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Abstract—Network transmission over millimeter-wave (mmW) bands has a big potential to provide orders of higher bandwidth.
However, beamforming is generally needed to compensate for the high path loss. As mmW antennas have a potentially large number
of candidate beamforming directions, to achieve high network throughput, the finding of a high gain direction between a base station
and each mobile in the mmW network may involve a large overhead if training signals are directly sent along all possible directions or
according to a large volume of codebook. Taking advantage of the block sparse characteristics of the mmW channel and coexistence
of legacy antennas, we propose a comprehensive design for more efficient beam direction finding. Different from existing compressive-
sensing-based schemes which just take a random subset of directions to measure, taking advantage of the path clustering feature of
the mmW channel, we develop a self-adaptive block sparse algorithm which can benefit from preliminary channel estimation during
each iteration of the problem solving to significantly improve the overall channel estimation accuracy thus the beam alignment gain.
We also explore two methods to exploit co-located legacy antennas to provide further guidance for transmission direction finding.
Simulation results indicate that our proposed beam alignment scheme outperforms the baseline and peer schemes in terms of the
beamforming gain and training cost. By taking advantage of the block sparse properties of mmW channel, our proposed design is able
to achieve the transmission throughput comparable with the exhaustive direction search at much lower overhead.
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1 INTRODUCTION

Millimeter-wave (mmW or mmWave) communication is
receiving tremendous interest from academia, industry
and federal agencies as a promising technique to provide
Gigabit data rate demanded by the exponential growth
of various applications in wireless networks. A key chal-
lenge of data transmissions in mmW cellular networks is
the low signal transmission range (Figure 1). According
to Frii’s Law, the high frequencies of mmW signals result
in a large isotropic path loss.

Fortunately, the small wavelength of mmW signals
also enables a large number of antenna elements to be
placed in the same small dimension (e.g. at the base
station, in the skin of a cellphone, or even within a
chip), which provides a high beamforming gain that can
compensate for the increase in the isotropic path loss.

Although the use of a large antenna array helps to
combat the severe path loss, it also makes it difficult
to coordinate network transmissions [1], [2], [3], [4].
Taking the initialization and synchronization of base
stations (BSs) and mobiles as an example, using only
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omni-directional transmissions of synchronization sig-
nals would be problematic in the mmW range: the avai-
lability of high gain antennas would bring a discrepancy
between the range at which a cell can be detected (when
signaling messages are transmitted omni-directionally
before the correct beamforming directions are found)
and the range at which reasonable data rates can be
achieved (after beamforming is applied). On the other
hand, although a beamed transmission from the base
station provides a larger footprint and allows for hig-
her data rate, it is difficult for a mobile to find the
base stations (BSs) initially without knowing the correct
beamforming directions. To address these issues, a cell
search phase is needed where the base station of a mmW
network beams towards different directions to facilitate
a mobile to find a direction that maximizes its receiving
rate.

The antenna gains of the transmitter (TX) and the
receiver (RX) have significant impacts on the trans-
mission quality. Simply transmitting signaling messages
rotationally along each direction would introduce very
high delay and cost for finding the optimal beamforming
direction with the maximum gain. An example is when
TX and RX each has 64 beam directions (in practical
mmW networks this number can be even larger), to
exhaustively measure every beam pair, 64 × 64 = 212

measurements are required. The finding of an optimal
beam direction may take long time to complete, resulting
in a large delay to establish a transmission link. As the
channel conditions are dynamic, the direction finding
may need to be performed frequently, which would sig-
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nificantly compromise the network capacity. Therefore,
it is critical to incorporate an efficient beam searching
or beam alignment scheme into the MAC design to
establish high quality mmW links at low cost.

As lower-frequency legacy radios are likely to be
deployed alongside mmW systems to strengthen wide
area signaling control and/or facilitate multi-band com-
munications, out-of-band information from legacy band
has been considered to help reduce the overhead of
establishing the mmW links [5], [6]. As the co-located
low-frequency system and mmW system share similar
environment, the spatial characteristics of low-frequency
channel and mmW channel have correlation, as confir-
med by experimental studies. This however, does not
mean the channels at different frequencies have exactly
the same characteristics. The work in [5] simply models
the channel with a single path without considering the
characteristics of mmWave channel [7], [8], [9], while aut-
hors in [6] assume paths of legacy channel and mmWave
channel have nearly-exact match. These inaccuracies will
lead to mis-alignment of mmWave beams, which will
further degrade the transmission performance in realistic
scenarios. As another source of inaccuracy, the work
in [5] exploits model-based estimation to directly infer
the transmission directions on the mmWave channel
based on measurements from the low-frequency channel,
which will make the alignment subject to performance
degradation due to difference in channels and failure
under high dynamics.

The measurement from low band can only give a
rough estimation of transmission direction. To enable
high performance transmissions, we need to align the
beams with the desired angular resolution. Instead of
exhaustively training all possible beam pairs within a
range directed by the low-band training, we are moti-
vated to further reduce the number of measurements
with compressed channel estimation. Different from the
legacy low frequency channels, the recent studies [7],
[8], [9], show that wireless mmW channels only have
a few dominant paths and the paths are often clustered,
thus the channels often present sparse characteristics.
Some initial studies [10], [11], [12], [13] have been made
to exploit the sparse feature to estimate mmW channel
with compressed sensing [14], [15], but they did not take
into account the clustering feature of transmission paths
that differentiates mmW channel from conventional low
frequency channels [16].

In this paper, we concurrently exploit legacy band
coarse direction finding and compressed channel estima-
tion to enable more accurate beam alignment between
each pair of sender and receiver at low cost. The estima-
tion of channel allows for finding the optimal fine beam
direction even when it does not fall into the best coarse
beam range of low-frequency channel. Rather than just
exploiting the basic compressed sensing technique [7],
[8], [9], [17], [18] based on the low rank properties
of mmW channel, we propose two major techniques
to significantly reduce the training overhead, improve
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Fig. 1. Millimeter-wave cellular network.

channel estimation performance and increase the quality
of beam alignment: 1) We develop a self-adaptive block
sparse reconstruction algorithm which learns from the
iterative channel estimation results to further improve
the estimation efficiency; and 2) We design a beam alig-
nment algorithm which concurrently exploits the coarse
channel information from low-frequency antennas and
block-based mmW channel estimation to enable high-
throughput beamed transmissions. Our design intends
to be flexible. The block-based channel estimation can
work either stand-alone or jointly with out-of-band as-
sistance.

The rest of this paper is organized as follows. After
briefly reviewing related work in Section 2, we pre-
sent compressed sensing preliminaries in Section 3. We
then describe the system model and our motivation
in Section 4. Block sparse mmW channel estimation
is introduced in Section 5, followed by Section 6 that
presents our channel reconstruction algorithm and beam
alignment design. We analyze the simulation results in
Section 7. The paper concludes in Section 8.

