not to propose a scheme that outperforms any of these existing schemes.
Rather, we would like to examine a scheme that performs reasonably well compared to
the existing scheme but we believe is more robust and scalable with varying system and
network parameters including buffer size, link capacity and network load. In particular,
we examine an congestion control approach that uses measures of acceptance rate in

conjunction with measures of departure rate (ADR) for computing the probability of pro-
actively dropping packets. In our approach, the acceptance rate provides a measure of
offered load and the departure rate a measure of processed load on the router queue.
A combination of both offered load and processed load is essential in providing fast but
stable response under different load conditions. Control based on processed load provides
stability and helps clear queue backlog, whereas control based on offered load provides
fast response.

In this paper, we first study the applicability of various load measures of a router queue
and justify the choice of using acceptance rate and departure rate. Next, using simulations
of a simple packet network, we compare the performance of ADR with other well-known
schemes including Drop Tail, Random Early Discard, RED [1], and Adaptive Virtual
Queue, AVQ [5]. We also examine the performance of ADR, AVQ with UDP traffic. Our
simulation results demonstrate the robustness of the ADR scheme under different traffic
conditions and system settings.

2. System Load Measure

One of the key requirement of any congestion control scheme is to obtain a robust
measure of system load. The offered and processed load constitute the system load. The
offered load is a measure of new load on a system whereas the processed load is what
the system has already seen and processed. In an congestion control scheme, offered load
measurement is necessary to quickly respond to a sudden burst of traffic but not sufficient.
It is possible that the offered load in a given time is not very high but due to backlog from
load offered at earlier instants the processed load can still be high. Hence a combination
of both offered load and processed load should be used for robustly controlling congestion
under different traffic arrival patterns. We now discuss the applicability of some of the
well known system load measures.

• Queue Length - Queue length is one of the most widely used measure of load. It
is used naturally in drop tail schemes where incoming packets are dropped when
the queue reaches its capacity. It is also used in RED and several of its variants.
At any instant, the queue length provides a measure of the load remaining in the
system, i.e., the load arriving at the queue minus the processed load. Hence it
seems the most natural measure of congestion. The problem with queue length is
that it is not robust to changes in the system. If an AQM scheme sets target queue
length(s), these targets have to be changed with changes in line capacity. A router
operator might be willing to operate with longer queues when capacity increases.
This issue also arises in situations where the available line capacity for best-effort
traffic changes due to any co-existing bandwidth reservation mechanisms, especially
in networks supporting multiple service classes. In this scenario, it is not possible
to determine the available capacity a priori.

• Delay - Queuing delay offers a more robust measure. It is essentially a measure
of the queue length normalized by the line capacity. Any queuing delay thresholds
need not be changed with changes in line capacity. The problem with using queuing
delay is an appropriate choice of an operational value. A typical network consists

of several hops (and at times there are multiple cards a packet has to go through
per hop). The choice of an operating delay at each hop is difficult because a smaller
value could result in under utilization and a high value could result in large delays.
There is no simple way to budget an end-to-end delay requirement across hops or
in some cases, even across multiple components in the same hop.

• Departure Rate - Departure rate is defined as number of bits transmitted or serviced
in a given time interval. This rate provides a very good measure of processed
load. Under steady state conditions, processed load could be a good measure of the
system load. When there are sudden changes in the system load, just measuring
processed load is not sufficient because the offered load might be much higher than
the processed load. Congestion control based on departure rate only could result
in slow response under a sudden burst of traffic. Line occupancy is departure rate
normalized by capacity. Since this is dimensionless, controls based on this measure
are robust against capacity changes.

• Acceptance Rate - Acceptance rate is the number of bits in packets arriving at the
router queue minus the number of bits in dropped packets in a given time interval.
It provides an accurate measure of offered load.

3. Related Work

Active Queue Management has been one of the most widely studied areas. Several
approaches have been proposed in the literature [1], [2], [3], [5]. One of the most popular
AQM approach is RED [1]. In RED, the system load is measured by keeping track of an
average queue length which is updated on every packet arrival. This average queue length
is compared against two pre-specified limits the minimum queue length and the maximum
queue length and drop probabilities are computed based on the relative difference of the
measured average queue length and these limits. One of the main problems with RED is
how to choose its parameters [7]. As we have argued before, queue lengths are not robust
against change of system parameters including line capacity.