2 RELATED WORK

In millimeter-wave (mmW or mmWave) networks, a
high beamforming gain is needed to compensate for the
large path loss and occlusions in the mmW spectrum
range [19]. This requires a joint beamforming (BF)
scheme in the MAC protocol to select the best transmis-
sion and reception beam directions according to a metric
such as signal-to-noise ratio (SNR) [20].

IEEE 802.15.3c [21] and IEEE 802.11ad [22] standards
are proposed to enable operation in the 60GHz mm-
Wave band. Multi-level codebook is suggested in both
protocols to facilitate the training of beams at hierar-
chical resolutions of beamwidth. Some other codebook-
based beamforming methods are also proposed in [23],
[24], where the beam training overhead highly relies
on the codebook design thus search space. Although
codebook-based schemes reduce the beam search space,
the overhead for uplink feedback of beam conditions
and selection would be big when the beamwidth is
small and there are a large number of directions to
search. Another drawback of multi-resolution codebook
schemes is that the optimal fine beam direction may be
filtered out during high-level coarse direction estimation,
as fine beam direction may not exactly align with coarse
beam direction. There are also no discussions in existing
schemes on how to reduce the large overhead when the
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codebook volume is huge, which is often the case in
mmW band.

Some existing works attempt to reduce the beamfor-
ming overhead by intelligently reducing the search cope
(e.g. select only part of the candidate beams to train).
In [25], Hur et al. propose the use of outdoor millimeter
wave communications for backhaul networking to con-
nect cells with the core network and mobile access within
a cell between the base station and mobiles. To over-
come the outdoor impairments found in millimeter wave
propagation, this paper studies beamforming using large
arrays. The authors propose an efficient beam alignment
technique using adaptive subspace sampling and hier-
archical beam codebooks. To perform initial directional
cell search in mmW cellular networks, the mobile and
base station must jointly search over a potentially large
angular directional space to locate a suitable path to
initiate communication. Barati et al. in [26] propose a
directional cell search procedure where a base station
periodically transmits synchronization signals in rand-
omly varying directions, and derive detectors for both
analog beamforming and digital beamforming. An effi-
cient beam switching technique for the emerging 60GHz
wireless personal area networks is proposed in [27],
where Li et al. formulate a global optimization problem
to look for the best beam-pair for data transmissions
and adopt a numerical approach to implement the beam
searching strategy with divide and conquer used in small
regions. Rather than just reducing the beam search space,
we also take advantage of the mmW channel feature and
the information of trained beams to estimate the mmW
channel and guide for better beam selection.

Channel estimation for mmW beamforming is inves-
tigated in [28], where Singh et al. investigate the fea-
sibility of employing multiple antenna arrays to obtain
diversity/multiplexing gains in mmW systems. The aut-
hors exploit the sparse multipath property of the mmW
channel and propose to reduce the complexity involved
in jointly optimizing the beamforming directions across
multiple arrays by focusing on a small set of candidate
directions. Differently in our work, we not only take
advantage of the sparsity of mmW channel, but also
employ a useful tool, compressed sensing, to fully extract
useful information from mmW channels. In [29], Olfat
et al. propose to estimate the channel for a frequency-
selective millimeter-wave communication system with a
minimum number of pilots. A learning-based scheme
is taken to find the optimal precoding and combining
vectors for transmitting and receiving pilot signals in the
face of channel dynamics, where the learning requires
the previous knowledge of the channel.

Compressed sensing [14], [15] (CS) has been exploited
for channel estimation in [10], [11], [12], [13], [30].
Although these studies exploit the sparse feature of
mmW channel, they did not consider the clustering
feature of transmission paths, and the path clustering
is a distinct characteristic of mmW channel compared
to conventional low-frequency channels [16]. In this

work, rather than just exploiting the basic low rank
properties [7], [8], [9] of the mmW channel based on
compressed sensing techniques, we propose a block-
sparse channel estimation algorithm that takes full ad-
vantage of the path clustering to significantly improve
the channel estimation efficiency. In addition, we also
investigate the possibility of exploiting the information
from co-located legacy antennas (e.g. from 3G cellular
networks) to further improve the performances of mmW
systems. One major difference of our design from ot-
her methodologies on out-of-band assistance for mmW
networks [5], [6] is that we take the legacy band infor-
mation as an optional procedure that can jointly work
with mmW channel estimation to enable low cost and
high accuracy alignment at the desired beam resolution.
These literature studies usually rely on the out-of-band
assistance to operate stand-alone and have strong as-
sumptions on the mmWave channel, such as having only
single dominating path [5] or having paths matched with
those on the legacy channel almost perfectly [6]. These
assumptions make the beam alignment more prone to
inaccuracy in practical scenarios. In addition, model-
based estimation [6] based on coarse measurements from
low frequency band can not well capture the channel dy-
namics at mmWave band to find the fine beam directions
with the highest gains.

User motion can make the beamforming issue more
challenging in mmW networks. Based on the observation
that 60 GHz channel profiles at nearby locations are
highly-correlated, Zhou et al. in [31] propose a beam-
forecast scheme to reconstruct the channel profile and
predict new optimal beams. The beam prediction during
mobility case is built upon the initial channel estima-
tion and direction finding, and channel scanning will
be called for again to realign beams as the prediction
errors accumulate over time. Complementary to the
work in [31], we propose an efficient scheme to find the
optimal beam direction without pre-channel knowledge.

To summarize our differences from existing literature,
in this work, we propose to design an intelligent and
efficient beam alignment scheme to enable the quick fin-
ding of a good transmission direction between a BS and
a mobile in mmW cellular networks. Rather than simply
and exhaustively measuring all possible beam directions
or searching in a large codebook, we can measure a
small portion of the beam pairs to achieve comparable
performance, thus saving resources like time and power.
Specifically, to enable beam alignment with lower trai-
ning overhead and higher beamforming performances,
we propose an efficient CS-based mmW channel estima-
tion methodology that takes full advantage of the block
sparse features (due to path clustering) of mmW chan-
nel, and the channel estimated serves as a guidance to
discover the optimal beam pairs. We further improve the
beam alignment performance by gathering information
from co-located legacy antennas. Some important issues
we consider include: (a) Why does a mmW channel have
block-sparse properties? (b) How to take advantage of
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the block-sparse properties of mmW channel to perform
more efficient channel estimation in order to guide the
beam alignment? (c) How to comprehensively design
beam alignment schemes to achieve a better network
performances? (d) How to exploit the information from
legacy antennas?

To answer these questions, we’ll first present the sy-
stem model in the next section.

3 COMPRESSED SENSING PRELIMINARIES

In this work, we will exploit the use of the emerging
compressed sensing (CS) technique for more efficient
beam alignment in mmWave cellular networks. We first
introduce some backgrounds on compressed sensing.

The main idea of compressed sensing (CS) is to take
advantage of the sparsity within the signal to signi-
ficantly reduce the sampling rate. An N -dimensional
signal d is considered to be K-sparse in a domain (also
called a dictionary matrix) Ψ ∈ CN×N if there exists an
N -dimensional vector x ∈ RN×1 so that d = Ψx and
x has at most K non-zero entries (K � N ). The CS
theory suggests that d can be fully reconstructed from
a sufficient number M (M ≥ cK log

(
N
K

)
, where c is a

fairly small constant) of linear measurements.
If one performs linear measurements of the signal d

with a measurement matrix Φ, then one can consider
the obtained linear measurements y, possibly affected
by noise as:

y = ΦΨx + n = Ax + n, (1)

where the measurements are y ∈ RM×1, the sparse vec-
tor x ∈ RN×1, the additive noise n ∈ RM×1, the sensing
matrix A ∈ RM×N , and M < N . A is essentially the
product of the measurement matrix and the dictionary
matrix: A = ΦΨ, where Φ ∈ CM×N , Ψ ∈ CN×N . We
notice that different from the notations above, a small
number existing works call Φ the sensing matrix. In
order to avoid inconsistency and misunderstanding, we
will consistently regard Φ as the measurement matrix,
and A = ΦΨ the sensing matrix.

Obviously, the number of measurements is smaller
than the number of variables in Equation 1, and it
indicates this is an under-determined system. Donoho,
Candes, Romberg, and Tao show in [32] that the under-
determined equation system can be solved as:

min ‖x‖l1 (2)
s.t. ‖Φd− y‖l2 ≤ ε (3)

d = Ψx (4)

where the parameter ε is the bound of the error caused
by noise n, lp means the lp-norm (p = 1, 2, ...). The
solution can also be expressed as:

x̂ = argmin
u: ‖y−Au‖l2≤ε

‖u‖l1 . (5)

The signal d = Ψx can then be recovered as d̂ = Ψx̂.

DAC ADC

TX RX

Beamforming

selection v 
Beamforming

selection u  

s y2

1 1

2

M N

noise

noise

noise

 H 
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The form of the optimization problem in (5) is known
as LASSO [33] or BPDN [34] and also some other varia-
tions such as the Dantzig selector [35]. In addition to the
convex optimization approach, such as l1 minimization
[36], to reconstruction in compressed sensing, there exist
several iterative/greedy algorithms such as IHT [37] and
Cosamp [38]. Such convex or greedy approaches are
generally called reconstruction algorithms.

4 SYSTEM MODEL AND MOTIVATION

In order to perform the beam alignment in mmWave
cellular networks, a challenge is that the base stations
and mobiles need to search for an optimal transmission
direction for each transmission pair over a large number
of possible beam directions. To frame the problem and
the design of our beam-alignment algorithm, we first
introduce the basic system model considered in this
paper.

4.1 Framework Overview

As shown in Figure 3, our proposed framework consists
of two major components: (1) Compressed Beam Align-
ment and (2) Legacy Band Assistance. The two compo-
nents can jointly work together. Compressed beam alig-
nment can operate stand-alone if there is no assistance
from the legacy band. Our low-cost beam alignment is
achieved by reducing the beam search overhead with
Compressed Beam Selection and Training, and guided
through channel information obtained from Block-Sparse
Channel Estimation. Different from the literature work,
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block sparsity of the mmW channel is exploited in
the modeling and reconstruction of the channel, which
improves the accuracy of channel estimation and thus
enhances the performance of beam alignment. The im-
pacts of Legacy Band Assistance on Compressed Beam
Alignment lie in two aspects: (a) beam selection range
suggestion and (b) beam range quality suggestion, where
the former helps narrow the angular range of beam se-
arch thus reducing the overhead and the channel recon-
struction in the latter takes advantage of the suggested
beam range qualities to achieve higher accuracy.

4.2 Notations
For a matrix A, we use AT to denote its transpose.
A∗, AH , A−1 are its conjugate, Hermitian transpose
(conjugate transpose) and inverse, respectively. For a
vector a, diag(a) is a diagonal matrix whose diagonal
elements are entries from a. AB is the matrix product
of A and B. A ◦B is the Hadamard product (element-
wise product) of A and B. A ⊗ B is the Kronecker
product of A and B. A ∗ B is the Khatri-Rao product
of A and B. diag(a) is the diagonal matrix of vector a
whose diagonal elements of diag(a) are entries from a.
vec(A) is vectorized vector of matrix A, and the vec
operator creates a column vector from a matrix A by
stacking the column vectors of A = [a1,a2, ...,an] below
one another.

4.3 Channel Model and Downlink Transmission
We will now explain the model using the downlink
transmission as an example, where the RX denotes the
mobile and the TX means the base station (BS). For
a sender and receiver pair, assume there are Nrx RX
antennas and Ntx TX antennas.

The signal transmitted from TX is represented as

xNtx×1 = uNtx×1 ◦ sNtx×1 (6)

where u is the BF weight vector for the TX antennas
and s is the training signal sent from the TX antennas.
The multiplication ◦ means the operation between the
vectors is element-wise.

The signal received by the RX antennas before the
receiver beamforming is

yNrx×1 = HNrx×NtxxNtx×1 + eNrx×1 (7)

where H is the channel matrix (its element Hn,m is the
channel coefficient from the TX antenna m to the RX
antenna n), e is AWGN at the RX antennas.

In [16], statistical models of mmW channels are
derived from real-world measurements at 28 and 73
GHz in New York City (NYC). The mmW channel is
found to be sparse and can be modeled as a small
number of clusters each consisting of a small number
of subpaths. For ease of presentation, we consider only
the azimuth and neglect the elevation in this paper,
implying that all scattering happens in the azimuth and
that the TX and RX conduct the horizontal beamforming

only. Implementations that facilitate both horizontal and
vertical beamforming can be built on top of our design.
While our proposed design can be used for any kind
of antenna arrays, without loss of generality, we adopt
uniform linear arrays (ULAs) in this work. Assuming a
mmW channel is composed of K clusters within each
there are L subpaths, then the mmW channel matrix we
consider can be expressed as:

H =

K∑

k=1

L∑

`=1

ak` ·Drx(θ
rx
k` ) ·DH

tx(θ
tx
k`), (8)

where ak` is the complex path gain for a path ` (` =
1, 2, ..., L) in the cluster k (k = 1, 2, ...,K), with k` jointly
corresponding to the `-th sub-path in the k-th cluster. For
the sake of consistency, in this work, we use the terms
path and sub-path interchangeably. θtxk` and θrxk` denote
the angle of departure (AoD) and the angle of arrival
(AoA) for the corresponding path, which throughout this
paper indicates the horizontal scattering.