The PI controller scheme proposed in [2] uses delays for controlling congestion. We
believe that delays are hard to dimension across variable number of hops in a network.

The virtual queue (VQ) proposed by Kelly [3] and the adaptive virtual queue (AVQ)
proposed by Kunniyur [5] are much more robust schemes. They use a dimensionless
parameter to set targets on line occupancy. This allows for robustness against changing
line capacity. Unfortunately, these schemes implicitly depend upon the buffer size because
packet drop decisions are still made in a drop tail fashion when the virtual queue is full.
How to compute the right buffer size is not defined in [3], [5]. In [5], Kunniyur has
also proposed to overcome the problems of drop tail such as TCP synchronization and
unfairness by using a RED like scheme in conjunction with AVQ. We believe that this
enhancement only reduces the scale of the robustness problem but does not solve it.

4. The ADR algorithm

We now present the acceptance and departure rate (ADR) algorithm that is derived
from the Acceptance Rate - Occupancy (ARO) algorithm proposed in [4]. ARO was de-
vised and evaluated for controlling processor overload due to signaling traffic in telecom-
munication switches. In ADR, “A” represents the acceptance rate of packets i.e. the
number of bits arriving at a router queue minus the bits of packets dropped per second
and “DR” represents the departure rate (in bits per second) of the packets from the router
normalized by the line capacity.

An AQM scheme could be event-based or timer-based. In an event-based scheme,
system load is measured and updated on every packet arrival and a probability to drop or
mark the packet is computed. In a router, such a scheme needs to be implemented fully in
the fast forwarding path. In a timer-based scheme, system load is measured periodically,
based on which a probability to mark or drop packets is computed. This probability
is then used to mark or drop packets throughout the timer-interval. In a timer-based
scheme the algorithm to compute the drop probability need not be executed in the fast
path. Only the actual packet drop decision based on the drop probability need be taken
in the fast path. This gives the freedom to choose different and even complex policies for
determining the drop probability without modifying the packet forwarding hardware.

4.1. Timer-based ADR

We first present the timer-based ADR. This scheme is based on gradual throttling of
input traffic to prevent oscillations. We use a time varying variable f - which is the fraction
of the offered traffic to be allowed into the router queue. When f = 1, all the traffic is
let in. When there is congestion, f is reduced till the system comes out of congestion.
In timer-based ADR, the system load is measured at fixed intervals. In our scheme, the
acceptance rate is measured every τar time units and normalized by the line capacity, C.
This normalized acceptance rate, α, is then compared with a normalized acceptance rate
threshold, αpeak, and the ratio φar =

αpeak

α
is computed. Similarly, the the departure rate

is measured every τdr time units and normalized with the line capacity. The normalized
departure rate, ρ is then compared with a normalized departure rate or line occupancy
threshold, ρthresh and the ratio φdr = ρthresh

ρ
is computed. Every time the acceptance rate

or departure rate is measured, a fraction of traffic that can be allowed until the next
measurement instant is computed by

fn+1 = [fn × min{φar, φdr, φmax}]
1

fmin
(1)

where fn+1 represents the fraction of packets allowed in the (n+1)’th probe interval, φmax

is the upper bound on φar and φdr, fmin is a predefined lower limit on the fraction allowed.
An interval is defined as the time between two successive rate measurements, it can either
be between two AR measurements or two DR measurements or one AR measurement and
one DR measurement. Once fn+1 is calculated for the (n+1)’th interval, the same fraction
allowed is maintained for all packets arriving in that time interval.

The intuition behind this Eqn 1 is as follows. When ρ ≤ ρthresh, and α ≤ αpeak then
there is no congestion and all the packets that arrive at the router queue are allowed in.
If ρ ≥ ρthresh or α ≥ αpeak, then the system is in congestion and a fraction of the packets
arriving at the queue are dropped to get the system out of congestion. In order to prevent

oscillations in the fraction allowed, we calculate the fraction fn+1 as a percentage of the
fraction allowed in the previous probe interval. The lower limit on this fraction is set to a
predefined minimum value fmin and the upper limit is set to 1. φmax is set to 20 to ensure
that fn+1 does not increase drastically and cause oscillations.