Dtx(θ
tx
k`), the TX antenna’s directional response co-

lumn vector (Ntx × 1 dimension) for the sub-path at the
angle of departure θtxk`, is expressed as:

Dtx(θ
tx
k`)

=
[
D(1)(θtxk`), D

(2)(θtxk`), ..., D
(m)(θtxk`), ..., D

(Ntx)(θtxk`)
]

=
[
1, ej·1·w

tx
k` , ej·2·w

tx
k` , ..., ej·(Ntx−1)·wtx

k`

]T
,

(9)

where D(m)(θtxk`) is from antenna basics, the spatial
frequency wtxk` can be written in terms of AoDs, as
wtxk` = 2πdt

λ sin θtxk`. dt is the distances between two
adjacent antenna elements in the ULAs in the TX. λ = c

f
is wavelength in meters. f is the carrier frequency of the
signal in Hz, c is the speed of light (3× 108 meters/sec).

Similarly, Drx(θ
rx
k` ), the RX antenna’s directional re-

sponse column vector (Nrx × 1 dimension) for the path
at an angle of arrival θrxk` , is expressed as

Drx(θ
rx
k` )

=
[
D(1)(θrxk` ), D

(2)(θrxk` ), ..., D
(n)(θtxk`), ..., D

(Nrx)(θtxk`)
]

=
[
1, ej·1·w

rx
k` , ej·2·w

rx
k` , ..., ej·(Nrx−1)·wrx

k`

]T
,

(10)

where D(n)(θtxk`) is from antenna basics, the spatial fre-
quency wrxk` can be written in terms of AoAs, as wrxk` =
2πdr
λ sin θrxk` . dr is the distances between two adjacent

antenna elements in the ULAs in the RX.
We now use a concatenated column vector a (1×KL)

to denote the complex path gains. Then

a = [a11, a12, ..., a1L︸ ︷︷ ︸
cluster 1

, a21, a22, ..., a2L︸ ︷︷ ︸
cluster 2

, ..., aK1, aK2, ..., aKL︸ ︷︷ ︸
cluster K

]T .

(11)

Note a is concatenated in a manner that the first L
elements are for the first cluster, and the next L elements
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are for the second cluster and so on, and there are
KL elements in a. The major task of mmW channel
estimation in our work is to estimate a efficiently.

In order to achieve a high receiving gain, a beamfor-
ming vector will be applied at RX. The beamforming
output at the RX antenna array will be

r = vHy + e = vHHu ◦ s + e, (12)

where e is the received noise at the RX. The beamforming
process can be presented as in the Figure 2.

We have introduced the model for the downlink trans-
mission, where TX is BS and RX is MS. The uplink
communication can be easily derived according to our
presentation above by making MS the TX and BS the
RX.

4.4 Motivation and Problem
A grand challenge in mmW communications is to

efficiently find the optimal beamforming directions for
data transmissions in the mmW networks. This requires
determining the optimal weights for both the transmitter
and the receiver of each transmission pair in the mmW
network. To compensate for the path loss in the high
frequency mmWave channel, TX and RX potentially need
a large number of antennas to achieve a high beamfor-
ming gain, which unfortunately also greatly expands the
search space of TX and RX antenna directions.

As an example, when TX and RX each has 64 beam
directions (in practical mmW networks, this number can
be even larger), to exhaustively measure every beam
pair, 64 × 64 = 212 measurements are required. Simply
transmitting signaling messages rotationally along each
direction as suggested by the existing standard [21]
would introduce very high delay and cost for finding
the optimal beamforming direction with the maximum
gain. Therefore, an essentially important question for
mmW band beamforming is: how to reduce the search
space of TX and RX beam directions in mmW cellular
networks while ensuring the high beamforming gain
thus transmission rate?

Existing work such as [10], [11], [12], [13] applied
compressed sensing (CS) to alleviate this training over-
head by randomly training a small subset of beam pairs
and then estimating the mmW channel to facilitate beam
alignment. However, these studies did not fully exploit
the path clustering effect of mmW channels and the
resulted block sparsity of the gain coefficients of mmW
paths.

Moreover, the small angular spread in the mmW chan-
nel indicates that if some directions in the low-frequency
channel are dominant, it is also likely that an overlapped
mmW channel has a good gain in surrounding angular
space. Although transmission paths in the mmW chan-
nel and the low-frequency channel may not be exactly
identical, the information in the low-frequency channel
can give a rough information on which angular range of
directions is more likely to have better path gains in the

mmW channel. In the existence of some co-located legacy
antennas (e.g. from 3G cellular networks) around mmW
antennas, more efficient beam alignment schemes can be
designed by taking advantage of the information from
legacy band. Different from the literature on CS-based
mmW channel estimation and beamforming, to support
more efficient beam alignment, we aim to answer the
following questions in this work:

(a) How to efficiently exploit the block sparse feature
of mmW channels to better formulate the mmW channel
estimation problem?

(b) How to develop an efficient block sparse CS re-
construction algorithm to achieve more accurate mmW
channel estimation?

(c) How can the information from co-located legacy
antennas provide more useful guidance for mmW beam
alignment?

In response of (a), Section 5 presents a block-sparsity-
based mmW channel estimation problem. The solutions
for (b) and (c) are presented in Section 6. We propose
a self-adaptive weighted algorithm to iteratively learn
the weights of channel blocks to increase the CS recon-
struction performance. We also develop two methodo-
logies which exploit legacy antennas to facilitate beam
alignment, one aiming to help select better beams to
be trained and the other aiming to further improve the
reconstruction performance of mmW channels.
5 SPARSE MMWAVE CHANNEL ESTIMATION
For each pair of transmitter and receiver in the mmW
network, in order to find the best transmission/reception
direction, there is a need to estimate the channel between
them. This is generally facilitated with the sending of
the training signals from the transmitter to the receiver.
However, if the channel measurement is performed in a
straight-forward way, it would require the transmissions
along a large number of directions to find more accurate
channel information. In this section, we first discuss the
channel features, and then explain how the emerging
compressed sensing technique can be applied to reduce
the channel measurement overhead.

5.1 Sparse Channel Estimation
From matrix basics we know that the channel matrix H
from (8) can be equivalently written as follows:

H = DR diag(a)DH
T (13)

where diag(a) is a diagonal matrix whose diagonal
elements are those from a in order. The matrices DT

and DR contain the TX and RX array response vectors,
respectively, in the following form:

DT = [Dtx(θ
tx
11),Dtx(θ

tx
12), ...,Dtx(θ

tx
1L),

Dtx(θ
tx
21), ...,Dtx(θ

tx
2L), ...,

Dtx(θ
tx
K1), ...,Dtx(θ

tx
KL)],

(14)

DR = [Drx(θ
rx
11 ),Drx(θ

rx
12 ), ...,Drx(θ

rx
1L),

Drx(θ
rx
21 ), ...,Drx(θ

rx
2L), ...,

Drx(θ
rx
K1), ...,Drx(θ

rx
KL)],

(15)
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The dimensions of matrices DR, diag(a) and DT are
Nrx ×KL, KL×KL and Ntx ×KL, respectively, which
corresponds to the fact that H both (8) and (13) is an
Nrx ×Ntx matrix.