Once the fraction to be allowed is determined, a throttling scheme decides which in-
coming packets should be dropped based on the calculated fraction allowed. We use the
deterministic scheme first proposed by Hajek in [8] and later used by [4]. In [4], the
authors have found this deterministic scheme to show much less variability from the de-
sired fraction allowed in comparison to uniform drop and RED drop mechanisms proposed
in [1]. The Hajek scheme could be described by the following procedure. The variable r
is initialized to zero.

r := r + f .
If r ≥ 1

r := r − 1
accept packet

else reject packet.

The above scheme can be implemented very easily with little overhead. The randomness
in the input traffic ensures that no particular connection(s) or flow(s) is able to take undue
advantage of the deterministic packet drops.

The choice of τdr and τar influences the response to congestion. A small value of the
timers would result in more measurement overhead and potentially over-reaction causing
oscillatory behavior. High timer values would result in slower response. In addition to
specifying the two timer values, the timer-based ADR also needs to set a limit on the
maximum buffer size. This is because a very large burst can fill the buffers in a short time
causing large delays and potential timeouts at TCP senders. In our timer-based ADR,
we set the buffer size to simply C ∗ Dmax where C is the line capacity and Dmax is the
specified maximum delay that the router queue could incur in the worst possible scenario.
Packets arriving after all the buffers are filled are simply dropped following a drop tail
policy. Note that using a maximum delay for setting the buffer size does not contradict
our stand against choice of an operational delay for congestion control. The maximum
delay is only a safeguard for extreme scenarios and is not used for congestion control. We
use only acceptance rate and departure rate measures for control.

4.2. Event-based ADR

We now present the event-based ADR scheme. This scheme is very similar to timer-
based ADR in the nature of the algorithm except in the event-based scheme, the system
load is updated on every packet arrival. Upon each packet arrival, the router calculates
φar and φdr. It then updates the fraction to be allowed into the router queue by using
Eqn 1. The subscript n in Eqn 1 now refers to the packet number and fn is the fraction
allowed computed on the arrival of the n’th packet.

Let td and ta be the time between two consecutive departures and two consecutive ar-
rivals respectively. At the arrival of n’th packet, normalized departure rate, ρn is estimated
by

ρn = ρn−1 × βd +
(1 − βd) × PacketSize

td × C
,

where βd = e−
td
K . Similarly, the normalized acceptance rate is estimated by

αn = αn−1 × βa +
(1 − βa) × PacketSize

ta × C
,

where βa = e−
ta
K . The justification for using the above equations for normalized rate

estimation is described in [9].
On the arrival of the (n+1)’th packet, φar and φdr are computed by setting, α =

αn+1 and ρ = ρn+1 respectively and Eqn 1 is used to calculate the fraction allowed.
Once the fraction allowed is calculated, the deterministic drop algorithm described above
determines whether a packet should be accepted or dropped.

One could choose between event or timer-based ADR depending upon their system
requirements. We believe that timer-based scheme is more flexible. It also has less
overhead making it specially attractive for systems where per packet measurements could
be resource consuming, e.g., systems that use network processors or embedded software
in processor cards, for implementing IP forwarding.

5. Performance Evaluation

In this section, we use ns-2 packet simulator to simulate ADR and other AQM schemes.
We only present timer-based ADR results. We first describe the performance metrics,
then present tests to evaluate ADR performance under varying network parameters and
also compare its performance with other AQM schemes. The main advantage of ADR
is its robustness with varying system and network parameters including buffer size, link
capacity and network load. We provide different simulation results, ascertaining this fact.

We use a single bottleneck network topology. Although simple, this setup helps us effec-
tively evaluate the AQM schemes. The links can either mark or drop a packet according
to the AQM scheme it implements. The propagation delay of the link is 100 msec unless
specified otherwise. We have TCP sources on Node 0 and TCP sinks on Node 1. We use
TCP New Reno as the transport protocol. In our experiments, packet size is 1000 bytes.