If we take measurements by transmitting the training
signals along P directions and letting the receiver to
estimate the signals from Q directions, which is achieved
through the use of P TX beamforming (BF) vectors (up,
p = 1, 2, ..., P ) and Q RX beamforming vectors (vq ,
q = 1, 2, ..., Q), we have the matrix form

RQ×P = VHHU ◦ S + E, (16)

where an element in the location (q, p) in R denotes the
BF output when TX and RX use beamforming weights up
and vq , respectively, S and E are respectively the training
signals and noise in the matrix form, and

VNrx×Q = [v1,v2, ...,vq, ...,vQ], (17)

UNtx×P = [u1,u2, ...,up, ...,uP ]. (18)

With the training signals transmitted at the power A,
we have

RQ×P =
√
AVHHU + E (19)

We can vectorize R,

r = vec(R) =
√
Avec(VHHU) + vec(E)

Theorem 1 [39]
==========

√
A(UT ⊗VH)vec(H) + vec(E)

Proposition 1 [40]
============

√
A(UT ⊗VH)Ψa + vec(E)

= ΦΨa + vec(E) = Aa + vec(E),
(20)

where Ψ = D∗T ∗DR (Khatri-Rao product), Φ =
√
A(UT⊗

VH) (Kronecker product) is the measurement matrix
(determined by the TX and RX beamforming training
directions), Ψ is the basis matrix that will be introduced
in Proposition 1. In the derivation, we have used The-
orem 1 [39] and Proposition 1 [40]. For the integrity of
presentation, we still provide the proofs below.

Theorem 1. vec(AXB) = (BT ⊗A)vec(X).

Proof. Let B = [b1,b2, ...,bn] (of size m × n) and X =
[x1,x2, ...,xm]. Then, the k-th column of AXB is

(AXB):,k = AXbk = A

m∑

i=1

xibi,k

= [b1,kA, b2,kA, ..., bm,kA] [x,x2, ...,xm]
T

︸ ︷︷ ︸
vec(X)

= ([b1,k, b2,k, ..., bm,k]⊗A)vec(X)

(21)

Stacking the columns together

vec(AXB) = [(AXB):,1,AXB):,2, ..,AXB):,n, ]
T

=
[
bT1 ⊗A,bT2 ⊗A, ...,bTn ⊗A

]T
vec(X)

= (BT ⊗A)vec(X)
(22)

�

Proposition 1. vec(H) = Ψa, where Ψ = D∗R∗DT (Khatri-
Rao product).

Proof. From (13) we know we can estimate channel as
follows:

H = DR diag(a)DH
T (23)

From Theorem 1 we know,

vec(H) = (D∗T ⊗DR)vec(diag(a))
= (D∗T ⊗DR)Ja

(a)
=== (D∗T ∗DR)a = Ψa

(24)

where Ψ = D∗T ∗ DR (Khatri-Rao product) defines a
basis domain where we can map the channel to. J is
a K2L2 × KL selection matrix, which selects diagnoal
elements from diag(a) to form a. (a) is derived from the
relationship between Kronecker product and Khatri-Rao
product.

�

To facilitate the channel estimation, we can discretize
the channel using an angular grid with the size of Gtx×
Grx. Then the spatial frequencies wtxk` (related to AoDs)
and wrxk` (related to AoAs) in (9) and (10) can be taken
from the uniform grid of Gtx and Grx points:

DT →




1 1 · · · 1

1 ej2π
1

Gtx · · · ej2π
(Gtx−1)

Gtx

...
... · · ·

...

1 ej2π
1

Gtx
(Ntx−1) · · · ej2π

(Gtx−1)
Gtx

(Ntx−1)



.

(25)

DR →




1 1 · · · 1

1 ej2π
1

Grx · · · ej2π
(Grx−1)

Grx

...
... · · ·

...

1 ej2π
1

Grx
(Nrx−1) · · · ej2π

(Grx−1)
Grx

(Nrx−1)



.

(26)
From Equation 24, the channel can be estimated as a

vector of the dimension GtxGrx × 1 (vec(H)). In order
to differentiate the estimated channel and the actual
channel a, we refer the estimated a as x. For ease
of presentation, we will also refer the channel as the
estimated path gains of x.

Replacing the vector a in the equation 20 with x, we
have the compressed sensing form r = Ax + e, where
r is the measurement results, A is the sensing matrix,
x is a sparse vector to be reconstructed, and e is the
noise. After finding a with the estimation of x, H can be
estimated from (23).
Gtx and Grx determine the angular discretization

levels of the channel, which impact the accuracy of
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estimating the angle of departure (AoD) and angle of
arrival(AoA) (whose values are continuous in reality on
each transmission path). They also impact the dimensi-
ons of the basis domain (or the size of the reconstruction
dictionary) in the channel reconstruction. The larger
the values of Gtx and Grx, the finer the resolution of
the channel is discretized at, the more computational
complexity for the channel reconstruction, and the closer
the estimated AoD grid and AoA grid are to their actual
angles. Gtx and Grx can be chosen according to the
desired estimation accuracy, conditions of the equipment
such as antenna hardware precision and the complexity
in the channel estimation when the dimension is large.
If Gtx = Ntx and Grx = Nrx, we have

Ψ = IDFT ∗Ntx
∗ IDFTNrx

, (27)

where IDFTN denotes an N -dimensional IDFT matrix.

5.2 Sparse Virtual Channel Recovery

The sparseness of mmW channel can be exploited to
reduce the number of beamforming pairs to train. To
enable the optimal beam alignment, the virtual mmW
channel can be more efficiently reconstructed with the
training signals sent over a small number of directions.
From (20), we know x (whose elements are the path gain
coefficients being vectorized) can be recovered using CS
theory, with the following CS components:

1) Basis matrix: Ψ = D∗R ∗DT (Khatri-Rao product);
2) Measurement matrix: Φ =

√
A(UT ⊗VH) (Kronec-

ker product);
3) Sensing matrix: A = ΦΨ =

√
A(UT ⊗VH)D∗R ∗DT ;

The channel can be estimated by solving the following
optimization problem from Equation (20):

min ‖x‖1, (28)
subject to r = Ax + e, (29)

where ‖·‖1 denotes the `1-norm, a is the noise.
To be consistent with the compressed sensing no-

tations introduced earlier, we now use the following
notations:

min ‖x‖1, (30)
subject to y = Ax + n, (31)

where ‖·‖1 denotes the `1-norm. Note the measurements
r is denoted as y now.