We perform comparisons of ADR with Drop Tail, RED and AVQ. We pick RED and
AVQ, because RED has been implemented in commercially available routers and AVQ
uses rate based control with the help of dimensionless parameters. AVQ has also been
proven to be better than most of the other AQM schemes [5].

5.1. Performance Metrics

The performance metrics that we use are as follows:

• Link Utilization is the effective service rate of the link. It is the number of bits
transmitted over the link during the simulation divided by the simulation time.

• Session Goodput is the effective rate at which information is correctly received by
the destination from the source. It is calculated as total number of correctly received
bits by the destination, divided by the time taken. This performance metric is useful
for understanding the end-to-end behavior that takes into account the effect of lost
packets, retransmissions, propagation & queuing delays.

0

100000

200000

300000

400000

500000

600000

0 2 4 6 8 10 12 14 16 18 20

G
oo

dp
ut

 p
er

 s
es

si
on

 (
bp

s)
 -

--
->

Capacity (Mbps) ---->

Goodput vs Capacity

AVQ
ADR
RED

Figure 1. Goodput(y-axis) vs Capacity(x-
axis) for ADR, RED and AVQ

-30

-20

-10

0

10

20

30

40

50

0 1 2 3 4 5 6 7 8 9 10

%
 D

iff
er

en
ce

 in
 G

oo
dp

ut
 b

et
w

n
R

E
D

 &
 A

D
R

 -
--

--
--

--
>

Capacity (Mbps) ---->

 % Difference in Goodput betwn RED & ADR vs Capacity

% difference

Figure 2. Percent difference in Avg Good-
put of ADR and RED

• Average Queuing Delay - This is the delay arising due to the queuing and buffering
of packets. This is calculated as the difference between the time a packet is served
and the time the packet enters the queue.

• Loss Fraction - This is fraction of packets that were dropped by the link’s queuing
policy. This value is calculated as the ratio of the number of packets dropped to the
number of packets that arrive at the queue.

5.2. Robustness against Capacity Variation

In this section, we study the performance of ADR and other AQM schemes as a function
of link capacity. One of ADR’s primary design objective is robustness against line capacity
variations. The available line capacity for best-effort traffic could change due to any co-
existing bandwidth reservation mechanisms. This section analyses the robustness of the
AQM schemes under such scenarios.

The link capacity determines the rate at which the queued packets get processed. At
higher capacities, since the queues get processed faster, we can allow longer queues and
still maintain the same delay guarantees as in the case of lower capacity and smaller
queues. The main advantage of allowing longer queues being increased link utilization.

A link’s Buffer Size (B), Capacity (C) and maximum queuing delay Dmax are related
as B = C × Dmax. For e.g., a link with C=10 Mbps, with B=125 packets will have a
Dmax=100 msec. (Packet Size = 1000 bytes). The performance of ADR, RED and AVQ
with respect to capacity is discussed in Sec 5.2.1 and Sec 5.2.2

5.2.1. ADR vs RED : Response to changing Link Capacity

We now conduct the following experiment to compare the performance of ADR and
RED. We have 50 bursty FTP sources entering the system periodically at different times
between t = 0 and t = 20 secs. ADR parameters: αpeak = 1.7, ρthresh = 1, Dmax =
100 msec. τdr = 50 msec, τar = 28 msec. RED parameters (default values) : Qmin =
5, Qmax = 15, maxp = 0.1, wq = 0.002. The buffer size (B) is set according to the relation
B = C × Dmax. C is varied from 1 Mbps to 20 Mbps. Link propagation delay is set at
100 msec. The simulations are run for 100 secs. Inorder to study the robustness, ADR

380000

400000

420000

440000

460000

480000

500000

520000

540000

560000

580000

0 5 10 15 20 25

G
oo

dp
ut

 (
bp

s)
 -

--
->

Session No. ---->

Goodput Allocation per Session

AVQ
ADR

Figure 3. ADR & AVQ : Goodput distri-
bution across Sessions

0

20

40

60

80

0 2 4 6 8 10

Q
ue

ue
 S

iz
e

 (
pk

ts
)

 -
--

->

Time (secs) ---->

Evolution of Queue Size

AVQ
ADR

Figure 4. ADR & AVQ : Evolution of
Queue Sizes under Steady congestion

and RED parameters are kept constant with link capacity.
Fig. 1 shows the average goodput as a function of capacity. We can see that the

performance of RED deteriorates after C=2 Mbps, whereas the performance of ADR is
consistently good. This is because, due to its dimensionless thresholds, ADR is able to
better utilize the fact that the capacity has increased and allows for more queuing and
increased throughput while not increasing the delay. This is better illustrated by Fig. 2.
This graph plots the % difference in goodput values of ADR from RED [calculated
as (ADRutil − REDutil)/REDutil]. The positive values correspond to ADR performing
better than RED and the negative values to RED performing better. We can see from
the graph that RED performs well only for capacities around C=1 Mbps. This is because
the RED parameters that were chosen for this experiment appear to be suitable for this
value of capacity. For all other capacities, these parameters need to be changed in order to
obtain better performance. This is not the case with ADR. Even with the same parameter
setting, ADR achieves a higher average goodput for the different capacity values.

5.2.2. ADR vs AVQ : Response to changing Link Capacity

We now compare the performance of AVQ and ADR with varying link capacity. The
experimental setup is same as in Sec 5.2.1. AVQ parameters are set to default values
(with γ=1). We see from Fig. 1 that ADR performs better than AVQ. ADR has a slightly
higher average queuing delay than AVQ, but we see in Fig. 1 that the slight increase in
delay does not affect avg. session goodput much and ADR’s goodput is still higher than
AVQ’s. We also notice that ADR has a higher link utilization and lower loss than AVQ.

5.3. Fairness

It is very important that any AQM scheme is fair in its bandwidth allocation across
several sessions using the common link. A well known drawback of Drop Tail is the
problem of global synchronization & unfairness. Detailed experimental results showing
that ADR is very fair when compared to Drop Tail are available in [9]. We now compare
ADR and AVQ on fairness. Since both AVQ and Drop Tail are queue overflow based, there
might be unfairness in bandwidth allocation even in AVQ. A TCP session that enters and
sees an empty queue may end up using a lot more than its fair share of bandwidth, just

because it came first. The following simulation clearly illustrates this observation.
We have 50 FTP sources entering periodically into the system between time t = 0 and

time t = 20 secs. The link has a capacity C = 20 Mbps, B = 250 packets and propagation
delay of 100 msec. We choose a higher value of capacity, to clearly show the behaviour
of the schemes under extreme cases. ADR parameters: αpeak = 1.7, ρthresh = 1, τdr = 50
msec, τar = 28 msec. For AVQ, γ = 1, and the other parameters are set to their default
values. Dmax = 100 msec. The simulations are run for 100 secs.

The bandwidth allocation in case of AVQ and ADR is shown in Fig. 3. The graph plots
the Goodput received by each session vs session number. We can see that ADR has a very
uniform as well as higher allocation amongst the sessions when compared to AVQ. The
peaks in allocated goodput seen in the case of AVQ are due to AVQ’s drop tail approach.

5.4. Performance under Steady Congestion - UDP Sources

In todays internet, even though majority of the traffic is from TCP, there is still some
non-conforming traffic from UDP or other sources. These non-elastic sources do not
adjust their transmission rate to the network congestion level and hence might lead to a
steady congestion in the network. If this happens, it becomes very important that the
AQM scheme detects this and reacts accordingly to bring the system out of congestion.
This section focuses on the performance of ADR and AVQ under steady congestion.

We conduct two experiments. In one experiment, we study the queue in the event of
steady congestion and in the other experiment we analyze the performance with respect
to the incoming traffic from multiple sources. In both experiments, C=1Mbps, B = 125
packets and propagation delay = 100 msec. ADR parameters: αpeak = 0.85, ρthresh = 0.9,
τdr = 50 msec, τar = 28 msec. For AVQ, γ = 0.9, and the other parameters are set to
their default values. Dmax = 100 msec. The simulations are run for 100 secs. In the first
experiment, we have one UDP Constant Bit Rate (CBR) source accessing the link, with
constant rate = 2 Mbps (twice the link capacity, such that there is steady congestion).
In the second experiment, we use more than one CBR source, and the sources enter the
system at different times. Each CBR source has a constant rate of twice the link capacity.