After recovering x, the virtual channel H can be esti-
mated as in Equation (13). Existing recovery algorithms
of the compressed sensing, such as l1 minimization
[36] and Cosamp [38], can be applied to recover x.
However, from the compressed sensing theory, we know
that directly recovering vector x from PQ number of
measurements in y may not be accurate if PQ is not big
enough.

6 BLOCK SPARSE CHANNEL RECON-
STRUCTION AND BEAM-ALIGNMENT DESIGN

In the basic channel model we consider, there are K
clusters for transmission paths, each containing L paths.
Kd out of K clusters are dominating, i.e., concentrating
most of the signal power. The path clustering brings
the block sparsity characteristics to the coefficient vector
a in (24) for the gain of the path estimated. That is,
not only that a is sparse with only a small fraction
of elements non-zero, but also the non-zero elements
are clustered. In simulations, we adopt the statistical
mmW channel model developed based on real-world
measurements in New York City [16] and also select the
channel parameters based on empirical values suggested
by the NYC model.

In order to improve the recovery performance, we
propose to exploit the block property of the sparse vector
x in the reconstruction problem in (30), which translates
to the path gain vector a in Section 5, with the following
design goals:

1) Reducing the number of measurements required
for the recovery, i.e., reducing the number of trai-
ning beam pairs ( P and Q in (16));

2) Improving the channel reconstruction accuracy for
a given number of measurements.

6.1 Block Sparse Property of MmW Channel

In CS-based channel estimation, the vector of the path
gain a of mmW channel is what we are most interested
in, where only a small fraction of the elements are non-
zero. One of the effects of the path clustering feature
of mmW channels is that it results in assembled non-
zero elements in the path gain vector (Observation 1)
and this additional block sparsity information can be
further exploited in CS reconstruction to improve the
reconstruction performance.

Observation 1. The vector of the path gain a of mmW
channel presents block sparsity due to the path clustering.

Remarks: In [16], spatial statistical models of mmW
channels are derived from real-world measurements at
28 and 73 GHz in New York City. It indicates that
in micro-cell level, receivers in typical measurement
locations experience a small number of path clusters,
two to three being dominant. Moreover, within each
path cluster, the angular spread is relatively small. The
covariance matrix of the mmW channel is low-rank in
the sense that the paths are clustering into relatively
small and narrow beam clusters. The authors in [16]
also studied the distribution of energy fraction in spatial
directions and the results show that for 28GHz NYC
channel, 3 dimensions of spatial directions can capture
95% of the channel energy for a 4 × 4 uniform planar
array (which has a dimension of 16).
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6.2 Block-Sparse Channel State Reconstruction
In our framework, the channel states to be recovered by
CS (path gains) exhibit the characteristics of the block
sparsity, as shown in Figure 4, which motivates us to
use the block sparse properties to help reconstruct the
channel signal for better beam-alignment.

6.2.1 Weighted Recovery
To exploit the block structure, instead of solving an
`1 optimization problem in (2), we instead solve the
following problem:

min
n∑

i=1

‖Xi‖2

subject to Ax = y,x = [X1,X2, ...,Xn], (32)

where Xi = x(i−1)d+1:id, , as shown in Figure 4.
In [41], an algorithm has been proposed to solve

the problem in (32). Instead of equally treating all the
channel blocks, we would like to take advantage of the
channel estimation and learning after each iteration of
problem solving to further increase the reconstruction
quality. We give a block with higher channel estimated
energy a lower weight so its recovered gain value is less
restricted. We solve the following problem in our design:

min
n∑

i=1

wi‖Xi‖2

subject to Ax = y,x = [X1,X2, ...,Xn], (33)

where wi is a weighted factor for block Xi.

6.2.2 Channel State Estimation with Co-located Legacy
Antennas
A major challenge in estimating the channels of the
mmW band is its narrow angular spread of signal and
thus the need of performing the channel measurements
in a large number of directions. At the BS end and
mobile end of mmW cellular networks, it is likely that
there are some co-located legacy antennas (e.g. from
3G cellular networks), which operate in much lower-
frequency band than mmW, e.g., L Band: 1 to 2 GHz
or Ultra High Frequency: 300MHz to 3GHz (for ease
of presentation we will refer to it interchangeably as
low-frequency band, legacy band or low-band). Since
the number of antennas in the legacy band is typically
small, these co-located TX and RX antennas can perform
the direction search in a low cost fashion, i.e., even an
exhaustive search will not bring unbearable overhead.
As the mmW interface and co-located legacy interface
share similar spatial environment, which leads to strong
correlation between the mmW channel and the legacy
channel, it would be helpful if we could exploit the
channel information from the low-frequency channels
to guide more intelligent beam direction finding in the
mmW band.

Due to the small angular spread in the mmW channel,
if some clusters (blocks in sparsity) in the low-band

x1

xid−d+1
xid−d+2

xid

xnd−d+2

Xi

x2

xd

xnd−d+1

Xn

xnd

X1

y

...

...

...

}
}
}

...

...

A1 AnAi

A1 — columns 1, 2, . . . , d

Ai — columns id− d+ 1, id− d+ 2, . . . , id

An — columns nd− d+ 1, nd− d+ 2, . . . , nd

= . . .

y =Ax =∑n
i=1AiXi

. . .

Fig. 4. Block sparse model.

are dominant, it is likely that an overlapped mmW
channel has a good channel gain. Although signal paths
in the mmW channel and the low-frequency channel
may not be exactly the same, the information on the
strong channel in the low-frequency band can give a
rough information on which antenna direction range is
more likely to have better antenna gains in the mmW
channel. To provide a guide for more efficient mmW
band beam training and channel estimation, we pro-
pose to exploit the legacy band information with two
techniques: (1) legacy-band-assisted beam selection and
(2) legacy-band-assisted channel reconstruction.

Legacy-band-assisted beam selection: We propose to use
the low-band information to efficiently compress the
initial range of beam selection for beamforming training.
From the low-frequency channel information, one can
easily find the best low-band direction (beam) pair.
For mmW band, instead of training within the whole
angular range at high cost, we propose to only randomly
select beams within the best direction range detected
in low-band training. This will significantly reduce the
training overhead and speed up the training process.
On the other hand, given the same number of beam
directions to train, the beams selected with the guidance
of low-band results are likely to have better quality than
those randomly selected from the whole angular space,
thus improving the channel estimation and beamforming
performance.

After selected beams are trained, channel recon-
struction is called for to estimate the channel, where
legacy band information can be further exploited.

Legacy-band-assisted channel reconstruction: We propose
to use the direction-range quality from the low-band
as the initial weights wi in our proposed beam align-
ment algorithm, and order the directions by their beam
alignment gains. If a low-band direction overlapped by
a mmW direction is detected to have a good channel
quality, the weight of the corresponding mmW channel
block is set to a smaller value in Problem (33).

Our weighted-block-sparse recovery algorithm is fa-
cilitated with the low-band information, as shown in
Algorithm 1. The main idea is to assign a weight to
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each block and update the weights through iteratively
solving (33). For the blocks that are not likely to contain
many non-zero elements, weights are increased, so that
the values of these blocks can be reduced when solving
the minimization problem in (33). For the blocks that
are likely to be non-zero, weights are reduced to relax
those blocks. Our algorithm enhances the channel recon-
struction performance from two aspects: (a) error/noise
reduction by disregarding data from likely-zero blocks
as in Algorithm 1; (b) accuracy improvement by upda-
ting block weights through each iteration to concentrate
the residual information to the likely-nonzero blocks to
increase the signal recovery quality.

From Algorithm 1 we can see that it learns from the
iterations and updates the weights by self-adaptation,
and this contributes to the fast convergence of the algo-
rithms. The computational complexity of Algorithm 1 is
O(n3), where n = N/d is the block sparsity level (the
number of blocks), d is the size of a block, and N is
the size of path gain vector x that we try to recover in
this algorithm. In the conventional CS recovery based
on min-`1 [36], a typical convex optimization approach
without considering block effect will incur a computa-
tional complexity of O(N3) >> O(n3). Obviously, our
block-based CS recovery has much lower complexity,
thus can be completed with much shorter time. Our
performance studies also demonstrate that our method
can better capture the clustering features of mmWave
channels to achieve higher recovery accuracy.

6.3 Beam Alignment after Channel Estimation

Optimizing the beamforming gain is a critical goal of
beam alignment, since a larger beamforming gain can
translate to larger receiving power and better signal-to-
noise ratio thus achievable transmission rate. Assume
there are I and J possible directions at TX and RX, re-
spectively, after obtaining the channel estimation result,
the optimal beam pair (uopt,vopt) can be determined
from Algorithm 2. The optimal transmission and recep-
tion directions are the ones that can maximize the beam-
forming gain. Instead of blind or purely random beam
training, the estimated channel information is applied
in our scheme to guide the finding of the optimal beam
direction.

7 SIMULATIONS AND RESULTS

In this section, we will perform simulations to show the
effectiveness and efficiency of the proposed design.

We will compare the performances of the following
schemes:
• CODEBOOK: Multi-resolution codebook-based

beam searching as in IEEE 802.11ad [22] without
CS channel reconstruction.

• CS: Use a greedy CS reconstruction algorithm such
as [38] without block-sparsity to recover the chan-
nel.

Algorithm 1 Reconstruction of block sparse signals
Require:

Initialization.
Measured vector y, size of blocks d, block sparsity
level n and measurement matrix A.

Ensure:
1: Low-band exhaustive search.

Each block Xi is given a weight wi based on the co-
located low-land antenna search result.

2: Solve the following optimization problem using
semi-definite programming

minx

n∑

i=1

wi‖Xi‖2

subject to Ax = y,x = [X1,X2, ...,Xn]. (34)

3: Reduce noise by updating y.
Sort Xi such that ‖Xj1‖2 ≥ ‖Xj2‖2 ≥ ...‖Xjn‖2.
Update Â to be the submatrix of A containing
columns of first (n− 1)d rows of A that corresponds
to the blocks j1, ..., jn−1.
Update y← Âx (Disregard the weakest block infor-
mation from measurements.)

4: Update weights wi for each block
Calculate x = Â−1y = [X1,X2, ...,Xn].
For each block Xi, count the number of x entries that
are above a predetermined threshold as mi.
Update the weight of each block, wi as follows:
wi ←

∑n
i=1mi

mi
.

5: Iteration
If the termination condition (e.g. allowed maximal
number of iterations) is not met, go back to Step 2.
Otherwise algorithm terminates.

6: Output
Output the recovered signal x = [X1,X2, ...,Xn].

Algorithm 2 Beam Alignment
Require: mmW channel estimation result x

Initialization.
Ensure:

1: RX constructs channel H from x.
2: RX determines the best beam pair as follows and

transmit the best beam pair to TX:
(uopt,vopt) = argmaxu1,u2,...,uI ,v1,...,vJ

‖vHHu‖1 (vj
is j-th RX beam direction).

3: TX and RX align their beams according to direction
pair (uopt,vopt).

• BLOCK: Use an unweighted block-sparse-based re-
construction algorithm [41] to recover channel.

• PROPOSED1: Use proposed weighted block-sparse-
based reconstruction algorithm to recover channel,
but without low-band block information (legacy
band assistance). Block weights are initialized to the
same value for all blocks.

• PROPOSED2: Use proposed weighted block-sparse-
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based reconstruction algorithm with legacy-band-
assisted reconstruction (but without legacy-band-
assisted beam selection) to recover the channel.
Block weights are initialized according to the legacy-
band information.

• PROPOSED3: PROPOSED2 with legacy-band-
assisted beam selection.

7.1 Simulation Settings

In the simulations, we consider a 28GHz mmW cellular
network, and assume the TX has 64 λ/2 uniform linear
arrays, and the RX has 16 λ/2 uniform linear arrays. We
also assume the numbers of colocated low-band TX and
RX antennas are both 4. The mmW channel is generated
based on the model discussed in Section 4. We also
select the channel parameters based on empirical values
based on real-world measurements in [16], with default
Kd = 2 dominating clusters, L = 16 transmission paths
in each cluster. We assume the transmission bandwidth
is 0.5 GHz.

To evaluate the effectiveness of different beam-
alignment schemes, we compare their losses in link gain
from the optimal one with different ratios of directions
searched. The optimal beam direction is found through
the exhaustive search of all possible beam pairs at high
overhead. A bigger loss reflects a larger reduction of
the transmission rate from the optimal. To reduce the
search range, CODEBOOK exploits a multi-level code-
book. After each coarse resolution of beam search, only
the beam pairs within the range detected to have the best
quality will be further trained. Although CS, BLOCK and
our proposed schemes all train a subsect of beam pairs
and exploit the channel information to guide the beam
training, our proposed schemes further take advantage
of the block sparse properties of mmWave channel and
the assistance from the legacy band to improve the beam
alignment efficiency. We expect our scheme can achieve
comparable performances as the optimal one with the
searching cost lower than that of other schemes.

The first metric we will use to evaluate the perfor-
mance of a beam pair is the SNR degradation compared
with the SNR value obtained at the optimal beam pair.
We define the optimal SNR as Ropt = R(uopt,vopt) and
the actual SNR obtained from the estimated best beam
pair (u,v) as R(u,v). Then the SNR loss for this beam
pair in decibels is defined as:

Loss(dB) = −10 log10
[
R(u,v)

Ropt

]
. (35)

The smaller the Loss (Loss is larger than 0 in definition),
the better the beam pair selected.