In AVQ, packets are dropped only after the virtual buffer overflows. Also, virtual
capacity (C̃) needs to be adapted according to the incoming traffic. Both these result in
a sluggish response to congestion and hence increased delays. This alongwith the unfair
nature of AVQ (Sec. 5.3), causes reduction of goodput and rejection of service to some
sessions. ADR on the other hand, uses a fraction based drop mechanism and hence has a
quicker response and well regulated queues.

In the first experiment, a CBR source that has a rate twice the link capacity, enters
the system at time t = 0. We can observe from Fig. 4, that AVQ lets the queues build to
a huge value before starting to react to congestion. Since arrival rate is greater than link
capacity, ADR immediately recognises the congestion due to its AR control and starts
throttling the traffic. This can be observed from smaller ADR queues of Fig. 4.

The next experiment demonstrates ADR’s robustness with respect to the load on the
system and how the traffic is distributed. Performance is studied for one CBR source, 2
CBR sources entering at t=0 and 15 sec, 3 CBR sources entering at t = 0, 5, 10 sec and
for 3 CBR sources entering at t = 0, 15, 30 sec. Detailed results are available in a longer
version of this paper. In the case of AVQ with two sources, only one of the sessions gets

served, where as both the sessions get served equally in the case of ADR. We also observe
a similar behaviour in AVQ with 3 sessions spaced at 5 sec. Here only one session gets
served. With 3 sessions separated by 15 sec, only two sessions get served. This unfairness
in AVQ is noted for the case of C=10 Mbps also. Whereas with ADR, all the sessions
get served equally for both C=1Mbps and C=10 Mbps. We also evaluated the above
experiment for ρthresh, γ = 0.7 and 0.8 with different values of αpeak and observed that
ADR is still very fair in its allocation whereas AVQ still shows the unfairness.

In [9] we discuss how to tune ADR and choose the parameter values. We also show that
ADR’s performance is independent of buffer size and how AVQ and RED’s performance
get affected by buffer size. A typical network is likely to experience sudden bursts of
traffic. In [9], we present results to show that ADR reacts quickly to such bursts and
regulates traffic on the link such that the link utilization and average goodput remain
high without increasing the delay.

6. Conclusions and Future Work

In this paper, we proposed a robust AQM scheme, ADR, that uses a combination of
acceptance and departure rate measures to control link congestion. Using simulations,
we demonstrated the robustness of ADR with varying network parameters including link
capacity and network load. Potential future extensions to our work include performance
evaluation for complex network topologies and multi-class traffic scenarios. We also plan
to study functions other than min (e.g. weight function) to reduce ADR’s aggressiveness.

REFERENCES

1. S. Floyd and V. Jacobson, Random Early Detection Gateways for Congestion Avoid-
ance. In IEEE/ACM Transactions on Networking, August 1993.

2. C. Hollot, V. Misra, D. Towsley and W. Gong, On Designing Improved Controllers
for AQM Routers Supporting TCP Flows. In IEEE Infocom, April 2001.

3. R. Gibbens and F. Kelly, Distributed Connection Acceptance Control for a Con-
nectionless Network. In Proceedings of the 16th International Teletraffic Congress,
Edinburgh, Scotland, June 1999.

4. S.K. Kasera, J. Pinheiro, C. Loader, M. Karaul, A. Hari and T. LaPorta, Fast and
Robust Signaling Overload Control. In Proceedings of IEEE ICNP, November 2001.

5. S. Kunniyur and R. Srikant, Analysis and Design of an Adaptive Virtual Queue
(AVQ) Algorithm for Active Queue Management. In Proceedings of ACM Sigcomm,
August 2001.

6. V. Misra, W. Gong and D. Towsley, A Fluid-based Analysis of a Network of AQM
Routers Supporting TCP Flows. In Proceedings of ACM Sigcomm, August 2000.

7. M. May, J. Bolot, C. Diot and B. Lyles Reasons not to deploy RED.
8. B. Hajek Extremal Splitting of point processes. In Mathematics of Operations Re-

search, 1985
9. G. Gopalakrishnan, S. Kasera Robust Router Congestion Control .

www.comm.csl.uiuc.edu/ggopalak/ADR, 2003