The second metric we will evaluate is the Search Rate,
which is defined as the number of measured subset of
beam pairs (PQ) normalized to all the possible beam
pairs NtxNrx, that is:

Search Rate = PQ/(NtxNrx). (36)

The third metric we adopt is the actual data transmis-
sion rate achieved by communicating over the beam pair
suggested by beam alignment.
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7.2 Search Effectiveness
We use two metrics to evaluate the search effectiveness
of beam alignment: Loss and data transmission rate.

Figures 5 and 6 show how beam alignment quality
changes with different search rates for various beam
alignment schemes. In Figure 5, among all the schemes
compared, CODEBOOK is the most inefficient one with
the lowest SNR loss. It may filter out the optimal beam
direction in its coarse-level search and end up with
the selection of some sub-optimal ones. In contrast,
CS, BLOCK and our proposed schemes can rely on
the estimated channel information to infer the optimal
beam direction, even if the optimal one hasn’t been
trained earlier or falls out of the best coarse beam
range suggested by the legacy channel. We also see
that BLOCK performs better than the conventional CS
recovery algorithm by considering the block properties
of the sparse channel. At the same search rate, our three
proposed schemes always outperform CS and BLOCK
with lower SNR Loss. PROPOSED2 is able to achieve a
small Loss of 1.8dB when only measuring one fourth
of all the possible beam pairs. In comparison with
CODEBOOK, and PROPOSED1, PROPOSED2 achieves
a Loss reduction by 69.44% and 78.42%, respectively.
Compared to CS, the Loss reduction of PROPOSED2 is
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Fig. 7. Cost efficiency: Loss for fixed search rate.

Fig. 8. Cost efficiency: required rate for a given Loss.

59.34%, whereas BLOCK and PROPOSED1 reduce the
loss by 14.14% and 42.42%, respectively. Our proposed
schemes not only take advantage of the sparse properties
of mmW channel, but also exploit its block feature and
learning from channel estimation in the previous rounds
of iteration to further improve the channel estimation
accuracy. In addition, PROPOSED2 outperforms PRO-
POSED1 by making use of the information from the
low-frequency channels to facilitate the beam alignment.
We also observe an additional improvement of about
20.83% for PROPOSED3, compared with PROPOSED2.
This improvement is mainly contributed by the guidance
of legacy band for the efficient selection of beams to
train, which further increases the accuracy of channel
reconstruction. Compared with the scheme using CS
directly, the loss reduction from the use of PROPOSED3
is about 66.35% in the case of 25% sampling rate, and
the loss reduction is generally above 38% for all tested
cases.

In Figure 6, as expected, the transmission rates incre-
ase with the search rate. Our proposed schemes achieve
a drastic enhancement in the data transmission rates
from other methods. Compared with CODEBOOK, at the
search rate 25%, PROPOSED1, PROPOSED2 and PRO-
POSED3 obtain an improvement of data rate by 224%,
255% and 267%, respectively. Compared with CS, the
improvements are 30.73%, 43.06% and 48.17%, whereas
the enhancements over BLOCK are 18.63%, 29.82% and
34.46%.
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7.3 Cost Efficiency

For a given number of Search Rate (this usually happens
in a resource-limited network, where TX and RX may
only be able to measure a limited number of beam pairs),
the estimated best beam pair quality determines the
effectiveness of a beam alignment scheme. For a given
SNR Loss, a certain Search Rate requirement will need
to be met. The required Search Rate in this case indicates
the cost efficiency of the scheme. When more beam pairs
are searched, the overhead will become higher (e.g. time,
energy, computational complexity).

Figure 7 shows the advantages of our proposed
schemes over CS and BLOCK. For a given number of
beam pairs trained, our proposed schemes experience
much smaller Loss than CS and BLOCK. In Figure 8, we
compare the search rate needed by different schemes to
achieve the same beam alignment quality. Our schemes
require a smaller number of training signal transmissions
as compared to CS and BLOCK. At a Loss of 10dB
achieved by CS, the search rate of our PROPOSED3 is
only 59% that of CODEBOOK, 65.48% that of CS, 74.32%
that of BLOCK. Compared to the exhaustive search, our
rate is only 13.75%. The cost reduction can be huge
under the circumstance that the number of possible
beam directions is large.

7.4 Effect of Channel Clusters

The number of clusters that concentrate most of the sig-
nal power in the channel impacts the block sparse level
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in the estimated path gain vector. The fewer the number
of power concentrating clusters, the sparser the channel.
By varying the number of dominating clusters Kd while
keeping the total number of paths KL unchanged, we
further investigate the effect of channel clustering on the
achieved Loss when the Search Rate is kept the same at
25%. The results are shown in Figure 9.

In Figure 9, the cluster number has a significant im-
pact on the channel estimation thus beam alignment
performances. When the number of clusters increases
(i.e., the channel becomes less sparse), the performances
of all schemes degrade with a larger Loss, as 25% Search
Rate is not enough. Among all the schemes, CODEBOOK
is impacted the most, because more clusters introduce
more uncertainty. The optimal beam direction has a hig-
her chance of being filtered out during the coarse-level
training. The performances of other schemes change less
dramatically, because they are able to estimate the actual
channel information to guide the beam alignment. When
there are 6 channel clusters, compared to CODEBOOK,
CS and BLOCK have a loss reduction of 46.93% and
54.43%, respectively, whereas Proposed1, Proposed2 and
Proposed 3 reduce the loss at 69.44%, 78.42% and 82.14%,
respectively. Again, from PROPOSED1 to PROPOSED2
then to PROPOSED3, we see consistently increase of
improvement. Better exploiting the block sparsity, chan-
nel knowledge and low-frequency band assistance, our
schemes can more effectively select the beams to train.

Figure 10 depicts the effects of clusters on the data
transmission rate. We observe that when the channel
becomes less sparse, the users will experience lower data
transmission rate as a result of the degraded quality
of the beam pair found in beam alignment. Compared
to CODEBOOK, CS, BLOCK, PROPOSED1, PROPOSED2
and PROPOSED3 achieve rate improvements of 148%,
173%, 224%, 255% and 267%, respectively.

8 CONCLUSION

This paper presents an efficient beam alignment scheme
for the transmitter and receiver to jointly decide the
beam directions to combat the large path loss in
the mmW cellular networks. Unlike the conventional
scheme which searches through all the possible beam
pairs or a large volume of codebook at the cost of severe
delay and overhead, to enable efficient beam alignment,
our algorithm takes advantage of the mmW channel
sparsity to enable efficient beam direction matching. Rat-
her than just randomly selecting a small subset of beam
directions to train as done in existing CS-based channel
measurement, to further reduce the beam alignment
overhead and improve the gain, we exploit the block
sparse properties and learning of iterative channel esti-
mation to more accurately estimate the mmW channel at
lower cost. We also exploit the assistance from co-located
low-frequency antennas to guide the beam selection for
training and further increase the channel reconstruction
accuracy thus beam alignment quality. Simulation results

demonstrate the significant advantages of our design in
the search effectiveness and cost efficiency.
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